1
|
Dmitrieva VA, Tyutereva EV, Voitsekhovskaja OV. What can reactive oxygen species (ROS) tell us about the action mechanism of herbicides and other phytotoxins? Free Radic Biol Med 2024; 220:92-110. [PMID: 38663829 DOI: 10.1016/j.freeradbiomed.2024.04.233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/09/2024]
Abstract
Reactive oxygen species (ROS) are formed in plant cells continuously. When ROS production exceeds the antioxidant capacity of the cells, oxidative stress develops which causes damage of cell components and may even lead to the induction of programmed cell death (PCD). The levels of ROS production increase upon abiotic stress, but also during pathogen attack in response to elicitors, and upon application of toxic compounds such as synthetic herbicides or natural phytotoxins. The commercial value of many synthetic herbicides is based on weed death as result of oxidative stress, and for a number of them, the site and the mechanism of ROS production have been characterized. This review summarizes the current knowledge on ROS production in plants subjected to different groups of synthetic herbicides and natural phytotoxins. We suggest that the use of ROS-specific fluorescent probes and of ROS-specific marker genes can provide important information on the mechanism of action of these toxins. Furthermore, we propose that, apart from oxidative damage, elicitation of ROS-induced PCD is emerging as one of the important processes underlying the action of herbicides and phytotoxins.
Collapse
Affiliation(s)
- Valeria A Dmitrieva
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg, 197022, Russia; Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Saint Petersburg, 196608, Russia
| | - Elena V Tyutereva
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg, 197022, Russia
| | - Olga V Voitsekhovskaja
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg, 197022, Russia.
| |
Collapse
|
2
|
Tsai TY, Chien YL, Zheng YY, Li YC, Chen JC, Su RC, Ben-Sheleg A, Khozin-Goldberg I, Vonshak A, Lee TM. Modification in the ascorbate-glutathione cycle leads to a better acclimation to high light in the rose Bengal resistant mutant of Nannochloropsis oceanica. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108326. [PMID: 38237421 DOI: 10.1016/j.plaphy.2023.108326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 03/16/2024]
Abstract
Understanding how to adapt outdoor cultures of Nannochloropsis oceanica to high light (HL) is vital for boosting productivity. The N. oceanica RB2 mutant, obtained via ethyl methanesulfonate mutagenesis, was chosen for its tolerance to Rose Bengal (RB), a singlet oxygen (1O2) generator. Compared to the wild type (WT), the RB2 mutant showed higher resilience to excess light conditions. Analyzing the ascorbate-glutathione cycle (AGC), involving ascorbate peroxidases (APX, EC 1.11.1.11), dehydroascorbate reductase (DHAR, EC 1.8.5.1), and glutathione reductase (GR, EC 1.8.1.7), in the RB2 mutant under HL stress provided valuable insights. At 250 μmol photon m-2 s-1 (HL), the WT strain displayed superoxide anion radicals (O2▪-) and hydrogen peroxide (H2O2) accumulation, increased lipid peroxidation, and cell death compared to normal light (NL) conditions (50 μmol photon m-2 s-1). The RB2 mutant didn't accumulate O2▪- and H2O2 after HL exposure, and exhibited increased APX, DHAR, and GR activities and transcript levels compared to WT and remained consistent after HL treatment. Although the RB2 mutant had a smaller ascorbate (AsA) pool than the WT, its ability to regenerate dehydroascorbate (DHA) increased post HL exposure, indicated by a higher AsA/DHA ratio. Additionally, under HL conditions, the RB2 mutant displayed an improved glutathione (GSH) regeneration rate (GSH/GSSG ratio) without changing the GSH pool size. Remarkably, H2O2 or menadione (a O2▪- donor) treatment induced cell death in the WT strain but not in the RB2 mutant. These findings emphasize the essential role of AGC in the RB2 mutant of Nannochloropsis in handling photo-oxidative stress.
Collapse
Affiliation(s)
- Tsung-Yu Tsai
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yi-Lin Chien
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yu-Yun Zheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yu-Chia Li
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Jen-Chih Chen
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Ruey-Chih Su
- Department of Life Science, Fu-Jen University, New Taipei City 242, Taiwan
| | - Avraham Ben-Sheleg
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| | - Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion 8499000, Israel.
| | - Avigad Vonshak
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion 8499000, Israel.
| | - Tse-Min Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan; Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
3
|
β-Cyclocitral Does Not Contribute to Singlet Oxygen-Signalling in Algae, but May Down-Regulate Chlorophyll Synthesis. PLANTS 2022; 11:plants11162155. [PMID: 36015457 PMCID: PMC9415740 DOI: 10.3390/plants11162155] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022]
Abstract
Light stress signalling in algae and plants is partially orchestrated by singlet oxygen (1O2), a reactive oxygen species (ROS) that causes significant damage within the chloroplast, such as lipid peroxidation. In the vicinity of the photosystem II reaction centre, a major source of 1O2, are two β-carotene molecules that quench 1O2 to ground-state oxygen. 1O2 can oxidise β-carotene to release β-cyclocitral, which has emerged as a 1O2-mediated stress signal in the plant Arabidopsis thaliana. We investigated if β-cyclocitral can have similar retrograde signalling properties in the unicellular alga Chlamydomonas reinhardtii. Using RNA-Seq, we show that genes up-regulated in response to exogenous β-cyclocitral included CAROTENOID CLEAVAGE DIOXYGENASE 8 (CCD8), while down-regulated genes included those associated with porphyrin and chlorophyll anabolism, such as tetrapyrrole-binding protein (GUN4), magnesium chelatases (CHLI1, CHLI2, CHLD, CHLH1), light-dependent protochlorophyllide reductase (POR1), copper target 1 protein (CTH1), and coproporphyrinogen III oxidase (CPX1). Down-regulation of this pathway has also been shown in β-cyclocitral-treated A. thaliana, indicating conservation of this signalling mechanism in plants. However, in contrast to A. thaliana, a very limited overlap in differential gene expression was found in β-cyclocitral-treated and 1O2-treated C. reinhardtii. Furthermore, exogenous treatment with β-cyclocitral did not induce tolerance to 1O2. We conclude that while β-cyclocitral may down-regulate chlorophyll synthesis, it does not seem to contribute to 1O2-mediated high light stress signalling in algae.
Collapse
|
4
|
Nawrocki WJ, Liu X, Raber B, Hu C, de Vitry C, Bennett DIG, Croce R. Molecular origins of induction and loss of photoinhibition-related energy dissipation q I. SCIENCE ADVANCES 2021; 7:eabj0055. [PMID: 34936440 PMCID: PMC8694598 DOI: 10.1126/sciadv.abj0055] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/08/2021] [Indexed: 05/02/2023]
Abstract
Photosynthesis fuels life on Earth using sunlight as energy source. However, light has a simultaneous detrimental effect on the enzyme triggering photosynthesis and producing oxygen, photosystem II (PSII). Photoinhibition, the light-dependent decrease of PSII activity, results in a major limitation to aquatic and land photosynthesis and occurs upon all environmental stress conditions. In this work, we investigated the molecular origins of photoinhibition focusing on the paradoxical energy dissipation process of unknown nature coinciding with PSII damage. Integrating spectroscopic, biochemical, and computational approaches, we demonstrate that the site of this quenching process is the PSII reaction center. We propose that the formation of quenching and the closure of PSII stem from the same event. We lastly reveal the heterogeneity of PSII upon photoinhibition using structure-function modeling of excitation energy transfer. This work unravels the functional details of the damage-induced energy dissipation at the heart of photosynthesis.
