1
|
Thi Hong Van N, Hyun Nam J. Intermediate conductance calcium-activated potassium channel (KCa3.1) in cancer: Emerging roles and therapeutic potentials. Biochem Pharmacol 2024; 230:116573. [PMID: 39396649 DOI: 10.1016/j.bcp.2024.116573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
The KCa3.1 channel (also known as the KCNN4, IK1, or SK4 channel) is an intermediate-conductance calcium-activated potassium channel that regulates the membrane potential and maintains calcium homeostasis. Recently, KCa3.1 channels have attracted increasing attention because of their diverse roles in various types of cancers. In cancer cells, KCa3.1 channels regulate key processes, including cell proliferation, cell cycle, migration, invasion, tumor microenvironments, and therapy resistance. In addition, abnormal KCa3.1 expression in cancers is utilized to distinguish between tumor and normal tissues, classify cancer stages, and predict patient survival outcomes. This review comprehensively examines the current understanding of the contribution of KCa3.1 channels to tumor formation, metastasis, and its mechanisms. We evaluated the potential of KCa3.1 as a biomarker for cancer diagnosis and prognosis. Finally, we discuss the advances and challenges of applying KCa3.1 modulators in cancer treatment and propose approaches to overcome these obstacles. In summary, this review highlights the importance of this ion channel as a potent therapeutic target and prognostic biomarker of cancer.
Collapse
Affiliation(s)
- Nhung Thi Hong Van
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea.
| |
Collapse
|
2
|
Oblasov I, Bal NV, Shvadchenko AM, Fortygina P, Idzhilova OS, Balaban PM, Nikitin ES. Ca 2+-permeable AMPA receptor-dependent silencing of neurons by KCa3.1 channels during epileptiform activity. Biochem Biophys Res Commun 2024; 733:150434. [PMID: 39068818 DOI: 10.1016/j.bbrc.2024.150434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Ca2+-activated KCa3.1 channels are known to contribute to slow afterhyperpolarization in pyramidal neurons of several brain areas, while Ca2+-permeable AMPA receptors (CP-AMPARs) may provide a subthreshold source of Ca2+ elevation in the cytoplasm. The functionality of these two types of channels has also been shown to be altered by epileptic disorders. However, the link between KCa3.1 channels and CP-AMPARs is poorly understood, and their potential interaction in epilepsy remains unclear. Here, we address this issue by overexpressing the KCNN4 gene, which encodes the KCa3.1 channel, using patch clamp, imaging, and channel blockers in an in vitro model of epilepsy in neuronal culture. We show that KCNN4 overexpression causes strong hyperpolarization and substantial silencing of neurons during epileptiform activity events, which also prevents KCNN4-positive neurons from firing action potentials (APs) during experimentally induced status epilepticus. Intracellular blocker application experiments showed that the amplitude of hyperpolarization was strongly dependent on CP-AMPARs, but not on NMDA receptors. Taken together, our data strongly suggest that subthreshold Ca2+ elevation produced by CP-AMPARs can trigger KCa3.1 channels to hyperpolarize neurons and protect them from seizures.
Collapse
Affiliation(s)
- Ilya Oblasov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova str., Moscow, Russia, 117485
| | - Natalia V Bal
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova str., Moscow, Russia, 117485
| | - Anastasya M Shvadchenko
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova str., Moscow, Russia, 117485
| | - Polina Fortygina
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova str., Moscow, Russia, 117485
| | - Olga S Idzhilova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova str., Moscow, Russia, 117485
| | - Pavel M Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova str., Moscow, Russia, 117485
| | - Evgeny S Nikitin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova str., Moscow, Russia, 117485.
| |
Collapse
|
3
|
Charlick JN, Bozadzhieva D, Butler AS, Wilkinson KA, Marrion NV. A single coiled-coil domain mutation in hIKCa channel subunits disrupts preferential formation of heteromeric hSK1:hIKCa channels. Eur J Neurosci 2024; 59:3-16. [PMID: 38018635 PMCID: PMC10952195 DOI: 10.1111/ejn.16189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 09/22/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
The expression of IKCa (SK4) channel subunits overlaps with that of SK channel subunits, and it has been proposed that the two related subunits prefer to co-assemble to form heteromeric hSK1:hIKCa channels. This implicates hSK1:hIKCa heteromers in physiological roles that might have been attributed to activation of SK channels. We have used a mutation approach to confirm formation of heterometric hSK1:hIKCa channels. Introduction of residues within hSK1 that were predicted to impart sensitivity to the hIKCa current blocker TRAM-34 changed the pharmacology of functional heteromers. Heteromeric channels formed between wildtype hIKCa and mutant hSK1 subunits displayed a significantly higher sensitivity and maximum block to addition of TRAM-34 than heteromers formed between wildtype subunits. Heteromer formation was disrupted by a single point mutation within one COOH-terminal coiled-coil domain of the hIKCa channel subunit. This mutation only disrupted the formation of hSK1:hIKCa heteromeric channels, without affecting the formation of homomeric hIKCa channels. Finally, the Ca2+ gating sensitivity of heteromeric hSK1:hIKCa channels was found to be significantly lower than the Ca2+ gating sensitivity of homomeric hIKCa channels. These data confirmed the preferred formation of heteromeric channels that results from COOH-terminal interactions between subunits. The distinct sensitivity of the heteromer to activation by Ca2+ suggests that heteromeric channels fulfil a distinct function within those neurons that express both subunits.
Collapse
Affiliation(s)
- James N. Charlick
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| | - Daniella Bozadzhieva
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| | - Andrew S. Butler
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| | - Kevin A. Wilkinson
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| | - Neil V. Marrion
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| |
Collapse
|
4
|
Farquhar RE, Cheung TT, Logue MJE, McDonald FJ, Devor DC, Hamilton KL. Role of SNARE Proteins in the Insertion of KCa3.1 in the Plasma Membrane of a Polarized Epithelium. Front Physiol 2022; 13:905834. [PMID: 35832483 PMCID: PMC9271999 DOI: 10.3389/fphys.2022.905834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022] Open
Abstract
Targeting proteins to a specific membrane is crucial for proper epithelial cell function. KCa3.1, a calcium-activated, intermediate-conductance potassium channel, is targeted to the basolateral membrane (BLM) in epithelial cells. Surprisingly, the mechanism of KCa3.1 membrane targeting is poorly understood. We previously reported that targeting of KCa3.1 to the BLM of epithelial cells is Myosin-Vc-, Rab1-and Rab8-dependent. Here, we examine the role of the SNARE proteins VAMP3, SNAP-23 and syntaxin 4 (STX-4) in the targeting of KCa3.1 to the BLM of Fischer rat thyroid (FRT) epithelial cells. We carried out immunoblot, siRNA and Ussing chamber experiments on FRT cells, stably expressing KCa3.1-BLAP/Bir-A-KDEL, grown as high-resistance monolayers. siRNA-mediated knockdown of VAMP3 reduced BLM expression of KCa3.1 by 57 ± 5% (p ≤ 0.05, n = 5). Measurements of BLM-localized KCa3.1 currents, in Ussing chambers, demonstrated knockdown of VAMP3 reduced KCa3.1 current by 70 ± 4% (p ≤ 0.05, n = 5). Similarly, siRNA knockdown of SNAP-23 reduced the expression of KCa3.1 at the BLM by 56 ± 7% (p ≤ 0.01, n = 6) and reduced KCa3.1 current by 80 ± 11% (p ≤ 0.05, n = 6). Also, knockdown of STX-4 lowered the BLM expression of KCa3.1 by 54 ± 6% (p ≤ 0.05, n = 5) and reduced KCa3.1 current by 78 ± 11% (p ≤ 0.05, n = 5). Finally, co-immunoprecipitation experiments demonstrated associations between KCa3.1, VAMP3, SNAP-23 and STX-4. These data indicate that VAMP3, SNAP-23 and STX-4 are critical for the targeting KCa3.1 to BLM of polarized epithelial cells.
