1
|
Vu AH, Kang M, Wurlitzer J, Heinicke S, Li C, Wood JC, Grabe V, Buell CR, Caputi L, O’Connor SE. Quantitative Single-Cell Mass Spectrometry Provides a Highly Resolved Analysis of Natural Product Biosynthesis Partitioning in Plants. J Am Chem Soc 2024; 146:23891-23900. [PMID: 39138868 PMCID: PMC11363012 DOI: 10.1021/jacs.4c06336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Plants produce an extraordinary array of natural products (specialized metabolites). Notably, these structurally complex molecules are not evenly distributed throughout plant tissues but are instead synthesized and stored in specific cell types. Elucidating both the biosynthesis and function of natural products would be greatly facilitated by tracking the location of these metabolites at the cell-level resolution. However, detection, identification, and quantification of metabolites in single cells, particularly from plants, have remained challenging. Here, we show that we can definitively identify and quantify the concentrations of 16 molecules from four classes of natural products in individual cells of leaf, root, and petal of the medicinal plant Catharanthus roseus using a plate-based single-cell mass spectrometry method. We show that identical natural products show substantially different patterns of cell-type localization in different tissues. Moreover, we show that natural products are often found in a wide range of concentrations across a population of cells, with some natural products at concentrations of over 100 mM per cell. This single-cell mass spectrometry method provides a highly resolved picture of plant natural product biosynthesis partitioning at a cell-specific resolution.
Collapse
Affiliation(s)
- Anh Hai Vu
- Department
of Natural Product Biosynthesis, Max Planck
Institute for Chemical Ecology, Jena 07745, Germany
| | - Moonyoung Kang
- Department
of Natural Product Biosynthesis, Max Planck
Institute for Chemical Ecology, Jena 07745, Germany
| | - Jens Wurlitzer
- Department
of Natural Product Biosynthesis, Max Planck
Institute for Chemical Ecology, Jena 07745, Germany
| | - Sarah Heinicke
- Department
of Natural Product Biosynthesis, Max Planck
Institute for Chemical Ecology, Jena 07745, Germany
| | - Chenxin Li
- Center
for Applied Genetic Technologies, University
of Georgia, Athens, Georgia 30602, United States
- Department
of Crop and Soil Sciences, University of
Georgia, Athens, Georgia 30602, United
States
| | - Joshua C. Wood
- Center
for Applied Genetic Technologies, University
of Georgia, Athens, Georgia 30602, United States
| | - Veit Grabe
- Microscopic
Imaging Service, Max Planck Institute for
Chemical Ecology, Jena 07745, Germany
| | - C. Robin Buell
- Center
for Applied Genetic Technologies, University
of Georgia, Athens, Georgia 30602, United States
- Department
of Crop and Soil Sciences, University of
Georgia, Athens, Georgia 30602, United
States
- Institute
of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, Georgia 30602, United States
| | - Lorenzo Caputi
- Department
of Natural Product Biosynthesis, Max Planck
Institute for Chemical Ecology, Jena 07745, Germany
| | - Sarah E. O’Connor
- Department
of Natural Product Biosynthesis, Max Planck
Institute for Chemical Ecology, Jena 07745, Germany
| |
Collapse
|
2
|
Tenorio Berrío R, Verstaen K, Vandamme N, Pevernagie J, Achon I, Van Duyse J, Van Isterdael G, Saeys Y, De Veylder L, Inzé D, Dubois M. Single-cell transcriptomics sheds light on the identity and metabolism of developing leaf cells. PLANT PHYSIOLOGY 2022; 188:898-918. [PMID: 34687312 PMCID: PMC8825278 DOI: 10.1093/plphys/kiab489] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/05/2021] [Indexed: 05/08/2023]
Abstract
As the main photosynthetic instruments of vascular plants, leaves are crucial and complex plant organs. A strict organization of leaf mesophyll and epidermal cell layers orchestrates photosynthesis and gas exchange. In addition, water and nutrients for leaf growth are transported through the vascular tissue. To establish the single-cell transcriptomic landscape of these different leaf tissues, we performed high-throughput transcriptome sequencing of individual cells isolated from young leaves of Arabidopsis (Arabidopsis thaliana) seedlings grown in two different environmental conditions. The detection of approximately 19,000 different transcripts in over 1,800 high-quality leaf cells revealed 14 cell populations composing the young, differentiating leaf. Besides the cell populations comprising the core leaf tissues, we identified subpopulations with a distinct identity or metabolic activity. In addition, we proposed cell-type-specific markers for each of these populations. Finally, an intuitive web tool allows for browsing the presented dataset. Our data present insights on how the different cell populations constituting a developing leaf are connected via developmental, metabolic, or stress-related trajectories.
Collapse
Affiliation(s)
- Rubén Tenorio Berrío
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Kevin Verstaen
- Department of Applied Mathematics, Ghent University, Computer Science and Statistics, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Niels Vandamme
- Department of Applied Mathematics, Ghent University, Computer Science and Statistics, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Julie Pevernagie
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ignacio Achon
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Julie Van Duyse
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Gert Van Isterdael
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Yvan Saeys
- Department of Applied Mathematics, Ghent University, Computer Science and Statistics, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Author for communication:
| | - Marieke Dubois
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
3
|
St-Pierre B, Mahroug S, Guirimand G, Courdavault V, Burlat V. RNA In Situ Hybridization of Paraffin Sections to Characterize the Multicellular Compartmentation of Plant Secondary Metabolisms. Methods Mol Biol 2022; 2505:1-32. [PMID: 35732933 DOI: 10.1007/978-1-0716-2349-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As a mean to cope with their potential cytotoxicity for the host plant, secondary metabolisms are often sequestered within specific cell types. This spatial organization may reach complex sequential multicellular compartmentation. The most complex example so far characterized is the sequential multicellular biosynthesis of the anticancer monoterpene indole alkaloids in Catharanthus roseus. RNA in situ hybridization has proven a key technological approach to unravel this complex spatial organization. Pioneer work in 1999 discovered the involvement of epidermis and laticifer/idioblasts in the intermediate and late steps of the pathway, respectively. The localization of the early steps of the pathway to the internal phloem-associated parenchyma later came to complete the three-tissular block organization of the pathway. Since then, RNA in situ hybridization was routinely used to map the gene expression profile of most of the nearly 30 genes involved in this pathway. We introduce here a comparison of advantages and drawbacks of in situ hybridization and more popular promoter: GUS strategies. Two main advantages of in situ hybridization are the suitability to any plant species and the direct localization of transcripts rather than the localization of a promoter activity. We provide a step-by-step protocol describing every details allowing to reach a medium throughput including riboprobe synthesis, paraffin-embedded plant tissue array preparation, prehybridization, in situ hybridization, stringent washing and immunodetection of hybridized probes, and imaging steps. This should be helpful for new comers willing to domesticate the technique. This protocol has no species limitation and is particularly adapted to the increasingly studied model, nonmodel species, nonamenable to promoter::GUS transformation, such as C. roseus.
Collapse
Affiliation(s)
- Benoit St-Pierre
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France
| | - Samira Mahroug
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France
| | - Gregory Guirimand
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France
| | - Vincent Courdavault
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France
| | - Vincent Burlat
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Toulouse, France.
| |
Collapse
|
4
|
Biosynthesis and Modulation of Terpenoid Indole Alkaloids in Catharanthus roseus: A Review of Targeting Genes and Secondary Metabolites. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The medicinal plant C. roseus synthesizes biologically active alkaloids via the terpenoid indole alkaloid (TIAs) biosynthetic pathway. Most of these alkaloids have high therapeutic value, such as vinblastine and vincristine. Plant signaling components, plant hormones, precursors, growth hormones, prenylated proteins, and transcriptomic factors regulate the complex networks of TIA biosynthesis. For many years, researchers have been evaluating the scientific value of the TIA biosynthetic pathway and its potential in commercial applications for market opportunities. Metabolic engineering has revealed the major blocks in metabolic pathways regulated at the molecular level, unknown structures, metabolites, genes, enzyme expression, and regulatory genes. Conceptually, this information is necessary to create transgenic plants and microorganisms for the commercial production of high-value dimer alkaloids, such as vinca alkaloids, vinblastine, and vincristine In this review, we present current knowledge of the regulatory mechanisms of these components in the C. roseus TIA pathway, from genes to metabolites.
Collapse
|
5
|
Guirimand G, Guihur A, Perello C, Phillips M, Mahroug S, Oudin A, Dugé de Bernonville T, Besseau S, Lanoue A, Giglioli-Guivarc’h N, Papon N, St-Pierre B, Rodríguez-Concepcíon M, Burlat V, Courdavault V. Cellular and Subcellular Compartmentation of the 2 C-Methyl-D-Erythritol 4-Phosphate Pathway in the Madagascar Periwinkle. PLANTS (BASEL, SWITZERLAND) 2020; 9:E462. [PMID: 32272573 PMCID: PMC7238098 DOI: 10.3390/plants9040462] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022]
Abstract
The Madagascar periwinkle (Catharanthus roseus) synthesizes the highly valuable monoterpene indole alkaloids (MIAs) through a long metabolic route initiated by the 2C-methyl-D-erythritol 4-phosphate (MEP) pathway. In leaves, a complex compartmentation of the MIA biosynthetic pathway occurs at both the cellular and subcellular levels, notably for some gene products of the MEP pathway. To get a complete overview of the pathway organization, we cloned four genes encoding missing enzymes involved in the MEP pathway before conducting a systematic analysis of transcript distribution and protein subcellular localization. RNA in situ hybridization revealed that all MEP pathway genes were coordinately and mainly expressed in internal phloem-associated parenchyma of young leaves, reinforcing the role of this tissue in MIA biosynthesis. At the subcellular level, transient cell transformation and expression of fluorescent protein fusions showed that all MEP pathway enzymes were targeted to plastids. Surprisingly, two isoforms of 1-deoxy-D-xylulose 5-phosphate synthase and 1-deoxy-D-xylulose 5-phosphate reductoisomerase initially exhibited an artifactual aggregated pattern of localization due to high protein accumulation. Immunogold combined with transmission electron microscopy, transient transformations performed with a low amount of transforming DNA and fusion/deletion experiments established that both enzymes were rather diffuse in stroma and stromules of plastids as also observed for the last six enzymes of the pathway. Taken together, these results provide new insights into a potential role of stromules in enhancing MIA precursor exchange with other cell compartments to favor metabolic fluxes towards the MIA biosynthesis.
