1
|
Andrysiak K, Ferdek PE, Sanetra AM, Machaj G, Schmidt L, Kraszewska I, Sarad K, Palus-Chramiec K, Lis O, Targosz-Korecka M, Krüger M, Lewandowski MH, Ylla G, Stępniewski J, Dulak J. Upregulation of utrophin improves the phenotype of Duchenne muscular dystrophy hiPSC-derived CMs. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102247. [PMID: 39035791 PMCID: PMC11259739 DOI: 10.1016/j.omtn.2024.102247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/07/2024] [Indexed: 07/23/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disease. Although it leads to muscle weakness, affected individuals predominantly die from cardiomyopathy, which remains uncurable. Accumulating evidence suggests that an overexpression of utrophin may counteract some of the pathophysiological outcomes of DMD. The aim of this study was to investigate the role of utrophin in dystrophin-deficient human cardiomyocytes (CMs) and to test whether an overexpression of utrophin, implemented via the CRISPR-deadCas9-VP64 system, can improve their phenotype. We used human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) lacking either dystrophin (DMD) or both dystrophin and utrophin (DMD KO/UTRN(+/-)). We carried out proteome analysis, which revealed considerable differences in the proteins related to muscle contraction, cell-cell adhesion, and extracellular matrix organization. Furthermore, we evaluated the role of utrophin in maintaining the physiological properties of DMD hiPSC-CMs using atomic force microscopy, patch-clamp, and Ca2+ oscillation analysis. Our results showed higher values of afterhyperpolarization and altered patterns of cytosolic Ca2+ oscillations in DMD; the latter was further disturbed in DMD KO/UTRN(+/-) hiPSC-CMs. Utrophin upregulation improved both parameters. Our findings demonstrate for the first time that utrophin maintains the physiological functions of DMD hiPSC-CMs, and that its upregulation can compensate for the loss of dystrophin.
Collapse
Affiliation(s)
- Kalina Andrysiak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Paweł E. Ferdek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Anna M. Sanetra
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Gabriela Machaj
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Luisa Schmidt
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Izabela Kraszewska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Katarzyna Sarad
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Katarzyna Palus-Chramiec
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Olga Lis
- Department of Physics of Nanostructures and Nanotechnology, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Kraków, Poland
| | - Marta Targosz-Korecka
- Department of Physics of Nanostructures and Nanotechnology, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Kraków, Poland
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Marian H. Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Guillem Ylla
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Jacek Stępniewski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
2
|
Lu C, Wu X, Meng X, Liu Y, Yang T, Zeng Y, Chen Y, Huang Y, Fang Z, Yang X, Luo J. Silver Nanoparticles Exposure Impairs Cardiac Development by Suppressing the Focal Adhesion Pathway in Zebrafish. Int J Nanomedicine 2024; 19:9291-9304. [PMID: 39282573 PMCID: PMC11400637 DOI: 10.2147/ijn.s476168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction The potential toxic effects of wastewater discharges containing silver nanoparticles (AgNPs) and their release into aquatic ecosystems on aquatic organisms are becoming a major concern for environmental and human health. However, the potential risks of AgNPs to aquatic organisms, especially for cardiac development by Focal adhesion pathway, are still poorly understood. Methods The cardiac development of various concentrations of AgNPs in zebrafish were examined using stereoscopic microscope. The expression levels of cardiac development-related genes were analyzed by qRT-PCR and Whole-mount in situ hybridization (WISH). In addition, Illumina high-throughput global transcriptome analysis was performed to explore the potential signaling pathway involved in the treatment of zebrafish embryos by AgNPs after 72 h. Results We systematically investigated the cardiac developing toxicity of AgNPs on the embryos of zebrafish. The results demonstrated that 2 or 4 mg/L AgNPs exposure induces cardiac developmental malformations, such as the appearance of pericardial edema phenotype. In addition, after 72 h of exposure, the mRNA levels of cardiac development-related genes, such as myh7, myh6, tpm1, nppa, tbx5, tbx20, myl7 and cmlc1, were significantly lower in AgNPs-treated zebrafish embryos than in control zebrafish embryos. Moreover, RNA sequencing, KEGG (Kyoto Encyclopedia of Genes) and Genomes and GSEA (gene set enrichment analysis) of the DEGs (differentially expressed genes) between the AgNPs-exposed and control groups indicated that the downregulated DEGs were mainly enriched in focal adhesion pathways. Further investigations demonstrated that the mRNA levels of focal adhesion pathway-related genes, such as igf1ra, shc3, grb2b, ptk2aa, akt1, itga4, parvaa, akt3b and vcla, were significantly decreased after AgNPs treatment in zebrafish. Conclusion Thus, our findings illustrated that AgNPs could impair cardiac development by regulating the focal adhesion pathway in zebrafish.
Collapse
Affiliation(s)
- Chunjiao Lu
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Xuewei Wu
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Xin Meng
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Yi Liu
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Ting Yang
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Yan Zeng
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Yang Chen
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Yishan Huang
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Zhou Fang
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Xiaojun Yang
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Juanjuan Luo
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, 515041, People's Republic of China
| |
Collapse
|
3
|
Zorn P, Calvo Sánchez J, Alakhras T, Schreier B, Gekle M, Hüttelmaier S, Köhn M. Rbfox1 controls alternative splicing of focal adhesion genes in cardiac muscle cells. J Mol Cell Biol 2024; 16:mjae003. [PMID: 38253401 PMCID: PMC11216089 DOI: 10.1093/jmcb/mjae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/30/2023] [Accepted: 01/19/2024] [Indexed: 01/24/2024] Open
Abstract
Alternative splicing is one of the major cellular processes that determine the tissue-specific expression of protein variants. However, it remains challenging to identify physiologically relevant and tissue-selective proteins that are generated by alternative splicing. Hence, we investigated the target spectrum of the splicing factor Rbfox1 in the cardiac muscle context in more detail. By using a combination of in silico target prediction and in-cell validation, we identified several focal adhesion proteins as alternative splicing targets of Rbfox1. We focused on the alternative splicing patterns of vinculin (metavinculin isoform) and paxillin (extended paxillin isoform) and identified both as potential Rbfox1 targets. Minigene analyses suggested that both isoforms are promoted by Rbfox1 due to binding in the introns. Focal adhesions play an important role in the cardiac muscle context, since they mainly influence cell shape, cytoskeletal organization, and cell-matrix association. Our data confirmed that depletion of Rbfox1 changed cardiomyoblast morphology, cytoskeletal organization, and multinuclearity after differentiation, which might be due to changes in alternative splicing of focal adhesion proteins. Hence, our results indicate that Rbfox1 promotes alternative splicing of focal adhesion genes in cardiac muscle cells, which might contribute to heart disease progression, where downregulation of Rbfox1 is frequently observed.
Collapse
Affiliation(s)
- Peter Zorn
- Junior Group ‘Non-coding RNAs and RBPs in Human Diseases’, Medical Faculty, University of Halle–Wittenberg, 06120 Halle (Saale), Germany
| | - Jaime Calvo Sánchez
- Junior Group ‘Non-coding RNAs and RBPs in Human Diseases’, Medical Faculty, University of Halle–Wittenberg, 06120 Halle (Saale), Germany
| | - Tala Alakhras
- Junior Group ‘Non-coding RNAs and RBPs in Human Diseases’, Medical Faculty, University of Halle–Wittenberg, 06120 Halle (Saale), Germany
| | - Barbara Schreier
- Julius Bernstein Institute of Physiology, Medical Faculty, University of Halle–Wittenberg, 06112 Halle (Saale), Germany
| | - Michael Gekle
- Julius Bernstein Institute of Physiology, Medical Faculty, University of Halle–Wittenberg, 06112 Halle (Saale), Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Medical Faculty, University of Halle–Wittenberg, 06120 Halle (Saale), Germany
| | - Marcel Köhn
- Junior Group ‘Non-coding RNAs and RBPs in Human Diseases’, Medical Faculty, University of Halle–Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
4
|
Sun Z, Liang C, Ling Y, Chen Y, Ma Z, Xu Y, Liu Z. A study on the subchronic toxicity of triclocarban to the early-life development of oryzias melastigma and focused on the analysis of osmoregulatory regulation mechanisms. Comp Biochem Physiol C Toxicol Pharmacol 2024; 279:109882. [PMID: 38437996 DOI: 10.1016/j.cbpc.2024.109882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/27/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Triclocarban (TCC), a novel antimicrobial agent found in personal care products, has been extensively detected in marine environments. However, research on the toxic effects of TCC on marine organisms remains inadequate. This study delved into the subchronic toxic effects of TCC on the early life stages of marine medaka (Oryzias melastigma, O. melastigma), revealing that TCC could reduce embryo heart rate and hatching rate while diminishing the survival rate of larvae. Biomarker assays indicated that TCC could inflict damage on the embryos' antioxidant and nervous systems. Transcriptomic analysis suggested that TCC could impact cell growth, reproduction, and various life processes, activating cancer signaling pathways, increasing the likelihood of cancer, and exerting toxic effects on the immune and osmoregulatory systems. To validate and enhance our understanding of TCC's unique toxic impact on the osmoregulatory system of O. melastigma, we conducted homology modeling and molecular docking analyses on the protein involved in osmoregulation. The study intuitively revealed the potential binding affinity of TCC to sodium/potassium-transporting ATPase subunit alph (ATP1A1), indicating its ability to disrupt osmotic balance in marine fish by affecting this target protein. In summary, the results of this study will further enhance our comprehension of the potential toxic effects and mechanisms of TCC on the early stages of marine fish, with a specific focus on its unique toxic effects in osmoregulation.
Collapse
Affiliation(s)
- Zhecheng Sun
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Chuan Liang
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Yunzhe Ling
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Yang Chen
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Zhengzhuo Ma
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Yanhua Xu
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Zhiying Liu
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China.
| |
Collapse
|
5
|
Casarella S, Ferla F, Di Francesco D, Canciani E, Rizzi M, Boccafoschi F. Focal Adhesion's Role in Cardiomyocytes Function: From Cardiomyogenesis to Mechanotransduction. Cells 2024; 13:664. [PMID: 38667279 PMCID: PMC11049660 DOI: 10.3390/cells13080664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Mechanotransduction refers to the ability of cells to sense mechanical stimuli and convert them into biochemical signals. In this context, the key players are focal adhesions (FAs): multiprotein complexes that link intracellular actin bundles and the extracellular matrix (ECM). FAs are involved in cellular adhesion, growth, differentiation, gene expression, migration, communication, force transmission, and contractility. Focal adhesion signaling molecules, including Focal Adhesion Kinase (FAK), integrins, vinculin, and paxillin, also play pivotal roles in cardiomyogenesis, impacting cell proliferation and heart tube looping. In fact, cardiomyocytes sense ECM stiffness through integrins, modulating signaling pathways like PI3K/AKT and Wnt/β-catenin. Moreover, FAK/Src complex activation mediates cardiac hypertrophic growth and survival signaling in response to mechanical loads. This review provides an overview of the molecular and mechanical mechanisms underlying the crosstalk between FAs and cardiac differentiation, as well as the role of FA-mediated mechanotransduction in guiding cardiac muscle responses to mechanical stimuli.
