1
|
Cui Y, Yu C, Lu Q, Huang X, Lin W, Huang T, Cao L, Yang Q. The Function of RhoA/ROCK Pathway and MYOCD in Airway Remodeling in Asthma. Int Arch Allergy Immunol 2024:1-17. [PMID: 39260358 DOI: 10.1159/000540963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024] Open
Abstract
INTRODUCTION Asthma is a common chronic respiratory disease characterized by chronic airway inflammation and abnormal airway remodeling. The RhoA/ROCK pathway and myocardin-related transcription factor A (MRTF-A) demonstrate significant associations with the proliferation of airway smooth muscle cells (ASCMs), which tightly correlates with the process of airway remodeling. MYOCD, which is homologous to MRTF-A but specifically expressed in smooth muscle cells, potentially regulates RhoA/ROCK activated cell proliferation and subsequent airway remodeling. METHODS The RhoA/ROCK overexpression and silencing cell lines were constructed in vitro, as well as MYOCD overexpression/silencing. The cytoskeleton alterations induced by RhoA/ROCK pathway were identified by the measuring of globular actin and filamentous actin. RESULTS The comparison between controls for overexpression/silencing and ROCK overexpression/silencing revealed that MYOCD presented consistent change trends with cytoskeleton and RhoA/ROCK pathway. The ROCK1 facilitates the proliferation and migration of ASCMs. The MYOCD enhanced the proliferation and migration of HASMCs. CONCLUSION Our study indicates that Rho/ROCK/MYOCD is a key pathway involved in the migration and proliferation of airway smooth muscle cells. Inhibition of Rho/ROCK may be an effective approach to breaking the vicious cycle of asthmatic ASCMs proliferation, providing a novel strategy in treating asthma airway remodeling.
Collapse
Affiliation(s)
- Yunfei Cui
- Department of Respiratory Medicine, Shenzhen Children's Hospital, Shenzhen, China
| | - Chendi Yu
- Department of Research and Development, Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, China,
| | - Qinghua Lu
- Department of Respiratory Medicine, Shenzhen Children's Hospital, Shenzhen, China
| | - Xiao Huang
- Department of Respiratory Medicine, Shenzhen Children's Hospital, Shenzhen, China
| | - Weinan Lin
- Department of Respiratory Medicine, Shenzhen Children's Hospital, Shenzhen, China
| | - Ting Huang
- Department of Respiratory Medicine, Shenzhen Children's Hospital, Shenzhen, China
| | - Lichao Cao
- Department of Research and Development, Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, China
| | - Qin Yang
- Department of Respiratory Medicine, Shenzhen Children's Hospital, Shenzhen, China
| |
Collapse
|
2
|
Fowler A, Knaus KR, Khuu S, Khalilimeybodi A, Schenk S, Ward SR, Fry AC, Rangamani P, McCulloch AD. Network model of skeletal muscle cell signalling predicts differential responses to endurance and resistance exercise training. Exp Physiol 2024; 109:939-955. [PMID: 38643471 PMCID: PMC11140181 DOI: 10.1113/ep091712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/20/2024] [Indexed: 04/22/2024]
Abstract
Exercise-induced muscle adaptations vary based on exercise modality and intensity. We constructed a signalling network model from 87 published studies of human or rodent skeletal muscle cell responses to endurance or resistance exercise in vivo or simulated exercise in vitro. The network comprises 259 signalling interactions between 120 nodes, representing eight membrane receptors and eight canonical signalling pathways regulating 14 transcriptional regulators, 28 target genes and 12 exercise-induced phenotypes. Using this network, we formulated a logic-based ordinary differential equation model predicting time-dependent molecular and phenotypic alterations following acute endurance and resistance exercises. Compared with nine independent studies, the model accurately predicted 18/21 (85%) acute responses to resistance exercise and 12/16 (75%) acute responses to endurance exercise. Detailed sensitivity analysis of differential phenotypic responses to resistance and endurance training showed that, in the model, exercise regulates cell growth and protein synthesis primarily by signalling via mechanistic target of rapamycin, which is activated by Akt and inhibited in endurance exercise by AMP-activated protein kinase. Endurance exercise preferentially activates inflammation via reactive oxygen species and nuclear factor κB signalling. Furthermore, the expected preferential activation of mitochondrial biogenesis by endurance exercise was counterbalanced in the model by protein kinase C in response to resistance training. This model provides a new tool for investigating cross-talk between skeletal muscle signalling pathways activated by endurance and resistance exercise, and the mechanisms of interactions such as the interference effects of endurance training on resistance exercise outcomes.
Collapse
Affiliation(s)
- Annabelle Fowler
- Department of BioengineeringUniversity of California SanDiegoLa JollaCaliforniaUSA
| | - Katherine R. Knaus
- Department of BioengineeringUniversity of California SanDiegoLa JollaCaliforniaUSA
| | - Stephanie Khuu
- Department of BioengineeringUniversity of California SanDiegoLa JollaCaliforniaUSA
| | - Ali Khalilimeybodi
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Simon Schenk
- Department of Orthopaedic SurgeryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Samuel R. Ward
- Department of Orthopaedic SurgeryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Andrew C. Fry
- Department of Health, Sport and Exercise SciencesUniversity of KansasLawrenceKansasUSA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Andrew D. McCulloch
- Department of BioengineeringUniversity of California SanDiegoLa JollaCaliforniaUSA
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
3
|
Tinklenberg JA, Slick RA, Sutton J, Zhang L, Meng H, Beatka MJ, Vanden Avond M, Prom MJ, Ott E, Montanaro F, Heisner J, Toro R, Hardeman EC, Geurts AM, Stowe DF, Hill RB, Lawlor MW. Different Mouse Models of Nemaline Myopathy Harboring Acta1 Mutations Display Differing Abnormalities Related to Mitochondrial Biology. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1548-1567. [PMID: 37419385 PMCID: PMC10548277 DOI: 10.1016/j.ajpath.2023.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023]
Abstract
ACTA1 encodes skeletal muscle-specific α-actin, which polymerizes to form the thin filament of the sarcomere. Mutations in ACTA1 are responsible for approximately 30% of nemaline myopathy (NM) cases. Previous studies of weakness in NM have focused on muscle structure and contractility, but genetic issues alone do not explain the phenotypic heterogeneity observed in patients with NM or NM mouse models. To identify additional biological processes related to NM phenotypic severity, proteomic analysis was performed using muscle protein isolates from wild-type mice in comparison to moderately affected knock-in (KI) Acta1H40Y and the minimally affected transgenic (Tg) ACTA1D286G NM mice. This analysis revealed abnormalities in mitochondrial function and stress-related pathways in both mouse models, supporting an in-depth assessment of mitochondrial biology. Interestingly, evaluating each model in comparison to its wild-type counterpart identified different degrees of mitochondrial abnormality that correlated well with the phenotypic severity of the mouse model. Muscle histology, mitochondrial respiration, electron transport chain function, and mitochondrial transmembrane potential were all normal or minimally affected in the TgACTA1D286G mouse model. In contrast, the more severely affected KI.Acta1H40Y mice displayed significant abnormalities in relation to muscle histology, mitochondrial respirometry, ATP, ADP, and phosphate content, and mitochondrial transmembrane potential. These findings suggest that abnormal energy metabolism is related to symptomatic severity in NM and may constitute a contributor to phenotypic variability and a novel treatment target.