Collapse
Affiliation(s)
- Grégory Guirimand
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
- Graduate School of Science, Technology & Innovation, Kobe University, Kobe 657-8501, Japan
| | - Anthony Guihur
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1007 Lausanne, Switzerland
| | - Catalina Perello
- Program of Plant Metabolism and Metabolic Engineering, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain; (C.P.); (M.R.-C.)
| | - Michael Phillips
- Department of Biology, University of Toronto–Mississauga, Mississauga, 3359 Mississauga Road, ON L5L 1C6, Canada;
| | - Samira Mahroug
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
- Department of Environment Sciences, University of Sidi-Bel-Abbes, 22000 Sidi Bel Abbès, Algeria
| | - Audrey Oudin
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
| | - Thomas Dugé de Bernonville
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
| | - Arnaud Lanoue
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
| | - Nathalie Giglioli-Guivarc’h
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
| | - Nicolas Papon
- Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, Université d’Angers, UNIV. Brest, F-49333 Angers, France;
| | - Benoit St-Pierre
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
| | - Manuel Rodríguez-Concepcíon
- Program of Plant Metabolism and Metabolic Engineering, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain; (C.P.); (M.R.-C.)
| | - Vincent Burlat
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France;
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
| |
Collapse
|
6
|
Yamamoto K, Takahashi K, Caputi L, Mizuno H, Rodriguez-Lopez CE, Iwasaki T, Ishizaki K, Fukaki H, Ohnishi M, Yamazaki M, Masujima T, O'Connor SE, Mimura T. The complexity of intercellular localisation of alkaloids revealed by single-cell metabolomics. THE NEW PHYTOLOGIST 2019; 224:848-859. [PMID: 31436868 DOI: 10.1111/nph.16138] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/19/2019] [Indexed: 05/27/2023]
Abstract
Catharanthus roseus is a medicinal plant well known for producing bioactive compounds such as vinblastine and vincristine, which are classified as terpenoid indole alkaloids (TIAs). Although the leaves of this plant are the main source of these antitumour drugs, much remains unknown on how TIAs are biosynthesised from a central precursor, strictosidine, to various TIAs in planta. Here, we have succeeded in showing, for the first time in leaf tissue of C. roseus, cell-specific TIAs localisation and accumulation with 10 μm spatial resolution Imaging mass spectrometry (Imaging MS) and live single-cell mass spectrometry (single-cell MS). These metabolomic studies revealed that most TIA precursors (iridoids) are localised in the epidermal cells, but major TIAs including serpentine and vindoline are localised instead in idioblast cells. Interestingly, the central TIA intermediate strictosidine also accumulates in both epidermal and idioblast cells of C. roseus. Moreover, we also found that vindoline accumulation increases in laticifer cells as the leaf expands. These discoveries highlight the complexity of intercellular localisation in plant specialised metabolism.
Collapse
Affiliation(s)
- Kotaro Yamamoto
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Katsutoshi Takahashi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Koutou-ku, Tokyo, 135-0064, Japan
| | - Lorenzo Caputi
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Hajime Mizuno
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Shizuoka, 422-8526, Japan
| | - Carlos E Rodriguez-Lopez
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Tetsushi Iwasaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Kimitsune Ishizaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Miwa Ohnishi
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Mami Yamazaki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, 263-8522, Japan
| | - Tsutomu Masujima
- Quantitative Biology Centre (QBiC), RIKEN, Suita, Osaka, 565-0874, Japan
| | - Sarah E O'Connor
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Tetsuro Mimura
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
7
|
Medium-Throughput RNA In Situ Hybridization of Serial Sections from Paraffin-Embedded Tissue Microarrays. Methods Mol Biol 2019. [PMID: 30945181 DOI: 10.1007/978-1-4939-9045-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
(m)RNA spatiotemporal pattern of distribution is of key importance to decipher gene function. In this post-genomic era, numerous transcriptomic studies are made publicly available, sometimes reaching a tissular resolution and even more rarely the cellular level. This "one tissue-numerous genes" information can be completed by the reverse "one gene-numerous tissues" picture through traditional RNA in situ hybridization (ISH). Here, we present a method including (1) principles of transcriptomic data mining to be performed prior and following ISH and (2) a detailed step-by-step medium-throughput ISH protocol performed on serial sections from tissue microarrays. In a recent work, we implemented this method for 39 selected genes studied by medium-throughput ISH complementing an existing tissue-specific transcriptomic dataset focused on the model plant Arabidopsis seed development kinetics (Francoz et al., Scientific Reports 6:24644, 2016). This full integration of ISH and transcriptomics demonstrated the complementarity of both techniques in terms of tissue/cell specificity, signal sensitivity, gene specificity, and spatiotemporal resolution.
Collapse
|
8
|
Mohana Kumara P, Uma Shaanker R, Pradeep T. UPLC and ESI-MS analysis of metabolites of Rauvolfia tetraphylla L. and their spatial localization using desorption electrospray ionization (DESI) mass spectrometric imaging. PHYTOCHEMISTRY 2019; 159:20-29. [PMID: 30562679 DOI: 10.1016/j.phytochem.2018.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 05/22/2023]
Abstract
Rauvolfia tetraphylla L. (family Apocynaceae), often referred to as the wild snakeroot plant, is an important medicinal plant and produces a number of indole alkaloids in its seeds and roots. The plant is often used as a substitute for Ravuolfia serpentine (L.) Benth. ex Kurz known commonly as the Indian snakeroot plant or sarphagandha in the preparation of Ayurvedic formulations for a range of diseases including hypertension. In this study, we examine the spatial localization of the various indole alkaloids in developing fruits and plants of R. tetraphylla using desorption electrospray ionization mass spectrometry imaging (DESI-MSI). A semi-quantitative analysis of the various indole alkaloids was performed using UPLC-ESI/MS. DESI-MS images showed that the distribution of ajmalcine, yohimbine, demethyl serpentine and mitoridine are largely localized in the fruit coat while that for ajmaline is restricted to mesocarp of the fruit. At a whole plant level, the ESI-MS intensities of many of the ions were highest in the roots and lesser in the shoot region. Within the root tissue, except sarpagine and ajmalcine, all other indole alkaloids occurred in the epidermal and cortex tissues. In leaves, only serpentine, ajmalcine, reserpiline and yohimbine were present. Serpentine was restricted to the petiolar region of leaves. Principal component analysis based on the presence of the indole alkaloids, clearly separated the four tissues (stem, leaves, root and fruits) into distinct clusters. In summary, the DESI-MSI results indicated a clear tissue localization of the various indole alkaloids, in fruits, leaves and roots of R. tetraphylla. While it is not clear of how such localization is attained, we discuss the possible pathways of indole alkaloid biosynthesis and translocation during fruit and seedling development in R. tetraphylla. We also briefly discuss the functional significance of the spatial patterns in distribution of metabolites.
Collapse
Affiliation(s)
- P Mohana Kumara
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India; Center for Ayurveda Biology and Holistic Nutrition, The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, 560064, India.
| | - R Uma Shaanker
- School of Ecology and Conservation, Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru, 560065, India
| | - T Pradeep
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
9
|
Sakai K, Taconnat L, Borrega N, Yansouni J, Brunaud V, Paysant-Le Roux C, Delannoy E, Martin Magniette ML, Lepiniec L, Faure JD, Balzergue S, Dubreucq B. Combining laser-assisted microdissection (LAM) and RNA-seq allows to perform a comprehensive transcriptomic analysis of epidermal cells of Arabidopsis embryo. PLANT METHODS 2018; 14:10. [PMID: 29434651 PMCID: PMC5797369 DOI: 10.1186/s13007-018-0275-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 01/15/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Genome-wide characterization of tissue- or cell-specific gene expression is a recurrent bottleneck in biology. We have developed a sensitive approach based on ultra-low RNA sequencing coupled to laser assisted microdissection for analyzing different tissues of the small Arabidopsis embryo. METHODS AND RESULTS We first characterized the number of genes detected according to the quantity of tissue yield and total RNA extracted. Our results revealed that as low as 0.02 mm2 of tissue and 50 pg of total RNA can be used without compromising the number of genes detected. The optimised protocol was used to compare the epidermal versus mesophyll cell transcriptomes of cotyledons at the torpedo-shaped stage of embryo development. The approach was validated by the recovery of well-known epidermal genes such AtML1 or AtPDF2 and genes involved in flavonoid and cuticular waxes pathways. Moreover, the interest and sensitivity of this approach were highlighted by the characterization of several transcription factors preferentially expressed in epidermal cells. CONCLUSION This technical advance unlocks some current limitations of transcriptomic analyses and allows to investigate further and efficiently new biological questions for which only a very small amounts of cells need to be isolated. For instance, it paves the way to increasing the spatial accuracy of regulatory networks in developing small embryo of Arabidopsis or other plant tissues.
Collapse
Affiliation(s)
- Kaori Sakai
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Ludivine Taconnat
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Nero Borrega
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Jennifer Yansouni
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Véronique Brunaud
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Christine Paysant-Le Roux
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Etienne Delannoy
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Marie-Laure Martin Magniette
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
- UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Jean Denis Faure
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Sandrine Balzergue
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
- Present Address: IRHS, Université d’Angers, INRA, AGROCAMPUS-Ouest, SFR4207 QUASAV, Université Bretagne Loire, 49045 Angers, France
| | - Bertrand Dubreucq
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| |
Collapse
|
10
|
Demessie Z, Woolfson KN, Yu F, Qu Y, De Luca V. The ATP binding cassette transporter, VmTPT2/VmABCG1, is involved in export of the monoterpenoid indole alkaloid, vincamine in Vinca minor leaves. PHYTOCHEMISTRY 2017; 140:118-124. [PMID: 28478314 DOI: 10.1016/j.phytochem.2017.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/21/2017] [Accepted: 04/23/2017] [Indexed: 06/07/2023]
Abstract
Vinca minor is a herbaceous plant from the Apocynaceae family known to produce over 50 monoterpene indole alkaloids (MIAs). These include several biologically active MIAs that have a range of pharmaceutical activities. The present study shows that the MIAs, vincamine, akuammicine, minovincinine, lochnericine and vincadifformine tend to be secreted on V. minor leaf surfaces. A secretion mechanism of MIAs, previously described for Catharanthus roseus, appears to be mediated by a member (CrTPT2) of the pleiotropic drug resistance ABC transporter subfamily. The molecular cloning of an MIA transporter (VmTPT2/VmABCG1) that is predominantly expressed in V. minor leaves was functionally characterized in yeast and established it as an MIA efflux transporter. The similar function of VmTPT2/VmABCG1 to CrTPT2 increases the likelihood that this MIA transporter family may have co-evolved within members of Apocynaceae family to secrete selected MIAs and to regulate leaf MIA surface chemistry.
Collapse
Affiliation(s)
- Zerihun Demessie
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Canada.
| | - Kathlyn N Woolfson
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Canada.
| | - Fang Yu
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Canada.
| | - Yang Qu
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Canada.
| | - Vincenzo De Luca
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Canada.
| |
Collapse
|
11
|
Complementarity of medium-throughput in situ RNA hybridization and tissue-specific transcriptomics: case study of Arabidopsis seed development kinetics. Sci Rep 2016; 6:24644. [PMID: 27095274 PMCID: PMC4837347 DOI: 10.1038/srep24644] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/29/2016] [Indexed: 12/28/2022] Open
Abstract
The rationale of this study is to compare and integrate two heterologous datasets intended to unravel the spatiotemporal specificities of gene expression in a rapidly growing and complex organ. We implemented medium-throughput RNA in situ hybridization (ISH) for 39 genes mainly corresponding to cell wall proteins for which we have particular interest, selected (i) on their sequence identity (24 class III peroxidase multigenic family members and 15 additional genes used as positive controls) and (ii) on their expression levels in a publicly available Arabidopsis thaliana seed tissue-specific transcriptomics study. The specificity of the hybridization signals was carefully studied, and ISH results obtained for the 39 selected genes were systematically compared with tissue-specific transcriptomics for 5 seed developmental stages. Integration of results illustrates the complementarity of both datasets. The tissue-specific transcriptomics provides high-throughput possibilities whereas ISH provides high spatial resolution. Moreover, depending on the tissues and the developmental stages considered, one or the other technique appears more sensitive than the other. For each tissue/developmental stage, we finally determined tissue-specific transcriptomic threshold values compatible with the spatiotemporally-specific detection limits of ISH for lists of hundreds to tens-of-thousands of genes.