Collapse
Affiliation(s)
- Rachel E. Farquhar
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Tanya T. Cheung
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Matthew J. E. Logue
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Fiona J. McDonald
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Daniel C. Devor
- Department of Cell Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, United States
| | - Kirk L. Hamilton
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- *Correspondence: Kirk L. Hamilton,
| |
Collapse
|
5
|
Klemz A, Wildner F, Tütüncü E, Gerevich Z. Regulation of Hippocampal Gamma Oscillations by Modulation of Intrinsic Neuronal Excitability. Front Neural Circuits 2022; 15:778022. [PMID: 35177966 PMCID: PMC8845518 DOI: 10.3389/fncir.2021.778022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Ion channels activated around the subthreshold membrane potential determine the likelihood of neuronal firing in response to synaptic inputs, a process described as intrinsic neuronal excitability. Long-term plasticity of chemical synaptic transmission is traditionally considered the main cellular mechanism of information storage in the brain; however, voltage- and calcium-activated channels modulating the inputs or outputs of neurons are also subjects of plastic changes and play a major role in learning and memory formation. Gamma oscillations are associated with numerous higher cognitive functions such as learning and memory, but our knowledge of their dependence on intrinsic plasticity is by far limited. Here we investigated the roles of potassium and calcium channels activated at near subthreshold membrane potentials in cholinergically induced persistent gamma oscillations measured in the CA3 area of rat hippocampal slices. Among potassium channels, which are responsible for the afterhyperpolarization in CA3 pyramidal cells, we found that blockers of SK (KCa2) and KV7.2/7.3 (KCNQ2/3), but not the BK (KCa1.1) and IK (KCa3.1) channels, increased the power of gamma oscillations. On the contrary, activators of these channels had an attenuating effect without affecting the frequency. Pharmacological blockade of the low voltage-activated T-type calcium channels (CaV3.1–3.3) reduced gamma power and increased the oscillation peak frequency. Enhancement of these channels also inhibited the peak power without altering the frequency of the oscillations. The presented data suggest that voltage- and calcium-activated ion channels involved in intrinsic excitability strongly regulate the power of hippocampal gamma oscillations. Targeting these channels could represent a valuable pharmacological strategy against cognitive impairment.
Collapse
|
6
|
Sahu G, Turner RW. The Molecular Basis for the Calcium-Dependent Slow Afterhyperpolarization in CA1 Hippocampal Pyramidal Neurons. Front Physiol 2022; 12:759707. [PMID: 35002757 PMCID: PMC8730529 DOI: 10.3389/fphys.2021.759707] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/01/2021] [Indexed: 12/02/2022] Open
Abstract
Neuronal signal transmission depends on the frequency, pattern, and timing of spike output, each of which are shaped by spike afterhyperpolarizations (AHPs). There are classically three post-spike AHPs of increasing duration categorized as fast, medium and slow AHPs that hyperpolarize a cell over a range of 10 ms to 30 s. Intensive early work on CA1 hippocampal pyramidal cells revealed that all three AHPs incorporate activation of calcium-gated potassium channels. The ionic basis for a fAHP was rapidly attributed to the actions of big conductance (BK) and the mAHP to small conductance (SK) or Kv7 potassium channels. In stark contrast, the ionic basis for a prominent slow AHP of up to 30 s duration remained an enigma for over 30 years. Recent advances in pharmacological, molecular, and imaging tools have uncovered the expression of a calcium-gated intermediate conductance potassium channel (IK, KCa3.1) in central neurons that proves to contribute to the slow AHP in CA1 hippocampal pyramidal cells. Together the data show that the sAHP arises in part from a core tripartite complex between Cav1.3 (L-type) calcium channels, ryanodine receptors, and IK channels at endoplasmic reticulum-plasma membrane junctions. Work on the sAHP in CA1 pyramidal neurons has again quickened pace, with identified contributions by both IK channels and the Na-K pump providing answers to several mysteries in the pharmacological properties of the sAHP.
Collapse
Affiliation(s)
- Giriraj Sahu
- National Institute of Pharmaceutical Education and Research Ahmedabad, Ahmedabad, India
| | - Ray W Turner
- Department Cell Biology & Anatomy, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Daniel NH, Aravind A, Thakur P. Are ion channels potential therapeutic targets for Parkinson's disease? Neurotoxicology 2021; 87:243-257. [PMID: 34699791 DOI: 10.1016/j.neuro.2021.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 01/31/2023]
Abstract
Parkinson's disease (PD) is primarily associated with the progressive neurodegeneration of the dopaminergic neurons in the substantia nigra region of the brain. The resulting motor symptoms are managed with the help of dopamine replacement therapies. However, these therapeutics do not prevent the neurodegeneration underlying the disease and therefore lose their effectiveness in managing disease symptoms over time. Thus, there is an urgent need to develop newer therapeutics for the benefit of patients. The release of dopamine and the firing activity of substantia nigra neurons is regulated by several ion channels that act in concert. Dysregulations of these channels cause the aberrant movement of various ions in the intracellular milieu. This eventually leads to disruption of intracellular signalling cascades, alterations in cellular homeostasis, and bioenergetic deficits. Therefore, ion channels play a central role in driving the high vulnerability of dopaminergic neurons to degenerate during PD. Targeting ion channels offers an attractive mechanistic strategy to combat the process of neurodegeneration. In this review, we highlight the evidence pointing to the role of various ion channels in driving the PD processes. In addition, we also discuss the various drugs or compounds that target the ion channels and have shown neuroprotective potential in the in-vitro and in-vivo models of PD. We also discuss the current clinical status of various drugs targeting the ion channels in the context of PD.
Collapse
Affiliation(s)
- Neha Hanna Daniel
- School of Biology, Indian Institute of Science Education and Research (IISER)-Thiruvananthapuram, Kerala, 695551, India
| | - Ananya Aravind
- School of Biology, Indian Institute of Science Education and Research (IISER)-Thiruvananthapuram, Kerala, 695551, India
| | - Poonam Thakur
- School of Biology, Indian Institute of Science Education and Research (IISER)-Thiruvananthapuram, Kerala, 695551, India.
| |
Collapse
|
8
|
Nikitin ES, Vinogradova LV. Potassium channels as prominent targets and tools for the treatment of epilepsy. Expert Opin Ther Targets 2021; 25:223-235. [PMID: 33754930 DOI: 10.1080/14728222.2021.1908263] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION K+ channels are of great interest to epilepsy research as mutations in their genes are found in humans with inherited epilepsy. At the level of cellular physiology, K+ channels control neuronal intrinsic excitability and are the main contributors to membrane repolarization of active neurons. Recently, a genetically modified voltage-dependent K+ channel has been patented as a remedy for epileptic seizures. AREAS COVERED We review the role of potassium channels in excitability, clinical and experimental evidence for the association of potassium channelopathies with epilepsy, the targeting of K+ channels by drugs, and perspectives of gene therapy in epilepsy with the expression of extra K+ channels in the brain. EXPERT OPINION Control over K+ conductance is of great potential benefit for the treatment of epilepsy. Nowadays, gene therapy affecting K+ channels is one of the most promising approaches to treat pharmacoresistant focal epilepsy.
Collapse
Affiliation(s)
- E S Nikitin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - L V Vinogradova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
9
|
Depressive effectiveness of vigabatrin (γ-vinyl-GABA), an antiepileptic drug, in intermediate-conductance calcium-activated potassium channels in human glioma cells. BMC Pharmacol Toxicol 2021; 22:6. [PMID: 33441172 PMCID: PMC7807716 DOI: 10.1186/s40360-021-00472-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 01/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vigabatrin (VGB) is an approved non-traditional antiepileptic drug that has been revealed to have potential for treating brain tumors; however, its effect on ionic channels in glioma cells remains largely unclear. METHODS With the aid of patch-clamp technology, we investigated the effects of VGB on various ionic currents in the glioblastoma multiforme cell line 13-06-MG. RESULTS In cell-attached configuration, VGB concentration-dependently reduced the activity of intermediate-conductance Ca2+-activated K+ (IKCa) channels, while DCEBIO (5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one) counteracted the VGB-induced inhibition of IKCa channels. However, the activity of neither large-conductance Ca2+-activated (BKCa) nor inwardly rectifying K+ (KIR) channels were affected by the presence of VGB in human 13-06-MG cells. However, in the continued presence of VGB, the addition of GAL-021 or BaCl2 effectively suppressed BKCa and KIR channels. CONCLUSIONS The inhibitory effect of VGB on IKCa channels demonstrated in the current study could be an important underlying mechanism of VGB-induced antineoplastic (e.g., anti-glioma) actions.