Collapse
Affiliation(s)
- Jennifer A Tinklenberg
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Rebecca A Slick
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jessica Sutton
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Liwen Zhang
- Mass Spectrometry and Proteomics Facility, Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio
| | - Hui Meng
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Margaret J Beatka
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mark Vanden Avond
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mariah J Prom
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Emily Ott
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Federica Montanaro
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - James Heisner
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Rafael Toro
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Edna C Hardeman
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David F Stowe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - R Blake Hill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael W Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
4
|
Ziyaiyan A, Kordi M, Hofmeister M, Chamari K, Moalla W, Gaeini AA. High-intensity circuit training change serum myostatin but not myogenin in adolescents' soccer players: a quasi-experimental study. BMC Sports Sci Med Rehabil 2023; 15:15. [PMID: 36747295 PMCID: PMC9901002 DOI: 10.1186/s13102-023-00627-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
BACKGROUND Skeletal muscle contractions due to exercise lead to the secretion of many proteins and proteoglycan peptides called myokines. Myostatin (MSTN) and Myogenin (MyoG) are two of the most important skeletal muscle growth regulatory factors related to myoblast differentiation and muscle hypertrophy. The present study aims at investigating the effects over eight weeks of high-intensity circuit training (HICT) on serum MyoG and MSTN in male soccer players. METHOD The present study is a quasi-experimental study on 21 male soccer players (Experimental group: n = 11, Control group: n = 10) (ages 15.0 ± 3.4 years, body mass 55.7 ± 7.8 kg, height 173.3 ± 8.0 cm, Body mass index 18.4 ± 1.9 kg m-2, maximum oxygen uptake 61.89 ± 3.01 ml kg-1 and the peak height velocity 14.5 ± 0.3 years). Participants were randomly divided into two groups: training group and a control group. The first resting blood samples were obtained in the morning-fasting state, and the second blood samples were obtained after the maximum aerobic test at pre- and post-HICT. RESULTS There were non-significant differences in resting serum values of MyoG (p = 0.309, p > 0.05) but significant differences in resting serum values of MSTN between the training and control groups after eight weeks of HICT (p = 0.003, p < 0.05). No significant differences were observed between groups in the acute response of serum values of MyoG (p = 0.413, p < 0.05) and MSTN (p = 0.465, p < 0.05) to the maximum aerobic test after eight weeks of HICT. CONCLUSION These results suggest that eight weeks of HICT can decrease the resting serum values of MSTN but not change the resting serum values of MyoG in male adolescent soccer players. Also, eight weeks of HICT does not affect the acute response of MSTN and MyoG after a maximum aerobic test.
Collapse
Affiliation(s)
- Amirhosein Ziyaiyan
- Department of Sport Physiology, Faculty of Physical Education and Sports Sciences, University of Tehran, Tehran, Iran.
| | - Mohammadreza Kordi
- grid.46072.370000 0004 0612 7950Department of Sport Physiology, Faculty of Physical Education and Sports Sciences, University of Tehran, Tehran, Iran
| | - Martin Hofmeister
- Department Food and Nutrition, Consumer Centre of the German Federal State of Bavaria, Munich, Germany
| | - Karim Chamari
- grid.415515.10000 0004 0368 4372Aspetar, Orthopedic and Sports Medicine Hospital, FIFA Medical Centre of Excellence, Doha, Qatar
| | - Wassim Moalla
- grid.412124.00000 0001 2323 5644Laboratory EM2S LR19JS01: Education, Motricity, Sport and Health, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Abbas Ali Gaeini
- grid.46072.370000 0004 0612 7950Department of Sport Physiology, Faculty of Physical Education and Sports Sciences, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Jones RG, Dimet-Wiley A, Haghani A, da Silva FM, Brightwell CR, Lim S, Khadgi S, Wen Y, Dungan CM, Brooke RT, Greene NP, Peterson CA, McCarthy JJ, Horvath S, Watowich SJ, Fry CS, Murach KA. A molecular signature defining exercise adaptation with ageing and in vivo partial reprogramming in skeletal muscle. J Physiol 2023; 601:763-782. [PMID: 36533424 PMCID: PMC9987218 DOI: 10.1113/jp283836] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Exercise promotes functional improvements in aged tissues, but the extent to which it simulates partial molecular reprogramming is unknown. Using transcriptome profiling from (1) a skeletal muscle-specific in vivo Oct3/4, Klf4, Sox2 and Myc (OKSM) reprogramming-factor expression murine model; (2) an in vivo inducible muscle-specific Myc induction murine model; (3) a translatable high-volume hypertrophic exercise training approach in aged mice; and (4) human exercise muscle biopsies, we collectively defined exercise-induced genes that are common to partial reprogramming. Late-life exercise training lowered murine DNA methylation age according to several contemporary muscle-specific clocks. A comparison of the murine soleus transcriptome after late-life exercise training to the soleus transcriptome after OKSM induction revealed an overlapping signature that included higher JunB and Sun1. Also, within this signature, downregulation of specific mitochondrial and muscle-enriched genes was conserved in skeletal muscle of long-term exercise-trained humans; among these was muscle-specific Abra/Stars. Myc is the OKSM factor most induced by exercise in muscle and was elevated following exercise training in aged mice. A pulse of MYC rewired the global soleus muscle methylome, and the transcriptome after a MYC pulse partially recapitulated OKSM induction. A common signature also emerged in the murine MYC-controlled and exercise adaptation transcriptomes, including lower muscle-specific Melusin and reactive oxygen species-associated Romo1. With Myc, OKSM and exercise training in mice, as well habitual exercise in humans, the complex I accessory subunit Ndufb11 was lower; low Ndufb11 is linked to longevity in rodents. Collectively, exercise shares similarities with genetic in vivo partial reprogramming. KEY POINTS: Advances in the last decade related to cellular epigenetic reprogramming (e.g. DNA methylome remodelling) toward a pluripotent state via the Yamanaka transcription factors Oct3/4, Klf4, Sox2 and Myc (OKSM) provide a window into potential mechanisms for combatting the deleterious effects of cellular ageing. Using global gene expression analysis, we compared the effects of in vivo OKSM-mediated partial reprogramming in skeletal muscle fibres of mice to the effects of late-life murine exercise training in muscle. Myc is the Yamanaka factor most induced by exercise in skeletal muscle, and so we compared the MYC-controlled transcriptome in muscle to Yamanaka factor-mediated and exercise adaptation mRNA landscapes in mice and humans. A single pulse of MYC is sufficient to remodel the muscle methylome. We identify partial reprogramming-associated genes that are innately altered by exercise training and conserved in humans, and propose that MYC contributes to some of these responses.