Collapse
Affiliation(s)
- Simona Casarella
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Federica Ferla
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Dalila Di Francesco
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Elena Canciani
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Manuela Rizzi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| |
Collapse
|
6
|
Bajpai AK, Gu Q, Orgil BO, Alberson NR, Towbin JA, Martinez HR, Lu L, Purevjav E. Exploring the Regulation and Function of Rpl3l in the Development of Early-Onset Dilated Cardiomyopathy and Congestive Heart Failure Using Systems Genetics Approach. Genes (Basel) 2023; 15:53. [PMID: 38254943 PMCID: PMC10815855 DOI: 10.3390/genes15010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Cardiomyopathies, diseases affecting the myocardium, are common causes of congestive heart failure (CHF) and sudden cardiac death. Recently, biallelic variants in ribosomal protein L3-like (RPL3L) have been reported to be associated with severe neonatal dilated cardiomyopathy (DCM) and CHF. This study employs a systems genetics approach to gain understanding of the regulatory mechanisms underlying the role of RPL3L in DCM. METHODS Genetic correlation, expression quantitative trait loci (eQTL) mapping, differential expression analysis and comparative functional analysis were performed using cardiac gene expression data from the patients and murine genetic reference populations (GRPs) of BXD mice (recombinant inbred strains from a cross of C57BL/6J and DBA/2J mice). Additionally, immune infiltration analysis was performed to understand the relationship between DCM, immune cells and RPL3L expression. RESULTS Systems genetics analysis identified high expression of Rpl3l mRNA, which ranged from 11.31 to 12.16 across murine GRPs of BXD mice, with an ~1.8-fold difference. Pathways such as "diabetic cardiomyopathy", "focal adhesion", "oxidative phosphorylation" and "DCM" were significantly associated with Rpl3l. eQTL mapping suggested Myl4 (Chr 11) and Sdha (Chr 13) as the upstream regulators of Rpl3l. The mRNA expression of Rpl3l, Myl4 and Sdha was significantly correlated with multiple echocardiography traits in BXD mice. Immune infiltration analysis revealed a significant association of RPL3L and SDHA with seven immune cells (CD4, CD8-naive T cell, CD8 T cell, macrophages, cytotoxic T cell, gamma delta T cell and exhausted T cell) that were also differentially infiltrated between heart samples obtained from DCM patients and normal individuals. CONCLUSIONS RPL3L is highly expressed in the heart tissue of humans and mice. Expression of Rpl3l and its upstream regulators, Myl4 and Sdha, correlate with multiple cardiac function traits in murine GRPs of BXD mice, while RPL3L and SDHA correlate with immune cell infiltration in DCM patient hearts, suggesting important roles for RPL3L in DCM and CHF pathogenesis via immune inflammation, necessitating experimental validations of Myl4 and Sdha in Rpl3l regulation.
Collapse
Affiliation(s)
- Akhilesh K. Bajpai
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (A.K.B.); (Q.G.)
| | - Qingqing Gu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (A.K.B.); (Q.G.)
| | - Buyan-Ochir Orgil
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Neely R. Alberson
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Jeffrey A. Towbin
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
- Cardiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Hugo R. Martinez
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (A.K.B.); (Q.G.)
| | - Enkhsaikhan Purevjav
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| |
Collapse
|
7
|
Atzemian N, Dovrolis N, Ragia G, Portokallidou K, Kolios G, Manolopoulos VG. Beyond the Rhythm: In Silico Identification of Key Genes and Therapeutic Targets in Atrial Fibrillation. Biomedicines 2023; 11:2632. [PMID: 37893006 PMCID: PMC10604372 DOI: 10.3390/biomedicines11102632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Atrial fibrillation (AF) is a prevalent cardiac arrhythmia worldwide and is characterized by a high risk of thromboembolism, ischemic stroke, and fatality. The precise molecular mechanisms of AF pathogenesis remain unclear. The purpose of this study was to use bioinformatics tools to identify novel key genes in AF, provide deeper insights into the molecular pathogenesis of AF, and uncover potential therapeutic targets. Four publicly available raw RNA-Seq datasets obtained through the ENA Browser, as well as proteomic analysis results, both derived from atrial tissues, were used in this analysis. Differential gene expression analysis was performed and cross-validated with proteomics results to identify common genes/proteins between them. A functional enrichment pathway analysis was performed. Cross-validation analysis revealed five differentially expressed genes, namely FGL2, IGFBP5, NNMT, PLA2G2A, and TNC, in patients with AF compared with those with sinus rhythm (SR). These genes play crucial roles in various cardiovascular functions and may be part of the molecular signature of AF. Furthermore, functional enrichment analysis revealed several pathways related to the extracellular matrix, inflammation, and structural remodeling. This study highlighted five key genes that constitute promising candidates for further experimental exploration as biomarkers as well as therapeutic targets for AF.
Collapse
Affiliation(s)
- Natalia Atzemian
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.A.); (G.R.); (K.P.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Nikolas Dovrolis
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.A.); (G.R.); (K.P.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Georgia Ragia
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.A.); (G.R.); (K.P.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Konstantina Portokallidou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.A.); (G.R.); (K.P.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - George Kolios
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.A.); (G.R.); (K.P.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Vangelis G. Manolopoulos
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.A.); (G.R.); (K.P.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
- Clinical Pharmacology Unit, Academic General Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece
| |
Collapse
|
8
|
Reitz C, Tavassoli M, Kim D, Shah S, Lakin R, Teng A, Zhou YQ, Li W, Hadipour-Lakmehsari S, Backx P, Emili A, Oudit G, Kuzmanov U, Gramolini A. Proteomics and phosphoproteomics of failing human left ventricle identifies dilated cardiomyopathy-associated phosphorylation of CTNNA3. Proc Natl Acad Sci U S A 2023; 120:e2212118120. [PMID: 37126683 PMCID: PMC10175742 DOI: 10.1073/pnas.2212118120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/24/2023] [Indexed: 05/03/2023] Open
Abstract
The prognosis and treatment outcomes of heart failure (HF) patients rely heavily on disease etiology, yet the majority of underlying signaling mechanisms are complex and not fully elucidated. Phosphorylation is a major point of protein regulation with rapid and profound effects on the function and activity of protein networks. Currently, there is a lack of comprehensive proteomic and phosphoproteomic studies examining cardiac tissue from HF patients with either dilated dilated cardiomyopathy (DCM) or ischemic cardiomyopathy (ICM). Here, we used a combined proteomic and phosphoproteomic approach to identify and quantify more than 5,000 total proteins with greater than 13,000 corresponding phosphorylation sites across explanted left ventricle (LV) tissue samples, including HF patients with DCM vs. nonfailing controls (NFC), and left ventricular infarct vs. noninfarct, and periinfarct vs. noninfarct regions of HF patients with ICM. Each pair-wise comparison revealed unique global proteomic and phosphoproteomic profiles with both shared and etiology-specific perturbations. With this approach, we identified a DCM-associated hyperphosphorylation cluster in the cardiomyocyte intercalated disc (ICD) protein, αT-catenin (CTNNA3). We demonstrate using both ex vivo isolated cardiomyocytes and in vivo using an AAV9-mediated overexpression mouse model, that CTNNA3 phosphorylation at these residues plays a key role in maintaining protein localization at the cardiomyocyte ICD to regulate conductance and cell-cell adhesion. Collectively, this integrative proteomic/phosphoproteomic approach identifies region- and etiology-associated signaling pathways in human HF and describes a role for CTNNA3 phosphorylation in the pathophysiology of DCM.
Collapse
Affiliation(s)
- Cristine J. Reitz
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ONM5S 1M8
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| | - Marjan Tavassoli
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ONM5S 1M8
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| | - Da Hye Kim
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ONM5S 1M8
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| | - Saumya Shah
- Department of Medicine, University of Alberta, Edmonton, ABT6G 2R3
| | - Robert Lakin
- Department of Biology, York University, Toronto, ONM3J 1P3
| | - Allen C. T. Teng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ONM5S 1M8
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| | - Yu-Qing Zhou
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| | - Wenping Li
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ONM5S 1M8
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| | - Sina Hadipour-Lakmehsari
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ONM5S 1M8
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| | - Peter H. Backx
- Department of Biology, York University, Toronto, ONM3J 1P3
| | - Andrew Emili
- Department of Biochemistry, Boston University School of Medicine, Boston, MA02118
- Department of Biology, Boston University School of Medicine, Boston, MA02118
- The Centre for Network Systems Biology, Boston University School of Medicine, Boston, MA02118
| | - Gavin Y. Oudit
- Department of Medicine, University of Alberta, Edmonton, ABT6G 2R3
- Mazankowski Alberta Heart Institute, Edmonton, ABT6G 2B7
| | - Uros Kuzmanov
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ONM5S 1M8
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| | - Anthony O. Gramolini
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ONM5S 1M8
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| |
Collapse
|
9
|
Liu H, Hu X, Lian Z, Luo Z, Lv A, Tan J. Focal adhesion signaling pathway involved in skin immune response of tongue sole Cynoglossus semilaevis to Vibrio vulnificus infection. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108651. [PMID: 36863497 DOI: 10.1016/j.fsi.2023.108651] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Focal adhesion (FA) plays a key role in cell adhesion, migration and antibacterial immune, but it remained unclear in fish. In this study, half-smooth tongue sole Cynoglossus semilaevis were infected with Vibrio vulnificus, and then immune-related protein in the skin, especially for FA signaling pathway were screened and identified by iTRAQ analysis. Results showed that the differentially expressed proteins (DEPs) in skin immune response (eg., ITGA6, FN, COCH, AMBP, COL6A1, COL6A3, COL6A6, LAMB1, LAMC1, FLMNA) were firstly found in FA signaling pathway. Furthermore, the validation analysis of FA-related genes were basically consistent with the iTRAQ data at 36 hpi (r = 0.678, p < 0.01), and their spatio-temporal expressions were confirmed by qPCR analysis. The molecular characterization of vinculin of C. semilaevis was described. This study will provide a new perspective for understanding the molecular mechanism of FA signaling pathway in the skin immune response in marine fish.
Collapse
Affiliation(s)
- Houfu Liu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Xiucai Hu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Zhengyi Lian
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Zhang Luo
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Aijun Lv
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Jing Tan
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| |
Collapse
|
10
|
Cardiac Differentiation Promotes Focal Adhesions Assembly through Vinculin Recruitment. Int J Mol Sci 2023; 24:ijms24032444. [PMID: 36768766 PMCID: PMC9916732 DOI: 10.3390/ijms24032444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Cells of the cardiovascular system are physiologically exposed to a variety of mechanical forces fundamental for both cardiac development and functions. In this context, forces generated by actomyosin networks and those transmitted through focal adhesion (FA) complexes represent the key regulators of cellular behaviors in terms of cytoskeleton dynamism, cell adhesion, migration, differentiation, and tissue organization. In this study, we investigated the involvement of FAs on cardiomyocyte differentiation. In particular, vinculin and focal adhesion kinase (FAK) family, which are known to be involved in cardiac differentiation, were studied. Results revealed that differentiation conditions induce an upregulation of both FAK-Tyr397 and vinculin, resulting also in the translocation to the cell membrane. Moreover, the role of mechanical stress in contractile phenotype expression was investigated by applying a uniaxial mechanical stretching (5% substrate deformation, 1 Hz frequency). Morphological evaluation revealed that the cell shape showed a spindle shape and reoriented following the stretching direction. Substrate deformation resulted also in modification of the length and the number of vinculin-positive FAs. We can, therefore, suggest that mechanotransductive pathways, activated through FAs, are highly involved in cardiomyocyte differentiation, thus confirming their role during cytoskeleton rearrangement and cardiac myofilament maturation.
Collapse
|
11
|
Svoboda LK, Wang K, Goodrich JM, Jones TR, Colacino JA, Peterson KE, Tellez-Rojo MM, Sartor MA, Dolinoy DC. Perinatal Lead Exposure Promotes Sex-Specific Epigenetic Programming of Disease-Relevant Pathways in Mouse Heart. TOXICS 2023; 11:85. [PMID: 36668811 PMCID: PMC9860846 DOI: 10.3390/toxics11010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Environmental contaminants such as the metal lead (Pb) are associated with cardiovascular disease, but the underlying molecular mechanisms are poorly understood. In particular, little is known about how exposure to Pb during early development impacts the cardiac epigenome at any point across the life course and potential differences between sexes. In a mouse model of human-relevant perinatal exposures, we utilized RNA-seq and Enhanced Reduced Representation Bisulfite Sequencing (ERRBS) to investigate the effects of Pb exposure during gestation and lactation on gene expression and DNA methylation, respectively, in the hearts of male and female mice at weaning. For ERRBS, we identified differentially methylated CpGs (DMCs) or differentially methylated 1000 bp regions (DMRs) based on a minimum absolute change in methylation of 10% and an FDR < 0.05. For gene expression data, an FDR < 0.05 was considered significant. No individual genes met the FDR cutoff for gene expression; however, we found that Pb exposure leads to significant changes in the expression of gene pathways relevant to cardiovascular development and disease. We further found that Pb promotes sex-specific changes in DNA methylation at hundreds of gene loci (280 DMCs and 99 DMRs in males, 189 DMCs and 121 DMRs in females), and pathway analysis revealed that these CpGs and regions collectively function in embryonic development. In males, differential methylation also occurred at genes related to immune function and metabolism. We then investigated whether genes exhibiting differential methylation at weaning were also differentially methylated in hearts from a cohort of Pb-exposed mice at adulthood. We found that a single gene, Galnt2, showed differential methylation in both sexes and time points. In a human cohort investigating the influence of prenatal Pb exposure on the epigenome, we also observed an inverse association between first trimester Pb concentrations and adolescent blood leukocyte DNA methylation at a locus in GALNT2, suggesting that this gene may represent a biomarker of Pb exposure across species. Together, these data, across two time points in mice and in a human birth cohort study, collectively demonstrate that Pb exposure promotes sex-specific programming of the cardiac epigenome, and provide potential mechanistic insight into how Pb causes cardiovascular disease.