Collapse
|
10
|
Masoli S, Ottaviani A, Casali S, D’Angelo E. Cerebellar Golgi cell models predict dendritic processing and mechanisms of synaptic plasticity. PLoS Comput Biol 2020; 16:e1007937. [PMID: 33378395 PMCID: PMC7837495 DOI: 10.1371/journal.pcbi.1007937] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 01/26/2021] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
The Golgi cells are the main inhibitory interneurons of the cerebellar granular layer. Although recent works have highlighted the complexity of their dendritic organization and synaptic inputs, the mechanisms through which these neurons integrate complex input patterns remained unknown. Here we have used 8 detailed morphological reconstructions to develop multicompartmental models of Golgi cells, in which Na, Ca, and K channels were distributed along dendrites, soma, axonal initial segment and axon. The models faithfully reproduced a rich pattern of electrophysiological and pharmacological properties and predicted the operating mechanisms of these neurons. Basal dendrites turned out to be more tightly electrically coupled to the axon initial segment than apical dendrites. During synaptic transmission, parallel fibers caused slow Ca-dependent depolarizations in apical dendrites that boosted the axon initial segment encoder and Na-spike backpropagation into basal dendrites, while inhibitory synapses effectively shunted backpropagating currents. This oriented dendritic processing set up a coincidence detector controlling voltage-dependent NMDA receptor unblock in basal dendrites, which, by regulating local calcium influx, may provide the basis for spike-timing dependent plasticity anticipated by theory.
Collapse
Affiliation(s)
- Stefano Masoli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Stefano Casali
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
11
|
Ca 2+-activated KCa3.1 potassium channels contribute to the slow afterhyperpolarization in L5 neocortical pyramidal neurons. Sci Rep 2020; 10:14484. [PMID: 32879404 PMCID: PMC7468258 DOI: 10.1038/s41598-020-71415-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/07/2020] [Indexed: 01/15/2023] Open
Abstract
Layer 5 neocortical pyramidal neurons are known to display slow Ca2+-dependent afterhyperpolarization (sAHP) after bursts of spikes, which is similar to the sAHP in CA1 hippocampal cells. However, the mechanisms of sAHP in the neocortex remain poorly understood. Here, we identified the Ca2+-gated potassium KCa3.1 channels as contributors to sAHP in ER81-positive neocortical pyramidal neurons. Moreover, our experiments strongly suggest that the relationship between sAHP and KCa3.1 channels in a feedback mechanism underlies the adaptation of the spiking frequency of layer 5 pyramidal neurons. We demonstrated the relationship between KCa3.1 channels and sAHP using several parallel methods: electrophysiology, pharmacology, immunohistochemistry, and photoactivatable probes. Our experiments demonstrated that ER81 immunofluorescence in layer 5 co-localized with KCa3.1 immunofluorescence in the soma. Targeted Ca2+ uncaging confirmed two major features of KCa3.1 channels: preferential somatodendritic localization and Ca2+-driven gating. In addition, both the sAHP and the slow Ca2+-induced hyperpolarizing current were sensitive to TRAM-34, a selective blocker of KCa3.1 channels.
Collapse
|
12
|
Trombetta-Lima M, Krabbendam IE, Dolga AM. Calcium-activated potassium channels: implications for aging and age-related neurodegeneration. Int J Biochem Cell Biol 2020; 123:105748. [PMID: 32353429 DOI: 10.1016/j.biocel.2020.105748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022]
Abstract
Population aging, as well as the handling of age-associated diseases, is a worldwide increasing concern. Among them, Alzheimer's disease stands out as the major cause of dementia culminating in full dependence on other people for basic functions. However, despite numerous efforts, in the last decades, there was no new approved therapeutic drug for the treatment of the disease. Calcium-activated potassium channels have emerged as a potential tool for neuronal protection by modulating intracellular calcium signaling. Their subcellular localization is determinant of their functional effects. When located on the plasma membrane of neuronal cells, they can modulate synaptic function, while their activation at the inner mitochondrial membrane has a neuroprotective potential via the attenuation of mitochondrial reactive oxygen species in conditions of oxidative stress. Here we review the dual role of these channels in the aging phenotype and Alzheimer's disease pathology and discuss their potential use as a therapeutic tool.
Collapse
Affiliation(s)
- Marina Trombetta-Lima
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, the Netherlands; Medical School, Neurology Department, University of São Paulo (USP), 01246903 São Paulo, Brazil
| | - Inge E Krabbendam
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, the Netherlands
| | - Amalia M Dolga
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
13
|
Xin C, Xia J, Liu Y, Zhang Y. MicroRNA-202-3p Targets Brain-Derived Neurotrophic Factor and Is Involved in Depression-Like Behaviors. Neuropsychiatr Dis Treat 2020; 16:1073-1083. [PMID: 32425535 PMCID: PMC7186893 DOI: 10.2147/ndt.s241136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/17/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) and microRNA (miRNA) play crucial roles in the etiology of depression. However, the molecular mechanisms underlying this disease are not fully understood. The primary objective of this study was to investigate the relationship between miR-202-3p and BDNF in a chronic unpredictable mild stress (CUMS) model. METHODS Depression model was established with chronic mild unpredictable mild stimulation (CUMS) combined with solitary feeding. The expression levels of miR-202-3p and BDNF in rat hippocampus were measured by qRT-PCR. The novelty inhibition feeding test (NSFT), sucrose preference test (SPT), and forced swimming test (FST) were used to evaluate the functions of miR-202-3p and BDNF. Target gene prediction and screening and luciferase reporter assay were used to verify the target of miR-202-3p. The expression levels of BNDF, CREB1 and p-CREB1 were detected by Western blot. RESULTS Upregulation of miR-202-3p was associated with decreased expression of BDNF in the hippocampus of the CUMS model. Antidepressant was observed when LV-BDNF or LV-si-miR-202-3p was injected into the hippocampus. In addition, in the rat hippocampus and cultured nerve cells, the expression levels of BDNF and cyclic AMP response element binding protein 1 (CREB1), which is a target gene of BDNF, were reduced after LV-miR-202-3p injection. Overexpression of miR-202-3p aggravated depressive behavior and decreased the expression levels of BDNF. Luciferase reporter assay also confirmed that BDNF was a target of miR-202-3p. CONCLUSION Silencing miR-202-3p can reduce the damage to hippocampal nerve in CUMS rats; the mechanism may be related to the upregulation of BNDF expression. miR-202-3p may be an effective target for the treatment of depression.
Collapse
Affiliation(s)
- Cuiyu Xin
- Department of Geriatric Psychiatry, Qingdao Mental Health Center, Qingdao City, Shandong Province266034, People’s Republic of China
| | - Jiejing Xia
- Department of Psychosis Ⅶ, Qingdao Mental Health Center, Qingdao City, Shandong Province266034, People’s Republic of China
| | - Yulan Liu
- Department of Psychosis Ⅴ, Qingdao Mental Health Center, Qingdao City, Shandong Province266034, People’s Republic of China
| | - Yongdong Zhang
- Department of Psychosis Ⅳ, Qingdao Mental Health Center, Qingdao City, Shandong Province266034, People’s Republic of China
| |
Collapse
|
14
|
Characterization of Convergent Suppression by UCL-2077 (3-(Triphenylmethylaminomethyl)pyridine), Known to Inhibit Slow Afterhyperpolarization, of erg-Mediated Potassium Currents and Intermediate-Conductance Calcium-Activated Potassium Channels. Int J Mol Sci 2020; 21:ijms21041441. [PMID: 32093314 PMCID: PMC7073080 DOI: 10.3390/ijms21041441] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 01/06/2023] Open
Abstract
UCL-2077 (triphenylmethylaminomethyl)pyridine) was previously reported to suppress slow afterhyperpolarization in neurons. However, the information with respect to the effects of UCL-2077 on ionic currents is quite scarce. The addition of UCL-2077 decreased the amplitude of erg-mediated K+ current (IK(erg)) together with an increased deactivation rate of the current in pituitary GH3 cells. The IC50 and KD values of UCL-2077-induced inhibition of IK(erg) were 4.7 and 5.1 μM, respectively. UCL-2077 (10 μM) distinctly shifted the midpoint in the activation curve of IK(erg) to less hyperpolarizing potentials by 17 mV. Its presence decreased the degree of voltage hysteresis for IK(erg) elicitation by long-lasting triangular ramp pulse. It also diminished the probability of the opening of intermediate-conductance Ca2+-activated K+ channels. In cell-attached current recordings, UCL-2077 raised the frequency of action currents. When KCNH2 mRNA was knocked down, a UCL-2077-mediated increase in AC firing was attenuated. Collectively, the actions elaborated herein conceivably contribute to the perturbating effects of this compound on electrical behaviors of excitable cells.
