1
|
Rogo U, Fambrini M, Pugliesi C. Embryo Rescue in Plant Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:3106. [PMID: 37687352 PMCID: PMC10489947 DOI: 10.3390/plants12173106] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023]
Abstract
Embryo rescue (ER) techniques are among the oldest and most successful in vitro tissue culture protocols used with plant species. ER refers to a series of methods that promote the development of an immature or lethal embryo into a viable plant. Intraspecific, interspecific, or intergeneric crosses allow the introgression of important alleles of agricultural interest from wild species, such as resistance or tolerance to abiotic and biotic stresses or morphological traits in crops. However, pre-zygotic and post-zygotic reproductive barriers often present challenges in achieving successful hybridization. Pre-zygotic barriers manifest as incompatibility reactions that hinder pollen germination, pollen tube growth, or penetration into the ovule occurring in various tissues, such as the stigma, style, or ovary. To overcome these barriers, several strategies are employed, including cut-style or graft-on-style techniques, the utilization of mixed pollen from distinct species, placenta pollination, and in vitro ovule pollination. On the other hand, post-zygotic barriers act at different tissues and stages ranging from early embryo development to the subsequent growth and reproduction of the offspring. Many crosses among different genera result in embryo abortion due to the failure of endosperm development. In such cases, ER techniques are needed to rescue these hybrids. ER holds great promise for not only facilitating successful crosses but also for obtaining haploids, doubled haploids, and manipulating the ploidy levels for chromosome engineering by monosomic and disomic addition as well substitution lines. Furthermore, ER can be used to shorten the reproductive cycle and for the propagation of rare plants. Additionally, it has been repeatedly used to study the stages of embryonic development, especially in embryo-lethal mutants. The most widely used ER procedure is the culture of immature embryos taken and placed directly on culture media. In certain cases, the in vitro culture of ovule, ovaries or placentas enables the successful development of young embryos from the zygote stage to maturity.
Collapse
Affiliation(s)
| | | | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (U.R.); (M.F.)
| |
Collapse
|
2
|
Toda E, Kiba T, Kato N, Okamoto T. Isolation of gametes and zygotes from Setaria viridis. JOURNAL OF PLANT RESEARCH 2022; 135:627-633. [PMID: 35534650 DOI: 10.1007/s10265-022-01393-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Setaria viridis, the wild ancestor of foxtail millet (Setaria italica), is an effective model plant for larger C4 crops because S. viridis has several desirable traits, such as short generation time, prolific seed production and a small genome size. These advantages are well suited for investigating molecular mechanisms in angiosperms, especially C4 crop species. Here, we report a procedure for isolating gametes and zygotes from S. viridis flowers. To isolate egg cells, ovaries were harvested from unpollinated mature flowers and cut transversely, which allowed direct access to the embryo sac. Thereafter, an egg cell was released from the cut end of the basal portion of the dissected ovary. To isolate sperm cells, pollen grains released from anthers were immersed in a mannitol solution, resulting in pollen-grain bursting, which released sperm cells. Additionally, S. viridis zygotes were successfully isolated from freshly pollinated flowers. Isolated zygotes cultured in a liquid medium developed into globular-like embryos and cell masses. Thus, isolated S. viridis gametes, zygotes and embryos are attainable for detailed observations and investigations of fertilization and developmental events in angiosperms.
Collapse
Affiliation(s)
- Erika Toda
- Plant Breeding Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, 192-0392, Japan.