Collapse
Affiliation(s)
- Laurie K. Svoboda
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Kai Wang
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jaclyn M. Goodrich
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Tamara R. Jones
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Justin A. Colacino
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Karen E. Peterson
- Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Martha M. Tellez-Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca 62100, Mexico
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Dana C. Dolinoy
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
- Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Rinkūnaitė I, Šimoliūnas E, Alksnė M, Bartkutė G, Labeit S, Bukelskienė V, Bogomolovas J. Genetic Ablation of Ankrd1 Mitigates Cardiac Damage during Experimental Autoimmune Myocarditis in Mice. Biomolecules 2022; 12:biom12121898. [PMID: 36551326 PMCID: PMC9775225 DOI: 10.3390/biom12121898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Myocarditis (MC) is an inflammatory disease of the myocardium that can cause sudden death in the acute phase, and dilated cardiomyopathy (DCM) with chronic heart failure as its major long-term outcome. However, the molecular mechanisms beyond the acute MC phase remain poorly understood. The ankyrin repeat domain 1 (ANKRD1) is a functionally pleiotropic stress/stretch-inducible protein, which can modulate cardiac stress response during various forms of pathological stimuli; however, its involvement in post-MC cardiac remodeling leading to DCM is not known. To address this, we induced experimental autoimmune myocarditis (EAM) in ANKRD1-deficient mice, and evaluated post-MC consequences at the DCM stage mice hearts. We demonstrated that ANKRD1 does not significantly modulate heart failure; nevertheless, the genetic ablation of Ankrd1 blunted the cardiac damage/remodeling and preserved heart function during post-MC DCM.
Collapse
Affiliation(s)
- Ieva Rinkūnaitė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Egidijus Šimoliūnas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Milda Alksnė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Gabrielė Bartkutė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Siegfried Labeit
- DZHK Partner Site Mannheim-Heidelberg, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Myomedix GmbH, 69151 Neckargemünd, Germany
| | - Virginija Bukelskienė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Julius Bogomolovas
- Department of Medicine, School of Medicine, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
- Correspondence:
| |
Collapse
|
13
|
Huang K, Zhang X, Duan J, Wang R, Wu Z, Yang C, Yang L. STAT4 and COL1A2 are potential diagnostic biomarkers and therapeutic targets for heart failure comorbided with depression. Brain Res Bull 2022; 184:68-75. [PMID: 35367598 DOI: 10.1016/j.brainresbull.2022.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND Heart failure (HF) and depression are common disorders that markedly compromise quality of life and impose a great financial burden on the society. Although increasing evidence has supported the closely linkage between the two disorders, the comorbidity mechanisms remain to be fully illuminated. We performed a bioinformatics network analysis to understand potential diagnostic biomarkers and therapeutic targets for HF comorbided with depression. METHODS We downloaded the datasets of HF and depression from the Gene Expression Omnibus (GEO) database and constructed co-expression networks by Weighted Gene Co-Expression Network Analysis (WGCNA) to identify key modules. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed on the common genes existing in the HF and depression related modules. Then, we employed the STRING database to construct the protein-protein interaction (PPI) network and detected the hub genes in the network. Finally, we validated the expression difference of hub genes from additional datasets of HF and depression. RESULTS Functional enrichment analysis indicated that platelet activation, chemokine signaling and focal adhesion were probably involved in HF comorbided with depression. PPI network construction indicated that HF comorbided with depression is likely related to 5 hub genes, including STAT4, CD83, CX3CR1, COL1A2, and SH2D1B. In validated datasets, STAT4 and COL1A2 were especially involved in the comorbidity of HF and depression. CONCLUSION Our work indicated a total of 5 hub genes including STAT4, CD83, CX3CR1, COL1A2, and SH2D1B, in which STAT4 and COL1A2 especially underlie the comorbidity mechanisms of HF and depression. These shared pathways might provide new targets for further mechanistic studies of the pathogenesis and treatment of HF and depression.
Collapse
Affiliation(s)
- Kai Huang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Xinying Zhang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jiahao Duan
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Ruting Wang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Zifeng Wu
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China.
| |
Collapse
|
14
|
Truncation of the N-terminus of cardiac troponin I initiates adaptive remodeling of the myocardial proteosome via phosphorylation of mechano-sensitive signaling pathways. Mol Cell Biochem 2022; 477:1803-1815. [PMID: 35316461 DOI: 10.1007/s11010-022-04414-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
The cardiac isoform of troponin I has a unique N-terminal extension (~ 1-30 amino acids), which contributes to the modulation of cardiac contraction and relaxation. Hearts of various species including humans produce a truncated variant of cardiac troponin I (cTnI-ND) deleting the first ~ 30 amino acids as an adaption in pathophysiological conditions. In this study, we investigated the impact of cTnI-ND chronic expression in transgenic mouse hearts compared to wildtype (WT) controls (biological n = 8 in each group). We aimed to determine the global phosphorylation effects of cTnI-ND on the cardiac proteome, thereby determining the signaling pathways that have an impact on cardiac function. The samples were digested and isobarically labeled and equally mixed for relative quantification via nanoLC-MS/MS. The peptides were then enriched for phospho-peptides and bioinformatic analysis was done with Ingenuity Pathway Analysis (IPA). We found approximately 77% replacement of the endogenous intact cTnI with cTnI-ND in the transgenic mouse hearts with 1674 phospho-proteins and 2971 non-modified proteins. There were 73 significantly altered phospho-proteins; bioinformatic analysis identified the top canonical pathways as associated with integrin, protein kinase A, RhoA, and actin cytoskeleton signaling. Among the 73 phospho-proteins compared to controls cTnI-ND hearts demonstrated a significant decrease in paxillin and YAP1, which are known to play a role in cell mechano-sensing pathways. Our data indicate that cTnI-ND modifications in the sarcomere are sufficient to initiate changes in the phospho-signaling profile that may underly the chronic-adaptive response associated with cTnI cleavage in response to stressors by modifying mechano-sensitive signaling pathways.
Collapse
|
15
|
Wen D, Gao Y, Ho C, Yu L, Zhang Y, Lyu G, Hu D, Li Q, Zhang Y. Focusing on Mechanoregulation Axis in Fibrosis: Sensing, Transduction and Effecting. Front Mol Biosci 2022; 9:804680. [PMID: 35359592 PMCID: PMC8963247 DOI: 10.3389/fmolb.2022.804680] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/09/2022] [Indexed: 11/24/2022] Open
Abstract
Fibrosis, a pathologic process featured by the excessive deposition of connective tissue components, can affect virtually every organ and has no satisfactory therapy yet. Fibrotic diseases are often associated with organ dysfunction which leads to high morbidity and mortality. Biomechanical stmuli and the corresponding cellular response havebeen identified in fibrogenesis, as the fibrotic remodeling could be seen as the incapacity to reestablish mechanical homeostasis: along with extracellular matrix accumulating, the physical property became more “stiff” and could in turn induce fibrosis. In this review, we provide a comprehensive overview of mechanoregulation in fibrosis, from initialing cellular mechanosensing to intracellular mechanotransduction and processing, and ends up in mechanoeffecting. Our contents are not limited to the cellular mechanism, but further expand to the disorders involved and current clinical trials, providing an insight into the disease and hopefully inspiring new approaches for the treatment of tissue fibrosis.
Collapse
Affiliation(s)
- Dongsheng Wen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chiakang Ho
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuguang Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guozhong Lyu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Dahai Hu
- Burns Centre of PLA, Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Qingfeng Li, ; Yifan Zhang,
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Qingfeng Li, ; Yifan Zhang,
| |
Collapse
|
16
|
A Signature for Smoking Status of Coronary Heart Disease Patients through Weighted Gene Coexpression Network Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5777946. [PMID: 35096131 PMCID: PMC8791244 DOI: 10.1155/2022/5777946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/18/2022]
Abstract
Background. Smoking is one of the risk factors of coronary heart disease (CHD), while its underlying mechanism is less well defined. Purpose. To identify and testify 6 key genes of CHD related to smoking through weighted gene coexpression network analysis (WGCNA), protein-protein interaction (PPI) network analysis, and pathway analysis. Methods. CHD patients’ samples were first downloaded from Gene Expression Omnibus (GEO). Then, genes of interest were obtained after analysis of variance (ANOVA). Thereafter, 23 coexpressed modules that were determined after genes with similar expression were incorporated via WGCNA. The biological functions of genes in the modules were researched by enrichment analysis. Pearson correlation analysis and PPI network analysis were used to screen core genes related to smoking in CHD. Results. The violet module was the most significantly associated with smoking (
,
). Genes in this module mainly participated in biological functions related to the heart. Altogether, 6 smoking-related core genes were identified through bioinformatics analyses. Their expressions in animal models were detected through the animal experiment. Conclusion. This study identified 6 core genes to serve as underlying biomarkers for monitoring and predicting smoker’s CHD risk.
Collapse
|
17
|
Andersson L, Cinato M, Mardani I, Miljanovic A, Arif M, Koh A, Lindbom M, Laudette M, Bollano E, Omerovic E, Klevstig M, Henricsson M, Fogelstrand P, Swärd K, Ekstrand M, Levin M, Wikström J, Doran S, Hyötyläinen T, Sinisalu L, Orešič M, Tivesten Å, Adiels M, Bergo MO, Proia R, Mardinoglu A, Jeppsson A, Borén J, Levin MC. Glucosylceramide synthase deficiency in the heart compromises β1-adrenergic receptor trafficking. Eur Heart J 2021; 42:4481-4492. [PMID: 34297830 PMCID: PMC8599074 DOI: 10.1093/eurheartj/ehab412] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/05/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022] Open
Abstract
AIMS Cardiac injury and remodelling are associated with the rearrangement of cardiac lipids. Glycosphingolipids are membrane lipids that are important for cellular structure and function, and cardiac dysfunction is a characteristic of rare monogenic diseases with defects in glycosphingolipid synthesis and turnover. However, it is not known how cardiac glycosphingolipids regulate cellular processes in the heart. The aim of this study is to determine the role of cardiac glycosphingolipids in heart function. METHODS AND RESULTS Using human myocardial biopsies, we showed that the glycosphingolipids glucosylceramide and lactosylceramide are present at very low levels in non-ischaemic human heart with normal function and are elevated during remodelling. Similar results were observed in mouse models of cardiac remodelling. We also generated mice with cardiomyocyte-specific deficiency in Ugcg, the gene encoding glucosylceramide synthase (hUgcg-/- mice). In 9- to 10-week-old hUgcg-/- mice, contractile capacity in response to dobutamine stress was reduced. Older hUgcg-/- mice developed severe heart failure and left ventricular dilatation even under baseline conditions and died prematurely. Using RNA-seq and cell culture models, we showed defective endolysosomal retrograde trafficking and autophagy in Ugcg-deficient cardiomyocytes. We also showed that responsiveness to β-adrenergic stimulation was reduced in cardiomyocytes from hUgcg-/- mice and that Ugcg knockdown suppressed the internalization and trafficking of β1-adrenergic receptors. CONCLUSIONS Our findings suggest that cardiac glycosphingolipids are required to maintain β-adrenergic signalling and contractile capacity in cardiomyocytes and to preserve normal heart function.