Collapse
|
12
|
Cell-specific localization of alkaloids in Catharanthus roseus stem tissue measured with Imaging MS and Single-cell MS. Proc Natl Acad Sci U S A 2016; 113:3891-6. [PMID: 27001858 DOI: 10.1073/pnas.1521959113] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Catharanthus roseus (L.) G. Don is a medicinal plant well known for producing antitumor drugs such as vinblastine and vincristine, which are classified as terpenoid indole alkaloids (TIAs). The TIA metabolic pathway in C. roseus has been extensively studied. However, the localization of TIA intermediates at the cellular level has not been demonstrated directly. In the present study, the metabolic pathway of TIA in C. roseus was studied with two forefront metabolomic techniques, that is, Imaging mass spectrometry (MS) and live Single-cell MS, to elucidate cell-specific TIA localization in the stem tissue. Imaging MS indicated that most TIAs localize in the idioblast and laticifer cells, which emit blue fluorescence under UV excitation. Single-cell MS was applied to four different kinds of cells [idioblast (specialized parenchyma cell), laticifer, parenchyma, and epidermal cells] in the stem longitudinal section. Principal component analysis of Imaging MS and Single-cell MS spectra of these cells showed that similar alkaloids accumulate in both idioblast cell and laticifer cell. From MS/MS analysis of Single-cell MS spectra, catharanthine, ajmalicine, and strictosidine were found in both cell types in C. roseus stem tissue, where serpentine was also accumulated. Based on these data, we discuss the significance of TIA synthesis and accumulation in the idioblast and laticifer cells of C. roseus stem tissue.
Collapse
|
13
|
Belkheir AK, Gaid M, Liu B, Hänsch R, Beerhues L. Benzophenone Synthase and Chalcone Synthase Accumulate in the Mesophyll of Hypericum perforatum Leaves at Different Developmental Stages. FRONTIERS IN PLANT SCIENCE 2016; 7:921. [PMID: 27446151 PMCID: PMC4926534 DOI: 10.3389/fpls.2016.00921] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/10/2016] [Indexed: 05/07/2023]
Abstract
The active medicinal constituents in Hypericum perforatum, used to treat depression and skin irritation, include flavonoids and xanthones. The carbon skeletons of these compounds are formed by chalcone synthase (CHS) and benzophenone synthase (BPS), respectively. Polyclonal antisera were raised against the polyketide synthases from Hypericum androsaemum and their IgG fractions were isolated. Immunoblotting and immunotitration were used to test the IgGs for crossreactivity and monospecificity in H. perforatum leaf protein extract. Immunofluorescence localization revealed that both CHS and BPS are located in the mesophyll. The maximum fluorescence levels were observed in approx. 0.5 and 1 cm long leaves, respectively. The fluorescence intensity observed for CHS significantly exceeded that for BPS. Using histochemical staining, flavonoids were detected in the mesophyll, indicating that the sites of biosynthesis and accumulation coincide. Our results help understand the biosynthesis and underlying regulation of active H. perforatum constituents.
Collapse
Affiliation(s)
- Asma K. Belkheir
- Institute of Pharmaceutical Biology, Technische Universität BraunschweigBraunschweig, Germany
| | - Mariam Gaid
- Institute of Pharmaceutical Biology, Technische Universität BraunschweigBraunschweig, Germany
| | - Benye Liu
- Institute of Pharmaceutical Biology, Technische Universität BraunschweigBraunschweig, Germany
| | - Robert Hänsch
- Institute of Plant Biology, Technische Universität BraunschweigBraunschweig, Germany
| | - Ludger Beerhues
- Institute of Pharmaceutical Biology, Technische Universität BraunschweigBraunschweig, Germany
- *Correspondence: Ludger Beerhues,
| |
Collapse
|
14
|
Dugé de Bernonville T, Clastre M, Besseau S, Oudin A, Burlat V, Glévarec G, Lanoue A, Papon N, Giglioli-Guivarc'h N, St-Pierre B, Courdavault V. Phytochemical genomics of the Madagascar periwinkle: Unravelling the last twists of the alkaloid engine. PHYTOCHEMISTRY 2015; 113:9-23. [PMID: 25146650 DOI: 10.1016/j.phytochem.2014.07.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 05/12/2023]
Abstract
The Madagascar periwinkle produces a large palette of Monoterpenoid Indole Alkaloids (MIAs), a class of complex alkaloids including some of the most valuable plant natural products with precious therapeutical values. Evolutionary pressure on one of the hotspots of biodiversity has obviously turned this endemic Malagasy plant into an innovative alkaloid engine. Catharanthus is a unique taxon producing vinblastine and vincristine, heterodimeric MIAs with complex stereochemistry, and also manufactures more than 100 different MIAs, some shared with the Apocynaceae, Loganiaceae and Rubiaceae members. For over 60 years, the quest for these powerful anticancer drugs has inspired biologists, chemists, and pharmacists to unravel the chemistry, biochemistry, therapeutic activity, cell and molecular biology of Catharanthus roseus. Recently, the "omics" technologies have fuelled rapid progress in deciphering the last secret of strictosidine biosynthesis, the central precursor opening biosynthetic routes to several thousand MIA compounds. Dedicated C. roseus transcriptome, proteome and metabolome databases, comprising organ-, tissue- and cell-specific libraries, and other phytogenomic resources, were developed for instance by PhytoMetaSyn, Medicinal Plant Genomic Resources and SmartCell consortium. Tissue specific library screening, orthology comparison in species with or without MIA-biochemical engines, clustering of gene expression profiles together with various functional validation strategies, largely contributed to enrich the toolbox for plant synthetic biology and metabolic engineering of MIA biosynthesis.
Collapse
Affiliation(s)
- Thomas Dugé de Bernonville
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Marc Clastre
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Sébastien Besseau
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Audrey Oudin
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Vincent Burlat
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France; CNRS, UMR 5546, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France
| | - Gaëlle Glévarec
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Arnaud Lanoue
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Nicolas Papon
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | | | - Benoit St-Pierre
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Vincent Courdavault
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France.
| |
Collapse
|
15
|
Munkert J, Pollier J, Miettinen K, Van Moerkercke A, Payne R, Müller-Uri F, Burlat V, O'Connor SE, Memelink J, Kreis W, Goossens A. Iridoid synthase activity is common among the plant progesterone 5β-reductase family. MOLECULAR PLANT 2015; 8:136-52. [PMID: 25578278 DOI: 10.1016/j.molp.2014.11.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/15/2014] [Indexed: 05/21/2023]
Abstract
Catharanthus roseus, the Madagascar periwinkle, synthesizes bioactive monoterpenoid indole alkaloids, including the anti-cancer drugs vinblastine and vincristine. The monoterpenoid branch of the alkaloid pathway leads to the secoiridoid secologanin and involves the enzyme iridoid synthase (IS), a member of the progesterone 5β-reductase (P5βR) family. IS reduces 8-oxogeranial to iridodial. Through transcriptome mining, we show that IS belongs to a family of six C. roseus P5βR genes. Characterization of recombinant CrP5βR proteins demonstrates that all but CrP5βR3 can reduce progesterone and thus can be classified as P5βRs. Three of them, namely CrP5βR1, CrP5βR2, and CrP5βR4, can also reduce 8-oxogeranial, pointing to a possible redundancy with IS (corresponding to CrP5βR5) in secoiridoid synthesis. In-depth functional analysis by subcellular protein localization, gene expression analysis, in situ hybridization, and virus-induced gene silencing indicate that besides IS, CrP5βR4 may also participate in secoiridoid biosynthesis. We cloned a set of P5βR genes from angiosperm plant species not known to produce iridoids and demonstrate that the corresponding recombinant proteins are also capable of using 8-oxogeranial as a substrate. This suggests that IS activity is intrinsic to angiosperm P5βR proteins and has evolved early during evolution.
Collapse
Affiliation(s)
- Jennifer Munkert
- Department of Biology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Jacob Pollier
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Karel Miettinen
- Sylvius Laboratory, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Alex Van Moerkercke
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Richard Payne
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
| | - Frieder Müller-Uri
- Department of Biology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Vincent Burlat
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France; CNRS, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Sarah E O'Connor
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
| | - Johan Memelink
- Sylvius Laboratory, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Wolfgang Kreis
- Department of Biology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium.
| |
Collapse
|
16
|
Courdavault V, Papon N, Clastre M, Giglioli-Guivarc'h N, St-Pierre B, Burlat V. A look inside an alkaloid multisite plant: the Catharanthus logistics. CURRENT OPINION IN PLANT BIOLOGY 2014; 19:43-50. [PMID: 24727073 DOI: 10.1016/j.pbi.2014.03.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/14/2014] [Accepted: 03/15/2014] [Indexed: 05/12/2023]
Abstract
Environmental pressures forced plants to diversify specialized metabolisms to accumulate noxious molecules such as alkaloids constituting one of the largest classes of defense metabolites. Catharanthus roseus produces monoterpene indole alkaloids via a highly elaborated biosynthetic pathway whose characterization greatly progressed with the recent expansion of transcriptomic resources. The complex architecture of this pathway, sequentially distributed in at least four cell types and further compartmentalized into several organelles, involves partially identified inter-cellular and intra-cellular translocation events acting as potential key-regulators of metabolic fluxes. The description of this spatial organization and the inherent secretion and sequestration of metabolites not only provide new insight into alkaloid cell biology and its involvement in plant defense processes but also present new biotechnological challenges for synthetic biology.