- Department of Biological Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Takatoshi Kiba
- Plant Breeding Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Norio Kato
- Plant Breeding Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, 192-0392, Japan
| | - Takashi Okamoto
- Plant Breeding Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
3
|
Toda E, Okamoto T. Gene Expression and Genome Editing Systems by Direct Delivery of Macromolecules Into Rice Egg Cells and Zygotes. Bio Protoc 2020; 10:e3681. [PMID: 33659352 PMCID: PMC7842353 DOI: 10.21769/bioprotoc.3681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/05/2020] [Accepted: 05/09/2020] [Indexed: 11/02/2022] Open
Abstract
Polyethylene glycol calcium (PEG-Ca2+)-mediated transfection allows rapid and efficient examination to analyze diverse cellular functions of genes of interest. In plant cells, macromolecules, such as DNA, RNA and protein, are delivered into protoplasts derived from somatic tissues or calli via PEG-Ca2+ transfection. To broaden and develop the scope of investigations using plant gametes and zygotes, a procedure for direct delivery of macromolecules into these cells has recently been established using PEG-Ca2+ transfection. This PEG-Ca2+-mediated delivery into rice egg cells/zygotes consists of four microtechniques, (i) isolation of gametes, (ii) production of zygotes by electrofusion of gametes, (iii) PEG-Ca2+-mediated delivery of macromolecules into isolated egg cells or produced zygotes, and (iv) culture and subsequent analyses of the transfected egg cells/zygotes. Because the full protocol for microtechniques (i) and (ii) have already been reported in Toda et al., 2016 , microtechniques (iii) and (iv) are mainly described in this protocol.
Collapse
Affiliation(s)
- Erika Toda
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| |
Collapse
|
4
|
Abstract
The isolation of male and female gametes is an effective method to study the fertilization mechanisms of higher plants. An osmotic shock method was used to rupture pollen grains of Allium tuberosum Roxb and release the pollen contents, including generative cells, which were mass collected. The pollinated styles were cut following 3 h of in vivo growth, and cultured in medium for 6-8 h, during which time pollen tubes grew out of the cut end of the style. After pollen tubes were transferred into a solution containing 6% mannitol, tubes burst and released pairs of sperm cells. Ovules of A. tuberosum were incubated in an enzyme solution for 30 min, and then dissected to remove the integuments. Following transfer to a dissecting solution free of enzymes, each nucellus was cut in the middle, and squeezed gently on the micropylar end, resulting in the liberation of the egg, zygote and proembryo from ovules at selected stages. These cells can be used to explore fertilization and embryonic development using molecular biological methods for each cell type and development stage.
Collapse
|
5
|
Han L, Li L, Muehlbauer GJ, Fowler JE, Evans MMS. RNA Isolation and Analysis of LncRNAs from Gametophytes of Maize. Methods Mol Biol 2019; 1933:67-86. [PMID: 30945179 DOI: 10.1007/978-1-4939-9045-0_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The explosion of RNA-Seq data has enabled the identification of expressed genes without relying on gene models with biases toward open reading frames, allowing the identification of many more long noncoding RNAs (lncRNAs) in eukaryotes. Various tissue enrichment strategies and deep sequencing have also enabled the identification of an extensive list of genes expressed in maize gametophytes, tissues that are intractable to both traditional genetic and gene expression analyses. However, the function of very few genes from the lncRNA and gametophyte sets (or from their intersection) has been tested. Methods for isolating and identifying lncRNAs from gametophyte samples of maize are described here. This method is transferable to any maize gametophyte mutant enabling the development of gene networks involving both protein-coding genes and lncRNAs. Additionally, these methods can be adapted to apply to other grass model systems to test for evolutionary conservation of lncRNA expression patterns.
Collapse
Affiliation(s)
- Linqian Han
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lin Li
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, USA
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, USA
| | - John E Fowler
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Matthew M S Evans
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA.