Collapse
|
15
|
Pierce ML, French JA, Murray TF. Comparison of the pharmacologic profiles of arginine vasopressin and oxytocin analogs at marmoset, titi monkey, macaque, and human oxytocin receptors. Biomed Pharmacother 2020; 125:109832. [PMID: 32018219 PMCID: PMC7196279 DOI: 10.1016/j.biopha.2020.109832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 11/27/2022] Open
Abstract
The oxytocin-arginine vasopressin (OT-AVP) ligand-receptor family influences a variety of physiological, behavioral, and social behavioral processes in the brain and periphery. The OT-AVP family is highly conserved in mammals, but recent discoveries have revealed remarkable diversity in OT ligands and receptors in New World Monkeys (NWMs) providing a unique opportunity to assess the effects of genetic variation on pharmacological signatures of peptide ligands. The consensus mammalian OT sequence has leucine in the 8th position (Leu8-OT), whereas a number of NWMs, including the marmoset, have proline in the 8th position (Pro8-OT) resulting in a more rigid tail structure. OT and AVP bind to OT’s cognate G-protein coupled receptor (OTR), which couples to various G-proteins (Gi/o, Gq, Gs) to stimulate diverse signaling pathways. CHO cells expressing marmoset (mOTR), titi monkey (tOTR), macaque (qOTR), or human (hOTR) OT receptors were used to compare AVP and OT analog-induced signaling. Assessment of Gq-mediated increase in intracellular calcium (Ca2+) demonstrated that AVP was less potent than OT analogs at OTRs from species whose endogenous ligand is Leu8-OT (tOTR, qOTR, hOTR), relative to Pro8-OT. Likewise, AVP-induced membrane hyperpolarization was less potent at these same OTRs. Evaluation of (Ca2+)-activated potassium (K+) channels using the inhibitors apamin, paxilline, and TRAM-34 demonstrated that both intermediate and large conductance Ca2+-activated K+ channels contributed to membrane hyperpolarization, with different pharmacological profiles identified for distinct ligand-receptor combinations. Understanding more fully the contributions of structure activity relationships for these peptide ligands at vasopressin and OT receptors will help guide the development of OT-mediated therapeutics.
Collapse
Affiliation(s)
- Marsha L Pierce
- Department of Pharmacology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA; Department of Pharmacology, Midwestern University, 555 31St., Downers Grove, IL, 60515, USA.
| | - Jeffrey A French
- Department of Psychology, University of Nebraska Omaha, 6001 Dodge St., Omaha, NE, 68182, USA.
| | - Thomas F Murray
- Department of Pharmacology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
16
|
Protein Kinase A-Mediated Suppression of the Slow Afterhyperpolarizing KCa3.1 Current in Temporal Lobe Epilepsy. J Neurosci 2019; 39:9914-9926. [PMID: 31672789 DOI: 10.1523/jneurosci.1603-19.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 01/01/2023] Open
Abstract
Brain insults, such as trauma, stroke, anoxia, and status epilepticus (SE), cause multiple changes in synaptic function and intrinsic properties of surviving neurons that may lead to the development of epilepsy. Experimentally, a single SE episode, induced by the convulsant pilocarpine, initiates the development of an epileptic condition resembling human temporal lobe epilepsy (TLE). Principal hippocampal neurons from such epileptic animals display enhanced spike output in response to excitatory stimuli compared with neurons from nonepileptic animals. This enhanced firing is negatively related to the size of the slow afterhyperpolarization (sAHP), which is reduced in the epileptic neurons. The sAHP is an intrinsic neuronal negative feedback mechanism consisting normally of two partially overlapping components produced by disparate mechanisms. One component is generated by activation of Ca2+-gated K+ (KCa) channels, likely KCa3.1, consequent to spike Ca2+ influx (the KCa-sAHP component). The second component is generated by enhancement of the electrogenic Na+/K+ ATPase (NKA) by spike Na+ influx (NKA-sAHP component). Here we show that the KCa-sAHP component is markedly reduced in male rat epileptic neurons, whereas the NKA-sAHP component is not altered. The KCa-sAHP reduction is due to the downregulation of KCa3.1 channels, mediated by cAMP-dependent protein kinase A (PKA). This sustained effect can be acutely reversed by applying PKA inhibitors, leading also to normalization of the spike output of epileptic neurons. We propose that the novel "acquired channelopathy" described here, namely, PKA-mediated downregulation of KCa3.1 activity, provides an innovative target for developing new treatments for TLE, hopefully overcoming the pharmacoresistance to traditional drugs.SIGNIFICANCE STATEMENT Epilepsy, a common neurological disorder, often develops following a brain insult. Identifying key molecular and cellular mechanisms underlying acquired epilepsy is critical for developing effective antiepileptic therapies. In an experimental model of acquired epilepsy, we show that principal hippocampal neurons become intrinsically hyperexcitable. This alteration is due predominantly to the downregulation of a ubiquitous class of potassium ion channels, KCa3.1, whose main function is to dampen neuronal excitability. KCa3.1 downregulation is mediated by the cAMP-dependent protein kinase A (PKA) signaling pathway. Most importantly, it can be acutely reversed by PKA inhibitors, leading to recovery of KCa3.1 function and normalization of neuronal excitability. The discovery of this novel epileptogenic mechanism hopefully will facilitate the development of more efficient pharmacotherapy for acquired epilepsy.
Collapse
|
17
|
Junctophilin Proteins Tether a Cav1-RyR2-KCa3.1 Tripartite Complex to Regulate Neuronal Excitability. Cell Rep 2019; 28:2427-2442.e6. [DOI: 10.1016/j.celrep.2019.07.075] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/20/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022] Open
|
18
|
Higham J, Sahu G, Wazen RM, Colarusso P, Gregorie A, Harvey BSJ, Goudswaard L, Varley G, Sheppard DN, Turner RW, Marrion NV. Preferred Formation of Heteromeric Channels between Coexpressed SK1 and IKCa Channel Subunits Provides a Unique Pharmacological Profile of Ca 2+-Activated Potassium Channels. Mol Pharmacol 2019; 96:115-126. [PMID: 31048549 DOI: 10.1124/mol.118.115634] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/27/2019] [Indexed: 01/19/2023] Open
Abstract
Three small conductance calcium-activated potassium channel (SK) subunits have been cloned and found to preferentially form heteromeric channels when expressed in a heterologous expression system. The original cloning of the gene encoding the intermediate conductance calcium-activated potassium channel (IKCa) was termed SK4 because of the high homology between channel subtypes. Recent immunovisualization suggests that IKCa is expressed in the same subcellular compartments of some neurons as SK channel subunits. Stochastic optical reconstruction microscopy super-resolution microscopy revealed that coexpressed IKCa and SK1 channel subunits were closely associated, a finding substantiated by measurement of fluorescence resonance energy transfer between coexpressed fluorophore-tagged subunits. Expression of homomeric SK1 channels produced current that displayed typical sensitivity to SK channel inhibitors, while expressed IKCa channel current was inhibited by known IKCa channel blockers. Expression of both SK1 and IKCa subunits gave a current that displayed no sensitivity to SK channel inhibitors and a decreased sensitivity to IKCa current inhibitors. Single channel recording indicated that coexpression of SK1 and IKCa subunits produced channels with properties intermediate between those observed for homomeric channels. These data indicate that SK1 and IKCa channel subunits preferentially combine to form heteromeric channels that display pharmacological and biophysical properties distinct from those seen with homomeric channels.