Collapse
Affiliation(s)
- Wojciech J. Nawrocki
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
- LaserLaB Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Xin Liu
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
- LaserLaB Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Bailey Raber
- Department of Chemistry, Southern Methodist University, P.O. Box 750314, Dallas, TX, USA
| | - Chen Hu
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
- LaserLaB Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Catherine de Vitry
- Institut de Biologie Physico-Chimique, UMR 7141, CNRS-Sorbonne Université, 75005 Paris, France
| | - Doran I. G. Bennett
- Department of Chemistry, Southern Methodist University, P.O. Box 750314, Dallas, TX, USA
| | - Roberta Croce
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
- LaserLaB Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| |
Collapse
|
5
|
Rehman AU, Bashir F, Ayaydin F, Kóta Z, Páli T, Vass I. Proline is a quencher of singlet oxygen and superoxide both in in vitro systems and isolated thylakoids. PHYSIOLOGIA PLANTARUM 2021; 172:7-18. [PMID: 33161571 DOI: 10.1111/ppl.13265] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 05/24/2023]
Abstract
Proline is a versatile plant metabolite, which is produced in large amounts in plants exposed to osmotic and oxidative stress. Proline has been shown to provide protection against various reactive oxygen species (ROS), such as hydrogen peroxide and hydroxyl radicals. On the other hand, its protective effect against singlet oxygen has been debated, and it is considered ineffective against superoxide. Here we used various methods for the detection of singlet oxygen (electron paramagnetic resonance, EPR, spin trapping by 2,2,6,6-tetramethyl-4-piperidone, fluorescence probing by singlet oxygen sensor green, SOSG, and oxygen uptake due to chemical trapping) and superoxide (oxygen uptake due to oxygen reduction) in vitro and in isolated thylakoids. We demonstrated that proline does quench both singlet oxygen and superoxide in vitro. By comparing the effects of chemical scavengers and physical quenchers, we concluded that proline eliminates singlet oxygen via a physical mechanism, with a bimolecular quenching rate of ca. 1.5-4 106 M-1 s-1 . Our data also show that proline can eliminate superoxide in vitro in a process that is likely to proceed via an electron transfer reaction. We could also show that proline does quench both singlet oxygen and superoxide produced in isolated thylakoids. The scavenging efficiency of proline is relatively small on a molar basis, but considering its presence in high amounts in plant cells under stress conditions it may provide a physiologically relevant contribution to ROS scavenging, supplementing other nonenzymatic ROS scavengers of plant cells.
Collapse
Affiliation(s)
- Ateeq Ur Rehman
- Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
| | - Faiza Bashir
- Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
- Ph.D. School in Biology of University of Szeged, Szeged, Hungary
| | - Ferhan Ayaydin
- Cellular Imaging Laboratory, Biological Research Centre, Szeged, Hungary
| | - Zoltán Kóta
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Tibor Páli
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Imre Vass
- Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
| |
Collapse
|
6
|
Khorobrykh S, Havurinne V, Mattila H, Tyystjärvi E. Oxygen and ROS in Photosynthesis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E91. [PMID: 31936893 PMCID: PMC7020446 DOI: 10.3390/plants9010091] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 12/14/2022]
Abstract
Oxygen is a natural acceptor of electrons in the respiratory pathway of aerobic organisms and in many other biochemical reactions. Aerobic metabolism is always associated with the formation of reactive oxygen species (ROS). ROS may damage biomolecules but are also involved in regulatory functions of photosynthetic organisms. This review presents the main properties of ROS, the formation of ROS in the photosynthetic electron transport chain and in the stroma of chloroplasts, and ROS scavenging systems of thylakoid membrane and stroma. Effects of ROS on the photosynthetic apparatus and their roles in redox signaling are discussed.
Collapse
Affiliation(s)
| | | | | | - Esa Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland or (S.K.); (V.H.); (H.M.)
| |
Collapse
|
7
|
Role of the two PsaE isoforms on O 2 reduction at photosystem I in Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148089. [PMID: 31669487 DOI: 10.1016/j.bbabio.2019.148089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 09/18/2019] [Accepted: 10/18/2019] [Indexed: 11/23/2022]
Abstract
Leaves of Arabidopsis thaliana plants grown in short days (8 h light) generate more reactive oxygen species in the light than leaves of plants grown in long days (16 h light). The importance of the two PsaE isoforms of photosystem I, PsaE1 and PsaE2, for O2 reduction was studied in plants grown under these different growth regimes. In short day conditions a mutant affected in the amount of PsaE1 (psae1-1) reduced more efficiently O2 than a mutant lacking PsaE2 (psae2-1) as shown by spin trapping EPR spectroscopy on leaves and by following the kinetics of P700+ reduction in isolated photosystem I. In short day conditions higher O2 reduction protected photosystem II against photoinhibition in psae1-1. In contrast in long day conditions the presence of PsaE1 was clearly beneficial for photosynthetic electron transport and for the stability of the photosynthetic apparatus under photoinhibitory conditions. We conclude that the two PsaE isoforms have distinct functions and we propose that O2 reduction at photosystem I is beneficial for the plant under certain environmental conditions.
Collapse
|
8
|
Rea G, Antonacci A, Lambreva MD, Mattoo AK. Features of cues and processes during chloroplast-mediated retrograde signaling in the alga Chlamydomonas. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:193-206. [PMID: 29807591 DOI: 10.1016/j.plantsci.2018.04.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/04/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Retrograde signaling is an intracellular communication process defined by cues generated in chloroplast and mitochondria which traverse membranes to their destination in the nucleus in order to regulate nuclear gene expression and protein synthesis. The coding and decoding of such organellar message(s) involve gene medleys and metabolic components about which more is known in higher plants than the unicellular organisms such as algae. Chlamydomonas reinhardtii is an oxygenic microalgal model for genetic and physiological studies. It harbors a single chloroplast and is amenable for generating mutants. The focus of this review is on studies that delineate retrograde signaling in Chlamydomonas vis a vis higher plants. Thus, communication networks between chloroplast and nucleus involving photosynthesis- and ROS-generated signals, functional tetrapyrrole biosynthesis intermediates, and Ca2+-signaling that modulate nuclear gene expression in this alga are discussed. Conceptually, different signaling components converge to regulate either the same or functionally-overlapping gene products.
Collapse
Affiliation(s)
- Giuseppina Rea
- Institute of Crystallography, National Research Council of Italy, Via Salaria Km 29, 3 00015 Monterotondo Scalo, Rome, Italy
| | - Amina Antonacci
- Institute of Crystallography, National Research Council of Italy, Via Salaria Km 29, 3 00015 Monterotondo Scalo, Rome, Italy
| | - Maya D Lambreva
- Institute of Crystallography, National Research Council of Italy, Via Salaria Km 29, 3 00015 Monterotondo Scalo, Rome, Italy
| | - Autar K Mattoo
- The Henry A Wallace Agricultural Research Centre, U.S. Department of Agriculture, Sustainable Agricultural Systems Laboratory, Beltsville, MD 20705, USA.
| |
Collapse
|
9
|
Roach T, Baur T, Stöggl W, Krieger-Liszkay A. Chlamydomonas reinhardtii responding to high light: a role for 2-propenal (acrolein). PHYSIOLOGIA PLANTARUM 2017; 161:75-87. [PMID: 28326554 DOI: 10.1111/ppl.12567] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/30/2017] [Accepted: 02/17/2017] [Indexed: 05/03/2023]
Abstract
High light causes photosystem II to generate singlet oxygen (1 O2 ), a reactive oxygen species (ROS) that can react with membrane lipids, releasing reactive electrophile species (RES), such as acrolein. To investigate how RES may contribute to light stress responses, Chlamydomonas reinhardtii was high light-treated in photoautotrophic and mixotrophic conditions and also in an oxygen-enriched atmosphere to elevate ROS production. The responses were compared to exogenous acrolein. Non-photochemical quenching (NPQ) was higher in photoautotrophic cells, as a consequence of a more de-epoxidized state of the xanthophyll cycle pool and more LHCSR3 protein, showing that photosynthesis was under more pressure than in mixotrophic cells. Photoautotrophic cells had lowered α-tocopherol and β-carotene contents and a higher level of protein carbonylation, indicators of elevated 1 O2 production. Levels of glutathione, glutathione peroxidase (GPX5) and glutathione-S-transferase (GST1), important antioxidants against RES, were also increased in photoautotrophic cells. In parallel to the wild-type, the LHCSR3-deficient npq4 mutant was high light-treated, which in photoautotrophic conditions exhibited particular sensitivity under elevated oxygen, the treatment that induced the highest RES levels, including acrolein. The npq4 mutant had more GPX5 and GST1 alongside higher levels of carbonylated protein and a more oxidized glutathione redox state. In wild-type cells glutathione contents doubled after 4 h treatment, either with high light under elevated oxygen or with a non-critical dose (600 ppm) of acrolein. Exogenous acrolein also increased GST1 levels, but not GPX5. Overall, RES-associated oxidative damage and glutathione metabolism are prominently associated with light stress and potentially in signaling responses of C. reinhardtii.