| |
Collapse
|
6
|
Erbasol Serbes I, Palovaara J, Groß-Hardt R. Development and function of the flowering plant female gametophyte. Curr Top Dev Biol 2019; 131:401-434. [DOI: 10.1016/bs.ctdb.2018.11.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Sigel EM, Schuettpelz E, Pryer KM, Der JP. Overlapping Patterns of Gene Expression Between Gametophyte and Sporophyte Phases in the Fern Polypodium amorphum (Polypodiales). FRONTIERS IN PLANT SCIENCE 2018; 9:1450. [PMID: 30356815 PMCID: PMC6190754 DOI: 10.3389/fpls.2018.01450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 09/12/2018] [Indexed: 05/16/2023]
Abstract
Ferns are unique among land plants in having sporophyte and gametophyte phases that are both free living and fully independent. Here, we examine patterns of sporophytic and gametophytic gene expression in the fern Polypodium amorphum, a member of the homosporous polypod lineage that comprises 80% of extant fern diversity, to assess how expression of a common genome is partitioned between two morphologically, ecologically, and nutritionally independent phases. Using RNA-sequencing, we generated transcriptome profiles for three replicates of paired samples of sporophyte leaf tissue and whole gametophytes to identify genes with significant differences in expression between the two phases. We found a nearly 90% overlap in the identity and expression levels of the genes expressed in both sporophytes and gametophytes, with less than 3% of genes uniquely expressed in either phase. We compare our results to those from similar studies to establish how phase-specific gene expression varies among major land plant lineages. Notably, despite having greater similarity in the identity of gene families shared between P. amorphum and angiosperms, P. amorphum has phase-specific gene expression profiles that are more like bryophytes and lycophytes than seed plants. Our findings suggest that shared patterns of phase-specific gene expression among seed-free plants likely reflect having relatively large, photosynthetic gametophytes (compared to the gametophytes of seed plants that are highly reduced). Phylogenetic analyses were used to further investigate the evolution of phase-specific expression for the phototropin, terpene synthase, and MADS-box gene families.
Collapse
Affiliation(s)
- Erin M. Sigel
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, United States
| | - Eric Schuettpelz
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | | | - Joshua P. Der
- Department of Biological Science, California State University Fullerton, Fullerton, CA, United States
| |
Collapse
|
8
|
Koiso N, Toda E, Ichikawa M, Kato N, Okamoto T. Development of gene expression system in egg cells and zygotes isolated from rice and maize. PLANT DIRECT 2017; 1:e00010. [PMID: 31245659 PMCID: PMC6508540 DOI: 10.1002/pld3.10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/10/2017] [Accepted: 07/28/2017] [Indexed: 05/25/2023]
Abstract
Polyethylene glycol calcium (PEG-Ca2+) transfection-mediated analysis allows rapid and efficient examination of gene function. To investigate the diverse cellular functions of genes of interest in plant cells, macromolecules, such as DNA, RNA, and proteins, are delivered into protoplasts prepared from somatic tissues or calli using a PEG-Ca2+ transfection procedure. To take advantage of this macromolecule delivery system in the reproductive and developmental biology of angiosperms, this study established a PEG-Ca2+ transfection system with isolated egg cells and zygotes. The conditions for PEG and plasmid DNA concentrations for transfection of rice egg cells were first addressed, and ~30% of PEG-Ca2+-transfected egg cells showed exogenous and transient expressions of fluorescent proteins from plasmid DNA delivered into the cells. Interestingly, a dual expression of two different fluorescent proteins in the same egg cell using two kinds of plasmid DNAs was also observed. For PEG-Ca2+ transfection with maize zygotes, ~80% of zygotes showed expression of GFP proteins from plasmid DNA. Importantly, PEG-transfected zygotes developed normally into cell masses and mature plants. These results suggest that the present PEG-Ca2+-mediated transient expression system provides a novel and effective platform for expressing and analyzing genes of interest in egg cells and zygotes. Moreover, combined with the CRISPR/Cas9 approach, the present transient expression system in zygotes will become a powerful and alternative tool for the preparation of gene-edited plants.