Collapse
Affiliation(s)
- Vincent Courdavault
- Université François-Rabelais de Tours, EA2106 'Biomolécules et Biotechnologies Végétales', Tours, France.
| | - Nicolas Papon
- Université François-Rabelais de Tours, EA2106 'Biomolécules et Biotechnologies Végétales', Tours, France
| | - Marc Clastre
- Université François-Rabelais de Tours, EA2106 'Biomolécules et Biotechnologies Végétales', Tours, France
| | | | - Benoit St-Pierre
- Université François-Rabelais de Tours, EA2106 'Biomolécules et Biotechnologies Végétales', Tours, France
| | - Vincent Burlat
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, Auzeville, F-31326 Castanet-Tolosan, France; CNRS, UMR 5546, BP 42617, Auzeville, F-31326 Castanet-Tolosan, France
| |
Collapse
|
17
|
Miettinen K, Dong L, Navrot N, Schneider T, Burlat V, Pollier J, Woittiez L, van der Krol S, Lugan R, Ilc T, Verpoorte R, Oksman-Caldentey KM, Martinoia E, Bouwmeester H, Goossens A, Memelink J, Werck-Reichhart D. The seco-iridoid pathway from Catharanthus roseus. Nat Commun 2014; 5:3606. [PMID: 24710322 PMCID: PMC3992524 DOI: 10.1038/ncomms4606] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 03/10/2014] [Indexed: 12/18/2022] Open
Abstract
The (seco)iridoids and their derivatives, the monoterpenoid indole alkaloids (MIAs), form two large families of plant-derived bioactive compounds with a wide spectrum of high-value pharmacological and insect-repellent activities. Vinblastine and vincristine, MIAs used as anticancer drugs, are produced by Catharanthus roseus in extremely low levels, leading to high market prices and poor availability. Their biotechnological production is hampered by the fragmentary knowledge of their biosynthesis. Here we report the discovery of the last four missing steps of the (seco)iridoid biosynthesis pathway. Expression of the eight genes encoding this pathway, together with two genes boosting precursor formation and two downstream alkaloid biosynthesis genes, in an alternative plant host, allows the heterologous production of the complex MIA strictosidine. This confirms the functionality of all enzymes of the pathway and highlights their utility for synthetic biology programmes towards a sustainable biotechnological production of valuable (seco)iridoids and alkaloids with pharmaceutical and agricultural applications.
Collapse
Affiliation(s)
- Karel Miettinen
- Sylvius Laboratory, Institute of Biology Leiden, Leiden University, Sylviusweg 72, PO Box 9505, Leiden 2300 RA, The Netherlands
- These authors contributed equally to this work
| | - Lemeng Dong
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
- These authors contributed equally to this work
| | - Nicolas Navrot
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 28 rue Goethe, Strasbourg 67000, France
- These authors contributed equally to this work
| | - Thomas Schneider
- Institute of Plant Biology, University Zurich, Zollikerstrasse 107, Zurich CH-8008, Switzerland
- Present address: Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchatel 2000, Switzerland
| | - Vincent Burlat
- CNRS; UMR 5546, Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617 Auzeville, Castanet-Tolosan F-31326, France
| | - Jacob Pollier
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, Gent B-9052, Belgium
| | - Lotte Woittiez
- Institute of Plant Biology, University Zurich, Zollikerstrasse 107, Zurich CH-8008, Switzerland
- Present address: Plant Production Systems Group, Wageningen University, P.O. Box 430, Wageningen 6700 AK, The Netherlands
| | - Sander van der Krol
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Raphaël Lugan
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 28 rue Goethe, Strasbourg 67000, France
| | - Tina Ilc
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 28 rue Goethe, Strasbourg 67000, France
| | - Robert Verpoorte
- Sylvius Laboratory, Institute of Biology Leiden, Leiden University, Sylviusweg 72, PO Box 9505, Leiden 2300 RA, The Netherlands
| | - Kirsi-Marja Oksman-Caldentey
- Industrial Biotechnology, VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT (Espoo), Finland
| | - Enrico Martinoia
- Institute of Plant Biology, University Zurich, Zollikerstrasse 107, Zurich CH-8008, Switzerland
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Alain Goossens
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, Gent B-9052, Belgium
| | - Johan Memelink
- Sylvius Laboratory, Institute of Biology Leiden, Leiden University, Sylviusweg 72, PO Box 9505, Leiden 2300 RA, The Netherlands
| | - Danièle Werck-Reichhart
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 28 rue Goethe, Strasbourg 67000, France
| |
Collapse
|
18
|
Purwar S, Sundaram S, Sinha S, Gupta A, Dobriyall N, Kumar A. Expression and in silico characterization of Phenylalanine ammonium lyase against karnal bunt (Tilletia indica) in wheat (Triticum aestivum). Bioinformation 2013; 9:1013-8. [PMID: 24497728 PMCID: PMC3910357 DOI: 10.6026/97320630091013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/15/2013] [Indexed: 11/23/2022] Open
Abstract
To investigate the lignifications process and its physiological significance under Karnal Bunt (KB), the changes in enzymes responsible for lignifications likes, phenylalanine ammonia lyase (PAL), were determined in resistant (HD-29) and susceptible genotype (WH-542) of wheat during different developmental stages. The PAL gene was cloned and sequenced. The expression of PAL gene was measured by means of semi-quantitative RT-PCR. The enzyme was expressed constitutively in both the susceptible and resistant genotype. However, the activity was higher in all the developmental stages of resistant genotype, indicating that this genotype has a significant higher basal level of these enzymes as compared to the susceptible line and could be used as marker(s) to define KB resistance. The activity of PAL was significantly higher in WSv stage (Z=16). Structural comparisons based on alignments of all the protein sequences using the clustal W program and searches for conserved motifs using the MEME program have revealed broad conservation of main motifs characteristic of the plant PAL. MSA and phylogenetic analyses of different plants PAL demonstrate that all PAL cluster divided in to two main cluster. The PAL also possesses a specific consensus sequences [GS]- [STG]-[LIVM]-[STG]-[SAC]-S-G-[DH]-L-x-[PN]-L-[SA]-x(2,3)-[SAGVTL]. The pathway might be associated with the enhancement of structural defense barrier due to lignifications of cell wall as evident from the enhanced synthesis of lignin in all the stages of resistant genotype. Our results clearly indicate the possible role of enzymes of Phenyl propanoid pathway metabolism provides genotype and stage dependant structural barrier resistance in wheat against KB.
Collapse
Affiliation(s)
- Shalini Purwar
- Center for Biotechnology, Nehru Science Center, University of Allahabad, Allahabad, India
| | - Shanthy Sundaram
- Center for Biotechnology, Nehru Science Center, University of Allahabad, Allahabad, India
| | - Sukrat Sinha
- Center for Biotechnology, Nehru Science Center, University of Allahabad, Allahabad, India
| | - Ankit Gupta
- Center for Biotechnology, Nehru Science Center, University of Allahabad, Allahabad, India
| | - Neha Dobriyall
- Center for Biotechnology, Nehru Science Center, University of Allahabad, Allahabad, India
| | - Anil Kumar
- Department of Molecular Biology & Genetic Engineering, GBPUA & T, Pantnagar, India
| |
Collapse
|
19
|
Besseau S, Kellner F, Lanoue A, Thamm AM, Salim V, Schneider B, Geu-Flores F, Höfer R, Guirimand G, Guihur A, Oudin A, Glevarec G, Foureau E, Papon N, Clastre M, Giglioli-Guivarc’h N, St-Pierre B, Werck-Reichhart D, Burlat V, De Luca V, O’Connor SE, Courdavault V. A pair of tabersonine 16-hydroxylases initiates the synthesis of vindoline in an organ-dependent manner in Catharanthus roseus. PLANT PHYSIOLOGY 2013; 163:1792-803. [PMID: 24108213 PMCID: PMC3850188 DOI: 10.1104/pp.113.222828] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 10/07/2013] [Indexed: 05/18/2023]
Abstract
Hydroxylation of tabersonine at the C-16 position, catalyzed by tabersonine 16-hydroxylase (T16H), initiates the synthesis of vindoline that constitutes the main alkaloid accumulated in leaves of Catharanthus roseus. Over the last decade, this reaction has been associated with CYP71D12 cloned from undifferentiated C. roseus cells. In this study, we isolated a second cytochrome P450 (CYP71D351) displaying T16H activity. Biochemical characterization demonstrated that CYP71D12 and CYP71D351 both exhibit high affinity for tabersonine and narrow substrate specificity, making of T16H, to our knowledge, the first alkaloid biosynthetic enzyme displaying two isoforms encoded by distinct genes characterized to date in C. roseus. However, both genes dramatically diverge in transcript distribution in planta. While CYP71D12 (T16H1) expression is restricted to flowers and undifferentiated cells, the CYP71D351 (T16H2) expression profile is similar to the other vindoline biosynthetic genes reaching a maximum in young leaves. Moreover, transcript localization by carborundum abrasion and RNA in situ hybridization demonstrated that CYP71D351 messenger RNAs are specifically located to leaf epidermis, which also hosts the next step of vindoline biosynthesis. Comparison of high- and low-vindoline-accumulating C. roseus cultivars also highlights the direct correlation between CYP71D351 transcript and vindoline levels. In addition, CYP71D351 down-regulation mediated by virus-induced gene silencing reduces vindoline accumulation in leaves and redirects the biosynthetic flux toward the production of unmodified alkaloids at the C-16 position. All these data demonstrate that tabersonine 16-hydroxylation is orchestrated in an organ-dependent manner by two genes including CYP71D351, which encodes the specific T16H isoform acting in the foliar vindoline biosynthesis.
Collapse
|
20
|
Yu F, Thamm AMK, Reed D, Villa-Ruano N, Quesada AL, Gloria EL, Covello P, De Luca V. Functional characterization of amyrin synthase involved in ursolic acid biosynthesis in Catharanthus roseus leaf epidermis. PHYTOCHEMISTRY 2013; 91:122-7. [PMID: 22652241 DOI: 10.1016/j.phytochem.2012.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/20/2012] [Accepted: 05/01/2012] [Indexed: 06/01/2023]
Abstract
Catharanthus roseus accumulates high levels of the pentacyclic triterpene, ursolic acid, as a component of its wax exudate on the leaf surface. Bioinformatic analyses of transcripts derived from the leaf epidermis provide evidence for the specialized role of this tissue in the biosynthesis of ursolic acid. Cloning and functional expression in yeast of a triterpene synthase derived from this tissue showed it to be predominantly an α-amyrin synthase (CrAS), since the α-amyrin to β-amyrin reaction products accumulated in a 5:1 ratio. Expression analysis of CrAS showed that triterpene biosynthesis occurs predominantly in the youngest leaf tissues and in the earliest stages of seedling development. Further studies using laser capture microdissection to harvest RNA from epidermis, mesophyll, idioblasts, laticifers and vasculature of leaves showed the leaf epidermis to be the preferred sites of CrAS expression and provide conclusive evidence for the involvement of this tissue in the biosynthesis of ursolic acid in C. roseus.