Collapse
Affiliation(s)
- James Higham
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom (J.H., A.G., B.S.J.H., L.G., G.V., D.N.S., N.V.M.); and Hotchkiss Brain Institute (G.S., R.W.T.) and Snyder Institute for Chronic Diseases (R.-M.W., P.C.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Giriraj Sahu
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom (J.H., A.G., B.S.J.H., L.G., G.V., D.N.S., N.V.M.); and Hotchkiss Brain Institute (G.S., R.W.T.) and Snyder Institute for Chronic Diseases (R.-M.W., P.C.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rima-Marie Wazen
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom (J.H., A.G., B.S.J.H., L.G., G.V., D.N.S., N.V.M.); and Hotchkiss Brain Institute (G.S., R.W.T.) and Snyder Institute for Chronic Diseases (R.-M.W., P.C.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Pina Colarusso
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom (J.H., A.G., B.S.J.H., L.G., G.V., D.N.S., N.V.M.); and Hotchkiss Brain Institute (G.S., R.W.T.) and Snyder Institute for Chronic Diseases (R.-M.W., P.C.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alice Gregorie
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom (J.H., A.G., B.S.J.H., L.G., G.V., D.N.S., N.V.M.); and Hotchkiss Brain Institute (G.S., R.W.T.) and Snyder Institute for Chronic Diseases (R.-M.W., P.C.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bartholomew S J Harvey
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom (J.H., A.G., B.S.J.H., L.G., G.V., D.N.S., N.V.M.); and Hotchkiss Brain Institute (G.S., R.W.T.) and Snyder Institute for Chronic Diseases (R.-M.W., P.C.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Lucy Goudswaard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom (J.H., A.G., B.S.J.H., L.G., G.V., D.N.S., N.V.M.); and Hotchkiss Brain Institute (G.S., R.W.T.) and Snyder Institute for Chronic Diseases (R.-M.W., P.C.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gemma Varley
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom (J.H., A.G., B.S.J.H., L.G., G.V., D.N.S., N.V.M.); and Hotchkiss Brain Institute (G.S., R.W.T.) and Snyder Institute for Chronic Diseases (R.-M.W., P.C.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom (J.H., A.G., B.S.J.H., L.G., G.V., D.N.S., N.V.M.); and Hotchkiss Brain Institute (G.S., R.W.T.) and Snyder Institute for Chronic Diseases (R.-M.W., P.C.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ray W Turner
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom (J.H., A.G., B.S.J.H., L.G., G.V., D.N.S., N.V.M.); and Hotchkiss Brain Institute (G.S., R.W.T.) and Snyder Institute for Chronic Diseases (R.-M.W., P.C.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Neil V Marrion
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom (J.H., A.G., B.S.J.H., L.G., G.V., D.N.S., N.V.M.); and Hotchkiss Brain Institute (G.S., R.W.T.) and Snyder Institute for Chronic Diseases (R.-M.W., P.C.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
19
|
de Anda‐Jáuregui G, McGregor BA, Guo K, Hur J. A Network Pharmacology Approach for the Identification of Common Mechanisms of Drug-Induced Peripheral Neuropathy. CPT Pharmacometrics Syst Pharmacol 2019; 8:211-219. [PMID: 30762308 PMCID: PMC6482281 DOI: 10.1002/psp4.12383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/27/2018] [Indexed: 01/06/2023] Open
Abstract
Drug-induced peripheral neuropathy is a side effect of a variety of therapeutic agents that can affect therapeutic adherence and lead to regimen modifications, impacting patient quality of life. The molecular mechanisms involved in the development of this condition have yet to be completely described in the literature. We used a computational network pharmacology approach to explore the Connectivity Map, a large collection of transcriptional profiles from drug perturbation experiments to identify common genes affected by peripheral neuropathy-inducing drugs. Consensus profiles for 98 of these drugs were used to construct a drug-gene perturbation network. We identified 27 genes significantly associated with neuropathy-inducing drugs. These genes may have a potential role in the action of neuropathy-inducing drugs. Our results suggest that molecular mechanisms, including alterations in mitochondrial function, microtubule and cytoskeleton function, ion channels, transcriptional regulation including epigenetic mechanisms, signal transduction, and wound healing, may play a critical role in drug-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Guillermo de Anda‐Jáuregui
- Department of Biomedical SciencesSchool of Medicine & Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
- Present address:
Computational Genomics DivisionNational Institute of Genomic MedicineColonia Arenal TepepanDelegación TlalpanMéxico DFMexico
| | - Brett A. McGregor
- Department of Biomedical SciencesSchool of Medicine & Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| | - Kai Guo
- Department of Biomedical SciencesSchool of Medicine & Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| | - Junguk Hur
- Department of Biomedical SciencesSchool of Medicine & Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| |
Collapse
|
20
|
Garcia-Caballero A, Gandini MA, Huang S, Chen L, Souza IA, Dang YL, Stutts MJ, Zamponi GW. Cav3.2 calcium channel interactions with the epithelial sodium channel ENaC. Mol Brain 2019; 12:12. [PMID: 30736831 PMCID: PMC6368719 DOI: 10.1186/s13041-019-0433-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/04/2019] [Indexed: 11/10/2022] Open
Abstract
This study describes the functional interaction between Cav3.2 calcium channels and the Epithelial Sodium Channel (ENaC). β-ENaC subunits showed overlapping expression with endogenous Cav3.2 calcium channels in the thalamus and hypothalamus as detected by immunostaining. Moreover, β- and γ-ENaC subunits could be co-immunoprecipitated with Cav3.2 calcium channels from brain lysates, dorsal horn and lumbar dorsal root ganglia. Mutation of a cluster of lysines present in the intracellular N-terminus region of β-ENaC (K4R/ K5R/ K9R/ K16R/ K23R) reduced interactions with Cav3.2 calcium channels. Αβγ-ENaC channels enhanced Cav3.2 calcium channel trafficking to the plasma membrane in tsA-201 cells. This effect was reciprocal such that Cav3.2 channel expression also enhanced β-ENaC trafficking to the cell surface. T-type current density was increased when fully assembled αβγ-ENaC channels were transiently expressed in CAD cells, a neuronal derived cell line. Altogether, these findings reveal ENaC as an interactor and potential regulator of Cav3.2 calcium channels expressed in neuronal tissues.
Collapse
Affiliation(s)
- Agustin Garcia-Caballero
- Molecular Neuroscience, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Maria A Gandini
- Molecular Neuroscience, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Shuo Huang
- Molecular Neuroscience, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Lina Chen
- Molecular Neuroscience, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Ivana A Souza
- Molecular Neuroscience, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Yan L Dang
- Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M Jackson Stutts
- Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gerald W Zamponi
- Molecular Neuroscience, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada.
| |
Collapse
|
21
|
Cancer-Associated Intermediate Conductance Ca 2+-Activated K⁺ Channel K Ca3.1. Cancers (Basel) 2019; 11:cancers11010109. [PMID: 30658505 PMCID: PMC6357066 DOI: 10.3390/cancers11010109] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/10/2019] [Accepted: 01/13/2019] [Indexed: 12/14/2022] Open
Abstract
Several tumor entities have been reported to overexpress KCa3.1 potassium channels due to epigenetic, transcriptional, or post-translational modifications. By modulating membrane potential, cell volume, or Ca2+ signaling, KCa3.1 has been proposed to exert pivotal oncogenic functions in tumorigenesis, malignant progression, metastasis, and therapy resistance. Moreover, KCa3.1 is expressed by tumor-promoting stroma cells such as fibroblasts and the tumor vasculature suggesting a role of KCa3.1 in the adaptation of the tumor microenvironment. Combined, this features KCa3.1 as a candidate target for innovative anti-cancer therapy. However, immune cells also express KCa3.1 thereby contributing to T cell activation. Thus, any strategy targeting KCa3.1 in anti-cancer therapy may also modulate anti-tumor immune activity and/or immunosuppression. The present review article highlights the potential of KCa3.1 as an anti-tumor target providing an overview of the current knowledge on its function in tumor pathogenesis with emphasis on vasculo- and angiogenesis as well as anti-cancer immune responses.
Collapse
|
22
|
Garcia-Caballero A, Zhang FX, Hodgkinson V, Huang J, Chen L, Souza IA, Cain S, Kass J, Alles S, Snutch TP, Zamponi GW. T-type calcium channels functionally interact with spectrin (α/β) and ankyrin B. Mol Brain 2018; 11:24. [PMID: 29720258 PMCID: PMC5930937 DOI: 10.1186/s13041-018-0368-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/23/2018] [Indexed: 12/17/2022] Open
Abstract
This study describes the functional interaction between the Cav3.1 and Cav3.2 T-type calcium channels and cytoskeletal spectrin (α/β) and ankyrin B proteins. The interactions were identified utilizing a proteomic approach to identify proteins that interact with a conserved negatively charged cytosolic region present in the carboxy-terminus of T-type calcium channels. Deletion of this stretch of amino acids decreased binding of Cav3.1 and Cav3.2 calcium channels to spectrin (α/β) and ankyrin B and notably also reduced T-type whole cell current densities in expression systems. Furthermore, fluorescence recovery after photobleaching analysis of mutant channels lacking the proximal C-terminus region revealed reduced recovery of both Cav3.1 and Cav3.2 mutant channels in hippocampal neurons. Knockdown of spectrin α and ankyrin B decreased the density of endogenous Cav3.2 in hippocampal neurons. These findings reveal spectrin (α/β) / ankyrin B cytoskeletal and signaling proteins as key regulators of T-type calcium channels expressed in the nervous system.