Collapse
Affiliation(s)
- Ronald G. Jones
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | | | - Amin Haghani
- University of California Los Angeles, Department of Human Genetics, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Francielly Morena da Silva
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cachexia Research Laboratory, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Camille R. Brightwell
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Athletic Training and Clinical Nutrition, Lexington, KY, USA
| | - Seongkyun Lim
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cachexia Research Laboratory, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Sabin Khadgi
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Yuan Wen
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Physical Therapy, Lexington, KY, USA
| | - Cory M. Dungan
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Physical Therapy, Lexington, KY, USA
| | | | - Nicholas P. Greene
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cachexia Research Laboratory, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cell and Molecular Biology Graduate Program, Fayetteville, AR, USA
| | - Charlotte A. Peterson
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Physical Therapy, Lexington, KY, USA
- University of Kentucky, Department of Physiology, Lexington, KY, USA
| | - John J. McCarthy
- Altos Labs, San Diego, CA, USA
- University of Kentucky, Department of Physiology, Lexington, KY, USA
| | - Steve Horvath
- University of California Los Angeles, Department of Human Genetics, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Stanley J. Watowich
- Ridgeline Therapeutics, Houston, TX, USA
- University of Texas Medical Branch, Department of Biochemistry and Molecular Biology, Galveston, TX, USA
| | - Christopher S. Fry
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Athletic Training and Clinical Nutrition, Lexington, KY, USA
| | - Kevin A. Murach
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cell and Molecular Biology Graduate Program, Fayetteville, AR, USA
| |
Collapse
|
6
|
Betts CA, Jagannath A, van Westering TLE, Bowerman M, Banerjee S, Meng J, Falzarano MS, Cravo L, McClorey G, Meijboom KE, Bhomra A, Lim WF, Rinaldi C, Counsell JR, Chwalenia K, O'Donovan E, Saleh AF, Gait MJ, Morgan JE, Ferlini A, Foster RG, Wood MJ. Dystrophin involvement in peripheral circadian SRF signalling. Life Sci Alliance 2021; 4:4/10/e202101014. [PMID: 34389686 PMCID: PMC8363758 DOI: 10.26508/lsa.202101014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/02/2022] Open
Abstract
Absence of dystrophin, an essential sarcolemmal protein required for muscle contraction, leads to the devastating muscle-wasting disease Duchenne muscular dystrophy. Dystrophin has an actin-binding domain, which binds and stabilises filamentous-(F)-actin, an integral component of the RhoA-actin-serum-response-factor-(SRF) pathway. This pathway plays a crucial role in circadian signalling, whereby the suprachiasmatic nucleus (SCN) transmits cues to peripheral tissues, activating SRF and transcription of clock-target genes. Given dystrophin binds F-actin and disturbed SRF-signalling disrupts clock entrainment, we hypothesised dystrophin loss causes circadian deficits. We show for the first time alterations in the RhoA-actin-SRF-signalling pathway, in dystrophin-deficient myotubes and dystrophic mouse models. Specifically, we demonstrate reduced F/G-actin ratios, altered MRTF levels, dysregulated core-clock and downstream target-genes, and down-regulation of key circadian genes in muscle biopsies from Duchenne patients harbouring an array of mutations. Furthermore, we show dystrophin is absent in the SCN of dystrophic mice which display disrupted circadian locomotor behaviour, indicative of disrupted SCN signalling. Therefore, dystrophin is an important component of the RhoA-actin-SRF pathway and novel mediator of circadian signalling in peripheral tissues, loss of which leads to circadian dysregulation.
Collapse
Affiliation(s)
- Corinne A Betts
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Aarti Jagannath
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, Oxford Molecular Pathology Institute, Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Melissa Bowerman
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK.,School of Medicine, Keele University, Staffordshire, Wolfson Centre for Inherited Neuromuscular Disease, The Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK
| | - Subhashis Banerjee
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Jinhong Meng
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Programme, University College London Great Ormond Street Institute of Child Health, London, UK.,National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Maria Sofia Falzarano
- Department of Medical Sciences, Unit of Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Lara Cravo
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Graham McClorey
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | | | - Amarjit Bhomra
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Wooi Fang Lim
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Carlo Rinaldi
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK.,Muscular Dystrophy UK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - John R Counsell
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Programme, University College London Great Ormond Street Institute of Child Health, London, UK.,National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Katarzyna Chwalenia
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Elizabeth O'Donovan
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Amer F Saleh
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.,Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Michael J Gait
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Jennifer E Morgan
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Programme, University College London Great Ormond Street Institute of Child Health, London, UK.,National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Alessandra Ferlini
- Department of Medical Sciences, Unit of Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Russell G Foster
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, Oxford Molecular Pathology Institute, Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Matthew Ja Wood
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK.,Muscular Dystrophy UK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Rindom E, Herskind J, Blaauw B, Overgaard K, Vissing K, Paoli FV. Concomitant excitation and tension development are required for myocellular gene expression and protein synthesis in rat skeletal muscle. Acta Physiol (Oxf) 2021; 231:e13540. [PMID: 32687678 DOI: 10.1111/apha.13540] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
AIM Loading-induced tension development is often assumed to constitute an independent cue to initiate muscle protein synthesis following resistance exercise. However, with traditional physiological models of resistance exercise, changes in loading-induced tension development also reflect changes in neural activation patterns, and direct evidence for a mechanosensitive mechanism is therefore limited. Here, we sought to examine the importance of excitation and tension development per se on initiation of signalling, gene transcription and protein synthesis in rat skeletal muscle. METHODS Isolated rat extensor digitorum longus muscles were allocated to the following interventions: (a) Excitation-induced eccentric contractions (ECC); (b) Passive stretching without excitation (PAS); (c) Excitation with inhibition of contractions (STIM + IMA ) and; (d) Excitation in combination with both inhibition of contractions and PAS (STIM + IMA + PAS). Assessment of transcriptional and translational signalling, gene transcription and acute muscle protein synthesis was compared in stimulated vs contra-lateral non-stimulated control muscle. RESULTS Protein synthesis increased solely in muscles subjected to a combination of excitation and tension development (ECC and STIM + IMA + PAS). The same pattern was true for p38 mitogen-activated protein kinase signalling for gene transcription as well as for gene transcription of immediate early genes FOS and JUN. In contrast, mechanistic target of rapamycin Complex 1 signalling for translation initiation increased in all muscles subjected to increased tension development (ECC and STIM + IMA + PAS as well as PAS). CONCLUSIONS The current study suggests that exercise-induced increases in protein synthesis as well as transcriptional signalling is dependent on the concomitant effect of excitation and tension development, whereas signalling for translation initiation is only dependent of tension development per se.