Collapse
Affiliation(s)
- Linda Andersson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Mathieu Cinato
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Ismena Mardani
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Azra Miljanovic
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Muhammad Arif
- Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Ara Koh
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Malin Lindbom
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Marion Laudette
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Entela Bollano
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Elmir Omerovic
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Martina Klevstig
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Marcus Henricsson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Per Fogelstrand
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | - Matias Ekstrand
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Max Levin
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Johannes Wikström
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Stephen Doran
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Tuulia Hyötyläinen
- School of Natural Sciences and Technology, Örebro University, Fakultetsgatan 1, SE-701 82 Örebro, Sweden
| | - Lisanna Sinisalu
- School of Natural Sciences and Technology, Örebro University, Fakultetsgatan 1, SE-701 82 Örebro, Sweden
| | - Matej Orešič
- School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
- Turku Bioscience Centre, University of Turku, FIN-20521 Turku, Finland
| | - Åsa Tivesten
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Martin Adiels
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Martin O Bergo
- Department of Biosciences and Nutrition, Karolinska Institute, SE-141 83 Huddinge, Sweden
| | - Richard Proia
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20892, USA
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Anders Jeppsson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Malin C Levin
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| |
Collapse
|
18
|
Solís C, Russell B. Striated muscle proteins are regulated both by mechanical deformation and by chemical post-translational modification. Biophys Rev 2021; 13:679-695. [PMID: 34777614 PMCID: PMC8555064 DOI: 10.1007/s12551-021-00835-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 01/09/2023] Open
Abstract
All cells sense force and build their cytoskeleton to optimize function. How is this achieved? Two major systems are involved. The first is that load deforms specific protein structures in a proportional and orientation-dependent manner. The second is post-translational modification of proteins as a consequence of signaling pathway activation. These two processes work together in a complex way so that local subcellular assembly as well as overall cell function are controlled. This review discusses many cell types but focuses on striated muscle. Detailed information is provided on how load deforms the structure of proteins in the focal adhesions and filaments, using α-actinin, vinculin, talin, focal adhesion kinase, LIM domain-containing proteins, filamin, myosin, titin, and telethonin as examples. Second messenger signals arising from external triggers are distributed throughout the cell causing post-translational or chemical modifications of protein structures, with the actin capping protein CapZ and troponin as examples. There are numerous unanswered questions of how mechanical and chemical signals are integrated by muscle proteins to regulate sarcomere structure and function yet to be studied. Therefore, more research is needed to see how external triggers are integrated with local tension generated within the cell. Nonetheless, maintenance of tension in the sarcomere is the essential and dominant mechanism, leading to the well-known phrase in exercise physiology: "use it or lose it."
Collapse
Affiliation(s)
- Christopher Solís
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Brenda Russell
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612 USA
| |
Collapse
|
19
|
Jeffrey DA, Pires Da Silva J, Garcia AM, Jiang X, Karimpour-Fard A, Toni LS, Lanzicher T, Peña B, Miyano CA, Nunley K, Korst A, Sbaizero O, Taylor MR, Miyamoto SD, Stauffer BL, Sucharov CC. Serum circulating proteins from pediatric dilated cardiomyopathy patients cause pathologic remodeling and cardiomyocyte stiffness. JCI Insight 2021; 6:e148637. [PMID: 34383712 PMCID: PMC8525651 DOI: 10.1172/jci.insight.148637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 08/11/2021] [Indexed: 12/01/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is the most common form of cardiomyopathy and main indication for heart transplantation in children. Therapies specific to pediatric DCM remain limited due to lack of a disease model. Our previous study showed that treatment of neonatal rat ventricular myocytes (NRVMs) with serum from nonfailing or DCM pediatric patients activates the fetal gene program (FGP). Here we show that serum treatment with proteinase K prevents activation of the FGP, whereas RNase treatment exacerbates it, suggesting that circulating proteins, but not circulating miRNAs, promote these pathological changes. Evaluation of the protein secretome showed that midkine (MDK) is upregulated in DCM serum, and NRVM treatment with MDK activates the FGP. Changes in gene expression in serum-treated NRVMs, evaluated by next-generation RNA-Seq, indicated extracellular matrix remodeling and focal adhesion pathways were upregulated in pediatric DCM serum and in DCM serum–treated NRVMs, suggesting alterations in cellular stiffness. Cellular stiffness was evaluated by Atomic Force Microscopy, which showed an increase in stiffness in DCM serum–treated NRVMs. Of the proteins increased in DCM sera, secreted frizzled-related protein 1 (sFRP1) was a potential candidate for the increase in cellular stiffness, and sFRP1 treatment of NRVMs recapitulated the increase in cellular stiffness observed in response to DCM serum treatment. Our results show that serum circulating proteins promoted pathological changes in gene expression and cellular stiffness, and circulating miRNAs were protective against pathological changes.
Collapse
Affiliation(s)
- Danielle A Jeffrey
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Julie Pires Da Silva
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Anastacia M Garcia
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Xuan Jiang
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Anis Karimpour-Fard
- Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Lee S Toni
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Thomas Lanzicher
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Brisa Peña
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Carissa A Miyano
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Karin Nunley
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Armin Korst
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Matthew Rg Taylor
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Shelley D Miyamoto
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Brian L Stauffer
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Carmen C Sucharov
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| |
Collapse
|
20
|
Cheng N, Mo Q, Donelson J, Wang L, Breton G, Rodney GG, Wang J, Hirschi KD, Wehrens XHT, Nakata PA. Crucial Role of Mammalian Glutaredoxin 3 in Cardiac Energy Metabolism in Diet-induced Obese Mice Revealed by Transcriptome Analysis. Int J Biol Sci 2021; 17:2871-2883. [PMID: 34345213 PMCID: PMC8326124 DOI: 10.7150/ijbs.60263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/25/2021] [Indexed: 12/25/2022] Open
Abstract
Obesity is often associated with metabolic dysregulation and oxidative stress with the latter serving as a possible unifying link between obesity and cardiovascular complications. Glutaredoxins (Grxs) comprise one of the major antioxidant systems in the heart. Although Grx3 has been shown to act as an endogenous negative regulator of cardiac hypertrophy and heart failure, its metabolic impact on cardiac function in diet-induced obese (DIO) mice remains largely unknown. In the present study, analysis of Grx3 expression indicated that Grx3 protein levels, but not mRNA levels, were significantly increased in the hearts of DIO mice. Cardiac-specific Grx3 deletion (Grx3 CKO) mice were viable and grew indistinguishably from their littermates after being fed a high fat diet (HFD) for one month, starting at 2 months of age. After being fed with a HFD for 8 months (starting at 2 months of age); however, Grx3 CKO DIO mice displayed left ventricular systolic dysfunction with a significant decrease in ejection fraction and fractional shortening that was associated with heart failure. ROS production was significantly increased in Grx3 CKO DIO cardiomyocytes compared to control cells. Gene expression analysis revealed a significant decline in the level of transcripts corresponding to genes associated with processes such as fatty acid uptake, mitochondrial fatty acid transport and oxidation, and citrate cycle in Grx3 CKO DIO mice compared to DIO controls. In contrast, an increase in the level of transcripts corresponding to genes associated with glucose uptake and utilization were found in Grx3 CKO DIO mice compared to DIO controls. Taken together, these findings indicate that Grx3 may play a critical role in redox balance and as a metabolic switch in cardiomyocytes contributing to the development and progression of heart failure.
Collapse
Affiliation(s)
- Ninghui Cheng
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Qianxing Mo
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jimmonique Donelson
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Lingfei Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ghislain Breton
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - George G Rodney
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Cardiovascular Research Institute, and Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kendal D Hirschi
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xander H T Wehrens
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Cardiovascular Research Institute, and Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul A Nakata
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
21
|
Dittloff KT, Iezzi A, Zhong JX, Mohindra P, Desai TA, Russell B. Transthyretin amyloid fibrils alter primary fibroblast structure, function, and inflammatory gene expression. Am J Physiol Heart Circ Physiol 2021; 321:H149-H160. [PMID: 34018852 DOI: 10.1152/ajpheart.00073.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Age-related wild-type transthyretin amyloidosis (wtATTR) is characterized by systemic deposition of amyloidogenic fibrils of misfolded transthyretin (TTR) in the connective tissue of many organs. In the heart, this leads to cardiac dysfunction, which is a significant cause of age-related heart failure. The hypothesis tested is that TTR affects cardiac fibroblasts in ways that may contribute to fibrosis. When primary cardiac fibroblasts were cultured on TTR-deposited substrates, the F-actin cytoskeleton was disorganized, focal adhesion formation was decreased, and nuclear shape was flattened. Fibroblasts had faster collective and single-cell migration velocities on TTR-deposited substrates. In addition, fibroblasts cultured on microposts with TTR deposition had reduced attachment and increased proliferation above untreated. Transcriptomic and proteomic analyses of fibroblasts grown on glass covered with TTR showed significant upregulation of inflammatory genes after 48 h, indicative of progression in TTR-based diseases. Together, results suggest that TTR deposited in tissue extracellular matrix may affect the structure, function, and gene expression of cardiac fibroblasts. As therapies for wtATTR are cost-prohibitive and only slow disease progression, better understanding of cellular maladaptation may elucidate novel therapeutic targets.NEW & NOTEWORTHY Transthyretin (TTR) cardiac amyloidosis involves deposition of fibrils of misfolded TTR in the aging human heart, leading to cardiac dysfunction and heart failure. Our novel in vitro studies show that TTR fibrils alter primary cardiac fibroblast cytoskeletal and nuclear structure and focal adhesion formation. Furthermore, both fibrillar and tetrameric TTR significantly increased cellular migration velocity and caused upregulation of inflammatory genes determined by transcriptomic RNA and protein analysis. These findings may suggest new therapeutic approaches.
Collapse
Affiliation(s)
- Kyle T Dittloff
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Antonio Iezzi
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Justin X Zhong
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, California.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
| | - Priya Mohindra
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, California.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
| | - Tejal A Desai
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, California.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California.,Department of Bioengineering, University of California, Berkeley, California
| | - Brenda Russell
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois.,Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
22
|
Shah H, Hacker A, Langburt D, Dewar M, McFadden MJ, Zhang H, Kuzmanov U, Zhou YQ, Hussain B, Ehsan F, Hinz B, Gramolini AO, Heximer SP. Myocardial Infarction Induces Cardiac Fibroblast Transformation within Injured and Noninjured Regions of the Mouse Heart. J Proteome Res 2021; 20:2867-2881. [PMID: 33789425 DOI: 10.1021/acs.jproteome.1c00098] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Heart failure (HF) is associated with pathological remodeling of the myocardium, including the initiation of fibrosis and scar formation by activated cardiac fibroblasts (CFs). Although early CF-dependent scar formation helps prevent cardiac rupture by maintaining the heart's structural integrity, ongoing deposition of the extracellular matrix in the remote and infarct regions can reduce tissue compliance, impair cardiac function, and accelerate progression to HF. In our study, we conducted mass spectrometry (MS) analysis to identify differentially altered proteins and signaling pathways between CFs isolated from 7 day sham and infarcted murine hearts. Surprisingly, CFs from both the remote and infarct regions of injured hearts had a wide number of similarly altered proteins and signaling pathways that were consistent with fibrosis and activation into pathological myofibroblasts. Specifically, proteins enriched in CFs isolated from MI hearts were involved in pathways pertaining to cell-cell and cell-matrix adhesion, chaperone-mediated protein folding, and collagen fibril organization. These results, together with principal component analyses, provided evidence of global CF activation postinjury. Interestingly, however, direct comparisons between CFs from the remote and infarct regions of injured hearts identified 15 differentially expressed proteins between MI remote and MI infarct CFs. Eleven of these proteins (Gpc1, Cthrc1, Vmac, Nexn, Znf185, Sprr1a, Specc1, Emb, Limd2, Pawr, and Mcam) were higher in MI infarct CFs, whereas four proteins (Gstt1, Gstm1, Tceal3, and Inmt) were higher in MI remote CFs. Collectively, our study shows that MI injury induced global changes to the CF proteome, with the magnitude of change reflecting their relative proximity to the site of injury.