Collapse
Affiliation(s)
- Thomas Roach
- Institut für Botanik, Leopold-Franzens-Universität-Innsbruck, Innsbruck, Austria
| | - Theresa Baur
- Institut für Botanik, Leopold-Franzens-Universität-Innsbruck, Innsbruck, Austria
| | - Wolfgang Stöggl
- Institut für Botanik, Leopold-Franzens-Universität-Innsbruck, Innsbruck, Austria
| | - Anja Krieger-Liszkay
- Institut de Biologie Intégrative de la Cellule (I2BC), IBITECS, CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif Sur Yvette, France
| |
Collapse
|
10
|
Rehman AU, Szabó M, Deák Z, Sass L, Larkum A, Ralph P, Vass I. Symbiodinium sp. cells produce light-induced intra- and extracellular singlet oxygen, which mediates photodamage of the photosynthetic apparatus and has the potential to interact with the animal host in coral symbiosis. THE NEW PHYTOLOGIST 2016; 212:472-484. [PMID: 27321415 DOI: 10.1111/nph.14056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/08/2016] [Indexed: 06/06/2023]
Abstract
Coral bleaching is an important environmental phenomenon, whose mechanism has not yet been clarified. The involvement of reactive oxygen species (ROS) has been implicated, but direct evidence of what species are involved, their location and their mechanisms of production remains unknown. Histidine-mediated chemical trapping and singlet oxygen sensor green (SOSG) were used to detect intra- and extracellular singlet oxygen ((1) O2 ) in Symbiodinium cultures. Inhibition of the Calvin-Benson cycle by thermal stress or high light promotes intracellular (1) O2 formation. Histidine addition, which decreases the amount of intracellular (1) O2 , provides partial protection against photosystem II photoinactivation and chlorophyll (Chl) bleaching. (1) O2 production also occurs in cell-free medium of Symbiodinium cultures, an effect that is enhanced under heat and light stress and can be attributed to the excretion of (1) O2 -sensitizing metabolites from the cells. Confocal microscopy imaging using SOSG showed most extracellular (1) O2 around the cell surface, but it is also produced across the medium distant from the cells. We demonstrate, for the first time, both intra- and extracellular (1) O2 production in Symbiodinium cultures. Intracellular (1) O2 is associated with photosystem II photodamage and pigment bleaching, whereas extracellular (1) O2 has the potential to mediate the breakdown of symbiotic interaction between zooxanthellae and their animal host during coral bleaching.
Collapse
Affiliation(s)
- Ateeq Ur Rehman
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, PO Box 521, H-6701, Szeged, Hungary
| | - Milán Szabó
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
- Division of Plant Sciences, Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Acton, ACT, 2601, Australia
| | - Zsuzsanna Deák
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, PO Box 521, H-6701, Szeged, Hungary
| | - László Sass
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, PO Box 521, H-6701, Szeged, Hungary
| | - Anthony Larkum
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Peter Ralph
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Imre Vass
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, PO Box 521, H-6701, Szeged, Hungary.
| |
Collapse
|
11
|
Cheloni G, Cosio C, Slaveykova VI. Antagonistic and synergistic effects of light irradiation on the effects of copper on Chlamydomonas reinhardtii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 155:275-282. [PMID: 25072593 DOI: 10.1016/j.aquatox.2014.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/28/2014] [Accepted: 07/02/2014] [Indexed: 06/03/2023]
Abstract
The present study showed the important role of light intensity and spectral composition on Cu uptake and effects on green alga Chlamydomonas reinhardtii. High-intenisty light (HL) increased cellular Cu concentrations, but mitigated the Cu-induced decrease in chlorophyll fluorescence, oxidative stress and lipid peroxidation at high Cu concentrations, indicating that Cu and HL interact in an antagonistic manner. HL up-regulated the transcription of genes involved in the antioxidant response in C. reinhardtii and thus reduced the oxidative stress upon exposure to Cu and HL. Combined exposure to Cu and UVBR resulted in an increase of cellular Cu contents and caused severe oxidative damage to the cells. The observed effects were higher than the sum of the effects corresponding to exposure to UVBR or Cu alone suggesting a synergistic interaction.
Collapse
Affiliation(s)
- Giulia Cheloni
- Environmental Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 10, Route de Suisse, CH-1290 Versoix, Switzerland
| | - Claudia Cosio
- Environmental Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 10, Route de Suisse, CH-1290 Versoix, Switzerland
| | - Vera I Slaveykova
- Environmental Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 10, Route de Suisse, CH-1290 Versoix, Switzerland.
| |
Collapse
|
12
|
Chang HL, Tseng YL, Ho KL, Shie SC, Wu PS, Hsu YT, Lee TM. Reactive oxygen species modulate the differential expression of methionine sulfoxide reductase genes in Chlamydomonas reinhardtii under high light illumination. PHYSIOLOGIA PLANTARUM 2014; 150:550-564. [PMID: 24102363 DOI: 10.1111/ppl.12102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/18/2013] [Accepted: 08/19/2013] [Indexed: 06/02/2023]
Abstract
Illumination of Chlamydomonas reinhardtii cells at 1000 (high light, HL) or 3000 (very high light, VHL) µmol photons m(-2) s(-1) intensity increased superoxide anion radical (O(2)(•-)) and hydrogen peroxide (H(2)O(2)) production, and VHL illumination also increased the singlet oxygen ((1)O(2)) level. HL and VHL illumination decreased methionine sulfoxide reductase A4 (CrMSRA4) transcript levels but increased CrMSRA3, CrMSRA5 and CrMSRB2.1 transcripts levels. CrMSRB2.2 transcript levels increased only under VHL conditions. The role of reactive oxygen species (ROS) on CrMSR expression was studied using ROS scavengers and generators. Treatment with dimethylthiourea (DMTU), a H(2)O(2) scavenger, suppressed HL- and VHL-induced CrMSRA3, CrMSRA5 and CrMSRB2.1 expression, whereas H(2)O(2) treatment stimulated the expression of these genes under 50 µmol photons m(-2) s(-1) conditions (low light, LL). Treatment with diphenylamine (DPA), a (1)O(2) quencher, reduced VHL-induced CrMSRA3, CrMSRA5 and CrMSRB2.2 expression and deuterium oxide, which delays (1)O(2) decay, enhanced these gene expression, whereas treatment with (1)O(2) (rose bengal, methylene blue and neutral red) or O(2)(•-) (menadione and methyl viologen) generators under LL conditions induced their expression. DPA treatment inhibited the VHL-induced decrease in CrMSRA4 expression, but other ROS scavengers and ROS generators did not affect its expression under LL or HL conditions. These results demonstrate that the differential expression of CrMSRs under HL illumination can be attributed to different types of ROS. H(2)O(2), O(2) (•-) and (1)O(2) modulate CrMSRA3 and CrMSRA5 expression, whereas H(2)O(2) and O(2)(•-) regulate CrMSRB2.1 and CrMSRB2.2 expression, respectively. (1)O(2) mediates the decrease of CrMSRA4 expression by VHL illumination, but ROS do not modulate its decrease under HL conditions.
Collapse
Affiliation(s)
- Hsueh-Ling Chang
- Institute of Marine Biology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan; Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan; The Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | | | | | | | | | | | | |
Collapse
|
13
|
Linking toxicity and adaptive responses across the transcriptome, proteome, and phenotype of Chlamydomonas reinhardtii exposed to silver. Proc Natl Acad Sci U S A 2014; 111:3490-5. [PMID: 24550482 DOI: 10.1073/pnas.1319388111] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Understanding mechanistic and cellular events underlying a toxicological outcome allows the prediction of impact of environmental stressors to organisms living in different habitats. A systems-based approach aids in characterizing molecular events, and thereby the cellular pathways that have been perturbed. However, mapping only adverse outcomes of a toxicant falls short of describing the stress or adaptive response that is mounted to maintain homeostasis on perturbations and may confer resistance to the toxic insult. Silver is a potential threat to aquatic organisms because of the increasing use of silver-based nanomaterials, which release free silver ions. The effects of silver were investigated at the transcriptome, proteome, and cellular levels of Chlamydomonas reinhardtii. The cells instigate a fast transcriptome and proteome response, including perturbations in copper transport system and detoxification mechanisms. Silver causes an initial toxic insult, which leads to a plummeting of ATP and photosynthesis and damage because of oxidative stress. In response, the cells mount a defense response to combat oxidative stress and to eliminate silver via efflux transporters. From the analysis of the perturbations of the cell's functions, we derived a detailed mechanistic understanding of temporal dynamics of toxicity and adaptive response pathways for C. reinhardtii exposed to silver.
Collapse
|
14
|
Rastogi A, Yadav DK, Szymańska R, Kruk J, Sedlářová M, Pospíšil P. Singlet oxygen scavenging activity of tocopherol and plastochromanol in Arabidopsis thaliana: relevance to photooxidative stress. PLANT, CELL & ENVIRONMENT 2014; 37:392-401. [PMID: 23848570 DOI: 10.1111/pce.12161] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 05/24/2023]
Abstract
In the present study, singlet oxygen (¹O₂) scavenging activity of tocopherol and plastochromanol was examined in tocopherol cyclase-deficient mutant (vte1) of Arabidopsis thaliana lacking both tocopherol and plastochromanol. It is demonstrated here that suppression of tocopherol and plastochromanol synthesis in chloroplasts isolated from vte1 Arabidopsis plants enhanced ¹O₂ formation under high light illumination as monitored by electron paramagnetic resonance spin-trapping spectroscopy. The exposure of vte1 Arabidopsis plants to high light resulted in the formation of secondary lipid peroxidation product malondialdehyde as determined by high-pressure liquid chromatography. Furthermore, it is shown here that the imaging of ultra-weak photon emission known to reflect oxidation of lipids was unambiguously higher in vte1 Arabidopsis plants. Our results indicate that tocopherol and plastochromanol act as efficient ¹O₂ scavengers and protect effectively lipids against photooxidative damage in Arabidopsis plants.