Collapse
Affiliation(s)
- Agustin Garcia-Caballero
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Fang-Xiong Zhang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Victoria Hodgkinson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Junting Huang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Lina Chen
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Ivana A Souza
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Stuart Cain
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Colombia, Vancouver, BC, Canada
| | - Jennifer Kass
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Colombia, Vancouver, BC, Canada
| | - Sascha Alles
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Colombia, Vancouver, BC, Canada
| | - Terrance P Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Colombia, Vancouver, BC, Canada
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada.
| |
Collapse
|
23
|
Hung KS, Hsiao CC, Pai TW, Hu CH, Tzou WS, Wang WD, Chen YR. Functional enrichment analysis based on long noncoding RNA associations. BMC SYSTEMS BIOLOGY 2018; 12:45. [PMID: 29745842 PMCID: PMC5998891 DOI: 10.1186/s12918-018-0571-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background Differential gene expression analysis using RNA-seq data is a popular approach for discovering specific regulation mechanisms under certain environmental settings. Both gene ontology (GO) and KEGG pathway enrichment analysis are major processes for investigating gene groups that participate in common biological responses or possess related functions. However, traditional approaches based on differentially expressed genes only detect a few significant GO terms and pathways, which are frequently insufficient to explain all-inclusive gene regulation mechanisms. Methods Transcriptomes of survivin (birc5) gene knock-down experimental and wild-type control zebrafish embryos were sequenced and assembled, and a differential expression (DE) gene list was obtained for traditional functional enrichment analysis. In addition to including DE genes with significant fold-change levels, we considered additional associated genes near or overlapped with differentially expressed long noncoding RNAs (DE lncRNAs), which may directly or indirectly activate or inhibit target genes and play important roles in regulation networks. Both the original DE gene list and the additional DE lncRNA-associated genes were combined to perform a comprehensive overrepresentation analysis. Results In this study, a total of 638 DE genes and 616 DE lncRNA-associated genes (lncGenes) were leveraged simultaneously in searching for significant GO terms and KEGG pathways. Compared to the traditional approach of only using a differential expression gene list, the proposed method of employing DE lncRNA-associated genes identified several additional important GO terms and KEGG pathways. In GO enrichment analysis, 60% more GO terms were obtained, and several neuron development functional terms were retrieved as complete annotations. We also observed that additional important pathways such as the FoxO and MAPK signaling pathways were retrieved, which were shown in previous reports to play important roles in apoptosis and neuron development functions regulated by the survivin gene. Conclusions We demonstrated that incorporating genes near or overlapped with DE lncRNAs into the DE gene list outperformed the traditional enrichment analysis method for effective biological functional interpretations. These hidden interactions between lncRNAs and target genes could facilitate more comprehensive analyses.
Collapse
Affiliation(s)
- Kuo-Sheng Hung
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan
| | - Chung-Chi Hsiao
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan
| | - Tun-Wen Pai
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan.
| | - Chin-Hwa Hu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.,Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Wen-Shyong Tzou
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.,Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Wen-Der Wang
- Department of Bioagricultural Science, National Chiayi University, Chiayi, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
24
|
Sforna L, Megaro A, Pessia M, Franciolini F, Catacuzzeno L. Structure, Gating and Basic Functions of the Ca2+-activated K Channel of Intermediate Conductance. Curr Neuropharmacol 2018; 16:608-617. [PMID: 28875832 PMCID: PMC5997868 DOI: 10.2174/1570159x15666170830122402] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/21/2017] [Accepted: 07/22/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The KCa3.1 channel is the intermediate-conductance member of the Ca2+- activated K channel superfamily. It is widely expressed in excitable and non-excitable cells, where it plays a major role in a number of cell functions. This paper aims at illustrating the main structural, biophysical and modulatory properties of the KCa3.1 channel, and providing an account of experimental data on its role in volume regulation and Ca2+ signals. METHODS Research and online content related to the structure, structure/function relationship, and physiological role of the KCa3.1 channel are reviewed. RESULTS Expressed in excitable and non-excitable cells, the KCa3.1 channel is voltage independent, its opening being exclusively gated by the binding of intracellular Ca2+ to calmodulin, a Ca2+- binding protein constitutively associated with the C-terminus of each KCa3.1 channel α subunit. The KCa3.1 channel activates upon high affinity Ca2+ binding, and in highly coordinated fashion giving steep Hill functions and relatively low EC50 values (100-350 nM). This high Ca2+ sensitivity is physiologically modulated by closely associated kinases and phosphatases. The KCa3.1 channel is normally activated by global Ca2+ signals as resulting from Ca2+ released from intracellular stores, or by the refilling influx through store operated Ca2+ channels, but cases of strict functional coupling with Ca2+-selective channels are also found. KCa3.1 channels are highly expressed in many types of cells, where they play major roles in cell migration and death. The control of these complex cellular processes is achieved by KCa3.1 channel regulation of the driving force for Ca2+ entry from the extracellular medium, and by mediating the K+ efflux required for cell volume control. CONCLUSION Much work remains to be done to fully understand the structure/function relationship of the KCa3.1 channels. Hopefully, this effort will provide the basis for a beneficial modulation of channel activity under pathological conditions.
Collapse
Affiliation(s)
| | | | | | - Fabio Franciolini
- Address correspondence to these authors at the Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Pascoli, 8-06123, Perugia; Tel: 39.075.585.5751; E-mails: and
| | - Luigi Catacuzzeno
- Address correspondence to these authors at the Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Pascoli, 8-06123, Perugia; Tel: 39.075.585.5751; E-mails: and
| |
Collapse
|
25
|
Activity-Dependent Facilitation of Ca V1.3 Calcium Channels Promotes KCa3.1 Activation in Hippocampal Neurons. J Neurosci 2017; 37:11255-11270. [PMID: 29038242 DOI: 10.1523/jneurosci.0967-17.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 10/02/2017] [Accepted: 10/07/2017] [Indexed: 11/21/2022] Open
Abstract
CaV1 L-type calcium channels are key to regulating neuronal excitability, with the range of functional roles enhanced by interactions with calmodulin, accessory proteins, or CaMKII that modulate channel activity. In hippocampal pyramidal cells, a prominent elevation of CaV1 activity is apparent in late channel openings that can last for seconds following a depolarizing stimulus train. The current study tested the hypothesis that a reported interaction among CaV1.3 channels, the scaffolding protein densin, and CaMKII could generate a facilitation of channel activity that outlasts a depolarizing stimulus. We found that CaV1.3 but not CaV1.2 channels exhibit a long-duration calcium-dependent facilitation (L-CDF) that lasts up to 8 s following a brief 50 Hz stimulus train, but only when coexpressed with densin and CaMKII. To test the physiological role for CaV1.3 L-CDF, we coexpressed the intermediate-conductance KCa3.1 potassium channel, revealing a strong functional coupling to CaV1.3 channel activity that was accentuated by densin and CaMKII. Moreover, the CaV1.3-densin-CaMKII interaction gave rise to an outward tail current of up to 8 s duration following a depolarizing stimulus in both tsA-201 cells and male rat CA1 pyramidal cells. A slow afterhyperpolarization in pyramidal cells was reduced by a selective block of CaV1 channels by isradipine, a CaMKII blocker, and siRNA knockdown of densin, and spike frequency increased upon selective block of CaV1 channel conductance. The results are important in revealing a CaV1.3-densin-CaMKII interaction that extends the contribution of CaV1.3 calcium influx to a time frame well beyond a brief input train.SIGNIFICANCE STATEMENT CaV1 L-type calcium channels play a key role in regulating the output of central neurons by providing calcium influx during repetitive inputs. This study identifies a long-duration calcium-dependent facilitation (L-CDF) of CaV1.3 channels that depends on the scaffolding protein densin and CaMKII and that outlasts a depolarizing stimulus by seconds. We further show a tight functional coupling between CaV1.3 calcium influx and the intermediate-conductance KCa3.1 potassium channel that promotes an outward tail current of up to 8 s following a depolarizing stimulus. Tests in CA1 hippocampal pyramidal cells reveal that a slow AHP is reduced by blocking different components of the CaV1.3-densin-CaMKII interaction, identifying an important role for CaV1.3 L-CDF in regulating neuronal excitability.