Collapse
Affiliation(s)
- Haisam Shah
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1.,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Alison Hacker
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
| | - Dylan Langburt
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1.,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Michael Dewar
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1.,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Meghan J McFadden
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
| | - Hangjun Zhang
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
| | - Uros Kuzmanov
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1.,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Yu-Qing Zhou
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
| | - Bilal Hussain
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
| | - Fahad Ehsan
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1.,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada M5G 1G6
| | - Anthony O Gramolini
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1.,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Scott P Heximer
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1.,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
23
|
Zhang X, He X, Jing H, Luo K, Shi B, Zhu Z, Zheng J. Neonatal Rabbit Model for Pressure-Overloaded Heart Failure and Preliminary Exploration of Mechanism. Ann Thorac Surg 2020; 112:1537-1545. [PMID: 33091366 DOI: 10.1016/j.athoracsur.2020.07.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/06/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND This study aimed to establish a model of pediatric heart failure (PHF) with concomitant left ventricle pressure overload by transverse aortic constriction (TAC) and study the PHF mechanism primarily at the gene transcription level. METHODS Twenty-four neonatal rabbits within 7 days after birth were randomly divided into sham (n = 8), moderate TAC (50% constriction, n = 8) and severe TAC (sTAC; 75% constriction, n = 8) groups. After the procedure transthoracic echocardiography was performed at 2, 4, and 6 weeks to measure left ventricle structure and function. Histologic staining and gene sequencing of left ventricle myocardial tissue were performed at 6 weeks. RESULTS Six weeks after procedure transthoracic echocardiography showed that the pressure at the ligation of the aorta was 12.13 ± 0.95 mm Hg in the sTAC group, which was 26 times more than that of the sham group (P < .05), and left ventricular dilatation began to appear in the sTAC group. Gene sequencing showed significantly different microRNA expression between the sTAC and sham groups. Bioinformatics analysis among the 3 groups showed that the expression of ocu-miR-411-5p, ocu-miR-214-3p, and ocu-miR-432-5p was decreased in the sTAC group compared with the sham group (P < .05) and that the focal adhesion, insulin, and PI3K-Akt signaling pathways were also affected. CONCLUSIONS Aortic constriction of 75% was optimal for the establishment of the PHF model. The expression of ocu-miR-411-5p, ocu-miR-214-3p, and ocu-miR-432-5p was significantly decreased, and the focal adhesion, insulin, and PI3K/AKT pathways may play significant roles in PHF progression.
Collapse
Affiliation(s)
- Xiaoyang Zhang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomin He
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Jing
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Luo
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bozhong Shi
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongqun Zhu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinghao Zheng
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
24
|
Role of FAK signaling in chagasic cardiac hypertrophy. Braz J Infect Dis 2020; 24:386-397. [PMID: 32931757 PMCID: PMC9392126 DOI: 10.1016/j.bjid.2020.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/03/2020] [Accepted: 08/16/2020] [Indexed: 12/27/2022] Open
Abstract
Cardiac hypertrophy and dysfunction are a significant complication of chronic Chagas disease, with heart failure, stroke, and sudden death related to disease progression. Thus, understanding the signaling pathways involved in the chagasic cardiac hypertrophy may provide potential targets for pharmacological therapy. Herein, we investigated the implication of focal adhesion kinase (FAK) signaling pathway in triggering hypertrophic phenotype during acute and chronic T. cruzi infection. C57BL/6 mice infected with T. cruzi (Brazil strain) were evaluated for electrocardiographic (ECG) changes, plasma levels of endothelin-1 (ET-1) and activation of signaling pathways involved in cardiac hypertrophy, including FAK and ERK1/2, as well as expression of hypertrophy marker and components of the extracellular matrix in the different stages of T. cruzi infection (60-210 dpi). Heart dysfunction, evidenced by prolonged PR interval and decrease in heart rates in ECG tracing, was associated with high plasma ET-1 level, extracellular matrix remodeling and FAK signaling activation. Upregulation of both FAK tyrosine 397 (FAK-Y397) and serine 910 (FAK-S910) residues phosphorylation as well as ERK1/2 activation, lead to an enhancement of atrial natriuretic peptide gene expression in chronic infection. Our findings highlight FAK-ERK1/2 signaling as a regulator of cardiac hypertrophy in Trypanosoma cruzi infection. Both mechanical stress, induced by cardiac extracellular matrix (ECM) augment and cardiac overload, and ET-1 stimuli orchestrated FAK signaling activation with subsequent activation of the fetal cardiac gene program in the chronic phase of infection, highlighting FAK as an attractive target for Chagas disease therapy.
Collapse
|
25
|
Fry NAS, Liu CC, Garcia A, Hamilton EJ, Karimi Galougahi K, Kim YJ, Whalley DW, Bundgaard H, Rasmussen HH. Targeting Cardiac Myocyte Na +-K + Pump Function With β3 Adrenergic Agonist in Rabbit Model of Severe Congestive Heart Failure. Circ Heart Fail 2020; 13:e006753. [PMID: 32842758 DOI: 10.1161/circheartfailure.119.006753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Abnormally high cytosolic Na+ concentrations in advanced heart failure impair myocardial contractility. Stimulation of the membrane Na+-K+ pump should lower Na+ concentrations, and the β3 adrenoceptor (β3 AR) mediates pump stimulation in myocytes. We examined if β3 AR-selective agonists given in vivo increase myocyte Na+-K+ pump activity and reverse organ congestion in severe heart failure (HF). METHODS Indices for HF were lung-, heart-, and liver: body weight ratios and ascites after circumflex coronary artery ligation in rabbits. Na+-K+ pump current, Ip, was measured in voltage-clamped myocytes from noninfarct myocardium. Rabbits were treated with the β3 AR agonists CL316,243 or ASP9531, starting 2 weeks after coronary ligation. RESULTS Coronary ligation caused ascites in most rabbits, significantly increased lung-, heart-, and liver: body weight ratios, and decreased Ip relative to that for 10 sham-operated rabbits. Treatment with CL316,243 for 3 days significantly reduced lung-, heart-, and liver: body weight ratios and prevalence of ascites in 8 rabbits with HF relative to indices for 13 untreated rabbits with HF. It also increased Ip significantly to levels of myocytes from sham-operated rabbits. Treatment with ASP9531 for 14 days significantly reduced indices of organ congestion in 6 rabbits with HF relative to indices of 6 untreated rabbits, and it eliminated ascites. β3 AR agonists did not significantly change heart rates or blood pressures. CONCLUSIONS Parallel β3 AR agonists-induced reversal of Na+-K+ pump inhibition and indices of congestion suggest pump inhibition is a useful target for treatment with β3 AR agonists in congestive HF.
Collapse
Affiliation(s)
- Natasha A S Fry
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, Australia (N.A.S.F., E.J.H., Y.J.K., H.H.R.)
| | - Chia-Chi Liu
- University of Sydney, Australia (C.-C.L., K.K.G., Y.J.K., D.W.W., H.H.R.)
| | | | - Elisha J Hamilton
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, Australia (N.A.S.F., E.J.H., Y.J.K., H.H.R.)
| | | | - Yeon Jae Kim
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, Australia (N.A.S.F., E.J.H., Y.J.K., H.H.R.).,University of Sydney, Australia (C.-C.L., K.K.G., Y.J.K., D.W.W., H.H.R.)
| | - David W Whalley
- University of Sydney, Australia (C.-C.L., K.K.G., Y.J.K., D.W.W., H.H.R.).,Department of Cardiology, Royal North Shore Hospital, Sydney, Australia (D.W.W., H.H.R.)
| | - Henning Bundgaard
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark (H.B.)
| | - Helge H Rasmussen
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, Australia (N.A.S.F., E.J.H., Y.J.K., H.H.R.).,University of Sydney, Australia (C.-C.L., K.K.G., Y.J.K., D.W.W., H.H.R.).,Department of Cardiology, Royal North Shore Hospital, Sydney, Australia (D.W.W., H.H.R.)
| |
Collapse
|
26
|
Maddah M, Mandegar MA, Dame K, Grafton F, Loewke K, Ribeiro AJS. Quantifying drug-induced structural toxicity in hepatocytes and cardiomyocytes derived from hiPSCs using a deep learning method. J Pharmacol Toxicol Methods 2020; 105:106895. [PMID: 32629158 DOI: 10.1016/j.vascn.2020.106895] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022]
Abstract
Cardiac and hepatic toxicity result from induced disruption of the functioning of cardiomyocytes and hepatocytes, respectively, which is tightly related to the organization of their subcellular structures. Cellular structure can be analyzed from microscopy imaging data. However, subtle or complex structural changes that are not easily perceived may be missed by conventional image-analysis techniques. Here we report the evaluation of PhenoTox, an image-based deep-learning method of quantifying drug-induced structural changes using human hepatocytes and cardiomyocytes derived from human induced pluripotent stem cells. We assessed the ability of the deep learning method to detect variations in the organization of cellular structures from images of fixed or live cells. We also evaluated the power and sensitivity of the method for detecting toxic effects of drugs by conducting a set of experiments using known toxicants and other methods of screening for cytotoxic effects. Moreover, we used PhenoTox to characterize the effects of tamoxifen and doxorubicin-which cause liver toxicity-on hepatocytes. PhenoTox revealed differences related to loss of cytochrome P450 3A4 activity, for which it showed greater sensitivity than a caspase 3/7 assay. Finally, PhenoTox detected structural toxicity in cardiomyocytes, which was correlated with contractility defects induced by doxorubicin, erlotinib, and sorafenib. Taken together, the results demonstrated that PhenoTox can capture the subtle morphological changes that are early signs of toxicity in both hepatocytes and cardiomyocytes.
Collapse
Affiliation(s)
| | | | - Keri Dame
- Division of Applied Regulatory Science, Office of Translational Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | | | | | - Alexandre J S Ribeiro
- Division of Applied Regulatory Science, Office of Translational Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
27
|
Sevim Bayrak C, Zhang P, Tristani-Firouzi M, Gelb BD, Itan Y. De novo variants in exomes of congenital heart disease patients identify risk genes and pathways. Genome Med 2020; 12:9. [PMID: 31941532 PMCID: PMC6961332 DOI: 10.1186/s13073-019-0709-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/26/2019] [Indexed: 12/14/2022] Open
Abstract
Background Congenital heart disease (CHD) affects ~ 1% of live births and is the most common birth defect. Although the genetic contribution to the CHD has been long suspected, it has only been well established recently. De novo variants are estimated to contribute to approximately 8% of sporadic CHD. Methods CHD is genetically heterogeneous, making pathway enrichment analysis an effective approach to explore and statistically validate CHD-associated genes. In this study, we performed novel gene and pathway enrichment analyses of high-impact de novo variants in the recently published whole-exome sequencing (WES) data generated from a cohort of CHD 2645 parent-offspring trios to identify new CHD-causing candidate genes and mutations. We performed rigorous variant- and gene-level filtrations to identify potentially damaging variants, followed by enrichment analyses and gene prioritization. Results Our analyses revealed 23 novel genes that are likely to cause CHD, including HSP90AA1, ROCK2, IQGAP1, and CHD4, and sharing biological functions, pathways, molecular interactions, and properties with known CHD-causing genes. Conclusions Ultimately, these findings suggest novel genes that are likely to be contributing to CHD pathogenesis.