Collapse
Affiliation(s)
- Anshu Rastogi
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, 783 71, Czech Republic
| | | | | | | | | | | |
Collapse
|
15
|
Roach T, Krieger-Liszkay A. Regulation of photosynthetic electron transport and photoinhibition. Curr Protein Pept Sci 2014; 15:351-62. [PMID: 24678670 PMCID: PMC4030316 DOI: 10.2174/1389203715666140327105143] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 11/22/2013] [Accepted: 03/16/2014] [Indexed: 01/30/2023]
Abstract
Photosynthetic organisms and isolated photosystems are of interest for technical applications. In nature, photosynthetic electron transport has to work efficiently in contrasting environments such as shade and full sunlight at noon. Photosynthetic electron transport is regulated on many levels, starting with the energy transfer processes in antenna and ending with how reducing power is ultimately partitioned. This review starts by explaining how light energy can be dissipated or distributed by the various mechanisms of non-photochemical quenching, including thermal dissipation and state transitions, and how these processes influence photoinhibition of photosystem II (PSII). Furthermore, we will highlight the importance of the various alternative electron transport pathways, including the use of oxygen as the terminal electron acceptor and cyclic flow around photosystem I (PSI), the latter which seem particularly relevant to preventing photoinhibition of photosystem I. The control of excitation pressure in combination with the partitioning of reducing power influences the light-dependent formation of reactive oxygen species in PSII and in PSI, which may be a very important consideration to any artificial photosynthetic system or technical device using photosynthetic organisms.
Collapse
|
16
|
Chang HL, Kang CY, Lee TM. Hydrogen peroxide production protects Chlamydomonas reinhardtii against light-induced cell death by preventing singlet oxygen accumulation through enhanced carotenoid synthesis. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:976-86. [PMID: 23522501 DOI: 10.1016/j.jplph.2013.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/15/2013] [Accepted: 02/15/2013] [Indexed: 05/07/2023]
Abstract
The effect of hydrogen peroxide (H₂O₂) on carotenoid synthesis in Chlamydomonas reinhardtii under light-induced stress at 3000 μmol m⁻² s⁻¹ has been investigated. This very high light (VHL) illumination triggered a transient increase in H₂O₂ production during the initial 30 min of light stress, followed by singlet oxygen (¹O₂) production, growth inhibition and necrotic cell death. The carotenoid content was slightly reduced during the first 30 min of VHL illumination and strongly diminished after 60 min, while the expression of the transcripts of enzymes involved in carotenoid biosynthesis, including phytoene synthase (PSY), phytoene desaturase (PDS), and lycopene ɛ-cyclase (LCYE), initially increased and then decreased. Lycopene β-cyclase (LCYB) transcripts did not change. Treatment with dimethylthiourea, a H₂O₂ scavenger, under VHL conditions reduced H₂O₂ production and PSY and PDS transcript levels and accelerated the reduction of carotenoids, the production of ¹O₂, viability loss and necrotic cell death. Pretreatment with 0.1 μM methyl viologen or 0.2 mM H₂O₂ under 50 μmol m⁻² s⁻¹ low light for 60 min increased VHL tolerance, carotenoid content, and PSY and PDS transcripts, while LCYB and LCYE transcripts were not affected. These results suggest that H₂O₂, produced under VHL stress, ameliorates the ¹O₂-mediated oxidative damage to C. reinhardtii through a reduction in the degree of carotenoid breakdown by activation of de novo carotenoid synthesis.
Collapse
Affiliation(s)
- Hsueh-Ling Chang
- Institute of Marine Biology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | | | | |
Collapse
|
17
|
Chang HL, Hsu YT, Kang CY, Lee TM. Nitric Oxide Down-Regulation of Carotenoid Synthesis and PSII Activity in Relation to Very High Light-Induced Singlet Oxygen Production and Oxidative Stress in Chlamydomonas reinhardtii. ACTA ACUST UNITED AC 2013; 54:1296-315. [DOI: 10.1093/pcp/pct078] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Roach T, Sedoud A, Krieger-Liszkay A. Acetate in mixotrophic growth medium affects photosystem II in Chlamydomonas reinhardtii and protects against photoinhibition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1183-90. [PMID: 23791666 DOI: 10.1016/j.bbabio.2013.06.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/04/2013] [Accepted: 06/07/2013] [Indexed: 11/18/2022]
Abstract
Chlamydomonas reinhardtii is a photoautotrophic green alga, which can be grown mixotrophically in acetate-supplemented media (Tris-acetate-phosphate). We show that acetate has a direct effect on photosystem II (PSII). As a consequence, Tris-acetate-phosphate-grown mixotrophic C. reinhardtii cultures are less susceptible to photoinhibition than photoautotrophic cultures when subjected to high light. Spin-trapping electron paramagnetic resonance spectroscopy showed that thylakoids from mixotrophic C. reinhardtii produced less (1)O2 than those from photoautotrophic cultures. The same was observed in vivo by measuring DanePy oxalate fluorescence quenching. Photoinhibition can be induced by the production of (1)O2 originating from charge recombination events in photosystem II, which are governed by the midpoint potentials (Em) of the quinone electron acceptors. Thermoluminescence indicated that the Em of the primary quinone acceptor (QA/QA(-)) of mixotrophic cells was stabilised while the Em of the secondary quinone acceptor (QB/QB(-)) was destabilised, therefore favouring direct non-radiative charge recombination events that do not lead to (1)O2 production. Acetate treatment of photosystem II-enriched membrane fragments from spinach led to the same thermoluminescence shifts as observed in C. reinhardtii, showing that acetate exhibits a direct effect on photosystem II independent from the metabolic state of a cell. A change in the environment of the non-heme iron of acetate-treated photosystem II particles was detected by low temperature electron paramagnetic resonance spectroscopy. We hypothesise that acetate replaces the bicarbonate associated to the non-heme iron and changes the environment of QA and QB affecting photosystem II charge recombination events and photoinhibition.
Collapse
Affiliation(s)
- Thomas Roach
- Commissariat à l'Energie Atomique (CEA) Saclay, iBiTec-S, CNRS UMR 8221, Service de Bioénergétique, Biologie Structurale et Mécanisme, 91191 Gif-sur-Yvette Cedex, France
| | | | | |
Collapse
|
19
|
Michelet L, Roach T, Fischer BB, Bedhomme M, Lemaire SD, Krieger-Liszkay A. Down-regulation of catalase activity allows transient accumulation of a hydrogen peroxide signal in Chlamydomonas reinhardtii. PLANT, CELL & ENVIRONMENT 2013; 36:1204-13. [PMID: 23237476 DOI: 10.1111/pce.12053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 05/18/2023]
Abstract
In photosynthetic organisms, excess light is a stress that induces production of reactive oxygen species inside the chloroplasts. As a response, the capacity of antioxidative defence mechanisms increases. However, when cells of Chlamydomonas reinhardtii were shifted from dark to high light, a reversible partial inactivation of catalase activity was observed, which correlated with a transient increase in the level of H2 O2 in the 10 μm range. This concentration range seems to be necessary to activate H2 O2 -dependent signalling pathways stimulating the expression of H2 O2 responsive genes, such as the heat shock protein HSP22C. Catalase knock-down mutants had lost the transient accumulation of H2 O2 , suggesting that a decrease in catalase activity was the key element for establishing a transient H2 O2 burst. Catalase was inactivated by a one-electron event consistent with the reduction of a single cysteine. We propose that under high light intensity, the redox state of the photosynthetic electron transport chain is sensed and transmitted to the cytosol to regulate the catalase activity. This allows a transient accumulation of H2 O2 , inducing a signalling event that is transmitted to the nucleus to modulate the expression of chloroplast-directed protection enzymes.