Collapse
|
26
|
Lee BSL, Devor DC, Hamilton KL. Modulation of Retrograde Trafficking of KCa3.1 in a Polarized Epithelium. Front Physiol 2017; 8:489. [PMID: 28769813 PMCID: PMC5513911 DOI: 10.3389/fphys.2017.00489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/26/2017] [Indexed: 12/14/2022] Open
Abstract
In epithelia, the intermediate conductance, Ca2+-activated K+ channel (KCa3.1) is targeted to the basolateral membrane (BLM) where this channel plays numerous roles in absorption and secretion. A growing body of research suggests that the membrane resident population of KCa3.1 may be critical in clinical manifestation of diseases. In this study, we investigated the key molecular components that regulate the degradation of KCa3.1 using a Fisher rat thyroid cell line stably expressing KCa3.1. Using immunoblot, Ussing chamber, and pharmacological approaches, we demonstrated that KCa3.1 is targeted exclusively to the BLM, provided a complete time course of degradation of KCa3.1 and degradation time courses of the channel in the presence of pharmacological inhibitors of ubiquitylation and deubiquitylation to advance our understanding of the retrograde trafficking of KCa3.1. We provide a complete degradation profile of KCa3.1 and that the degradation is via an ubiquitin-dependent pathway. Inhibition of E1 ubiquitin activating enzyme by UBEI-41 crippled the ability of the cells to internalize the channel, shown by the increased BLM surface expression resulting in an increased function of the channel as measured by a DCEBIO sensitive K+ current. Additionally, the involvement of deubiquitylases and degradation by the lysosome were also confirmed by treating the cells with PR-619 or leupeptin/pepstatin, respectively; which significantly decreased the degradation rate of membrane KCa3.1. Additionally, we provided the first evidence that KCa3.1 channels were not deubiquitylated at the BLM. These data further define the retrograde trafficking of KCa3.1, and may provide an avenue for therapeutic approach for treatment of disease.
Collapse
Affiliation(s)
- Bob Shih-Liang Lee
- Department of Physiology, School of Biomedical Sciences, University of OtagoDunedin, New Zealand
| | - Daniel C Devor
- Department of Cell Biology, University of Pittsburgh School of MedicinePittsburgh, PA, United States
| | - Kirk L Hamilton
- Department of Physiology, School of Biomedical Sciences, University of OtagoDunedin, New Zealand
| |
Collapse
|
27
|
Robles-Martínez L, Garay E, Martel-Gallegos MG, Cisneros-Mejorado A, Pérez-Montiel D, Lara A, Arellano RO. K ca3.1 Activation Via P2y 2 Purinergic Receptors Promotes Human Ovarian Cancer Cell (Skov-3) Migration. Sci Rep 2017; 7:4340. [PMID: 28659615 PMCID: PMC5489490 DOI: 10.1038/s41598-017-04292-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 05/12/2017] [Indexed: 01/28/2023] Open
Abstract
Disorders in cell signaling mediated by ATP or histamine, activating specific membrane receptors, have been frequently associated with tumorigenesis. Among the elements of response to purinergic (and histaminergic) signaling, ion channel activation controls essential cellular processes in cancer, such as cell proliferation, motility, and death. Here, we studied the effects that ATP had on electrical properties of human ovarian adenocarcinoma cells named SKOV-3. ATP caused increase in intracellular Ca2+ concentration ([Ca2+]i) and, concurrently, it evoked a complex electrical response with a conspicuous outward component. This current was generated through P2Y2 receptor activation and opening of K+ channels, KCa3.1, as indicated by electrophysiological and pharmacological analysis, as well as by immunodetection and specific silencing of P2Y2 or KCa3.1 gene by esiRNA transfection. Low µM ATP concentration increased SKOV-3 cell migration, which was strongly inhibited by KCa3.1 channel blockers and by esiRNA-generated P2Y2 or KCa3.1 downregulation. Finally, in human ovarian tumors, the P2Y2 and KCa3.1 proteins are expressed and co-localized in neoplastic cells. Thus, stimulation of P2Y2 receptors expressed in SKOV-3 cells promotes motility through KCa3.1 activation. Since P2Y2 and KCa3.1 are co-expressed in primary tumors, our findings suggest that they may play a role in cancer progression.
Collapse
Affiliation(s)
- L Robles-Martínez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, CP 76230, Querétaro, México, Mexico
| | - E Garay
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, CP 76230, Querétaro, México, Mexico
| | - M G Martel-Gallegos
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, CP 76230, Querétaro, México, Mexico
| | - A Cisneros-Mejorado
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, CP 76230, Querétaro, México, Mexico
| | - D Pérez-Montiel
- Departamento de Patología, Instituto Nacional de Cancerología, Secretaría de Salud, Av. San Fernando #22, Colonia Sección XVI, Tlalpan, CP 14080, Ciudad de México, México, Mexico
| | - A Lara
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, CP 76230, Querétaro, México, Mexico
| | - R O Arellano
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, CP 76230, Querétaro, México, Mexico.
| |
Collapse
|
28
|
Kaczmarek LK, Aldrich RW, Chandy KG, Grissmer S, Wei AD, Wulff H. International Union of Basic and Clinical Pharmacology. C. Nomenclature and Properties of Calcium-Activated and Sodium-Activated Potassium Channels. Pharmacol Rev 2017; 69:1-11. [PMID: 28267675 PMCID: PMC11060434 DOI: 10.1124/pr.116.012864] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
A subset of potassium channels is regulated primarily by changes in the cytoplasmic concentration of ions, including calcium, sodium, chloride, and protons. The eight members of this subfamily were originally all designated as calcium-activated channels. More recent studies have clarified the gating mechanisms for these channels and have documented that not all members are sensitive to calcium. This article describes the molecular relationships between these channels and provides an introduction to their functional properties. It also introduces a new nomenclature that differentiates between calcium- and sodium-activated potassium channels.
Collapse
Affiliation(s)
- Leonard K Kaczmarek
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Richard W Aldrich
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - K George Chandy
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Stephan Grissmer
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Aguan D Wei
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Heike Wulff
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| |
Collapse
|
29
|
Dale E, Staal RGW, Eder C, Möller T. KCa 3.1-a microglial target ready for drug repurposing? Glia 2016; 64:1733-41. [PMID: 27121595 DOI: 10.1002/glia.22992] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/29/2016] [Accepted: 04/03/2016] [Indexed: 01/25/2023]
Abstract
Over the past decade, glial cells have attracted attention for harboring unexploited targets for drug discovery. Several glial targets have attracted de novo drug discovery programs, as highlighted in this GLIA Special Issue. Drug repurposing, which has the objective of utilizing existing drugs as well as abandoned, failed, or not yet pursued clinical development candidates for new indications, might provide a faster opportunity to bring drugs for glial targets to patients with unmet needs. Here, we review the potential of the intermediate-conductance calcium-activated potassium channels KCa 3.1 as the target for such a repurposing effort. We discuss the data on KCa 3.1 expression on microglia in vitro and in vivo and review the relevant literature on the two KCa 3.1 inhibitors TRAM-34 and Senicapoc. Finally, we provide an outlook of what it might take to harness the potential of KCa 3.1 as a bona fide microglial drug target. GLIA 2016;64:1733-1741.
Collapse
Affiliation(s)
- Elena Dale
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA, Paramus, New Jersey
| | - Roland G W Staal
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA, Paramus, New Jersey
| | - Claudia Eder
- Institute for Infection and Immunity, St. George's, University of London, United Kingdom
| | - Thomas Möller
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA, Paramus, New Jersey
| |
Collapse
|
30
|
Sesti F. Oxidation of K(+) Channels in Aging and Neurodegeneration. Aging Dis 2016; 7:130-5. [PMID: 27114846 PMCID: PMC4809605 DOI: 10.14336/ad.2015.0901] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/01/2015] [Indexed: 01/26/2023] Open
Abstract
Reversible regulation of proteins by reactive oxygen species (ROS) is an important mechanism of neuronal plasticity. In particular, ROS have been shown to act as modulatory molecules of ion channels-which are key to neuronal excitability-in several physiological processes. However ROS are also fundamental contributors to aging vulnerability. When the level of excess ROS increases in the cell during aging, DNA is damaged, proteins are oxidized, lipids are degraded and more ROS are produced, all culminating in significant cell injury. From this arose the idea that oxidation of ion channels by ROS is one of the culprits for neuronal aging. Aging-dependent oxidative modification of voltage-gated potassium (K(+)) channels was initially demonstrated in the nematode Caenorhabditis elegans and more recently in the mammalian brain. Specifically, oxidation of the delayed rectifier KCNB1 (Kv2.1) and of Ca(2+)- and voltage sensitive K(+) channels have been established suggesting that their redox sensitivity contributes to altered excitability, progression of healthy aging and of neurodegenerative disease. Here I discuss the implications that oxidation of K(+) channels by ROS may have for normal aging, as well as for neurodegenerative disease.