Collapse
Affiliation(s)
- Cigdem Sevim Bayrak
- Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Martin Tristani-Firouzi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Bruce D Gelb
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuval Itan
- Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
28
|
Jia-Ming W, Jun-Ping Z, Tong-Yu Z, Yu-Ying L, Lin K, Zhi-Hua G, Ya L. Application of Network Pharmacology to Explore the Mechanism of Yi Xin Tai Formula in Treating Heart Failure. DIGITAL CHINESE MEDICINE 2019. [DOI: 10.1016/j.dcmed.2020.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
29
|
Integration of Gene Expression Profile Data of Human Epicardial Adipose Tissue from Coronary Artery Disease to Verification of Hub Genes and Pathways. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8567306. [PMID: 31886261 PMCID: PMC6900948 DOI: 10.1155/2019/8567306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022]
Abstract
Background This study aim to identify the core pathogenic genes and explore the potential molecular mechanisms of human coronary artery disease (CAD). Methodology Two gene profiles of epicardial adipose tissue from CAD patients including GSE 18612 and GSE 64554 were downloaded and integrated by R software packages. All the coexpression of deferentially expressed genes (DEGs) were picked out and analyzed by DAVID online bioinformatic tools. In addition, the DEGs were totally typed into protein-protein interaction (PPI) networks to get the interaction data among all coexpression genes. Pictures were drawn by cytoscape software with the PPI networks data. CytoHubba were used to predict the hub genes by degree analysis. Finally all the top 10 hub genes and prediction genes in Molecular complex detection were analyzed by Gene ontology and Kyoto encyclopedia of genes and genomes pathway analysis. qRT-PCR were used to identified all the 10 hub genes. Results The top 10 hub genes calculated by the degree method were AKT1, MYC, EGFR, ACTB, CDC42, IGF1, FGF2, CXCR4, MMP2 and LYN, which relevant with the focal adhesion pathway. Module analysis revealed that the focal adhesion was also acted an important role in CAD, which was consistence with cytoHubba. All the top 10 hub genes were verified by qRT-PCR which presented that AKT1, EGFR, CDC42, FGF2, and MMP2 were significantly decreased in epicardial adipose tissue of CAD samples (p < 0.05) and MYC, ACTB, IGF1, CXCR4, and LYN were significantly increased (p < 0.05). Conclusions These candidate genes could be used as potential diagnostic biomarkers and therapeutic targets of CAD.
Collapse
|
30
|
Melo TG, Adesse D, Meirelles MDN, Pereira MCS. Trypanosoma cruzi down-regulates mechanosensitive proteins in cardiomyocytes. Mem Inst Oswaldo Cruz 2019; 114:e180593. [PMID: 31433004 PMCID: PMC6697411 DOI: 10.1590/0074-02760180593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/08/2019] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Cardiac physiology depends on coupling and electrical and mechanical
coordination through the intercalated disc. Focal adhesions offer mechanical
support and signal transduction events during heart contraction-relaxation
processes. Talin links integrins to the actin cytoskeleton and serves as a
scaffold for the recruitment of other proteins, such as paxillin in focal
adhesion formation and regulation. Chagasic cardiomyopathy is caused by
infection by Trypanosoma cruzi and is a debilitating
condition comprising extensive fibrosis, inflammation, cardiac hypertrophy
and electrical alterations that culminate in heart failure. OBJECTIVES Since mechanotransduction coordinates heart function, we evaluated the
underlying mechanism implicated in the mechanical changes, focusing
especially in mechanosensitive proteins and related signalling pathways
during infection of cardiac cells by T. cruzi. METHODS We investigated the effect of T. cruzi infection on the
expression and distribution of talin/paxillin and associated proteins in
mouse cardiomyocytes in vitro by western blotting, immunofluorescence and
quantitative real-time polymerase chain reaction (qRT-PCR). FINDINGS Talin and paxillin spatial distribution in T.
cruzi-infected cardiomyocytes in vitro were
altered associated with a downregulation of these proteins and mRNAs levels
at 72 h post-infection (hpi). Additionally, we observed an increase in the
activation of the focal adhesion kinase (FAK) concomitant with increase in
β-1-integrin at 24 hpi. Finally, we detected a decrease in the activation of
FAK at 72 hpi in T. cruzi-infected cultures. MAIN CONCLUSION The results suggest that these changes may contribute to the
mechanotransduction disturbance evidenced in chagasic cardiomyopathy.
Collapse
Affiliation(s)
- Tatiana G Melo
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Ultraestrutura Celular, Rio de Janeiro, RJ, Brasil
| | - Daniel Adesse
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Estrutural, Rio de Janeiro, RJ, Brasil
| | - Maria de Nazareth Meirelles
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Ultraestrutura Celular, Rio de Janeiro, RJ, Brasil
| | - Mirian Claudia S Pereira
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Ultraestrutura Celular, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
31
|
Antoniou CK, Manolakou P, Magkas N, Konstantinou K, Chrysohoou C, Dilaveris P, Gatzoulis KA, Tousoulis D. Cardiac Resynchronisation Therapy and Cellular Bioenergetics: Effects Beyond Chamber Mechanics. Eur Cardiol 2019; 14:33-44. [PMID: 31131035 PMCID: PMC6523053 DOI: 10.15420/ecr.2019.2.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cardiac resynchronisation therapy is a cornerstone in the treatment of advanced dyssynchronous heart failure. However, despite its widespread clinical application, precise mechanisms through which it exerts its beneficial effects remain elusive. Several studies have pointed to a metabolic component suggesting that, both in concert with alterations in chamber mechanics and independently of them, resynchronisation reverses detrimental changes to cellular metabolism, increasing energy efficiency and metabolic reserve. These actions could partially account for the existence of responders that improve functionally but not echocardiographically. This article will attempt to summarise key components of cardiomyocyte metabolism in health and heart failure, with a focus on the dyssynchronous variant. Both chamber mechanics-related and -unrelated pathways of resynchronisation effects on bioenergetics – stemming from the ultramicroscopic level – and a possible common underlying mechanism relating mechanosensing to metabolism through the cytoskeleton will be presented. Improved insights regarding the cellular and molecular effects of resynchronisation on bioenergetics will promote our understanding of non-response, optimal device programming and lead to better patient care.
Collapse
Affiliation(s)
| | - Panagiota Manolakou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Nikolaos Magkas
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Konstantinos Konstantinou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Christina Chrysohoou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Polychronis Dilaveris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Konstantinos A Gatzoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Dimitrios Tousoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| |
Collapse
|
32
|
Giri S, Manivannan J, Srinivasan B, Sundaresan L, Gajalakshmi P, Chatterjee S. A proteome-wide systems toxicological approach deciphers the interaction network of chemotherapeutic drugs in the cardiovascular milieu. RSC Adv 2018; 8:20211-20221. [PMID: 35541641 PMCID: PMC9080753 DOI: 10.1039/c8ra02877j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/21/2018] [Indexed: 12/30/2022] Open
Abstract
Onco-cardiology is critical for the management of cancer therapeutics since many of the anti-cancer agents are associated with cardiotoxicity. Therefore, the major aim of the current study is to employ a novel in silico method combined with experimental validation to explore off-targets and prioritize the enriched molecular pathways related to the specific cardiovascular events other than their intended targets by deriving relationship between drug-target-pathways and cardiovascular complications in order to help onco-cardiologists for the management of strategies to minimize cardiotoxicity. A systems biological understanding of the multi-target effects of a drug requires prior knowledge of proteome-wide binding profiles. In order to achieve the above, we have utilized PharmMapper, a web-based tool that uses a reverse pharmacophore mapping approach (spatial arrangement of features essential for a molecule to interact with a specific target receptor), along with KEGG for exploring the pathway relationship. In the validation part of the study, predicted protein targets and signalling pathways were strengthened with existing datasets of DrugBank and antibody arrays specific to vascular endothelial growth factor (VEGF) signalling in the case of 5-fluorouracil as direct experimental evidence. The current systems toxicological method illustrates the potential of the above big-data in supporting the knowledge of onco-cardiological indications which may lead to the generation of a decision making catalogue in future therapeutic prescription.
Collapse
Affiliation(s)
- Suvendu Giri
- Department of Biotechnology, Anna University Chennai Tamil Nadu India
| | - Jeganathan Manivannan
- Vascular Biology Lab, AU-KBC Research Centre, MIT Campus of Anna University Chennai Tamil Nadu India
- Environmental Health and Toxicology Lab, Department of Environmental Sciences, Bharathiar University Coimbatore Tamil Nadu India
| | | | | | - Palanivel Gajalakshmi
- Vascular Biology Lab, AU-KBC Research Centre, MIT Campus of Anna University Chennai Tamil Nadu India
| | - Suvro Chatterjee
- Department of Biotechnology, Anna University Chennai Tamil Nadu India
- Vascular Biology Lab, AU-KBC Research Centre, MIT Campus of Anna University Chennai Tamil Nadu India
| |
Collapse
|
33
|
Messinis DE, Melas IN, Hur J, Varshney N, Alexopoulos LG, Bai JPF. Translational systems pharmacology-based predictive assessment of drug-induced cardiomyopathy. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2018; 7:166-174. [PMID: 29341478 PMCID: PMC5869547 DOI: 10.1002/psp4.12272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 12/21/2022]
Abstract
Drug‐induced cardiomyopathy contributes to drug attrition. We compared two pipelines of predictive modeling: (1) applying elastic net (EN) to differentially expressed genes (DEGs) of drugs; (2) applying integer linear programming (ILP) to construct each drug's signaling pathway starting from its targets to downstream proteins, to transcription factors, and to its DEGs in human cardiomyocytes, and then subjecting the genes/proteins in the drugs' signaling networks to EN regression. We classified 31 drugs with availability of DEGs into 13 toxic and 18 nontoxic drugs based on a clinical cardiomyopathy incidence cutoff of 0.1%. The ILP‐augmented modeling increased prediction accuracy from 79% to 88% (sensitivity: 88%; specificity: 89%) under leave‐one‐out cross validation. The ILP‐constructed signaling networks of drugs were better predictors than DEGs. Per literature, the microRNAs that reportedly regulate expression of our six top predictors are of diagnostic value for natural heart failure or doxorubicin‐induced cardiomyopathy. This translational predictive modeling might uncover potential biomarkers.
Collapse
Affiliation(s)
- Dimitris E Messinis
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ioannis N Melas
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| | - Navya Varshney
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Leonidas G Alexopoulos
- School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece
| | - Jane P F Bai
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
34
|
Mkrtschjan MA, Gaikwad SB, Kappenman KJ, Solís C, Dommaraju S, Le LV, Desai TA, Russell B. Lipid signaling affects primary fibroblast collective migration and anchorage in response to stiffness and microtopography. J Cell Physiol 2017; 233:3672-3683. [PMID: 29034471 DOI: 10.1002/jcp.26236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/05/2017] [Indexed: 12/13/2022]
Abstract
Cell migration is regulated by several mechanotransduction pathways, which consist of sensing and converting mechanical microenvironmental cues to internal biochemical cellular signals, such as protein phosphorylation and lipid signaling. While there has been significant progress in understanding protein changes in the context of mechanotransduction, lipid signaling is more difficult to investigate. In this study, physical cues of stiffness (10, 100, 400 kPa, and glass), and microrod or micropost topography were manipulated in order to reprogram primary fibroblasts and assess the effects of lipid signaling on the actin cytoskeleton. In an in vitro wound closure assay, primary cardiac fibroblast migration velocity was significantly higher on soft polymeric substrata. Modulation of PIP2 availability through neomycin treatment nearly doubled migration velocity on 10 kPa substrata, with significant increases on all stiffnesses. The distance between focal adhesions and the lamellar membrane (using wortmannin treatment to increase PIP2 via PI3K inhibition) was significantly shortest compared to untreated fibroblasts grown on the same surface. PIP2 localized to the leading edge of migrating fibroblasts more prominently in neomycin-treated cells. The membrane-bound protein, lamellipodin, did not vary under any condition. Additionally, fifteen micron-high micropost topography, which blocks migration, concentrates PIP2 near to the post. Actin dynamics within stress fibers, measured by fluorescence recovery after photobleaching, was not significantly different with stiffness, microtopography, nor with drug treatment. PIP2-modulating drugs delivered from microrod structures also affected migration velocity. Thus, manipulation of the microenvironment and lipid signaling regulatory drugs might be beneficial in improving therapeutics geared toward wound healing.