Collapse
Affiliation(s)
- Emil Rindom
- Department of Biomedicine Aarhus University Aarhus Denmark
| | - Jon Herskind
- Section for Sport Science Department of Public Health Aarhus University Aarhus Denmark
| | - Bert Blaauw
- Department of Biomedical Sciences University of Padova Padova Italy
| | - Kristian Overgaard
- Section for Sport Science Department of Public Health Aarhus University Aarhus Denmark
| | - Kristian Vissing
- Section for Sport Science Department of Public Health Aarhus University Aarhus Denmark
| | - Frank V. Paoli
- Department of Biomedicine Aarhus University Aarhus Denmark
| |
Collapse
|
8
|
Angelini A, Gorey MA, Dumont F, Mougenot N, Chatzifrangkeskou M, Muchir A, Li Z, Mericskay M, Decaux JF. Cardioprotective effects of α-cardiac actin on oxidative stress in a dilated cardiomyopathy mouse model. FASEB J 2019; 34:2987-3005. [PMID: 31908029 DOI: 10.1096/fj.201902389r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 12/12/2022]
Abstract
The expression of α-cardiac actin, a major constituent of the cytoskeleton of cardiomyocytes, is dramatically decreased in a mouse model of dilated cardiomyopathy triggered by inducible cardiac-specific serum response factor (Srf) gene disruption that could mimic some forms of human dilated cardiomyopathy. To investigate the consequences of the maintenance of α-cardiac actin expression in this model, we developed a new transgenic mouse based on Cre/LoxP strategy, allowing together the induction of SRF loss and a compensatory expression of α-cardiac actin. Here, we report that maintenance of α-cardiac actin within cardiomyocytes temporally preserved cytoarchitecture from adverse cardiac remodeling through a positive impact on both structural and transcriptional levels. These protective effects were accompanied in vivo by the decrease of ROS generation and protein carbonylation and the downregulation of NADPH oxidases NOX2 and NOX4. We also show that ectopic expression of α-cardiac actin protects HEK293 cells against oxidative stress induced by H2 O2 . Oxidative stress plays an important role in the development of cardiac remodeling and contributes also to the pathogenesis of heart failure. Taken together, these findings indicate that α-cardiac actin could be involved in the regulation of oxidative stress that is a leading cause of adverse remodeling during dilated cardiomyopathy development.
Collapse
Affiliation(s)
- Aude Angelini
- Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, INSERM ERL U1164, Sorbonne Université, Paris, France
| | - Mark-Alexander Gorey
- Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, INSERM ERL U1164, Sorbonne Université, Paris, France
| | - Florent Dumont
- Signalling and Cardiovascular Pathophysiology, INSERM UMR-S 1180, Université Paris-Saclay, Châtenay-Malabry, France
| | - Nathalie Mougenot
- Faculté de Médecine, Pierre et Marie Curie, INSERM UMS 28 Phénotypage du petit animal, Sorbonne Université, Paris, France
| | - Maria Chatzifrangkeskou
- Center of Research in Myology, Institut de Myologie, INSERM UMRS 974, Sorbonne Université, Paris, France
| | - Antoine Muchir
- Center of Research in Myology, Institut de Myologie, INSERM UMRS 974, Sorbonne Université, Paris, France
| | - Zhenlin Li
- Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, INSERM ERL U1164, Sorbonne Université, Paris, France
| | - Mathias Mericskay
- Signalling and Cardiovascular Pathophysiology, INSERM UMR-S 1180, Université Paris-Saclay, Châtenay-Malabry, France
| | - Jean-Francois Decaux
- Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, INSERM ERL U1164, Sorbonne Université, Paris, France
| |
Collapse
|
9
|
Li P, Liu A, Liu C, Qu Z, Xiao W, Huang J, Liu Z, Zhang S. Role and mechanism of catechin in skeletal muscle cell differentiation. J Nutr Biochem 2019; 74:108225. [DOI: 10.1016/j.jnutbio.2019.108225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/01/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023]
|
10
|
Acute sprint exercise transcriptome in human skeletal muscle. PLoS One 2019; 14:e0223024. [PMID: 31647849 PMCID: PMC6812755 DOI: 10.1371/journal.pone.0223024] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/11/2019] [Indexed: 12/25/2022] Open
Abstract
Aim To examine global gene expression response to profound metabolic and hormonal stress induced by acute sprint exercise. Methods Healthy men and women (n = 14) performed three all-out cycle sprints interspersed by 20 min recovery. Muscle biopsies were obtained before the first, and 2h and 20 min after last sprint. Microarray analysis was performed to analyse acute gene expression response and repeated blood samples were obtained. Results In skeletal muscle, a set of immediate early genes, FOS, NR4A3, MAFF, EGR1, JUNB were markedly upregulated after sprint exercise. Gene ontology analysis from 879 differentially expressed genes revealed predicted activation of various upstream regulators and downstream biofunctions. Gene signatures predicted an enhanced turnover of skeletal muscle mass after sprint exercise and some novel induced genes such as WNT9A, FZD7 and KLHL40 were presented. A substantial increase in circulating free fatty acids (FFA) was noted after sprint exercise, in parallel with upregulation of PGC-1A and the downstream gene PERM1 and gene signatures predicting enhanced lipid turnover. Increase in growth hormone and insulin in blood were related to changes in gene expressions and both hormones were predicted as upstream regulators. Conclusion This is the first study reporting global gene expression in skeletal muscle in response to acute sprint exercise and several novel findings are presented. First, in line with that muscle hypertrophy is not a typical finding after a period of sprint training, both hypertrophy and atrophy factors were regulated. Second, systemic FFA and hormonal and exposure might be involved in the sprint exercise-induced changes in gene expression.