Collapse
Affiliation(s)
- Laure Michelet
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Saclay, Institut de Biologie et Technologie de Saclay, Centre National de la Recherche Scientifique, UMR 8221, 91191, Gif-sur-Yvette Cedex, France
| | | | | | | | | | | |
Collapse
|
20
|
Fischer BB, Hideg É, Krieger-Liszkay A. Production, detection, and signaling of singlet oxygen in photosynthetic organisms. Antioxid Redox Signal 2013; 18:2145-62. [PMID: 23320833 DOI: 10.1089/ars.2012.5124] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
SIGNIFICANCE In photosynthetic organisms, excited chlorophylls (Chl) can stimulate the formation of singlet oxygen ((1)O(2)), a highly toxic molecule that acts in addition to its damaging nature as an important signaling molecule. Thus, due to this dual role of (1)O(2), its production and detoxification have to be strictly controlled. RECENT ADVANCES Regulation of pigment synthesis is essential to control (1)O(2) production, and several components of the Chl synthesis and pigment insertion machineries to assemble and disassemble protein/pigment complexes have recently been identified. Once produced, (1)O(2) activates a signaling cascade from the chloroplast to the nucleus that can involve multiple mechanisms and stimulate a specific gene expression response. Further, (1)O(2) signaling was shown to interact with signal cascades of other reactive oxygen species, oxidized carotenoids, and lipid hydroperoxide-derived reactive electrophile species. CRITICAL ISSUES Despite recent progresses, hardly anything is known about how and where the (1)O(2) signal is sensed and transmitted to the cytoplasm. One reason for that is the limitation of available detection methods challenging the reliable quantification and localization of (1)O(2) in plant cells. In addition, the process of Chl insertion into the reaction centers and antenna complexes is still unclear. FUTURE DIRECTIONS Unraveling the mechanisms controlling (1)O(2) production and signaling would help clarifying the specific role of (1)O(2) in cellular stress responses. It would further enable to investigate the interaction and sensitivity to other abiotic and biotic stress signals and thus allow to better understand why some stressors activate an acclimation, while others provoke a programmed cell death response.
Collapse
Affiliation(s)
- Beat B Fischer
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
| | | | | |
Collapse
|
21
|
Rehman AU, Cser K, Sass L, Vass I. Characterization of singlet oxygen production and its involvement in photodamage of Photosystem II in the cyanobacterium Synechocystis PCC 6803 by histidine-mediated chemical trapping. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:689-98. [DOI: 10.1016/j.bbabio.2013.02.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/22/2013] [Accepted: 02/25/2013] [Indexed: 11/30/2022]
|
22
|
Nestler H, Groh KJ, Schönenberger R, Eggen RIL, Suter MJF. Linking proteome responses with physiological and biochemical effects in herbicide-exposed Chlamydomonas reinhardtii. J Proteomics 2012; 75:5370-85. [PMID: 22749931 DOI: 10.1016/j.jprot.2012.06.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/24/2012] [Accepted: 06/18/2012] [Indexed: 01/17/2023]
Abstract
Exposure to a toxicant causes proteome alterations in an organism. In ecotoxicology, analysis of these changes may allow linking them to physiological and biochemical endpoints, providing insights into subcellular exposure effects and responses and, ultimately mechanisms of action. Based on this, useful protein markers of exposure can be identified. We investigated the proteome changes induced by the herbicides paraquat, diuron, and norflurazon in the green alga Chlamydomonas reinhardtii. Shotgun proteome profiling and spectral counting quantification in combination with G-test statistics revealed significant changes in protein abundance. Functional enrichment analysis identified protein groups that responded to the exposures. Significant changes were observed for 149-254 proteins involved in a variety of metabolic pathways. While some proteins and functional protein groups responded to several tested exposure conditions, others were affected only in specific cases. Expected as well as novel candidate markers of herbicide exposure were identified, the latter including the photosystem II subunit PsbR or the VIPP1 protein. We demonstrate that the proteome response to toxicants is generally more sensitive than the physiological and biochemical endpoints, and that it can be linked to effects on these levels. Thus, proteome profiling may serve as a useful tool for ecotoxicological investigations in green algae.
Collapse
Affiliation(s)
- Holger Nestler
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland
| | | | | | | | | |
Collapse
|
23
|
SINGLET OXYGEN RESISTANT 1 links reactive electrophile signaling to singlet oxygen acclimation in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2012; 109:E1302-11. [PMID: 22529359 DOI: 10.1073/pnas.1116843109] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acclimation of Chlamydomonas reinhardtii cells to low levels of singlet oxygen, produced either by photoreactive chemicals or high light treatment, induces a specific genetic response that strongly increases the tolerance of the algae to subsequent exposure to normally lethal singlet oxygen-producing conditions. The genetic response includes the increased expression of various oxidative stress response and detoxification genes, like the glutathione peroxidase homologous gene GPXH/GPX5 and the σ-class glutathione-S-transferase gene GSTS1. To identify components involved in the signal transduction and activation of the singlet oxygen-mediated response, a mutant selection was performed. This selection led to the isolation of the singlet oxygen resistant 1 (sor1) mutant, which is more tolerant to singlet oxygen-producing chemicals and shows a constitutively higher expression of GPXH and GSTS1. Map-based cloning revealed that the SOR1 gene encodes a basic leucine zipper transcription factor, which controls its own expression and the expression of a large number of oxidative stress response and detoxification genes. In the promoter region of many of these genes, a highly conserved 8-bp palindromic sequence element was found to be enriched. This element was essential for GSTS1 induction by increased levels of lipophilic reactive electrophile species (RES), suggesting that it functions as an electrophile response element (ERE). Furthermore, GSTS1 overexpression in sor1 requires the ERE, although it is unknown whether it occurs through direct binding of SOR1 to the ERE. RES can be formed after singlet oxygen-induced lipid peroxidation, indicating that RES-stimulated and SOR1-mediated responses of detoxification genes are part of the singlet oxygen-induced acclimation process in C. reinhardtii.
Collapse
|
24
|
Pure forms of the singlet oxygen sensors TEMP and TEMPD do not inhibit Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1658-61. [DOI: 10.1016/j.bbabio.2011.09.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 09/06/2011] [Accepted: 09/14/2011] [Indexed: 11/18/2022]
|
25
|
Abstract
Singlet oxygen is the primary agent of photooxidative stress in microorganisms. In photosynthetic microorganisms, sensitized generation by pigments of the photosystems is the main source of singlet oxygen and, in nonphotosynthetic microorganisms, cellular cofactors such as flavins, rhodopsins, quinones, and porphyrins serve as photosensitizer. Singlet oxygen rapidly reacts with a wide range of cellular macromolecules including proteins, lipids, DNA, and RNA, and thereby further reactive substances including organic peroxides and sulfoxides are formed. Microorganisms that face high light intensities or exhibit potent photosensitizers have evolved specific mechanisms to prevent photooxidative stress. These mechanisms include the use of quenchers, such as carotenoids, which interact either with excited photosensitizer molecules or singlet oxygen itself to prevent damage of cellular molecules. Scavengers like glutathione react with singlet oxygen. Despite those protection mechanisms, damage by reactions with singlet oxygen on cellular macromolecules disturbs cellular functions. Microorganisms that regularly face photooxidative stress have evolved specific systems to sense singlet oxygen and tightly control the removal of singlet oxygen reaction products. Responses to photooxidative stress have been investigated in a range of photosynthetic and nonphotosynthetic microorganisms. However, detailed knowledge on the regulation of this response has only been obtained for the phototrophic alpha-proteobacterium Rhodobacter sphaeroides. In this organism and in related proteobacteria, the extracytoplasmic function (ECF) sigma factor RpoE is released from the cognate antisigma factor ChrR in the presence of singlet oxygen and triggers the expression of genes providing protection against photooxidative stress. Recent experiments show that singlet oxygen acts as a signal, which is sensed by yet unknown components and leads to proteolysis of ChrR. RpoE induces expression of a second alternative sigma factor, RpoH(II), which controls a large set of genes that partially overlaps with the heat-shock response controlled by RpoH(I). In addition to the transcriptional control of gene regulation by alternative sigma factors, a set of noncoding small RNAs (sRNAs) appear to affect the synthesis of several proteins involved in the response to photooxidative stress. The interaction of mRNA targets with those sRNAs is usually mediated by the RNA chaperone Hfq. Deletion of the gene encoding Hfq leads to a singlet oxygen-sensitive phenotype, which underlines the control of gene regulation on the posttranscriptional level by sRNAs in R. sphaeroides. Hence, a complex network of different regulatory components controls the defense against photooxidative stress in anoxygenic photosynthetic bacteria.