Collapse
Affiliation(s)
- Michael A Mkrtschjan
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Snehal B Gaikwad
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Kevin J Kappenman
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Christopher Solís
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Sagar Dommaraju
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Long V Le
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, California
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, California
| | - Brenda Russell
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois.,Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
35
|
Zak TJ, Koshman YE, Samarel AM, Robia SL. Regulation of Focal Adhesion Kinase through a Direct Interaction with an Endogenous Inhibitor. Biochemistry 2017; 56:4722-4731. [PMID: 28782937 DOI: 10.1021/acs.biochem.7b00616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Focal adhesion kinase (FAK) plays a key role in integrin and growth factor signaling pathways. FAK-related non-kinase (FRNK) is an endogenous inhibitor of FAK that shares its primary structure with the C-terminal third of FAK. FAK S910 phosphorylation is known to regulate FAK protein-protein interactions, but the role of the equivalent site on FRNK (S217) is unknown. Here we determined that S217 is highly phosphorylated by ERK in cultured rat aortic smooth muscle cells. Blocking phosphorylation by mutation (S217A) greatly increased FRNK inhibitory potency, resulting in strong inhibition of FAK autophosphorylation at Y397 and induction of smooth muscle cell apoptosis. FRNK has been proposed to compete for FAK anchoring sites in focal adhesions, but we did not detect displacement of FAK by WT-FRNK or superinhibitory S217A-FRNK. Instead, we found FRNK interacted directly with FAK, and this interaction is markedly strengthened for the superinhibitory S217A-FRNK. The results suggest that FRNK limits growth and survival signaling pathways by binding directly to FAK in an inhibitory complex, and this inhibition is relieved by phosphorylation of FRNK at S217.
Collapse
Affiliation(s)
- Taylor J Zak
- Department of Cell and Molecular Physiology and ‡Department of Medicine, Cardiovascular Research Institute, Stritch School of Medicine, Loyola University Chicago , Maywood, Illinois 60153, United States
| | - Yevgenia E Koshman
- Department of Cell and Molecular Physiology and ‡Department of Medicine, Cardiovascular Research Institute, Stritch School of Medicine, Loyola University Chicago , Maywood, Illinois 60153, United States
| | - Allen M Samarel
- Department of Cell and Molecular Physiology and ‡Department of Medicine, Cardiovascular Research Institute, Stritch School of Medicine, Loyola University Chicago , Maywood, Illinois 60153, United States
| | - Seth L Robia
- Department of Cell and Molecular Physiology and ‡Department of Medicine, Cardiovascular Research Institute, Stritch School of Medicine, Loyola University Chicago , Maywood, Illinois 60153, United States
| |
Collapse
|
36
|
Manso AM, Okada H, Sakamoto FM, Moreno E, Monkley SJ, Li R, Critchley DR, Ross RS. Loss of mouse cardiomyocyte talin-1 and talin-2 leads to β-1 integrin reduction, costameric instability, and dilated cardiomyopathy. Proc Natl Acad Sci U S A 2017; 114:E6250-E6259. [PMID: 28698364 PMCID: PMC5544289 DOI: 10.1073/pnas.1701416114] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Continuous contraction-relaxation cycles of the heart require strong and stable connections of cardiac myocytes (CMs) with the extracellular matrix (ECM) to preserve sarcolemmal integrity. CM attachment to the ECM is mediated by integrin complexes localized at the muscle adhesion sites termed costameres. The ubiquitously expressed cytoskeletal protein talin (Tln) is a component of muscle costameres that links integrins ultimately to the sarcomere. There are two talin genes, Tln1 and Tln2. Here, we tested the function of these two Tln forms in myocardium where Tln2 is the dominant isoform in postnatal CMs. Surprisingly, global deletion of Tln2 in mice caused no structural or functional changes in heart, presumably because CM Tln1 became up-regulated. Tln2 loss increased integrin activation, although levels of the muscle-specific β1D-integrin isoform were reduced by 50%. With this result, we produced mice that had simultaneous loss of both CM Tln1 and Tln2 and found that cardiac dysfunction occurred by 4 wk with 100% mortality by 6 mo. β1D integrin and other costameric proteins were lost from the CMs, and membrane integrity was compromised. Given that integrin protein reduction occurred with Tln loss, rescue of the phenotype was attempted through transgenic integrin overexpression, but this could not restore WT CM integrin levels nor improve heart function. Our results show that CM Tln2 is essential for proper β1D-integrin expression and that Tln1 can substitute for Tln2 in preserving heart function, but that loss of all Tln forms from the heart-muscle cell leads to myocyte instability and a dilated cardiomyopathy.
Collapse
Affiliation(s)
- Ana Maria Manso
- Division of Cardiology, Department of Medicine, University of California at San Diego School of Medicine, La Jolla, CA 92093;
- Cardiology Section, Department of Medicine, Veterans Administration Healthcare, San Diego, CA 92161
| | - Hideshi Okada
- Division of Cardiology, Department of Medicine, University of California at San Diego School of Medicine, La Jolla, CA 92093
- Cardiology Section, Department of Medicine, Veterans Administration Healthcare, San Diego, CA 92161
| | - Francesca M Sakamoto
- Division of Cardiology, Department of Medicine, University of California at San Diego School of Medicine, La Jolla, CA 92093
| | - Emily Moreno
- Division of Cardiology, Department of Medicine, University of California at San Diego School of Medicine, La Jolla, CA 92093
| | - Susan J Monkley
- Department of Molecular Cell Biology, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Ruixia Li
- Division of Cardiology, Department of Medicine, University of California at San Diego School of Medicine, La Jolla, CA 92093
| | - David R Critchley
- Department of Molecular Cell Biology, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Robert S Ross
- Division of Cardiology, Department of Medicine, University of California at San Diego School of Medicine, La Jolla, CA 92093;
- Cardiology Section, Department of Medicine, Veterans Administration Healthcare, San Diego, CA 92161
| |
Collapse
|
37
|
Vegter EL, Schmitter D, Hagemeijer Y, Ovchinnikova ES, van der Harst P, Teerlink JR, O'Connor CM, Metra M, Davison BA, Bloomfield D, Cotter G, Cleland JG, Givertz MM, Ponikowski P, van Veldhuisen DJ, van der Meer P, Berezikov E, Voors AA, Khan MAF. Use of biomarkers to establish potential role and function of circulating microRNAs in acute heart failure. Int J Cardiol 2016; 224:231-239. [PMID: 27661412 DOI: 10.1016/j.ijcard.2016.09.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 09/02/2016] [Accepted: 09/08/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Circulating microRNAs (miRNAs) emerge as potential heart failure biomarkers. We aimed to identify associations between acute heart failure (AHF)-specific circulating miRNAs and well-known heart failure biomarkers. METHODS Associations between 16 biomarkers predictive for 180day mortality and the levels of 12 AHF-specific miRNAs were determined in 100 hospitalized AHF patients, at baseline and 48hours. Patients were divided in 4 pre-defined groups, based on clinical parameters during hospitalization. Correlation analyses between miRNAs and biomarkers were performed and complemented by miRNA target prediction and pathway analysis. RESULTS No significant correlations were found at hospital admission. However, after 48hours, 7 miRNAs were significantly negatively correlated to biomarkers indicative for a worse clinical outcome in the patient group with the most unfavorable in-hospital course (n=21); miR-16-5p was correlated to C-reactive protein (R=-0.66, p-value=0.0027), miR-106a-5p to creatinine (R=-0.68, p-value=0.002), miR-223-3p to growth differentiation factor 15 (R=-0.69, p-value=0.0015), miR-652-3p to soluble ST-2 (R=-0.77, p-value<0.001), miR-199a-3p to procalcitonin (R=-0.72, p-value<0.001) and galectin-3 (R=-0.73, p-value<0.001) and miR-18a-5p to procalcitonin (R=-0.68, p-value=0.002). MiRNA target prediction and pathway analysis identified several pathways related to cardiac diseases, which could be linked to some of the miRNA-biomarker correlations. CONCLUSIONS The majority of correlations between circulating AHF-specific miRNAs were related to biomarkers predictive for a worse clinical outcome in a subgroup of worsening heart failure patients at 48hours of hospitalization. The selective findings suggest a time-dependent effect of circulating miRNAs and highlight the susceptibility to individual patient characteristics influencing potential relations between miRNAs and biomarkers.
Collapse
Affiliation(s)
- Eline L Vegter
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Daniela Schmitter
- Momentum Research, Inc., Hagmattstrasse 17, CH-4123 Allschwil, Switzerland
| | - Yanick Hagemeijer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Ekaterina S Ovchinnikova
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands; European Research Institute for the Biology of Ageing and University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - John R Teerlink
- University of California at San Francisco, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | | | - Marco Metra
- Cardiology, The Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Italy
| | | | | | | | - John G Cleland
- National Heart & Lung Institute, Royal Brompton & Harefield Hospitals, Imperial College, London, UK
| | - Michael M Givertz
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Dirk J van Veldhuisen
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Peter van der Meer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing and University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Mohsin A F Khan
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
38
|
Palanisamy AP, Suryakumar G, Panneerselvam K, Willey CD, Kuppuswamy D. A Kinase-Independent Function of c-Src Mediates p130Cas Phosphorylation at the Serine-639 Site in Pressure Overloaded Myocardium. J Cell Biochem 2016; 116:2793-803. [PMID: 25976166 DOI: 10.1002/jcb.25224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/08/2015] [Indexed: 12/11/2022]
Abstract
Early work in pressure overloaded (PO) myocardium shows that integrins mediate focal adhesion complex formation by recruiting the adaptor protein p130Cas (Cas) and nonreceptor tyrosine kinase c-Src. To explore c-Src role in Cas-associated changes during PO, we used a feline right ventricular in vivo PO model and a three-dimensional (3D) collagen-embedded adult cardiomyocyte in vitro model that utilizes a Gly-Arg-Gly-Asp-Ser (RGD) peptide for integrin stimulation. Cas showed slow electrophoretic mobility (band-shifting), recruitment to the cytoskeleton, and tyrosine phosphorylation at 165, 249, and 410 sites in both 48 h PO myocardium and 1 h RGD-stimulated cardiomyocytes. Adenoviral mediated expression of kinase inactive (negative) c-Src mutant with intact scaffold domains (KN-Src) in cardiomyocytes did not block the RGD stimulated changes in Cas. Furthermore, expression of KN-Src or kinase active c-Src mutant with intact scaffold function (A-Src) in two-dimensionally (2D) cultured cardiomyocytes was sufficient to cause Cas band-shifting, although tyrosine phosphorylation required A-Src. These data indicate that c-Src's adaptor function, but not its kinase function, is required for a serine/threonine specific phosphorylation(s) responsible for Cas band-shifting. To explore this possibility, Chinese hamster ovary cells that stably express Cas were infected with either β-gal or KN-Src adenoviruses and used for Cas immunoprecipitation combined with mass spectrometry analysis. In the KN-Src expressing cells, Cas showed phosphorylation at the serine-639 (human numbering) site. A polyclonal antibody raised against phospho-serine-639 detected Cas phosphorylation in 24-48 h PO myocardium. Our studies indicate that c-Src's adaptor function mediates serine-639 phosphorylation of Cas during integrin activation in PO myocardium.