Collapse
Affiliation(s)
- Fang Yu
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Simkin AJ, Miettinen K, Claudel P, Burlat V, Guirimand G, Courdavault V, Papon N, Meyer S, Godet S, St-Pierre B, Giglioli-Guivarc'h N, Fischer MJC, Memelink J, Clastre M. Characterization of the plastidial geraniol synthase from Madagascar periwinkle which initiates the monoterpenoid branch of the alkaloid pathway in internal phloem associated parenchyma. PHYTOCHEMISTRY 2013; 85:36-43. [PMID: 23102596 DOI: 10.1016/j.phytochem.2012.09.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/21/2012] [Accepted: 09/26/2012] [Indexed: 05/21/2023]
Abstract
Madagascar periwinkle (Catharanthus roseus [L.] G. Don, Apocynaceae) produces monoterpene indole alkaloids (MIAs), secondary metabolites of high interest due to their therapeutic value. A key step in the biosynthesis is the generation of geraniol from geranyl diphosphate (GPP) in the monoterpenoid branch of the MIA pathway. Here we report on the cloning and functional characterization of C. roseus geraniol synthase (CrGES). The full-length CrGES was over-expressed in Escherichia coli and the purified recombinant protein catalyzed the conversion of GPP into geraniol with a K(m) value of 58.5 μM for GPP. In vivo CrGES activity was evaluated by heterologous expression in a Saccharomyces cerevisiae strain mutated in the farnesyl diphosphate synthase gene. Analysis of culture extracts by gas chromatography-mass spectrometry confirmed the excretion of geraniol into the growth medium. Transient transformation of C. roseus cells with a Yellow Fluorescent Protein-fusion construct revealed that CrGES is localized in plastid stroma and stromules. In aerial plant organs, RNA in situ hybridization showed specific labeling of CrGES transcripts in the internal phloem associated parenchyma as observed for other characterized genes involved in the early steps of MIA biosynthesis. Finally, when cultures of Catharanthus cells were treated with the alkaloid-inducing hormone methyl jasmonate, an increase in CrGES transcript levels was observed. This observation coupled with the tissue-specific expression and the subcellular compartmentalization support the idea that CrGES initiates the monoterpenoid branch of the MIA biosynthetic pathway.
Collapse
Affiliation(s)
- Andrew J Simkin
- Université François-Rabelais, EA2106, Biomolécules et Biotechnologies Végétales, 31 Avenue Monge, 37200 Tours, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis. Nature 2012; 492:138-42. [PMID: 23172143 DOI: 10.1038/nature11692] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 10/19/2012] [Indexed: 11/08/2022]
Abstract
The iridoids comprise a large family of distinctive bicyclic monoterpenes that possess a wide range of pharmacological activities, including anticancer, anti-inflammatory, antifungal and antibacterial activities. Additionally, certain iridoids are used as sex pheromones in agriculturally important species of aphids, a fact that has underpinned innovative and integrated pest management strategies. To harness the biotechnological potential of this natural product class, the enzymes involved in the biosynthetic pathway must be elucidated. Here we report the discovery of iridoid synthase, a plant-derived enzyme that generates the iridoid ring scaffold, as evidenced by biochemical assays, gene silencing, co-expression analysis and localization studies. In contrast to all known monoterpene cyclases, which use geranyl diphosphate as substrate and invoke a cationic intermediate, iridoid synthase uses the linear monoterpene 10-oxogeranial as substrate and probably couples an initial NAD(P)H-dependent reduction step with a subsequent cyclization step via a Diels-Alder cycloaddition or a Michael addition. Our results illustrate how a short-chain reductase was recruited as cyclase for the production of iridoids in medicinal plants. Furthermore, we highlight the prospects of using unrelated reductases to generate artificial cyclic scaffolds. Beyond the recognition of an alternative biochemical mechanism for the biosynthesis of cyclic terpenes, we anticipate that our work will enable the large-scale heterologous production of iridoids in plants and microorganisms for agricultural and pharmaceutical applications.
Collapse
|
23
|
Pan Q, Wang Q, Yuan F, Xing S, Zhao J, Choi YH, Verpoorte R, Tian Y, Wang G, Tang K. Overexpression of ORCA3 and G10H in Catharanthus roseus plants regulated alkaloid biosynthesis and metabolism revealed by NMR-metabolomics. PLoS One 2012; 7:e43038. [PMID: 22916202 PMCID: PMC3423439 DOI: 10.1371/journal.pone.0043038] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/16/2012] [Indexed: 12/25/2022] Open
Abstract
In order to improve the production of the anticancer dimeric indole alkaloids in Catharanthuse roseus, much research has been dedicated to culturing cell lines, hairy roots, and efforts to elucidate the regulation of the monoterpenoid indole alkaloid (MIA) biosynthesis. In this study, the ORCA3 (Octadecanoid-derivative Responsive Catharanthus AP2-domain) gene alone or integrated with the G10H (geraniol 10-hydroxylase) gene were first introduced into C. roseus plants. Transgenic C. roseus plants overexpressing ORCA3 alone (OR lines), or co-overexpressing G10H and ORCA3 (GO lines) were obtained by genetic modification. ORCA3 overexpression induced an increase of AS, TDC, STR and D4H transcripts but did not affect CRMYC2 and G10H transcription. G10H transcripts showed a significant increase under G10H and ORCA3 co-overexpression. ORCA3 and G10H overexpression significantly increased the accumulation of strictosidine, vindoline, catharanthine and ajmalicine but had limited effects on anhydrovinblastine and vinblastine levels. NMR-based metabolomics confirmed the higher accumulation of monomeric indole alkaloids in OR and GO lines. Multivariate data analysis of (1)H NMR spectra showed change of amino acid, organic acid, sugar and phenylpropanoid levels in both OR and GO lines compared to the controls. The result indicated that enhancement of MIA biosynthesis by ORCA3 and G10H overexpression might affect other metabolic pathways in the plant metabolism of C. roseus.
Collapse
Affiliation(s)
- Qifang Pan
- Plant Biotechnology Research Center, SJTU-Cornell Institute of Sustainable Agriculture and Biotechnology, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Natural Products Laboratory, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Quan Wang
- Plant Biotechnology Research Center, SJTU-Cornell Institute of Sustainable Agriculture and Biotechnology, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Fang Yuan
- Plant Biotechnology Research Center, SJTU-Cornell Institute of Sustainable Agriculture and Biotechnology, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Shihai Xing
- Plant Biotechnology Research Center, SJTU-Cornell Institute of Sustainable Agriculture and Biotechnology, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Jingya Zhao
- Plant Biotechnology Research Center, SJTU-Cornell Institute of Sustainable Agriculture and Biotechnology, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Robert Verpoorte
- Natural Products Laboratory, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Yuesheng Tian
- Plant Biotechnology Research Center, SJTU-Cornell Institute of Sustainable Agriculture and Biotechnology, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Guofeng Wang
- Plant Biotechnology Research Center, SJTU-Cornell Institute of Sustainable Agriculture and Biotechnology, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Kexuan Tang
- Plant Biotechnology Research Center, SJTU-Cornell Institute of Sustainable Agriculture and Biotechnology, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
24
|
Lepelley M, Mahesh V, McCarthy J, Rigoreau M, Crouzillat D, Chabrillange N, de Kochko A, Campa C. Characterization, high-resolution mapping and differential expression of three homologous PAL genes in Coffea canephora Pierre (Rubiaceae). PLANTA 2012; 236:313-26. [PMID: 22349733 PMCID: PMC3382651 DOI: 10.1007/s00425-012-1613-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/08/2012] [Indexed: 05/20/2023]
Abstract
Phenylalanine ammonia lyase (PAL) is the first entry enzyme of the phenylpropanoid pathway producing phenolics, widespread constituents of plant foods and beverages, including chlorogenic acids, polyphenols found at remarkably high levels in the coffee bean and long recognized as powerful antioxidants. To date, whereas PAL is generally encoded by a small gene family, only one gene has been characterized in Coffea canephora (CcPAL1), an economically important species of cultivated coffee. In this study, a molecular- and bioinformatic-based search for CcPAL1 paralogues resulted successfully in identifying two additional genes, CcPAL2 and CcPAL3, presenting similar genomic structures and encoding proteins with close sequences. Genetic mapping helped position each gene in three different coffee linkage groups, CcPAL2 in particular, located in a coffee genome linkage group (F) which is syntenic to a region of Tomato Chromosome 9 containing a PAL gene. These results, combined with a phylogenetic study, strongly suggest that CcPAL2 may be the ancestral gene of C. canephora. A quantitative gene expression analysis was also conducted in coffee tissues, showing that all genes are transcriptionally active, but they present distinct expression levels and patterns. We discovered that CcPAL2 transcripts appeared predominantly in flower, fruit pericarp and vegetative/lignifying tissues like roots and branches, whereas CcPAL1 and CcPAL3 were highly expressed in immature fruit. This is the first comprehensive study dedicated to PAL gene family characterization in coffee, allowing us to advance functional studies which are indispensable to learning to decipher what role this family plays in channeling the metabolism of coffee phenylpropanoids.
Collapse
Affiliation(s)
- Maud Lepelley
- Nestlé R&D Center, 101 Av. Gustave Eiffel, Notre Dame D'Oé, BP 49716, 37097, Tours, France.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Guirimand G, Guihur A, Phillips MA, Oudin A, Glévarec G, Melin C, Papon N, Clastre M, St-Pierre B, Rodríguez-Concepción M, Burlat V, Courdavault V. A single gene encodes isopentenyl diphosphate isomerase isoforms targeted to plastids, mitochondria and peroxisomes in Catharanthus roseus. PLANT MOLECULAR BIOLOGY 2012; 79:443-59. [PMID: 22638903 DOI: 10.1007/s11103-012-9923-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 05/05/2012] [Indexed: 05/23/2023]
Abstract
Isopentenyl diphosphate isomerases (IDI) catalyze the interconversion of the two isoprenoid universal C5 units, isopentenyl diphosphate and dimethylally diphosphate, to allow the biosynthesis of the large variety of isoprenoids including both primary and specialized metabolites. This isomerisation is usually performed by two distinct IDI isoforms located either in plastids/peroxisomes or mitochondria/peroxisomes as recently established in Arabidopsis thaliana mainly accumulating primary isoprenoids. By contrast, almost nothing is known in plants accumulating specialized isoprenoids. Here we report the cloning and functional validation of an IDI encoding cDNA (CrIDI1) from Catharanthus roseus that produces high amount of monoterpenoid indole alkaloids. The corresponding gene is expressed in all organs including roots, flowers and young leaves where transcripts have been detected in internal phloem parenchyma and epidermis. The CrIDI1 gene also produces long and short transcripts giving rise to corresponding proteins with and without a N-terminal transit peptide (TP), respectively. Expression of green fluorescent protein fusions revealed that the long isoform is targeted to both plastids and mitochondria with an apparent similar efficiency. Deletion/fusion experiments established that the first 18-residues of the N-terminal TP are solely responsible of the mitochondria targeting while the entire 77-residue long TP is needed for an additional plastid localization. The short isoform is targeted to peroxisomes in agreement with the presence of peroxisome targeting sequence at its C-terminal end. This complex plastid/mitochondria/peroxisomes triple targeting occurring in C. roseus producing specialized isoprenoid secondary metabolites is somehow different from the situation observed in A. thaliana mainly producing housekeeping isoprenoid metabolites.