Collapse
Affiliation(s)
- J Glaeser
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Giessen, Giessen, Germany
| | | | | | | |
Collapse
|
26
|
Krieger-Liszkay A, Kós PB, Hideg E. Superoxide anion radicals generated by methylviologen in photosystem I damage photosystem II. PHYSIOLOGIA PLANTARUM 2011; 142:17-25. [PMID: 20875060 DOI: 10.1111/j.1399-3054.2010.01416.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The effect of superoxide anion radicals on the photosynthetic electron transport chain was studied in leaves and isolated thylakoids from tobacco. Superoxide was generated by methylviologen (MV) in the light at the acceptor side of photosystem I (PSI). In isolated thylakoids, the largest damage was observed at the level of the water-splitting activity in photosystem II (PSII), whereas PSI was hardly affected at the light intensities used. Addition of reactive oxygen scavengers protected PSII against damage. In leaves in the presence of MV, the quantum yield of PSII decreased during illumination whereas the size of the P(700) signal remained constant. There was no D1 protein loss in leaves illuminated in the presence of MV and lincomycin, but a modification to a slightly higher molecular mass was observed. These data show that PSII is more sensitive to superoxide or superoxide-derived reactive oxygen species (ROS) than PSI. In our experiments, this susceptibility was not because of any action of the ROS on the translation of the D1 protein or on the repair cycle of photosystem.
Collapse
Affiliation(s)
- Anja Krieger-Liszkay
- Commissariat à l'Energie Atomique (CEA), iBiTec-S, CNRS URA 2096, Service de Bioénergétique Biologie Structurale et Mécanisme, 91191 Gif-sur-Yvette, France
| | | | | |
Collapse
|
27
|
|
28
|
Fischer BB, Eggen RIL, Niyogi KK. Characterization of singlet oxygen-accumulating mutants isolated in a screen for altered oxidative stress response in Chlamydomonas reinhardtii. BMC PLANT BIOLOGY 2010; 10:279. [PMID: 21167020 PMCID: PMC3022906 DOI: 10.1186/1471-2229-10-279] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 12/17/2010] [Indexed: 05/03/2023]
Abstract
BACKGROUND When photosynthetic organisms are exposed to harsh environmental conditions such as high light intensities or cold stress, the production of reactive oxygen species like singlet oxygen is stimulated in the chloroplast. In Chlamydomonas reinhardtii singlet oxygen was shown to act as a specific signal inducing the expression of the nuclear glutathione peroxidase gene GPXH/GPX5 during high light stress, but little is known about the cellular mechanisms involved in this response. To investigate components affecting singlet oxygen signaling in C. reinhardtii, a mutant screen was performed. RESULTS Mutants with altered GPXH response were isolated from UV-mutagenized cells containing a GPXH-arylsulfatase reporter gene construct. Out of 5500 clones tested, no mutant deficient in GPXH induction was isolated, whereas several clones showed constitutive high GPXH expression under normal light conditions. Many of these GPXH overexpressor (gox) mutants exhibited higher resistance to oxidative stress conditions whereas others were sensitive to high light intensities. Interestingly, most gox mutants produced increased singlet oxygen levels correlating with high GPXH expression. Furthermore, different patterns of altered photoprotective parameters like non-photochemical quenching, carotenoid contents and α-tocopherol levels were detected in the various gox mutants. CONCLUSIONS Screening for mutants with altered GPXH expression resulted in the isolation of many gox mutants with increased singlet oxygen production, showing the relevance of controlling the production of this ROS in photosynthetic organisms. Phenotypic characterization of these gox mutants indicated that the mutations might lead to either stimulated triplet chlorophyll and singlet oxygen formation or reduced detoxification of singlet oxygen in the chloroplast. Furthermore, changes in multiple protection mechanisms might be responsible for high singlet oxygen formation and GPXH expression, which could either result from mutations in multiple loci or in a single gene encoding for a global regulator of cellular photoprotection mechanisms.
Collapse
Affiliation(s)
- Beat B Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102 USA
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Ueberlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Rik IL Eggen
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Ueberlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102 USA
| |
Collapse
|
29
|
Fischer BB, Rüfenacht K, Dannenhauer K, Wiesendanger M, Eggen RIL. Multiple stressor effects of high light irradiance and photosynthetic herbicides on growth and survival of the green alga Chlamydomonas reinhardtii. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2010; 29:2211-2219. [PMID: 20872684 DOI: 10.1002/etc.264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Exposure of the green alga Chlamydomonas reinhardtii Dangeard to a combination of environmental stress by high light irradiance and chemical stress by each of the three herbicides paraquat, atrazine, and norflurazon resulted in diverse multiple stressor effects on growth and survival of the cells. Under low light conditions, growth analyzed by cell numbers was generally more sensitive to herbicide treatment than optical density-based growth rates or colony-forming unit endpoints, which both also analyzed the viability of the cells. However, growth analyzed by optical density and colony-forming units in herbicide-treated cultures was affected much more strongly by high light irradiance, as shown by reduced 50% effective concentrations, indicating extensive multiple stressor effects of the combined treatment on the viability of the cells. None of the currently used concepts for mixture toxicity (concentration addition, independent action, or effect summation) could accurately describe the effects measured by the two stressors in combination. Both synergistic and antagonistic interactions seem to occur depending on the light conditions and the parameter analyzed. The strong stimulation of toxicity by the combined stresses can be explained by the similar mode of toxic action of the treatments, all increasing the production of reactive oxygen species. Antagonistic effects, conversely, are probably attributable to the various protection mechanisms of photosynthetic organisms to increased light irradiance, which help the cells acclimate to specific light conditions and defend against the deleterious effects of excess light. These protection mechanisms can affect growth and viability under increased light conditions and also might influence the toxicity of the photosynthetic herbicides.
Collapse
Affiliation(s)
- Beat B Fischer
- Eawag, Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Duebendorf, Switzerland.
| | | | | | | | | |
Collapse
|
30
|
Chapter 24 Antioxidants and Photo-oxidative Stress Responses in Plants and Algae. THE CHLOROPLAST 2010. [DOI: 10.1007/978-90-481-8531-3_24] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
Fischer BB, Dayer R, Schwarzenbach Y, Lemaire SD, Behra R, Liedtke A, Eggen RIL. Function and regulation of the glutathione peroxidase homologous gene GPXH/GPX5 in Chlamydomonas reinhardtii. PLANT MOLECULAR BIOLOGY 2009; 71:569-83. [PMID: 19690965 DOI: 10.1007/s11103-009-9540-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 08/09/2009] [Indexed: 05/02/2023]
Abstract
When exposed to strong sunlight, photosynthetic organisms encounter photooxidative stress by the increased production of reactive oxygen species causing harmful damages to proteins and membranes. Consequently, a fast and specific induction of defense mechanisms is required to protect the organism from cell death. In Chlamydomonas reinhardtii, the glutathione peroxidase homologous gene GPXH/GPX5 was shown to be specifically upregulated by singlet oxygen formed during high light conditions presumably to prevent the accumulation of lipid hydroperoxides and membrane damage. We now showed that the GPXH protein is a thioredoxin-dependent peroxidase catalyzing the reduction of hydrogen peroxide and organic hydroperoxides.Furthermore, the GPXH gene seems to encode a dual-targeted protein, predicted to be localized both in the chloroplast and the cytoplasm, which is active with either plastidic TRXy or cytosolic TRXh1. Putative dual-targeting is achieved by alternative transcription and translation start sites expressed independently from either a TATA-box or an Initiator core promoter. Expression of both transcripts was upregulated by photooxidative stress even though with different strengths. The induction required the presence of the core promoter sequences and multiple upstream regulatory elements including a Sp1-like element and an earlier identified CRE/AP-1 homologous sequence. This element was further characterized by mutation analysis but could not be confirmed to be a consensus CRE or AP1 element. Instead, it rather seems to be another member of the large group of TGAC-transcription factor binding sites found to be involved in the response of different genes to oxidative stress.
Collapse
Affiliation(s)
- Beat B Fischer
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Singlet oxygen is one of several reactive oxygen species that can destroy biomolecules, microorganisms and other cells. Traditionally, the response to singlet oxygen has been termed photo-oxidative stress, as light-dependent processes in photosynthetic cells are major biological sources of singlet oxygen. Recent work identifying a core set of singlet oxygen stress response genes across various bacterial species highlights the importance of this response for survival by both photosynthetic and non-photosynthetic cells. Here, we review how bacterial cells mount a transcriptional response to photo-oxidative stress in the context of what is known about bacterial stress responses to other reactive oxygen species.