Collapse
Affiliation(s)
- Arun P Palanisamy
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, 29425-2221
| | - Geetha Suryakumar
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, 29425-2221
| | - Kavin Panneerselvam
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, 29425-2221
| | - Christopher D Willey
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, 29425-2221
| | - Dhandapani Kuppuswamy
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, 29425-2221
| |
Collapse
|
39
|
Eichel CA, Beuriot A, Chevalier MYE, Rougier JS, Louault F, Dilanian G, Amour J, Coulombe A, Abriel H, Hatem SN, Balse E. Lateral Membrane-Specific MAGUK CASK Down-Regulates NaV1.5 Channel in Cardiac Myocytes. Circ Res 2016; 119:544-56. [PMID: 27364017 DOI: 10.1161/circresaha.116.309254] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/30/2016] [Indexed: 12/24/2022]
Abstract
RATIONALE Mechanisms underlying membrane protein localization are crucial in the proper function of cardiac myocytes. The main cardiac sodium channel, NaV1.5, carries the sodium current (INa) that provides a rapid depolarizing current during the upstroke of the action potential. Although enriched in the intercalated disc, NaV1.5 is present in different membrane domains in myocytes and interacts with several partners. OBJECTIVE To test the hypothesis that the MAGUK (membrane-associated guanylate kinase) protein CASK (calcium/calmodulin-dependent serine protein kinase) interacts with and regulates NaV1.5 in cardiac myocytes. METHODS AND RESULTS Immunostaining experiments showed that CASK localizes at lateral membranes of cardiac myocytes, in association with dystrophin. Whole-cell patch clamp showed that CASK-silencing increases INa in vitro. In vivo CASK knockdown similarly increased INa recorded in freshly isolated myocytes. Pull-down experiments revealed that CASK directly interacts with the C-terminus of NaV1.5. CASK silencing reduces syntrophin expression without affecting NaV1.5 and dystrophin expression levels. Total Internal Reflection Fluorescence microscopy and biotinylation assays showed that CASK silencing increased the surface expression of NaV1.5 without changing mRNA levels. Quantification of NaV1.5 expression at the lateral membrane and intercalated disc revealed that the lateral membrane pool only was increased upon CASK silencing. The protein transport inhibitor brefeldin-A prevented INa increase in CASK-silenced myocytes. During atrial dilation/remodeling, CASK expression was reduced but its localization remained unchanged. CONCLUSION This study constitutes the first description of an unconventional MAGUK protein, CASK, which directly interacts with NaV1.5 channel and controls its surface expression at the lateral membrane by regulating ion channel trafficking.
Collapse
Affiliation(s)
- Catherine A Eichel
- From the Sorbonne Universités, UPMC University Paris 06, Inserm, UMR_S 1166, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition, Faculté de Médecine, Site Pitié-Salpêtrière, France (C.A.E., A.B., F.L., G.D., J.A., A.C., S.N.H., E.B.); Département de Cardiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, France (J.A., S.N.H.); and Department of Clinical Research, University of Bern, Switzerland (M.Y.E.C., J.-S.R., H.A.)
| | - Adeline Beuriot
- From the Sorbonne Universités, UPMC University Paris 06, Inserm, UMR_S 1166, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition, Faculté de Médecine, Site Pitié-Salpêtrière, France (C.A.E., A.B., F.L., G.D., J.A., A.C., S.N.H., E.B.); Département de Cardiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, France (J.A., S.N.H.); and Department of Clinical Research, University of Bern, Switzerland (M.Y.E.C., J.-S.R., H.A.)
| | - Morgan Y E Chevalier
- From the Sorbonne Universités, UPMC University Paris 06, Inserm, UMR_S 1166, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition, Faculté de Médecine, Site Pitié-Salpêtrière, France (C.A.E., A.B., F.L., G.D., J.A., A.C., S.N.H., E.B.); Département de Cardiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, France (J.A., S.N.H.); and Department of Clinical Research, University of Bern, Switzerland (M.Y.E.C., J.-S.R., H.A.)
| | - Jean-Sébastien Rougier
- From the Sorbonne Universités, UPMC University Paris 06, Inserm, UMR_S 1166, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition, Faculté de Médecine, Site Pitié-Salpêtrière, France (C.A.E., A.B., F.L., G.D., J.A., A.C., S.N.H., E.B.); Département de Cardiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, France (J.A., S.N.H.); and Department of Clinical Research, University of Bern, Switzerland (M.Y.E.C., J.-S.R., H.A.)
| | - Florent Louault
- From the Sorbonne Universités, UPMC University Paris 06, Inserm, UMR_S 1166, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition, Faculté de Médecine, Site Pitié-Salpêtrière, France (C.A.E., A.B., F.L., G.D., J.A., A.C., S.N.H., E.B.); Département de Cardiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, France (J.A., S.N.H.); and Department of Clinical Research, University of Bern, Switzerland (M.Y.E.C., J.-S.R., H.A.)
| | - Gilles Dilanian
- From the Sorbonne Universités, UPMC University Paris 06, Inserm, UMR_S 1166, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition, Faculté de Médecine, Site Pitié-Salpêtrière, France (C.A.E., A.B., F.L., G.D., J.A., A.C., S.N.H., E.B.); Département de Cardiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, France (J.A., S.N.H.); and Department of Clinical Research, University of Bern, Switzerland (M.Y.E.C., J.-S.R., H.A.)
| | - Julien Amour
- From the Sorbonne Universités, UPMC University Paris 06, Inserm, UMR_S 1166, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition, Faculté de Médecine, Site Pitié-Salpêtrière, France (C.A.E., A.B., F.L., G.D., J.A., A.C., S.N.H., E.B.); Département de Cardiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, France (J.A., S.N.H.); and Department of Clinical Research, University of Bern, Switzerland (M.Y.E.C., J.-S.R., H.A.)
| | - Alain Coulombe
- From the Sorbonne Universités, UPMC University Paris 06, Inserm, UMR_S 1166, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition, Faculté de Médecine, Site Pitié-Salpêtrière, France (C.A.E., A.B., F.L., G.D., J.A., A.C., S.N.H., E.B.); Département de Cardiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, France (J.A., S.N.H.); and Department of Clinical Research, University of Bern, Switzerland (M.Y.E.C., J.-S.R., H.A.)
| | - Hugues Abriel
- From the Sorbonne Universités, UPMC University Paris 06, Inserm, UMR_S 1166, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition, Faculté de Médecine, Site Pitié-Salpêtrière, France (C.A.E., A.B., F.L., G.D., J.A., A.C., S.N.H., E.B.); Département de Cardiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, France (J.A., S.N.H.); and Department of Clinical Research, University of Bern, Switzerland (M.Y.E.C., J.-S.R., H.A.)
| | - Stéphane N Hatem
- From the Sorbonne Universités, UPMC University Paris 06, Inserm, UMR_S 1166, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition, Faculté de Médecine, Site Pitié-Salpêtrière, France (C.A.E., A.B., F.L., G.D., J.A., A.C., S.N.H., E.B.); Département de Cardiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, France (J.A., S.N.H.); and Department of Clinical Research, University of Bern, Switzerland (M.Y.E.C., J.-S.R., H.A.)
| | - Elise Balse
- From the Sorbonne Universités, UPMC University Paris 06, Inserm, UMR_S 1166, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition, Faculté de Médecine, Site Pitié-Salpêtrière, France (C.A.E., A.B., F.L., G.D., J.A., A.C., S.N.H., E.B.); Département de Cardiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, France (J.A., S.N.H.); and Department of Clinical Research, University of Bern, Switzerland (M.Y.E.C., J.-S.R., H.A.).
| |
Collapse
|
40
|
Heading in the Right Direction: Understanding Cellular Orientation Responses to Complex Biophysical Environments. Cell Mol Bioeng 2015; 9:12-37. [PMID: 26900408 PMCID: PMC4746215 DOI: 10.1007/s12195-015-0422-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/10/2015] [Indexed: 01/09/2023] Open
Abstract
The aim of cardiovascular regeneration is to mimic the biological and mechanical functioning of tissues. For this it is crucial to recapitulate the in vivo cellular organization, which is the result of controlled cellular orientation. Cellular orientation response stems from the interaction between the cell and its complex biophysical environment. Environmental
biophysical cues are continuously detected and transduced to the nucleus through entwined mechanotransduction pathways. Next to the biochemical cascades invoked by the mechanical stimuli, the structural mechanotransduction pathway made of focal adhesions and the actin cytoskeleton can quickly transduce the biophysical signals directly to the nucleus. Observations linking cellular orientation response to biophysical cues have pointed out that the anisotropy and cyclic straining of the substrate influence cellular orientation. Yet, little is known about the mechanisms governing cellular orientation responses in case of cues applied separately and in combination. This review provides the state-of-the-art knowledge on the structural mechanotransduction pathway of adhesive cells, followed by an overview of the current understanding of cellular orientation responses to substrate anisotropy and uniaxial cyclic strain. Finally, we argue that comprehensive understanding of cellular orientation in complex biophysical environments requires systematic approaches based on the dissection of (sub)cellular responses to the individual cues composing the biophysical niche.
Collapse
|
41
|
Pasipoularides A. Mechanotransduction Mechanisms for Intraventricular Diastolic Vortex Forces and Myocardial Deformations: Part 2. J Cardiovasc Transl Res 2015; 8:293-318. [PMID: 25971844 PMCID: PMC4519381 DOI: 10.1007/s12265-015-9630-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/27/2015] [Indexed: 01/10/2023]
Abstract
Epigenetic mechanisms are fundamental in cardiac adaptations, remodeling, reverse remodeling, and disease. A primary goal of translational cardiovascular research is recognizing whether disease-related changes in phenotype can be averted by eliminating or reducing the effects of environmental epigenetic risks. There may be significant medical benefits in using gene-by-environment interaction knowledge to prevent or reverse organ abnormalities and disease. This survey proposes that "environmental" forces associated with diastolic RV/LV rotatory flows exert important, albeit still unappreciated, epigenetic actions influencing functional and morphological cardiac adaptations. Mechanisms analogous to Murray's law of hydrodynamic shear-induced endothelial cell modulation of vascular geometry are likely to link diastolic vortex-associated shear, torque and "squeeze" forces to RV/LV adaptations. The time has come to explore a new paradigm in which such forces play a fundamental epigenetic role, and to work out how heart cells react to them. Findings from various imaging modalities, computational fluid dynamics, molecular cell biology and cytomechanics are considered. The following are examined, among others: structural dynamics of myocardial cells (endocardium, cardiomyocytes, and fibroblasts), cytoskeleton, nucleoskeleton, and extracellular matrix; mechanotransduction and signaling; and mechanical epigenetic influences on genetic expression. To help integrate and focus relevant pluridisciplinary research, rotatory RV/LV filling flow is placed within a working context that has a cytomechanics perspective. This new frontier in cardiac research should uncover versatile mechanistic insights linking filling vortex patterns and attendant forces to variable expressions of gene regulation in RV/LV myocardium. In due course, it should reveal intrinsic homeostatic arrangements that support ventricular myocardial function and adaptability.
Collapse
Affiliation(s)
- Ares Pasipoularides
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA,
| |
Collapse
|
42
|
Knöll R. A role for membrane shape and information processing in cardiac physiology. Pflugers Arch 2014; 467:167-73. [PMID: 25129123 PMCID: PMC4281353 DOI: 10.1007/s00424-014-1575-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/28/2014] [Accepted: 07/02/2014] [Indexed: 01/04/2023]
Abstract
While the heart is a dynamic organ and one of its major functions is to provide the organism with sufficient blood supply, the regulatory feedback systems, which allow adaptation to hemodynamic changes, remain not well understood. Our current description of mechanosensation focuses on stretch-sensitive ion channels, cytoskeletal components, structures such as the sarcomeric Z-disc, costameres, caveolae, or the concept of tensegrity, but these models appear incomplete as the remarkable plasticity of the myocardium in response to biomechanical stress and heart rate variations remains unexplained. Signaling activity at membranes depends on their geometric parameters such as surface area and curvature, which links shape to information processing. In the heart, continuous cycles of contraction and relaxation reshape membrane morphology and hence affect cardio-mechanic signaling. This article provides a brief review on current models of mechanosensation and focuses on how signaling, cardiac myocyte dynamics, and membrane shape interact and potentially give rise to a self-organized system that uses shape to sense the extra- and intracellular environment. This novel concept may help to explain how changes in frequency, and thus membrane shape, affect cardiac plasticity. One of the conclusions is that hypertrophy and associated fibrosis, which have been considered as necessary to cope with increased wall stress, can also be seen as part of complex feedback systems which use local membrane inhomogeneity in different cardiac cell types to influence whole organphysiology and which are predicted to fine-tune and thus regulate membrane-mediated signaling.
Collapse
Affiliation(s)
- Ralph Knöll
- Innovative Medicines and Early Development, Cardiovascular and Metabolic Diseases iMed, AstraZeneca Research and Development Mölndal, Pepparedsleden 1, SE-431 83, Mölndal, Sweden,
| |
Collapse
|