Collapse
Affiliation(s)
- Grégory Guirimand
- EA2106 "Biomolécules et Biotechnologies Végétales", Université François Rabelais de Tours, 37200, Tours, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Characterization of variation and quantitative trait loci related to terpenoid indole alkaloid yield in a recombinant inbred line mapping population of Catharanthus roseus. J Genet 2012. [DOI: 10.1007/s12041-012-0150-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Verma P, Mathur AK, Srivastava A, Mathur A. Emerging trends in research on spatial and temporal organization of terpenoid indole alkaloid pathway in Catharanthus roseus: a literature update. PROTOPLASMA 2012; 249:255-68. [PMID: 0 DOI: 10.1007/s00709-011-0291-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 05/17/2011] [Indexed: 05/21/2023]
|
28
|
Xing SH, Guo XB, Wang Q, Pan QF, Tian YS, Liu P, Zhao JY, Wang GF, Sun XF, Tang KX. Induction and flow cytometry identification of tetraploids from seed-derived explants through colchicine treatments in Catharanthus roseus (L.) G. Don. J Biomed Biotechnol 2011; 2011:793198. [PMID: 21660143 PMCID: PMC3110335 DOI: 10.1155/2011/793198] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 03/22/2011] [Accepted: 03/23/2011] [Indexed: 12/12/2022] Open
Abstract
The tetraploid plants of Catharanthus roseus (L.) G. Don was obtained by colchicine induction from seeds explants, and the ploidy of the plants was identified by flow cytometry. The optimal treatment is 0.2% colchicine solution treated for 24 hours, and the induction rate reaches up to 30%. Comparing with morphological characteristics and growth habits between tetraploids and the control, we found that tetraploids of C. roseus had larger stoma and more branches and leaves. HPLC analysis showed tetraploidization could increase the contents of terpenoid indole alkaloids in C. roseus. Thus, tetraploidization could be used to produce higher alkaloids lines for commercial use. QRT-PCR results showed that the expression of enzymes involved in terpenoid indole alkaloids biosynthesis pathway had increased in the tetraploid plants. To our knowledge, this was the first paper to explore the secondary metabolism in autotetraploid C. roseus induced by colchicine.
Collapse
Affiliation(s)
- Shi-Hai Xing
- Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin-Bo Guo
- State Key Laboratory of Genetic Engineering, Morgan-Tan International Center for Life Sciences, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Quan Wang
- Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi-Fang Pan
- Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue-Sheng Tian
- Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pin Liu
- Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing-Ya Zhao
- Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guo-Feng Wang
- Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiao-Fen Sun
- State Key Laboratory of Genetic Engineering, Morgan-Tan International Center for Life Sciences, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Ke-Xuan Tang
- Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Genetic Engineering, Morgan-Tan International Center for Life Sciences, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
29
|
Guirimand G, Guihur A, Poutrain P, Héricourt F, Mahroug S, St-Pierre B, Burlat V, Courdavault V. Spatial organization of the vindoline biosynthetic pathway in Catharanthus roseus. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:549-57. [PMID: 21047699 DOI: 10.1016/j.jplph.2010.08.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 08/25/2010] [Accepted: 08/25/2010] [Indexed: 05/24/2023]
Abstract
Vindoline constitutes the main terpenoid indole alkaloid accumulated in leaves of Catharanthus roseus, and four genes involved in its biosynthesis have been identified. However, the spatial organization of the tabersonine-to-vindoline biosynthetic pathway is still incomplete. To pursue the characterization of this six-step conversion, we illustrated, with in situ hybridization, that the transcripts of the second biosynthetic enzyme, 16-hydroxytabersonine 16-O-methyltransferase (16OMT), are specifically localized to the aerial organ epidermis. At the subcellular level, by combining GFP imaging, bimolecular fluorescence complementation assays and yeast two-hybrid analysis, we established that the first biosynthetic enzyme, tabersonine 16-hydroxylase (T16H), is anchored to the ER as a monomer via a putative N-terminal helix that we cloned using a PCR approach. We also showed that 16OMT homodimerizes in the cytoplasm, allowing its exclusion from the nucleus and thus facilitating the uptake of T16H conversion product, although no T16H/16OMT interactions occur. Moreover, the two last biosynthetic enzymes, desacetoxyvindoline-4-hydroxylase (D4H) and deacetylvindoline-4-O-acetyltransferase (DAT), were shown to operate as monomers that reside in the nucleocytoplasmic compartment following passive diffusion to the nucleus allowed by the protein size. No D4H/DAT interactions were detected, suggesting the absence of metabolic channeling in the vindoline biosynthetic pathway. Finally, these results highlight the importance of the inter- and intracellular translocations of intermediates during the vindoline biosynthesis and their potential regulatory role.
Collapse
Affiliation(s)
- Grégory Guirimand
- Université François Rabelais de Tours, EA 2106 Biomolécules et Biotechnologies Végétales, IFR 135 Imagerie fonctionnelle 37200 Tours, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Guirimand G, Guihur A, Ginis O, Poutrain P, Héricourt F, Oudin A, Lanoue A, St-Pierre B, Burlat V, Courdavault V. The subcellular organization of strictosidine biosynthesis in Catharanthus roseus epidermis highlights several trans-tonoplast translocations of intermediate metabolites. FEBS J 2011; 278:749-63. [PMID: 21205206 DOI: 10.1111/j.1742-4658.2010.07994.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Catharanthus roseus synthesizes a wide range of valuable monoterpene indole alkaloids, some of which have recently been recognized as functioning in plant defence mechanisms. More specifically, in aerial organ epidermal cells, vacuole-accumulated strictosidine displays a dual fate, being either the precursor of all monoterpene indole alkaloids after export from the vacuole, or the substrate for a defence mechanism based on the massive protein cross-linking, which occurs subsequent to organelle membrane disruption during biotic attacks. Such a mechanism relies on a physical separation between the vacuolar strictosidine-synthesizing enzyme and the nucleus-targeted enzyme catalyzing its activation through deglucosylation. In the present study, we carried out the spatial characterization of this mechanism by a cellular and subcellular study of three enzymes catalyzing the synthesis of the two strictosidine precursors (i.e. tryptamine and secologanin). Using RNA in situ hybridization, we demonstrated that loganic acid O-methyltransferase transcript, catalysing the penultimate step of secologanin synthesis, is specifically localized in the epidermis. A combination of green fluorescent protein imaging, bimolecular fluorescence complementation assays and yeast two-hybrid analysis enabled us to establish that both loganic acid O-methyltransferase and the tryptamine-producing enzyme, tryptophan decarboxylase, form homodimers in the cytosol, thereby preventing their passive diffusion to the nucleus. We also showed that the cytochrome P450 secologanin synthase is anchored to the endoplasmic reticulum via a N-terminal helix, thus allowing the production of secologanin on the cytosolic side of the endoplasmic reticulum membrane. Consequently, secologanin and tryptamine must be transported to the vacuole to achieve strictosidine biosynthesis, demonstrating the importance of trans-tonoplast translocation events during these metabolic processes.
Collapse
Affiliation(s)
- Grégory Guirimand
- Université François Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, IFR 135 Imagerie fonctionnelle, Tours, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Poutrain P, Guirimand G, Mahroug S, Burlat V, Melin C, Ginis O, Oudin A, Giglioli-Guivarc'h N, Pichon O, Courdavault V. Molecular cloning and characterisation of two calmodulin isoforms of the Madagascar periwinkle Catharanthus roseus. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:36-41. [PMID: 21143723 DOI: 10.1111/j.1438-8677.2010.00325.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Involvement of Ca(2+) signalling in regulation of the biosynthesis of monoterpene indole alkaloids (MIA) in Catharanthus roseus has been extensively studied in recent years, albeit no protein of this signalling pathway has been isolated. Using a PCR strategy, two C. roseus cDNAs encoding distinct calmodulin (CAM) isoforms were cloned and named CAM1 and CAM2. The deduced 149 amino acid sequences possess four Ca(2+) binding domains and exhibit a close identity with Arabidopsis CAM isoforms (>91%). The ability of CAM1 and CAM2 to bind Ca(2+) was demonstrated following expression of the corresponding recombinant proteins. Furthermore, transient expression of CAM1-GFP and CAM2-GFP in C. roseus cells showed a typical nucleo-cytoplasm localisation of both CAMs, in agreement with the wide distribution of CAM target proteins. Using RNA blot analysis, we showed that CAM1 and CAM2 genes had a broad pattern of expression in C. roseus organs and are constitutively expressed during a C. roseus cell culture cycle, with a slight inhibitory effect of auxin for CAM1. Using RNA in situ hybridisation, we also detected CAM1 and CAM2 mRNA in the vascular bundle region of young seedling cotyledons. Finally, using specific inhibitors, we also showed that CAMs are required for MIA biosynthesis in C. roseus cells by acting on regulation of expression of genes encoding enzymes that catalyse early steps of MIA biosynthesis, such as 1-deoxy-d-xylulose 5-phosphate reductoisomerase and geraniol 10-hydroxylase.
Collapse
Affiliation(s)
- P Poutrain
- Université François Rabelais de Tours, EA 2106 Biomolécules et Biotechnologies Végétales, IFR 135 Imagerie fonctionnelle, Tours, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Guirimand G, Courdavault V, Lanoue A, Mahroug S, Guihur A, Blanc N, Giglioli-Guivarc'h N, St-Pierre B, Burlat V. Strictosidine activation in Apocynaceae: towards a "nuclear time bomb"? BMC PLANT BIOLOGY 2010; 10:182. [PMID: 20723215 PMCID: PMC3095312 DOI: 10.1186/1471-2229-10-182] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 08/19/2010] [Indexed: 05/02/2023]
Abstract
BACKGROUND The first two enzymatic steps of monoterpene indole alkaloid (MIA) biosynthetic pathway are catalysed by strictosidine synthase (STR) that condensates tryptamine and secologanin to form strictosidine and by strictosidine beta-D-glucosidase (SGD) that subsequently hydrolyses the glucose moiety of strictosidine. The resulting unstable aglycon is rapidly converted into a highly reactive dialdehyde, from which more than 2,000 MIAs are derived. Many studies were conducted to elucidate the biosynthesis and regulation of pharmacologically valuable MIAs such as vinblastine and vincristine in Catharanthus roseus or ajmaline in Rauvolfia serpentina. However, very few reports focused on the MIA physiological functions. RESULTS In this study we showed that a strictosidine pool existed in planta and that the strictosidine deglucosylation product(s) was (were) specifically responsible for in vitro protein cross-linking and precipitation suggesting a potential role for strictosidine activation in plant defence. The spatial feasibility of such an activation process was evaluated in planta. On the one hand, in situ hybridisation studies showed that CrSTR and CrSGD were coexpressed in the epidermal first barrier of C. roseus aerial organs. However, a combination of GFP-imaging, bimolecular fluorescence complementation and electromobility shift-zymogram experiments revealed that STR from both C. roseus and R. serpentina were localised to the vacuole whereas SGD from both species were shown to accumulate as highly stable supramolecular aggregates within the nucleus. Deletion and fusion studies allowed us to identify and to demonstrate the functionality of CrSTR and CrSGD targeting sequences. CONCLUSIONS A spatial model was drawn to explain the role of the subcellular sequestration of STR and SGD to control the MIA metabolic flux under normal physiological conditions. The model also illustrates the possible mechanism of massive activation of the strictosidine vacuolar pool upon enzyme-substrate reunion occurring during potential herbivore feeding constituting a so-called "nuclear time bomb" in reference to the "mustard oil bomb" commonly used to describe the myrosinase-glucosinolate defence system in Brassicaceae.