Collapse
Affiliation(s)
- Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
31
|
Turner RW, Asmara H, Engbers JDT, Miclat J, Rizwan AP, Sahu G, Zamponi GW. Assessing the role of IKCa channels in generating the sAHP of CA1 hippocampal pyramidal cells. Channels (Austin) 2016; 10:313-9. [PMID: 26950800 PMCID: PMC4954577 DOI: 10.1080/19336950.2016.1161988] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Our previous work reported that KCa3.1 (IKCa) channels are expressed in CA1 hippocampal pyramidal cells and contribute to the slow afterhyperpolarization that regulates spike accommodation in these cells. The current report presents data from single cell RT-PCR that further reveals mRNA in CA1 cells that corresponds to the sequence of an IKCa channel from transmembrane segments 5 through 6 including the pore region, revealing the established binding sites for 4 different IKCa channel blockers. A comparison of methods to internally apply the IKCa channel blocker TRAM-34 shows that including the drug in an electrode from the onset of an experiment is unviable given the speed of drug action upon gaining access for whole-cell recordings. Together the data firmly establish IKCa channel expression in CA1 neurons and clarify methodological requirements to obtain a block of IKCa channel activity through internal application of TRAM-34.
Collapse
Affiliation(s)
- Ray W Turner
- a Hotchkiss Brain Institute, University of Calgary , Calgary , AB , Canada
| | - Hadhimulya Asmara
- a Hotchkiss Brain Institute, University of Calgary , Calgary , AB , Canada
| | - Jordan D T Engbers
- a Hotchkiss Brain Institute, University of Calgary , Calgary , AB , Canada
| | - Jason Miclat
- a Hotchkiss Brain Institute, University of Calgary , Calgary , AB , Canada
| | - Arsalan P Rizwan
- a Hotchkiss Brain Institute, University of Calgary , Calgary , AB , Canada
| | - Giriraj Sahu
- a Hotchkiss Brain Institute, University of Calgary , Calgary , AB , Canada
| | - Gerald W Zamponi
- a Hotchkiss Brain Institute, University of Calgary , Calgary , AB , Canada
| |
Collapse
|
32
|
Patel R, Sesti F. Oxidation of ion channels in the aging nervous system. Brain Res 2016; 1639:174-85. [PMID: 26947620 DOI: 10.1016/j.brainres.2016.02.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 12/19/2022]
Abstract
Ion channels are integral membrane proteins that allow passive diffusion of ions across membranes. In neurons and in other excitable cells, the harmonious coordination between the numerous types of ion channels shape and propagate electrical signals. Increased accumulation of reactive oxidative species (ROS), and subsequent oxidation of proteins, including ion channels, is a hallmark feature of aging and may contribute to cell failure as a result. In this review we discuss the effects of ROS on three major types of ion channels of the central nervous system, namely the potassium (K(+)), calcium (Ca(2+)) and sodium (Na(+)) channels. We examine two general mechanisms through which ROS affect ion channels: via direct oxidation of specific residues and via indirect interference of pathways that regulate the channels. The overall status of the present studies indicates that the interaction of ion channels with ROS is multimodal and pervasive in the central nervous system and likely constitutes a general mechanism of aging susceptibility.
Collapse
Affiliation(s)
- Rahul Patel
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 683 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 683 Hoes Lane West, Piscataway, NJ 08854, USA.
| |
Collapse
|
33
|
Wang K, Mateos-Aparicio P, Hönigsperger C, Raghuram V, Wu WW, Ridder MC, Sah P, Maylie J, Storm JF, Adelman JP. IK1 channels do not contribute to the slow afterhyperpolarization in pyramidal neurons. eLife 2016; 5:e11206. [PMID: 26765773 PMCID: PMC4733036 DOI: 10.7554/elife.11206] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/01/2015] [Indexed: 11/16/2022] Open
Abstract
In pyramidal neurons such as hippocampal area CA1 and basolateral amygdala, a slow afterhyperpolarization (sAHP) follows a burst of action potentials, which is a powerful regulator of neuronal excitability. The sAHP amplitude increases with aging and may underlie age related memory decline. The sAHP is due to a Ca2+-dependent, voltage-independent K+ conductance, the molecular identity of which has remained elusive until a recent report suggested the Ca2+-activated K+ channel, IK1 (KCNN4) as the sAHP channel in CA1 pyramidal neurons. The signature pharmacology of IK1, blockade by TRAM-34, was reported for the sAHP and underlying current. We have examined the sAHP and find no evidence that TRAM-34 affects either the current underling the sAHP or excitability of CA1 or basolateral amygdala pyramidal neurons. In addition, CA1 pyramidal neurons from IK1 null mice exhibit a characteristic sAHP current. Our results indicate that IK1 channels do not mediate the sAHP in pyramidal neurons. DOI:http://dx.doi.org/10.7554/eLife.11206.001 Neurons carry signals in the form of electrical impulses called action potentials. These nerve impulses result from ions flowing through proteins called ion channels in the neuron’s membrane, and they determine how the neuron communicates with neighboring neurons. The number of action potentials a neuron can produce can vary over a wide range. In the brain, a particular kind of ion channel limits the number of action potentials that many neurons produce via a negative feedback mechanism. That is to say, nerve impulses activate this ion channel and the activated channel then makes the neuron less able to send further nerve impulses for a while.The activity of this ion channel increases with age and it may be responsible for some forms of age-related decline in cognitive abilities. However, the exact identity of the ion channel responsible was unclear. Recent research has suggested the ion channel in question was a protein called IK1. This conclusion was largely based on how this ion channel responded to drugs in the laboratory. Wang, Materos-Aparico et al. sought to verify this conclusion and, in contrast with the previous reports, found that the IK1 ion channel did not respond to these drugs in the same way when it was in neurons in the brains of mice. In further experiments, mice that had been engineered to lack the IK1 ion channel still showed the characteristic negative feedback that regulates the firing of action potentials. Thus, Wang, Materos-Aparico et al. found no evidence to support the previous conclusion, and instead conclude that the exact identity of this important ion channel in the brain has yet to be defined. DOI:http://dx.doi.org/10.7554/eLife.11206.002
Collapse
Affiliation(s)
- Kang Wang
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Pedro Mateos-Aparicio
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Christoph Hönigsperger
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Vijeta Raghuram
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Wendy W Wu
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, United States
| | - Margreet C Ridder
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Jim Maylie
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, United States
| | - Johan F Storm
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - John P Adelman
- Vollum Institute, Oregon Health and Science University, Portland, United States
| |
Collapse
|
34
|
King B, Rizwan AP, Asmara H, Heath NC, Engbers JDT, Dykstra S, Bartoletti TM, Hameed S, Zamponi GW, Turner RW. IKCa channels are a critical determinant of the slow AHP in CA1 pyramidal neurons. Cell Rep 2016; 11:175-82. [PMID: 25865881 DOI: 10.1016/j.celrep.2015.03.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/30/2015] [Accepted: 03/10/2015] [Indexed: 12/23/2022] Open
Abstract
Control over the frequency and pattern of neuronal spike discharge depends on Ca2+-gated K+ channels that reduce cell excitability by hyperpolarizing the membrane potential. The Ca2+-dependent slow afterhyperpolarization (sAHP) is one of the most prominent inhibitory responses in the brain, with sAHP amplitude linked to a host of circuit and behavioral functions, yet the channel that underlies the sAHP has defied identification for decades. Here, we show that intermediate-conductance Ca2+-dependent K+ (IKCa) channels underlie the sAHP generated by trains of synaptic input or postsynaptic stimuli in CA1 hippocampal pyramidal cells. These findings are significant in providing a molecular identity for the sAHP of central neurons that will identify pharmacological tools capable of potentially modifying the several behavioral or disease states associated with the sAHP.
Collapse
|