Collapse
Affiliation(s)
- Narumi Koiso
- Department of Biological SciencesTokyo Metropolitan UniversityHachiojiTokyoJapan
| | - Erika Toda
- Department of Biological SciencesTokyo Metropolitan UniversityHachiojiTokyoJapan
- Plant Breeding Innovation LaboratoryRIKEN Innovation CenterTsurumiYokohamaJapan
| | | | - Norio Kato
- Department of Biological SciencesTokyo Metropolitan UniversityHachiojiTokyoJapan
- Plant Breeding Innovation LaboratoryRIKEN Innovation CenterTsurumiYokohamaJapan
- Plant Innovation CenterJapan Tobacco Inc.IwataShizuokaJapan
| | - Takashi Okamoto
- Department of Biological SciencesTokyo Metropolitan UniversityHachiojiTokyoJapan
- Plant Breeding Innovation LaboratoryRIKEN Innovation CenterTsurumiYokohamaJapan
| |
Collapse
|
9
|
Ambrosino L, Bostan H, Ruggieri V, Chiusano ML. Bioinformatics resources for pollen. PLANT REPRODUCTION 2016; 29:133-147. [PMID: 27271281 DOI: 10.1007/s00497-016-0284-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/19/2016] [Indexed: 06/06/2023]
Abstract
Bioinformatics for Pollen. Pollen plays a key role in crop production, and its development is the most delicate phase in reproduction. Different metabolic pathways are involved in pollen development, and changes in the level of some metabolites, as well as responses to stress, are correlated with the reduction in pollen viability, leading consequently to a decrease in the fruit production. However, studies on pollen may be hard because gamete development and fertilization are complex processes that occur during a short window of time. The rise of the so-called -omics sciences provided key strategies to promote molecular research in pollen tissues, starting from model organisms and moving to increasing number of species. An integrated multi-level approach based on investigations from genomics, transcriptomics, proteomics and metabolomics appears now feasible to clarify key molecular processes in pollen development and viability. To this aim, bioinformatics has a fundamental role for data production and analysis, contributing varied and ad hoc methodologies, endowed with different sensitivity and specificity, necessary for extracting added-value information from the large amount of molecular data achievable. Bioinformatics is also essential for data management, organization, distribution and integration in suitable resources. This is necessary to catch the biological features of the pollen tissues and to design effective approaches to identifying structural or functional properties, enabling the modeling of the major involved processes in normal or in stress conditions. In this review, we provide an overview of the available bioinformatics resources for pollen, ranging from raw data collections to complete databases or platforms, when available, which include data and/or results from -omics efforts on the male gametophyte. Perspectives in the fields will also be described.
Collapse
Affiliation(s)
- Luca Ambrosino
- Department of Agricultural Sciences, University of Naples "Federico II", via Università 100, Portici (NA), 80055, Italy
| | - Hamed Bostan
- Department of Agricultural Sciences, University of Naples "Federico II", via Università 100, Portici (NA), 80055, Italy
| | - Valentino Ruggieri
- Department of Agricultural Sciences, University of Naples "Federico II", via Università 100, Portici (NA), 80055, Italy
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples "Federico II", via Università 100, Portici (NA), 80055, Italy.
| |
Collapse
|
10
|
Du Q, Wang H. Retarded Embryo Development 1 (RED1) regulates embryo development, seed maturation and plant growth in Arabidopsis. J Genet Genomics 2016; 43:439-49. [PMID: 27477025 DOI: 10.1016/j.jgg.2016.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 04/14/2016] [Accepted: 04/23/2016] [Indexed: 11/30/2022]
Abstract
Plant seeds accumulate large amounts of protein and carbohydrate as storage reserves during maturation. Thus, understanding the genetic control of embryo and seed development may provide bioengineering tools for yield improvement. In this study, we report the identification of Retarded Embryo Development 1 (RED1) gene in Arabidopsis, whose two independent T-DNA insertion mutant lines, SALK_085642 (red1-1) and SALK_022583 (red1-2), show a retarded embryo development phenotype. The embryogenesis process ceases at the late heart stage in red1-1 and at the bent-cotyledon stage in red1-2, respectively, resulting in seed abortion in both lines. The retarded embryo development and seed abortion phenotypes reverted to normal when RED1 complementation constructs were introduced into mutant plants. Small red1-2 homozygous plants can be successfully rescued by culturing immature seeds, indicating that seed abortion likely results from compromised tolerance to the desiccation process associated with seed maturation. Consistent with this observation, red1-2 seeds accumulate less protein, and the expression of two late embryo development reporter transgenes, LEA::GUS and β-conglycinin::GUS, was significantly weak and started relatively late in the red1-2 mutant lines compared to the wild type. The RED1 gene encodes a plant specific novel protein that is localized in the nucleus. These results indicate that RED1 plays important roles in embryo development, seed maturation and plant growth.