Collapse
Affiliation(s)
- Grégory Guirimand
- Université François Rabelais de Tours, EA 2106 "Biomolécules et Biotechnologies Végétales"; IFR 135 "Imagerie fonctionnelle" 37200, Tours, France
| | - Vincent Courdavault
- Université François Rabelais de Tours, EA 2106 "Biomolécules et Biotechnologies Végétales"; IFR 135 "Imagerie fonctionnelle" 37200, Tours, France
| | - Arnaud Lanoue
- Université François Rabelais de Tours, EA 2106 "Biomolécules et Biotechnologies Végétales"; IFR 135 "Imagerie fonctionnelle" 37200, Tours, France
| | - Samira Mahroug
- Université François Rabelais de Tours, EA 2106 "Biomolécules et Biotechnologies Végétales"; IFR 135 "Imagerie fonctionnelle" 37200, Tours, France
- Laboratoire Biodiversité Végétale, Conservation et Valorisation, Faculté des Sciences, Université Djillali Liabés, Sidi Bel Abbes, Algérie
| | - Anthony Guihur
- Université François Rabelais de Tours, EA 2106 "Biomolécules et Biotechnologies Végétales"; IFR 135 "Imagerie fonctionnelle" 37200, Tours, France
| | - Nathalie Blanc
- Université François Rabelais de Tours, EA 2106 "Biomolécules et Biotechnologies Végétales"; IFR 135 "Imagerie fonctionnelle" 37200, Tours, France
| | - Nathalie Giglioli-Guivarc'h
- Université François Rabelais de Tours, EA 2106 "Biomolécules et Biotechnologies Végétales"; IFR 135 "Imagerie fonctionnelle" 37200, Tours, France
| | - Benoit St-Pierre
- Université François Rabelais de Tours, EA 2106 "Biomolécules et Biotechnologies Végétales"; IFR 135 "Imagerie fonctionnelle" 37200, Tours, France
| | - Vincent Burlat
- Université François Rabelais de Tours, EA 2106 "Biomolécules et Biotechnologies Végétales"; IFR 135 "Imagerie fonctionnelle" 37200, Tours, France
- Université de Toulouse; UPS; UMR 5546, Surfaces Cellulaires et Signalisation chez les Végétaux; BP 42617, F-31326, Castanet-Tolosan, France
- CNRS; UMR 5546; BP 42617, F-31326, Castanet-Tolosan, France
| |
Collapse
|
33
|
Lanoue A, Burlat V, Henkes GJ, Koch I, Schurr U, Röse USR. De novo biosynthesis of defense root exudates in response to Fusarium attack in barley. THE NEW PHYTOLOGIST 2010; 185:577-88. [PMID: 19878462 DOI: 10.1111/j.1469-8137.2009.03066.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Summary *Despite recent advances in elucidation of natural products in root exudates, there are significant gaps in our understanding of the ecological significance of products in the rhizosphere. *Here, we investigated the potential of barley (Hordeum vulgare) to secrete defense root exudates when challenged by the soilborne pathogen Fusarium graminearum. *Liquid chromatography with photodiode array detection (LC-DAD) was used to profile induced small-molecular-weight exudates. Thus, t-cinnamic, p-coumaric, ferulic, syringic and vanillic acids were assigned to plant metabolism and were induced within 2 d after Fusarium inoculation. Biological tests demonstrated the ability of those induced root exudates to inhibit the germination of F. graminearum macroconidia. In vivo labeling experiments with (13)CO(2) revealed that the secreted t-cinnamic acid was synthesized de novo within 2 d of fungal infection. Simultaneously to its root exudation, t-cinnamic acid was accumulated in the roots. Microscopic analysis showed that nonlignin cell wall phenolics were induced not only in necrosed zones but in all root tissues. *Results suggest that barley plants under attack respond by de novo biosynthesis and secretion of compounds with antimicrobial functions that may mediate natural disease resistance.
Collapse
Affiliation(s)
- Arnaud Lanoue
- ICG-3 Phytosphere, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
Guirimand G, Burlat V, Oudin A, Lanoue A, St-Pierre B, Courdavault V. Optimization of the transient transformation of Catharanthus roseus cells by particle bombardment and its application to the subcellular localization of hydroxymethylbutenyl 4-diphosphate synthase and geraniol 10-hydroxylase. PLANT CELL REPORTS 2009; 28:1215-34. [PMID: 19504099 DOI: 10.1007/s00299-009-0722-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 04/30/2009] [Accepted: 05/14/2009] [Indexed: 05/07/2023]
Abstract
The monoterpene indole alkaloids (MIA) synthesized in Catharanthus roseus are highly valuable metabolites due to their pharmacological properties. In planta, the MIA biosynthetic pathway exhibits a complex compartmentation at the cellular level, whereas subcellular data are sparse. To gain insight into this level of organization, we have developed a high efficiency green fluorescent protein (GFP) imaging approach to systematically localize MIA biosynthetic enzymes within C. roseus cells following a biolistic-mediated transient transformation. The biolistic transformation protocol has been first optimized to obtain a high number of transiently transformed cells with a ~12-fold increase compared to previous protocols and thus to clearly and easily identify the fusion GFP expression patterns in numerous cells. On the basis of this protocol, the subcellular localization of hydroxymethylbutenyl 4-diphosphate synthase (HDS), a methyl erythritol phosphate pathway enzyme and geraniol 10-hydroxylase (G10H), a monoterpene-secoiridoid pathway enzyme has been next characterized. Besides showing the accumulation of HDS within plastids of C. roseus cells, we also provide evidences of the presence of HDS in long stroma-filled thylakoid-free extensions budding from plastids, i.e. stromules that are in close association with other organelles such as endoplasmic reticulum (ER) or mitochondria in agreement with their proposed function in enhancing interorganelle metabolite exchanges. Furthermore, we also demonstrated that G10H is an ER-anchored protein, consistent with the presence of a transmembrane helix at the G10H N-terminal end, which is both necessary and sufficient to drive the ER anchoring.
Collapse
Affiliation(s)
- Grégory Guirimand
- Université François Rabelais de Tours, EA 2106 Biomolécules et Biotechnologies Végétales, IFR 135 Imagerie fonctionnelle, 37200, Tours, France
| | | | | | | | | | | |
Collapse
|
35
|
Courdavault V, Burlat V, St-Pierre B, Giglioli-Guivarc'h N. Proteins prenylated by type I protein geranylgeranyltransferase act positively on the jasmonate signalling pathway triggering the biosynthesis of monoterpene indole alkaloids in Catharanthus roseus. PLANT CELL REPORTS 2009; 28:83-93. [PMID: 18813931 DOI: 10.1007/s00299-008-0610-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 09/03/2008] [Accepted: 09/07/2008] [Indexed: 05/26/2023]
Abstract
In Catharanthus roseus, the first step of monoterpenoid indole alkaloids (MIA) biosynthesis results from the condensation of the indole precursor tryptamine with the terpenoid precursor secologanin. Secologanin biosynthesis requires two successive biosynthetic pathways, the plastidial methyl-D: -erythritol 4-phosphate (MEP) pathway and the monoterpene secoiridoid pathway. In C. roseus cell culture, the expression of several genes encoding enzymes of these two pathways is dramatically down-regulated by auxin, while strongly enhanced by cytokinin and methyl-jasmonate. Furthermore, our previous studies have shown that protein prenylation events are also involved in the transcriptional activation of some of these genes. In the present work, we investigate the involvement of protein prenylation in the jasmonate signalling pathway leading to MIA biosynthesis. Inhibition of protein prenyltransferase down-regulates the methyl-jasmonate-induced expression of MEP and monoterpene secoiridoid pathway genes and thus abolishes MIA biosynthesis. Jointly, it also inhibits the methyl-jasmonate-induced expression of the AP2/ERF transcription factor ORCA3 that acts as a central regulator of MIA biosynthesis. Finally, a specific silencing of protein prenyltransferases mediated by RNA interference in C. roseus cells shows that inhibition of type I protein geranylgeranyltransferase (PGGT-I) down-regulates the methyl-jasmonate-induced expression of ORCA3, suggesting that PGGT-I prenylated proteins are part of the early steps of jasmonate signalling leading to MIA biosynthesis.
Collapse
Affiliation(s)
- Vincent Courdavault
- Université François-Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200, Tours, France
| | | | | | | |
Collapse
|
36
|
Campos-Tamayo F, Hernández-Domínguez E, Vázquez-Flota F. Vindoline formation in shoot cultures of Catharanthus roseus is synchronously activated with morphogenesis through the last biosynthetic step. ANNALS OF BOTANY 2008; 102:409-415. [PMID: 18587132 PMCID: PMC2701790 DOI: 10.1093/aob/mcn108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 05/08/2008] [Accepted: 06/04/2008] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND AIMS The Madagascar periwinkle (Catharanthus roseus) produces the monoterpenoid alkaloid vindoline, which requires a specialized cell organization present only in the aerial tissues. Vindoline content can be affected by photoperiod and this effect seems to be associated with the morphogenetic capacity of branches; this association formed the basis of the study reported here. METHODS Vindoline-producing in vitro shoot cultures were exposed either to continuous light or a 16-h photoperiod regime. New plantlet formation and alkaloid biosynthesis were analysed throughout a culture cycle. KEY RESULTS In cultures under the photoperiod, the formation of new plantlets occurred in a more synchronized fashion as compared to those under continuous light. The accumulation of vindoline in cultures under the photoperiod occurred in co-ordination with plantlet formation, in contrast to cultures under continuous light, and coincided with a peak of activity of deacetylvindoline acetyl CoA acetyltransferase (DAT), the enzyme that catalyses the last step in vindoline biosynthesis. When new plantlet formation was blocked in cultures under the photoperiod by treatment with phytoregulators, vindoline synthesis was also reduced via an effect on DAT activity. No association between plantlet formation and other biosynthetic enzymes, such as tryptophan decarboxylase (TDC) and deacetoxyvindoline 4-hydroxylase (D4H), was found. Effects of light treatment on vindoline synthesis were not mediated by ORCA-3 proteins (which are involved in the induction of alkaloid synthesis in response to elicitation), suggesting that the presence of a different set of regulatory proteins. CONCLUSIONS The data suggest that vindoline biosynthesis is associated with morphogenesis in shoot cultures of C. roseus.
Collapse
|
37
|
Gupta S, Pandey-Rai S, Srivastava S, Naithani SC, Prasad M, Kumar S. Construction of genetic linkage map of the medicinal and ornamental plant Catharanthus roseus. J Genet 2008; 86:259-68. [PMID: 18305345 DOI: 10.1007/s12041-007-0033-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
An integrated genetic linkage map of the medicinal and ornamental plant Catharanthus roseus, based on different types of molecular and morphological markers was constructed, using a F(2) population of 144 plants. The map defines 14 linkage groups (LGs) and consists of 131 marker loci, including 125 molecular DNA markers (76 RAPD, 3 RAPD combinations; 7 ISSR; 2 EST-SSR from Medicago truncatula and 37 other PCR based DNA markers), selected from a total of 472 primers or primer pairs, and six morphological markers (stem pigmentation, leaf lamina pigmentation and shape, leaf petiole and pod size, and petal colour). The total map length is 1131.9 cM (centiMorgans), giving an average map length and distance between two markers equal to 80.9 cM and 8.6 cM, respectively. The morphological markers/genes were found linked with nearest molecular or morphological markers at distances varying from 0.7 to 11.4 cM. Linkage was observed between the morphological markers concerned with lamina shape and petiole size of leaf on LG1 and leaf, stem and petiole pigmentation and pod size on LG8. This is the first genetic linkage map of C. roseus.