Collapse
|
11
|
Popov DV, Makhnovskii PA, Shagimardanova EI, Gazizova GR, Lysenko EA, Gusev OA, Vinogradova OL. Contractile activity-specific transcriptome response to acute endurance exercise and training in human skeletal muscle. Am J Physiol Endocrinol Metab 2019; 316:E605-E614. [PMID: 30779632 DOI: 10.1152/ajpendo.00449.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Reduction in daily activity leads to dramatic metabolic disorders, while regular aerobic exercise training is effective for preventing this problem. The purpose of this study was to identify genes that are directly related to contractile activity in human skeletal muscle, regardless of the level of fitness. Transcriptome changes after the one-legged knee extension exercise in exercised and contralateral nonexercised vastus lateralis muscle of seven men were evaluated by RNA-seq. Transcriptome change at baseline after 2 mo of aerobic training (5/wk, 1 h/day) was evaluated as well. Postexercise changes in the transcriptome of exercised muscle were associated with different factors, including circadian oscillations. To reveal transcriptome response specific for endurance-like contractile activity, differentially expressed genes between exercised and nonexercised muscle were evaluated at 1 and 4 h after the one-legged exercise. The contractile activity-specific transcriptome responses were associated only with an increase in gene expression and were regulated mainly by CREB/ATF/AP1-, MYC/MAX-, and E2F-related transcription factors. Endurance training-induced changes (an increase or decrease) in the transcriptome at baseline were more pronounced than transcriptome responses specific for acute contractile activity. Changes after training were associated with widely different biological processes than those after acute exercise and were regulated by different transcription factors (IRF- and STAT-related factors). In conclusion, adaptation to regular exercise is associated not only with a transient (over several hours) increase in expression of many contractile activity-specific genes, but also with a pronounced change (an increase or decrease) in expression of a large number of genes under baseline conditions.
Collapse
Affiliation(s)
- Daniil V Popov
- Laboratory of Exercise Physiology, Institute of Biomedical Problems of the Russian Academy of Sciences , Moscow , Russia
- Faculty of Fundamental Medicine, M. V. Lomonosov Moscow State University , Moscow , Russia
| | - Pavel A Makhnovskii
- Laboratory of Exercise Physiology, Institute of Biomedical Problems of the Russian Academy of Sciences , Moscow , Russia
| | - Elena I Shagimardanova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University , Kazan , Russia
| | - Guzel R Gazizova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University , Kazan , Russia
| | - Evgeny A Lysenko
- Laboratory of Exercise Physiology, Institute of Biomedical Problems of the Russian Academy of Sciences , Moscow , Russia
- Faculty of Fundamental Medicine, M. V. Lomonosov Moscow State University , Moscow , Russia
| | - Oleg A Gusev
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University , Kazan , Russia
- Cluster for Science, Technology and Innovation Hub, RIKEN, Wako , Japan
| | - Olga L Vinogradova
- Laboratory of Exercise Physiology, Institute of Biomedical Problems of the Russian Academy of Sciences , Moscow , Russia
- Faculty of Fundamental Medicine, M. V. Lomonosov Moscow State University , Moscow , Russia
| |
Collapse
|
12
|
Abstract
We found that hundreds of years of selection by humans have produced sport-hunting breeds of superior speed and athleticism through strong selection on multiple genes relating to cardiovascular, muscle, and neuronal functions. We further substantiated these findings by showing that genes under selection significantly enhanced athleticism, as measured by racing speed and obstacle course success, using standardized measures from dogs competing in national competitions. Overall these results reveal both the evolutionary processes and the genetic pathways putatively involved in athletic success. Modern dogs are distinguished among domesticated species by the vast breadth of phenotypic variation produced by strong and consistent human-driven selective pressure. The resulting breeds reflect the development of closed populations with well-defined physical and behavioral attributes. The sport-hunting dog group has long been employed in assistance to hunters, reflecting strong behavioral pressures to locate and pursue quarry over great distances and variable terrain. Comparison of whole-genome sequence data between sport-hunting and terrier breeds, groups at the ends of a continuum in both form and function, reveals that genes underlying cardiovascular, muscular, and neuronal functions are under strong selection in sport-hunting breeds, including ADRB1, TRPM3, RYR3, UTRN, ASIC3, and ROBO1. We also identified an allele of TRPM3 that was significantly associated with increased racing speed in Whippets, accounting for 11.6% of the total variance in racing performance. Finally, we observed a significant association of ROBO1 with breed-specific accomplishments in competitive obstacle course events. These results provide strong evidence that sport-hunting breeds have been adapted to their occupations by improved endurance, cardiac function, blood flow, and cognitive performance, demonstrating how strong behavioral selection alters physiology to create breeds with distinct capabilities.
Collapse
|
13
|
Buonvicino D, Felici R, Ranieri G, Caramelli R, Lapucci A, Cavone L, Muzzi M, Di Pietro L, Bernardini C, Zwergel C, Valente S, Mai A, Chiarugi A. Effects of Class II-Selective Histone Deacetylase Inhibitor on Neuromuscular Function and Disease Progression in SOD1-ALS Mice. Neuroscience 2018; 379:228-238. [PMID: 29588251 DOI: 10.1016/j.neuroscience.2018.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 12/13/2022]
Abstract
Emerging evidence indicates that transcriptome alterations due to epigenetic deregulation concur to ALS pathogenesis. Accordingly, pan-histone deacetylase (HDAC) inhibitors delay ALS development in mice, but these compounds failed when tested in ALS patients. Possibly, lack of selectivity toward specific classes of HDACs weakens the therapeutic effects of pan-HDAC inhibitors. Here, we tested the effects of the HDAC Class II selective inhibitor MC1568 on disease evolution, motor neuron survival as well as skeletal muscle function in SOD1G93A mice. We report that HDACs did not undergo expression changes during disease evolution in isolated motor neurons of adult mice. Conversely, increase in specific Class II HDACs (-4, -5 and -6) occurs in skeletal muscle of mice with severe neuromuscular impairment. Importantly, treatment with MC1568 causes early improvement of motor performances that vanishes at later stages of disease. Notably, motor improvement is not paralleled by reduced motor neuron degeneration but by increased skeletal muscle electrical potentials, reduced activation of mir206/FGFBP1-dependent muscle reinnervation signaling, and increased muscle expression of myogenic genes.
Collapse
Affiliation(s)
- Daniela Buonvicino
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy.
| | - Roberta Felici
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Giuseppe Ranieri
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Riccardo Caramelli
- Neurophysiology Unit, Department of Neurology and Psychiatry, Azienda Ospedaliera Careggi, Florence, Italy
| | - Andrea Lapucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Leonardo Cavone
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Mirko Muzzi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Lorena Di Pietro
- Institute of Anatomy and Cell Biology, University Cattolica del Sacro Cuore, Rome, Italy
| | - Camilla Bernardini
- Institute of Anatomy and Cell Biology, University Cattolica del Sacro Cuore, Rome, Italy
| | - Clemens Zwergel
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, Italy
| | - Sergio Valente
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, Italy
| | - Antonello Mai
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, Italy
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| |
Collapse
|
14
|
Transcriptional and Post-Translational Targeting of Myocyte Stress Protein 1 (MS1) by the JNK Pathway in Cardiac Myocytes. J Mol Signal 2017; 12:3. [PMID: 30210579 PMCID: PMC5853832 DOI: 10.5334/1750-2187-12-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myocyte Stress Protein 1 (MS1) is a muscle-specific, stress-responsive, regulator of gene expression. It was originally identified in embryonic mouse heart which showed increased expression in a rat model of left ventricular hypertrophy. To determine if MS1 was responsive to other stresses relevant to cardiac myocyte function, we tested if it could be induced by the metabolic stresses associated with ischaemia/reperfusion injury in cardiac myocytes. We found that metabolic stress increased MS1 expression, both at the mRNA and protein level, concurrent with activation of the c-Jun N-terminal Kinase (JNK) signalling pathway. MS1 induction by metabolic stress was blocked by both the transcription inhibitor actinomycin D and a JNK inhibitor, suggesting that activation of the JNK pathway during metabolic stress in cardiac myocytes leads to transcriptional induction of MS1. MS1 was also found to be an efficient JNK substrate in vitro, with a major JNK phosphorylation site identified at Thr-62. In addition, MS1 was found to co-precipitate with JNK, and inspection of the amino acid sequence upstream of the phosphorylation site, at Thr-62, revealed a putative Mitogen-Activated Protein Kinase (MAPK) binding site. Taken together, these data identify MS1 as a likely transcriptional and post-translational target for the JNK pathway in cardiac myocytes subjected to metabolic stress.