Collapse
Affiliation(s)
- Eva C Ziegelhoffer
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
33
|
Abstract
Plants and algae often absorb too much light-more than they can actually use in photosynthesis. To prevent photo-oxidative damage and to acclimate to changes in their environment, photosynthetic organisms have evolved direct and indirect mechanisms for sensing and responding to excess light. Photoreceptors such as phototropin, neochrome, and cryptochrome can sense excess light directly and relay signals for chloroplast movement and gene expression responses. Indirect sensing of excess light through biochemical and metabolic signals can be transduced into local responses within chloroplasts, into changes in nuclear gene expression via retrograde signaling pathways, or even into systemic responses, all of which are associated with photoacclimation.
Collapse
Affiliation(s)
- Zhirong Li
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
34
|
Long JC, Merchant SS. Photo-oxidative Stress Impacts the Expression of Genes Encoding Iron Metabolism Components in Chlamydomonas†. Photochem Photobiol 2008; 84:1395-403. [DOI: 10.1111/j.1751-1097.2008.00451.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
RpoH(II) activates oxidative-stress defense systems and is controlled by RpoE in the singlet oxygen-dependent response in Rhodobacter sphaeroides. J Bacteriol 2008; 191:220-30. [PMID: 18978062 DOI: 10.1128/jb.00925-08] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Photosynthetic organisms need defense systems against photooxidative stress caused by the generation of highly reactive singlet oxygen ((1)O(2)). Here we show that the alternative sigma factor RpoH(II) is required for the expression of important defense factors and that deletion of rpoH(II) leads to increased sensitivity against exposure to (1)O(2) and methylglyoxal in Rhodobacter sphaeroides. The gene encoding RpoH(II) is controlled by RpoE, and thereby a sigma factor cascade is constituted. We provide the first in vivo study that identifies genes controlled by an RpoH(II)-type sigma factor, which is widely distributed in the Alphaproteobacteria. RpoH(II)-dependent genes encode oxidative-stress defense systems, including proteins for the degradation of methylglyoxal, detoxification of peroxides, (1)O(2) scavenging, and redox and iron homeostasis. Our experiments indicate that glutathione (GSH)-dependent mechanisms are involved in the defense against photooxidative stress in photosynthetic bacteria. Therefore, we conclude that systems pivotal for the organism's defense against photooxidative stress are strongly dependent on GSH and are specifically recognized by RpoH(II) in R. sphaeroides.
Collapse
|
36
|
Krieger-Liszkay A, Fufezan C, Trebst A. Singlet oxygen production in photosystem II and related protection mechanism. PHOTOSYNTHESIS RESEARCH 2008; 98:551-64. [PMID: 18780159 DOI: 10.1007/s11120-008-9349-3] [Citation(s) in RCA: 333] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 08/03/2008] [Indexed: 05/19/2023]
Abstract
High-light illumination of photosynthetic organisms stimulates the production of singlet oxygen by photosystem II (PSII) and causes photo-oxidative stress. In the PSII reaction centre, singlet oxygen is generated by the interaction of molecular oxygen with the excited triplet state of chlorophyll (Chl). The triplet Chl is formed via charge recombination of the light-induced charge pair. Changes in the midpoint potential of the primary electron donor P(680) of the primary acceptor pheophytin or of the quinone acceptor Q(A), modulate the pathway of charge recombination in PSII and influence the yield of singlet oxygen formation. The involvement of singlet oxygen in the process of photoinhibition is discussed. Singlet oxygen is efficiently quenched by beta-carotene, tocopherol or plastoquinone. If not quenched, it can trigger the up-regulation of genes, which are involved in the molecular defence response of photosynthetic organisms against photo-oxidative stress.
Collapse
Affiliation(s)
- Anja Krieger-Liszkay
- CEA, Institut de Biologie et Technologies de Saclay, CNRS URA 2096, Service de Bioénergétique Biologie Structurale et Mécanisme, 91191 Gif-sur-Yvette Cedex, France.
| | | | | |
Collapse
|
37
|
Abstract
Thiol/selenol peroxidases are ubiquitous nonheme peroxidases. They are divided into two major subfamilies: peroxiredoxins (PRXs) and glutathione peroxidases (GPXs). PRXs are present in diverse subcellular compartments and divided into four types: 2-cys PRX, 1-cys PRX, PRX-Q, and type II PRX (PRXII). In mammals, most GPXs are selenoenzymes containing a highly reactive selenocysteine in their active site while yeast and land plants are devoid of selenoproteins but contain nonselenium GPXs. The presence of a chloroplastic 2-cys PRX, a nonselenium GPX, and two selenium-dependent GPXs has been reported in the unicellular green alga Chlamydomonas reinhardtii. The availability of the Chlamydomonas genome sequence offers the opportunity to complete our knowledge on thiol/selenol peroxidases in this organism. In this article, Chlamydomonas PRX and GPX families are presented and compared to their counterparts in Arabidopsis, human, yeast, and Synechocystis sp. A summary of the current knowledge on each family of peroxidases, especially in photosynthetic organisms, phylogenetic analyses, and investigations of the putative subcellular localization of each protein and its relative expression level, on the basis of EST data, are presented. We show that Chlamydomonas PRX and GPX families share some similarities with other photosynthetic organisms but also with human cells. The data are discussed in view of recent results suggesting that these enzymes are important scavengers of reactive oxygen species (ROS) and reactive nitrogen species (RNS) but also play a role in ROS signaling.
Collapse
|
38
|
Gruszka J, Pawlak A, Kruk J. Tocochromanols, plastoquinol, and other biological prenyllipids as singlet oxygen quenchers-determination of singlet oxygen quenching rate constants and oxidation products. Free Radic Biol Med 2008; 45:920-8. [PMID: 18634868 DOI: 10.1016/j.freeradbiomed.2008.06.025] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 06/05/2008] [Accepted: 06/23/2008] [Indexed: 11/18/2022]
Abstract
Singlet oxygen quenching rate constants for tocopherol and tocotrienol homologues have been determined in organic solvents of different polarities, as well as for other biological prenyllipids such as plastoquinol, ubiquinol, and alpha-tocopherolquinol. The obtained results showed that the quenching activity of tocochromanols was mainly due to the chromanol ring of the molecule and the activity increased with the number of the methyl groups in the ring and solvent polarity. Among prenylquinols, alpha-tocopherolquinol was the most active scavenger of singlet oxygen followed by ubiquinol and plastoquinol. The oxidation products of tocopherols were identified as 8a-hydroperoxy-tocopherones which are converted to the corresponding tocopherolquinones under acidic conditions. The primary oxidation products of prenylquinols, containing unsaturated side chains, were the corresponding prenylquinones that were further oxidized to hydroxyl side-chain derivatives. In the case of plastochromanol, the gamma-tocotrienol homologue found in some seed oils, mainly the hydroxyl derivatives were formed, although 8a-hydroperoxy-gamma-tocopherones were also formed to a minor extent, both from plastochromanol and from its hydroxyl, side-chain derivatives. The obtained results were discussed in terms of the activity of different prenyllipids as singlet oxygen scavengers in vivo.
Collapse
Affiliation(s)
- Jolanta Gruszka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | | | | |
Collapse
|
39
|
Fischer BB, Krieger-Liszkay A, Hideg É, Šnyrychová I, Wiesendanger M, Eggen RI. Role of singlet oxygen in chloroplast to nucleus retrograde signaling inChlamydomonas reinhardtii. FEBS Lett 2007; 581:5555-60. [DOI: 10.1016/j.febslet.2007.11.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 10/31/2007] [Accepted: 11/01/2007] [Indexed: 10/22/2022]
|
40
|
Glaeser J, Zobawa M, Lottspeich F, Klug G. Protein synthesis patterns reveal a complex regulatory response to singlet oxygen in Rhodobacter. J Proteome Res 2007; 6:2460-71. [PMID: 17536848 DOI: 10.1021/pr060624p] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Singlet oxygen (1O2) is a stress factor and signal in the facultative phototrophic bacterium Rhodobacter sphaeroides. In vivo protein labeling with L-[35S]-methionine and analysis by two-dimensional gel electrophoresis revealed that the synthesis of 61 proteins was changed in response to 1O2. After 1O2 treatment, protein synthesis patterns were distinct from those after H2O2 treatment but similar to those after high light exposure. This indicates regulatory mechanisms selective for different reactive oxygen species (ROS) and a response to light partly mediated by 1O2. Analysis of mutant strains support that the response to 1O2 is regulated mainly by rpoE (sigma E), but also a modulation of the sigma E dependent response by other factors and the existence of sigma E independent responses. The involvement of the RNA chaperon Hfq in the 1O2 response implies a role of small regulatory RNAs.