Collapse
Affiliation(s)
- Sarika Gupta
- National Institute for Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, Post Box No. 10531, New Delhi 110 067, India
| | | | | | | | | | | |
Collapse
|
38
|
Facchini PJ, De Luca V. Opium poppy and Madagascar periwinkle: model non-model systems to investigate alkaloid biosynthesis in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:763-84. [PMID: 18476877 DOI: 10.1111/j.1365-313x.2008.03438.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Alkaloids represent a large and diverse group of compounds that are related by the occurrence of a nitrogen atom within a heterocyclic backbone. Unlike other types of secondary metabolites, the various structural categories of alkaloids are unrelated in terms of biosynthesis and evolution. Although the biology of each group is unique, common patterns have become apparent. Opium poppy (Papaver somniferum), which produces several benzylisoquinoline alkaloids, and Madagascar periwinkle (Catharanthus roseus), which accumulates an array of monoterpenoid indole alkaloids, have emerged as the premier organisms used to study plant alkaloid metabolism. The status of these species as model systems results from decades of research on the chemistry, enzymology and molecular biology responsible for the biosynthesis of valuable pharmaceutical alkaloids. Opium poppy remains the only commercial source for morphine, codeine and semi-synthetic analgesics, such as oxycodone, derived from thebaine. Catharanthus roseus is the only source for the anti-cancer drugs vinblastine and vincristine. Impressive collections of cDNAs encoding biosynthetic enzymes and regulatory proteins involved in the formation of benzylisoquinoline and monoterpenoid indole alkaloids are now available, and the rate of gene discovery has accelerated with the application of genomics. Such tools have allowed the establishment of models that describe the complex cell biology of alkaloid metabolism in these important medicinal plants. A suite of biotechnological resources, including genetic transformation protocols, has allowed the application of metabolic engineering to modify the alkaloid content of these and related species. An overview of recent progress on benzylisoquinoline and monoterpenoid indole alkaloid biosynthesis in opium poppy and C. roseus is presented.
Collapse
Affiliation(s)
- Peter J Facchini
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | | |
Collapse
|
39
|
Murata J, Roepke J, Gordon H, De Luca V. The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. THE PLANT CELL 2008; 20:524-42. [PMID: 18326827 PMCID: PMC2329939 DOI: 10.1105/tpc.107.056630] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Revised: 02/01/2008] [Accepted: 02/13/2008] [Indexed: 05/17/2023]
Abstract
Catharanthus roseus is the sole commercial source of the monoterpenoid indole alkaloids (MIAs), vindoline and catharanthine, components of the commercially important anticancer dimers, vinblastine and vincristine. Carborundum abrasion technique was used to extract leaf epidermis-enriched mRNA, thus sampling the epidermome, or complement, of proteins expressed in the leaf epidermis. Random sequencing of the derived cDNA library established 3655 unique ESTs, composed of 1142 clusters and 2513 singletons. Virtually all known MIA pathway genes were found in this remarkable set of ESTs, while only four known genes were found in the publicly available Catharanthus EST data set. Several novel MIA pathway candidate genes were identified, as demonstrated by the cloning and functional characterization of loganic acid O-methyltransferase involved in secologanin biosynthesis. The pathways for triterpene biosynthesis were also identified, and metabolite analysis showed that oleanane-type triterpenes were localized exclusively to the cuticular wax layer. The pathways for flavonoid and very-long-chain fatty acid biosynthesis were also located in this cell type. The results illuminate the biochemical specialization of Catharanthus leaf epidermis for the production of multiple classes of metabolites. The value and versatility of this EST data set for biochemical and biological analysis of leaf epidermal cells is also discussed.
Collapse
Affiliation(s)
- Jun Murata
- Department of Biological Sciences, Brock University, St. Catharines, Ontario L2S3A1 Canada
| | | | | | | |
Collapse
|
40
|
Abstract
Alkaloids represent a highly diverse group of compounds that are related only by the occurrence of a nitrogen atom in a heterocyclic ring. Plants are estimated to produce approximately 12,000 different alkaloids, which can be organized into groups according to their carbon skeletal structures. Alkaloid biosynthesis in plants involves many catalytic steps, catalyzed by enzymes that belong to a wide range of protein families. The characterization of novel alkaloid biosynthetic enzymes in terms of structural biochemistry, molecular and cell biology, and biotechnological applications has been the focus of research over the past several years. The application of genomics to the alkaloid field has accelerated the discovery of cDNAs encoding previously elusive biosynthetic enzymes. Other technologies, such as large-scale gene expression analyses and metabolic engineering approaches with transgenic plants, have provided new insights into the regulatory architecture of alkaloid metabolism.
Collapse
Affiliation(s)
- Jörg Ziegler
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| | | |
Collapse
|
41
|
Oudin A, Mahroug S, Courdavault V, Hervouet N, Zelwer C, Rodríguez-Concepción M, St-Pierre B, Burlat V. Spatial distribution and hormonal regulation of gene products from methyl erythritol phosphate and monoterpene-secoiridoid pathways in Catharanthus roseus. PLANT MOLECULAR BIOLOGY 2007; 65:13-30. [PMID: 17611800 DOI: 10.1007/s11103-007-9190-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 05/14/2007] [Indexed: 05/07/2023]
Abstract
The monoterpene indole alkaloids (MIAs) from Madagascar periwinkle (Catharanthus roseus) are secondary metabolites of high interest due to their therapeutical values. Secologanin, the monoterpenoid moiety incorporated into MIAs, is derived from the plastidial methyl-D: -erythritol 4-phosphate (MEP) pathway. Here, we have cloned a cDNA encoding hydroxymethylbutenyl diphosphate synthase (HDS), a MEP pathway enzyme, and generated antibodies to investigate the distribution of transcripts and protein in MIA-producing aerial tissues. Consistent with our earlier work, transcripts for the genes encoding the so-called early steps in monoterpenoid biosynthesis (ESMB) enzymes (HDS, others MEP pathway enzymes and geraniol 10-hydroxylase) were preferentially co-localized to internal phloem associated parenchyma (IPAP) cells. By contrast, transcripts for the enzyme catalysing the last biosynthetic step to secologanin, secologanin synthase, were found in the epidermis. A coordinated response of ESMB genes was also observed in cell cultures stimulated to synthesise MIAs by hormone treatment, whereas no changes in SLS expression were detected under the same experimental conditions. Immunocytolabelling studies with the HDS-specific serum demonstrated the localisation of HDS to the plastid stroma and revealed that HDS proteins were most abundant in IPAP cells but could also be found in other cell types, including epidermal and mesophyll cells. Besides showing the existence of post-transcriptional mechanisms regulating the levels of HDS in C. roseus cells, our results support that intercellular translocation likely plays an important role during monoterpene-secoiridoid assembly.
Collapse
Affiliation(s)
- Audrey Oudin
- EA 2106 Biomolécules et Biotechnologies Végétales, UFR des Sciences Pharmaceutiques, Université François Rabelais de Tours, Tours, France.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Yang C, Xu Z, Song J, Conner K, Vizcay Barrena G, Wilson ZA. Arabidopsis MYB26/MALE STERILE35 regulates secondary thickening in the endothecium and is essential for anther dehiscence. THE PLANT CELL 2007; 19:534-48. [PMID: 17329564 PMCID: PMC1867336 DOI: 10.1105/tpc.106.046391] [Citation(s) in RCA: 213] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 01/06/2007] [Accepted: 02/05/2007] [Indexed: 05/14/2023]
Abstract
The Arabidopsis thaliana MYB26/MALE STERILE35 (MS35) gene is critical for the development of secondary thickening in the anther endothecium and subsequent dehiscence. MYB26 is localized to the nucleus and regulates endothecial development and secondary thickening in a cell-specific manner in the anther. MYB26 expression is seen in anthers and also in the style and nectaries, although there is no effect on female fertility in the ms35 mutant. MYB26 expression in anthers occurs early during endothecial development, with maximal expression during pollen mitosis I and bicellular stages, indicating a regulatory role in specifying early endothecial cell development. Overexpression of MYB26 results in ectopic secondary thickening in both Arabidopsis and tobacco (Nicotiana tabacum) plants, predominantly within the epidermal tissues. MYB26 regulates a number of genes linked to secondary thickening, including IRREGULAR XYLEM1 (IRX1), IRX3, IRX8, and IRX12. Changes in expression were also detected in two NAC domain genes, NAC SECONDARY WALL-PROMOTING FACTOR1 (NST1) and NST2, which have been linked to secondary thickening in the anther endothecium. These data indicate that MYB26 regulates NST1 and NST2 expression and in turn controls the process of secondary thickening. Therefore, MYB26 appears to function in a regulatory role involved in determining endothecial cell development within the anther and acts upstream of the lignin biosynthesis pathway.
Collapse
Affiliation(s)
- Caiyun Yang
- Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicstershire LE12 5RD, United Kingdom
| | | | | | | | | | | |
Collapse
|
43
|
Lucheta AR, Silva-Pinhati ACO, Basílio-Palmieri AC, Berger IJ, Freitas-Astúa J, Cristofani M. An in silico analysis of the key genes involved in flavonoid biosynthesis in Citrus sinensis. Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000500010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | | | - Juliana Freitas-Astúa
- Instituto Agronômico de Campinas, Brazil; Embrapa Mandioca e Fruticultura Tropical, Brazil
| | | |
Collapse
|
44
|
Murata J, Bienzle D, Brandle JE, Sensen CW, De Luca V. Expressed sequence tags from Madagascar periwinkle (Catharanthus roseus). FEBS Lett 2006; 580:4501-7. [PMID: 16870181 DOI: 10.1016/j.febslet.2006.07.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 06/29/2006] [Accepted: 07/07/2006] [Indexed: 11/25/2022]
Abstract
The Madagascar periwinkle (Catharanthus roseus) is well known to produce the chemotherapeutic anticancer agents, vinblastine and vincristine. In spite of its importance, no expressed sequence tag (EST) analysis of this plant has been reported. Two cDNA libraries were generated from RNA isolated from the base part of young leaves and from root tips to select 9,824 random clones for unidirectional sequencing, to yield 3,327 related sequences and 1,696 singletons by cluster analysis. Putative functions of 3,663 clones were assigned, from 5,023 non-redundant ESTs to establish a resource for transcriptome analysis and gene discovery in this medicinal plant.
Collapse
Affiliation(s)
- Jun Murata
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ont., Canada L2S3A1
| | | | | | | | | |
Collapse
|