Collapse
|
15
|
Russell AP, Wallace MA, Kalanon M, Zacharewicz E, Della Gatta PA, Garnham A, Lamon S. Striated muscle activator of Rho signalling (STARS) is reduced in ageing human skeletal muscle and targeted by miR-628-5p. Acta Physiol (Oxf) 2017; 220:263-274. [PMID: 27739650 DOI: 10.1111/apha.12819] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/12/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022]
Abstract
AIM The striated muscle activator of Rho signalling (STARS) is a muscle-specific actin-binding protein. The STARS signalling pathway is activated by resistance exercise and is anticipated to play a role in signal mechanotransduction. Animal studies have reported a negative regulation of STARS signalling with age, but such regulation has not been investigated in humans. METHODS Ten young (18-30 years) and 10 older (60-75 years) subjects completed an acute bout of resistance exercise. Gene and protein expression of members of the STARS signalling pathway and miRNA expression of a subset of miRNAs, predicted or known to target members of STARS signalling pathway, were measured in muscle biopsies collected pre-exercise and 2 h post-exercise. RESULTS For the first time, we report a significant downregulation of the STARS protein in older subjects. However, there was no effect of age on the magnitude of STARS activation in response to an acute bout of exercise. Finally, we established that miR-628-5p, a miRNA regulated by age and exercise, binds to the STARS 3'UTR to directly downregulate its transcription. CONCLUSION This study describes for the first time the resistance exercise-induced regulation of STARS signalling in skeletal muscle from older humans and identifies a new miRNA involved in the transcriptional control of STARS.
Collapse
Affiliation(s)
- A. P. Russell
- Institute for Physical Activity and Nutrition (IPAN); School of Exercise and Nutrition Sciences; Deakin University; Geelong Vic. Australia
| | - M. A. Wallace
- Institute for Physical Activity and Nutrition (IPAN); School of Exercise and Nutrition Sciences; Deakin University; Geelong Vic. Australia
| | - M. Kalanon
- Institute for Physical Activity and Nutrition (IPAN); School of Exercise and Nutrition Sciences; Deakin University; Geelong Vic. Australia
| | - E. Zacharewicz
- Institute for Physical Activity and Nutrition (IPAN); School of Exercise and Nutrition Sciences; Deakin University; Geelong Vic. Australia
| | - P. A. Della Gatta
- Institute for Physical Activity and Nutrition (IPAN); School of Exercise and Nutrition Sciences; Deakin University; Geelong Vic. Australia
| | - A. Garnham
- Institute for Physical Activity and Nutrition (IPAN); School of Exercise and Nutrition Sciences; Deakin University; Geelong Vic. Australia
| | - S. Lamon
- Institute for Physical Activity and Nutrition (IPAN); School of Exercise and Nutrition Sciences; Deakin University; Geelong Vic. Australia
| |
Collapse
|
16
|
Huffman KM, Jessee R, Andonian B, Davis BN, Narowski R, Huebner JL, Kraus VB, McCracken J, Gilmore BF, Tune KN, Campbell M, Koves TR, Muoio DM, Hubal MJ, Kraus WE. Molecular alterations in skeletal muscle in rheumatoid arthritis are related to disease activity, physical inactivity, and disability. Arthritis Res Ther 2017; 19:12. [PMID: 28114971 PMCID: PMC5260091 DOI: 10.1186/s13075-016-1215-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/30/2016] [Indexed: 01/04/2023] Open
Abstract
Background To identify molecular alterations in skeletal muscle in rheumatoid arthritis (RA) that may contribute to ongoing disability in RA. Methods Persons with seropositive or erosive RA (n = 51) and control subjects matched for age, gender, race, body mass index (BMI), and physical activity (n = 51) underwent assessment of disease activity, disability, pain, physical activity and thigh muscle biopsies. Muscle tissue was used for measurement of pro-inflammatory markers, transcriptomics, and comprehensive profiling of metabolic intermediates. Groups were compared using mixed models. Bivariate associations were assessed with Spearman correlation. Results Compared to controls, patients with RA had 75% greater muscle concentrations of IL-6 protein (p = 0.006). In patients with RA, muscle concentrations of inflammatory markers were positively associated (p < 0.05 for all) with disease activity (IL-1β, IL-8), disability (IL-1β, IL-6), pain (IL-1β, TNF-α, toll-like receptor (TLR)-4), and physical inactivity (IL-1β, IL-6). Muscle cytokines were not related to corresponding systemic cytokines. Prominent among the gene sets differentially expressed in muscles in RA versus controls were those involved in skeletal muscle repair processes and glycolytic metabolism. Metabolic profiling revealed 46% higher concentrations of pyruvate in muscle in RA (p < 0.05), and strong positive correlation between levels of amino acids involved in fibrosis (arginine, ornithine, proline, and glycine) and disability (p < 0.05). Conclusion RA is accompanied by broad-ranging molecular alterations in skeletal muscle. Analysis of inflammatory markers, gene expression, and metabolic intermediates linked disease-related disruptions in muscle inflammatory signaling, remodeling, and metabolic programming to physical inactivity and disability. Thus, skeletal muscle dysfunction might contribute to a viscous cycle of RA disease activity, physical inactivity, and disability. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-1215-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kim M Huffman
- Department of Medicine, Duke Molecular Physiology Institute, Duke School of Medicine, Durham, NC, USA.