Collapse
Affiliation(s)
- Jens Glaeser
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.
| | | | | | | |
Collapse
|
41
|
Shao N, Krieger-Liszkay A, Schroda M, Beck CF. A reporter system for the individual detection of hydrogen peroxide and singlet oxygen: its use for the assay of reactive oxygen species produced in vivo. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:475-87. [PMID: 17376156 DOI: 10.1111/j.1365-313x.2007.03065.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A reporter system for the assay of reactive oxygen species (ROS) was developed in Chlamydomonas reinhardtii, a plant model organism well suited for the application of inhibitors and generators of various types of ROS. This system employs various HSP70A promoter segments fused to a Renilla reniformis luciferase gene as a reporter. Transformants with the complete HSP70A promoter were inducible by both hydrogen peroxide and singlet oxygen. Constructs that lacked upstream heat-shock elements (HSEs) were inducible by hydrogen peroxide, indicating that this induction does not require such HSEs. Rather, downstream elements located between positions -81 to -149 with respect to the translation start site appear to be involved. In contrast, upstream sequences are essential for the response to singlet oxygen. Thus, activation by singlet oxygen appears to require promoter elements that are different from those used by hydrogen peroxide. ROS generated endogenously by treatment of the alga with metronidazole, protoporphyrin IX, dinoterb or high light intensities were detected by this reporter system, and distinguished as production of hydrogen peroxide (metronidazole) and singlet oxygen (protoporphyrin IX, dinoterb, high light). This system thus makes it possible to test whether, under varying environmental conditions including the application of abiotic stress, hydrogen peroxide or singlet oxygen or both are produced.
Collapse
Affiliation(s)
- Ning Shao
- Faculty of Biology, Institute of Biology III, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | | | | | | |
Collapse
|
42
|
Trebst A. Inhibitors in the functional dissection of the photosynthetic electron transport system. PHOTOSYNTHESIS RESEARCH 2007; 92:217-24. [PMID: 17647089 DOI: 10.1007/s11120-007-9213-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 06/08/2007] [Indexed: 05/09/2023]
Abstract
The significance of inhibitors and artificial electron acceptor and donor systems as experimental tools for studying the photosynthetic system is described by reviewing early classical articles. The historical development in unravelling the role and sequence of electron carriers and energy conserving sites in the electron transport chain is acknowledged. Emphasis is given to inhibitors of the acceptor side of photosystem II and of the plastoquinol oxidation site in the cytochrome b6/f complex. Their role in regulatory processes under redox control is introduced.
Collapse
Affiliation(s)
- Achim Trebst
- Plant Biochemistry, Ruhr-University, 44780 Bochum, Germany.
| |
Collapse
|
43
|
Ledford HK, Chin BL, Niyogi KK. Acclimation to singlet oxygen stress in Chlamydomonas reinhardtii. EUKARYOTIC CELL 2007; 6:919-30. [PMID: 17435007 PMCID: PMC1951523 DOI: 10.1128/ec.00207-06] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In an aerobic environment, responding to oxidative cues is critical for physiological adaptation (acclimation) to changing environmental conditions. The unicellular alga Chlamydomonas reinhardtii was tested for the ability to acclimate to specific forms of oxidative stress. Acclimation was defined as the ability of a sublethal pretreatment with a reactive oxygen species to activate defense responses that subsequently enhance survival of that stress. C. reinhardtii exhibited a strong acclimation response to rose bengal, a photosensitizing dye that produces singlet oxygen. This acclimation was dependent upon photosensitization and occurred only when pretreatment was administered in the light. Shifting cells from low light to high light also enhanced resistance to singlet oxygen, suggesting an overlap in high-light and singlet oxygen response pathways. Microarray analysis of RNA levels indicated that a relatively small number of genes respond to sublethal levels of singlet oxygen. Constitutive overexpression of either of two such genes, a glutathione peroxidase gene and a glutathione S-transferase gene, was sufficient to enhance singlet oxygen resistance. Escherichia coli and Saccharomyces cerevisiae exhibit well-defined responses to reactive oxygen but did not acclimate to singlet oxygen, possibly reflecting the relative importance of singlet oxygen stress for photosynthetic organisms.
Collapse
Affiliation(s)
- Heidi K Ledford
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California-Berkeley, Berkeley, CA 94720-3102, USA
| | | | | |
Collapse
|
44
|
Abstract
Glutathione peroxidases (GPXs, EC 1.11.1.9) were first discovered in mammals as key enzymes involved in scavenging of activated oxygen species (AOS). Their efficient antioxidant activity depends on the presence of the rare amino-acid residue selenocysteine (SeCys) at the catalytic site. Nonselenium GPX-like proteins (NS-GPXs) with a Cys residue instead of SeCys have also been found in most organisms. As SeCys is important for GPX activity, the function of the NS-GPX can be questioned. Here, we highlight the evolutionary link between NS-GPX and seleno-GPX, particularly the evolution of the SeCys incorporation system. We then discuss what is known about the enzymatic activity and physiological functions of NS-GPX. Biochemical studies have shown that NS-GPXs are not true GPXs; notably they reduce AOS using reducing substrates other than glutathione, such as thioredoxin. We provide evidence that, in addition to their inefficient scavenging action, NS-GPXs act as AOS sensors in various signal-transduction pathways.
Collapse
|
45
|
Fischer BB, Wiesendanger M, Eggen RIL. Growth condition-dependent sensitivity, photodamage and stress response of Chlamydomonas reinhardtii exposed to high light conditions. PLANT & CELL PHYSIOLOGY 2006; 47:1135-45. [PMID: 16857695 DOI: 10.1093/pcp/pcj085] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Different substrate conditions, such as varying CO(2) concentrations or the presence of acetate, strongly influence the efficiency of photosynthesis in Chlamydomonas reinhardtii. Altered photosynthetic efficiencies affect the susceptibility of algae to the deleterious effects of high light stress, such as the production of reactive oxygen species (ROS) and PSII photodamage. In this study, we investigated the effect of high light on C. reinhardtii grown under photomixotrophy, i.e. in the presence of acetate, as well as under photoautotrophic growth conditions with either low or high CO(2) concentrations. Different parameters such as growth rate, chlorophyll bleaching, singlet oxygen generation, PSII photodamage and the total genomic stress response were analyzed. Although showing a similar degree of PSII photodamage, a much stronger singlet oxygen-specific response and a broader general stress response was observed in acetate and high CO(2)-supplemented cells compared with CO(2)-limited cells. These different photooxidative stress responses were correlated with the individual cellular PSII content and probably directly influenced the ROS production during exposure to high light. In addition, growth of high CO(2)-supplemented cells was more susceptible to high light stress compared with cells grown under CO(2) limitation. The growth of acetate-supplemented cultures, on the other hand, was less affected by high light treatment than cultures grown under high CO(2) concentrations, despite the similar cellular stress. This suggests that the production of ATP by mitochondrial acetate respiration protects the cells from the deleterious effects of high light stress, presumably by providing energy for an effective defense.
Collapse
Affiliation(s)
- Beat B Fischer
- Eawag, Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland
| | | | | |
Collapse
|
46
|
Brombacher K, Fischer BB, Rüfenacht K, Eggen RIL. The role of Yap1p and Skn7p-mediated oxidative stress response in the defence ofSaccharomyces cerevisiae against singlet oxygen. Yeast 2006; 23:741-50. [PMID: 16862604 DOI: 10.1002/yea.1392] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The production of the reactive oxygen species superoxide and hydrogen peroxide in Saccharomyces cerevisiae induces the expression of various defence genes involved in an oxidative stress response. Expression of many of these genes has been shown to be coordinated by two transcriptional regulators, Yap1p and Skn7p, either alone or in concert. Here, we investigated the role of the Yap1p and Skn7p-mediated stress response in the defence against singlet oxygen, a non-radical reactive oxygen species produced mainly by photosensitized reactions in illuminated cells. Both, a yap1 and skn7 mutant were highly sensitive to Rose Bengal, an exogenous photosensitizer producing singlet oxygen in the light. The expression of a Yap1p-dependent reporter gene was induced by increased singlet oxygen production, showing that singlet oxygen activates general oxidative stress response mechanisms required for the resistance against Rose Bengal treatment. This response was also slightly stimulated by light in the absence of the photosensitizer, possibly due to singlet oxygen production by endogenous photosensitizers. The expression pattern of four oxidative stress genes in a yap1, skn7 and wild-type strain and the sensitivity of the corresponding mutants exposed to different oxidative stress conditions proved a role of Yap1p and Skn7p in the defence against singlet oxygen. Similarities in the genetic responses against singlet oxygen and hydroperoxides suggest an overlap in the oxidative stress response against these reactive oxygen species.
Collapse
Affiliation(s)
- Katrin Brombacher
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Ueberlandstrasse 133, 8600 Dübendorf, Switzerland
| | | | | | | |
Collapse
|