| | - Ryan Jessee
- Department of Medicine, Duke Molecular Physiology Institute, Duke School of Medicine, Durham, NC, USA
| | - Brian Andonian
- Department of Medicine, Duke Molecular Physiology Institute, Duke School of Medicine, Durham, NC, USA
| | | | | | - Janet L Huebner
- Department of Medicine, Duke Molecular Physiology Institute, Duke School of Medicine, Durham, NC, USA
| | - Virginia B Kraus
- Department of Medicine, Duke Molecular Physiology Institute, Duke School of Medicine, Durham, NC, USA
| | - Julie McCracken
- Department of Medicine, Duke Molecular Physiology Institute, Duke School of Medicine, Durham, NC, USA
| | - Brian F Gilmore
- Department of Surgery, Duke School of Medicine, Durham, NC, USA
| | - K Noelle Tune
- Department of Emergency Medicine, Indiana University, Indianapolis, IN, USA
| | - Milton Campbell
- Department of Medicine, Duke Molecular Physiology Institute, Duke School of Medicine, Durham, NC, USA
| | - Timothy R Koves
- Department of Medicine, Duke Molecular Physiology Institute, Duke School of Medicine, Durham, NC, USA
| | - Deborah M Muoio
- Department of Medicine, Duke Molecular Physiology Institute, Duke School of Medicine, Durham, NC, USA
| | | | - William E Kraus
- Department of Medicine, Duke Molecular Physiology Institute, Duke School of Medicine, Durham, NC, USA
| |
Collapse
|
17
|
Abreu P, Pinheiro CHJ, Vitzel KF, Vasconcelos DAA, Torres RP, Fortes MS, Marzuca-Nassr GN, Mancini-Filho J, Hirabara SM, Curi R. Contractile function recovery in severely injured gastrocnemius muscle of rats treated with either oleic or linoleic acid. Exp Physiol 2016; 101:1392-1405. [PMID: 27579497 DOI: 10.1113/ep085899] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/18/2016] [Indexed: 12/31/2022]
Abstract
NEW FINDINGS What is the central question of this study? Oleic and linoleic acids modulate fibroblast proliferation and myogenic differentiation in vitro. However, their in vivo effects on muscle regeneration have not yet been examined. We investigated the effects of either oleic or linoleic acid on a well-established model of muscle regeneration after severe laceration. What is the main finding and its importance? We found that linoleic acid increases fibrous tissue deposition and impairs muscle regeneration and recovery of contractile function, whereas oleic acid has the opposite effects in severely injured gastrocnemius muscle, suggesting that linoleic acid has a harmful effect and oleic acid a potential therapeutic effect on muscle regeneration. Oleic and linoleic acids control fibroblast proliferation and myogenic differentiation in vitro; however, there was no study in skeletal muscle in vivo. The aim of this study was to evaluate the effects of either oleic or linoleic acid on the fibrous tissue content (collagen deposition) of muscle and recovery of contractile function in rat gastrocnemius muscle after being severely injured by laceration. Rats were supplemented with either oleic or linoleic acid for 4 weeks after laceration [0.44 g (kg body weight)-1 day-1 ]. Muscle injury led to an increase in oleic-to-stearic acid and palmitoleic-to-palmitic acid ratios, suggesting an increase in Δ9 desaturase activity. Increased fibrous tissue deposition and reduced isotonic and tetanic specific forces and resistance to fatigue were observed in the injured muscle. Supplementation with linoleic acid increased the content of eicosadienoic (20:2, n-6) and arachidonic (20:4, n-6) acids, reduced muscle mass and fibre cross-sectional areas, increased fibrous tissue deposition and further reduced the isotonic and tetanic specific forces and resistance to fatigue induced by laceration. Supplementation with oleic acid increased the content of docosahexaenoic acid (22:6, n-3) and abolished the increase in fibrous tissue area and the decrease in isotonic and tetanic specific forces and resistance to fatigue induced by muscle injury. We concluded that supplementation with linoleic acid impairs muscle regeneration and increases fibrous tissue deposition, resulting in impaired recovery of contractile function. Oleic acid supplementation reduced fibrous tissue deposition and improved recovery of contractile function, attenuating the tissue damage caused by muscle injury.
Collapse
Affiliation(s)
- Phablo Abreu
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Carlos H J Pinheiro
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Kaio F Vitzel
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Rosângela P Torres
- Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marco S Fortes
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Jorge Mancini-Filho
- Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Sandro M Hirabara
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, São Paulo, SP, Brazil
| | - Rui Curi
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
18
|
Systems-level effects of ectopic galectin-7 reconstitution in cervical cancer and its microenvironment. BMC Cancer 2016; 16:680. [PMID: 27558259 PMCID: PMC4997669 DOI: 10.1186/s12885-016-2700-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 08/09/2016] [Indexed: 12/20/2022] Open
Abstract
Background Galectin-7 (Gal-7) is negatively regulated in cervical cancer, and appears to be a link between the apoptotic response triggered by cancer and the anti-tumoral activity of the immune system. Our understanding of how cervical cancer cells and their molecular networks adapt in response to the expression of Gal-7 remains limited. Methods Meta-analysis of Gal-7 expression was conducted in three cervical cancer cohort studies and TCGA. In silico prediction and bisulfite sequencing were performed to inquire epigenetic alterations. To study the effect of Gal-7 on cervical cancer, we ectopically re-expressed it in the HeLa and SiHa cervical cancer cell lines, and analyzed their transcriptome and SILAC-based proteome. We also examined the tumor and microenvironment host cell transcriptomes after xenotransplantation into immunocompromised mice. Differences between samples were assessed with the Kruskall-Wallis, Dunn’s Multiple Comparison and T tests. Kaplan–Meier and log-rank tests were used to determine overall survival. Results Gal-7 was constantly downregulated in our meta-analysis (p < 0.0001). Tumors with combined high Gal-7 and low galectin-1 expression (p = 0.0001) presented significantly better prognoses (p = 0.005). In silico and bisulfite sequencing assays showed de novo methylation in the Gal-7 promoter and first intron. Cells re-expressing Gal-7 showed a high apoptosis ratio (p < 0.05) and their xenografts displayed strong growth retardation (p < 0.001). Multiple gene modules and transcriptional regulators were modulated in response to Gal-7 reconstitution, both in cervical cancer cells and their microenvironments (FDR < 0.05 %). Most of these genes and modules were associated with tissue morphogenesis, metabolism, transport, chemokine activity, and immune response. These functional modules could exert the same effects in vitro and in vivo, even despite different compositions between HeLa and SiHa samples. Conclusions Gal-7 re-expression affects the regulation of molecular networks in cervical cancer that are involved in diverse cancer hallmarks, such as metabolism, growth control, invasion and evasion of apoptosis. The effect of Gal-7 extends to the microenvironment, where networks involved in its configuration and in immune surveillance are particularly affected. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2700-8) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
|
20
|
Graham ZA, Gallagher PM, Cardozo CP. Focal adhesion kinase and its role in skeletal muscle. J Muscle Res Cell Motil 2015; 36:305-15. [PMID: 26142360 PMCID: PMC4659753 DOI: 10.1007/s10974-015-9415-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/15/2015] [Indexed: 10/23/2022]
Abstract
Skeletal muscle has a remarkable ability to respond to different physical stresses. Loading muscle through exercise, either anaerobic or aerobic, can lead to increases in muscle size and function while, conversely, the absence of muscle loading stimulates rapid decreases in size and function. A principal mediator of this load-induced change is focal adhesion kinase (FAK), a downstream non-receptor tyrosine kinase that translates the cytoskeletal stress and strain signals transmitted across the cytoplasmic membrane by integrins to activate multiple anti-apoptotic and cell growth pathways. Changes in FAK expression and phosphorylation have been found to correlate to specific developmental states in myoblast differentiation, muscle fiber formation and muscle size in response to loading and unloading. With the capability to regulate costamere formation, hypertrophy and glucose metabolism, FAK is a molecule with diverse functions that are important in regulating muscle cell health.
Collapse
Affiliation(s)
- Zachary A Graham
- Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, 130 W. Kingsbridge Rd., Bronx, NY, 10468, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Christopher P Cardozo
- Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, 130 W. Kingsbridge Rd., Bronx, NY, 10468, USA.
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
21
|
Frontera WR, Ochala J. Skeletal muscle: a brief review of structure and function. Calcif Tissue Int 2015; 96:183-95. [PMID: 25294644 DOI: 10.1007/s00223-014-9915-y] [Citation(s) in RCA: 800] [Impact Index Per Article: 88.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/16/2014] [Indexed: 01/23/2023]
Abstract
Skeletal muscle is one of the most dynamic and plastic tissues of the human body. In humans, skeletal muscle comprises approximately 40% of total body weight and contains 50-75% of all body proteins. In general, muscle mass depends on the balance between protein synthesis and degradation and both processes are sensitive to factors such as nutritional status, hormonal balance, physical activity/exercise, and injury or disease, among others. In this review, we discuss the various domains of muscle structure and function including its cytoskeletal architecture, excitation-contraction coupling, energy metabolism, and force and power generation. We will limit the discussion to human skeletal muscle and emphasize recent scientific literature on single muscle fibers.
Collapse
Affiliation(s)
- Walter R Frontera
- Department of Physical Medicine and Rehabilitation, Vanderbilt University School of Medicine, Suite 1318, 2201 Children's Way, Nashville, TN, 37212, USA,
| | | |
Collapse
|
22
|
Selvin D, Hesse E, Renaud JM. Properties of single FDB fibers following a collagenase digestion for studying contractility, fatigue, and pCa-sarcomere shortening relationship. Am J Physiol Regul Integr Comp Physiol 2015; 308:R467-79. [PMID: 25568074 DOI: 10.1152/ajpregu.00144.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to optimize the approach to obtain viable single flexor digitorum brevis (FDB) fibers following a collagenase digestion. A first aim was to determine the culture medium conditions for the collagenase digestion. The MEM yielded better fibers in terms of morphology and contractility than the DMEM. The addition of FBS to culture media was crucial to prevent fiber supercontraction. The addition of FBS to the physiological solution used during an experiment was also beneficial, especially during fatigue. Optimum FBS concentration in MEM was 10% (vol/vol), and for the physiological solution, it ranged between 0.2 and 1.0%. A second aim was to document the stability of single FDB fibers. If tested the day of the preparation, most fibers (∼80%) had stable contractions for up to 3 h, normal stimulus duration strength to elicit contractions, and normal and stable resting membrane potential during prolonged microelectrode penetration. A third aim was to document their fatigue kinetics. Major differences in fatigue resistance were observed between fibers as expected from the FDB fiber-type composition. All sarcoplasmic [Ca(2+)] and sarcomere length parameters returned to their prefatigue levels after a short recovery. The pCa-sarcomere shortening relationship of unfatigued fibers is very similar to the pCa-force curve reported in other studies. The pCa-sarcomere shortening from fatigue data is complicated by large decreases in sarcomere length between contractions. It is concluded that isolation of single fibers by a collagenase digestion is a viable preparation to study contractility and fatigue kinetics.
Collapse
Affiliation(s)
- David Selvin
- University of Ottawa, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
| | - Erik Hesse
- University of Ottawa, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
| | - Jean-Marc Renaud
- University of Ottawa, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
| |
Collapse
|
23
|
Zacharewicz E, Della Gatta P, Reynolds J, Garnham A, Crowley T, Russell AP, Lamon S. Identification of microRNAs linked to regulators of muscle protein synthesis and regeneration in young and old skeletal muscle. PLoS One 2014; 9:e114009. [PMID: 25460913 PMCID: PMC4252069 DOI: 10.1371/journal.pone.0114009] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/31/2014] [Indexed: 12/22/2022] Open
Abstract
Background Over the course of ageing there is a natural and progressive loss of skeletal muscle mass. The onset and progression of age-related muscle wasting is associated with an attenuated activation of Akt-mTOR signalling and muscle protein synthesis in response to anabolic stimuli such as resistance exercise. MicroRNAs (miRNAs) are novel and important post-transcriptional regulators of numerous cellular processes. The role of miRNAs in the regulation of muscle protein synthesis following resistance exercise is poorly understood. This study investigated the changes in skeletal muscle miRNA expression following an acute bout of resistance exercise in young and old subjects with a focus on the miRNA species predicted to target Akt-mTOR signalling. Results Ten young (24.2±0.9 years) and 10 old (66.6±1.1 years) males completed an acute resistance exercise bout known to maximise muscle protein synthesis, with muscle biopsies collected before and 2 hours after exercise. We screened the expression of 754 miRNAs in the muscle biopsies and found 26 miRNAs to be regulated with age, exercise or a combination of both factors. Nine of these miRNAs are highly predicted to regulate targets within the Akt-mTOR signalling pathway and 5 miRNAs have validated binding sites within the 3′ UTRs of several members of the Akt-mTOR signalling pathway. The miR-99/100 family of miRNAs notably emerged as potentially important regulators of skeletal muscle mass in young and old subjects. Conclusion This study has identified several miRNAs that were regulated with age or with a single bout of resistance exercise. Some of these miRNAs were predicted to influence Akt-mTOR signalling, and therefore potentially skeletal muscle mass. These miRNAs should be considered as candidate targets for in vivo modulation.
Collapse
Affiliation(s)
- Evelyn Zacharewicz
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | - Paul Della Gatta
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | - John Reynolds
- Biostatistics Unit, Faculty of Health, Deakin University, Burwood, Victoria, Australia
| | - Andrew Garnham
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | - Tamsyn Crowley
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
- Australian Animal Health Laboratory, CSIRO Animal, Food and Health Sciences, Waurn Ponds, Victoria, Australia
| | - Aaron P. Russell
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | - Séverine Lamon
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
- * E-mail:
| |
Collapse
|