Collapse
Affiliation(s)
- Qian Du
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA
| | - Huanzhong Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
11
|
Versatility of germin-like proteins in their sequences, expressions, and functions. Funct Integr Genomics 2015; 15:533-48. [DOI: 10.1007/s10142-015-0454-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/28/2015] [Accepted: 07/02/2015] [Indexed: 12/19/2022]
|
12
|
Same same but different: sperm-activating EC1 and ECA1 gametogenesis-related family proteins. Biochem Soc Trans 2015; 42:401-7. [PMID: 24646251 DOI: 10.1042/bst20140039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During double fertilization in Arabidopsis thaliana, the egg cell secretes small cysteine-rich EC1 (egg cell 1) proteins, which enable the arriving sperm pair to rapidly interact with the two female gametes. EC1 proteins are members of the large and unexplored group of ECA1 (early culture abundant 1) gametogenesis-related family proteins, characterized by a prolamin-like domain with six conserved cysteine residues that may form three pairs of disulfide bonds. The distinguishing marks of egg-cell-expressed EC1 proteins are, however, two short amino acid sequence motifs present in all EC1-like proteins. EC1 genes appear to encode the major CRPs (cysteine-rich proteins) expressed by the plant egg cell, and they are restricted to flowering plants, including the most basal extant flowering plant Amborella trichopoda. Many other ECA1 gametogenesis-related family genes are preferentially expressed in the synergid cell. Functional diversification among the ECA1 gametogenesis-related family is suggested by the different patterns of expression in the female gametophyte and the low primary sequence conservation.
Collapse
|
13
|
Russell SD, Jones DS. The male germline of angiosperms: repertoire of an inconspicuous but important cell lineage. FRONTIERS IN PLANT SCIENCE 2015; 6:173. [PMID: 25852722 PMCID: PMC4367165 DOI: 10.3389/fpls.2015.00173] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/03/2015] [Indexed: 05/03/2023]
Abstract
The male germline of flowering plants constitutes a specialized lineage of diminutive cells initiated by an asymmetric division of the initial microspore cell that sequesters the generative cell from the pollen vegetative cell. The generative cell subsequently divides to form the two male gametes (non-motile sperm cells) that fuse with the two female gametophyte target cells (egg and central cells) to form the zygote and endosperm. Although these male gametes can be as little as 1/800th of the volume of their female counterpart, they encode a highly distinctive and rich transcriptome, translate proteins, and display a novel suite of gamete-distinctive control elements that create a unique chromatin environment in the male lineage. Sperm-expressed transcripts also include a high proportion of transposable element-related sequences that may be targets of non-coding RNA including miRNA and silencing elements from peripheral cells. The number of sperm-encoded transcripts is somewhat fewer than the number present in the egg cell, but are remarkably distinct compared to other cell types according to principal component and other analyses. The molecular role of the male germ lineage cells is just beginning to be understood and appears more complex than originally anticipated.
Collapse
Affiliation(s)
- Scott D. Russell
- *Correspondence: Scott D. Russell, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, 770 Van Vleet Oval, OK 73019, USA
| | | |
Collapse
|
14
|
Chettoor AM, Givan SA, Cole RA, Coker CT, Unger-Wallace E, Vejlupkova Z, Vollbrecht E, Fowler JE, Evans MM. Discovery of novel transcripts and gametophytic functions via RNA-seq analysis of maize gametophytic transcriptomes. Genome Biol 2014; 15:414. [PMID: 25084966 PMCID: PMC4309534 DOI: 10.1186/s13059-014-0414-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 07/15/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Plant gametophytes play central roles in sexual reproduction. A hallmark of the plant life cycle is that gene expression is required in the haploid gametophytes. Consequently, many mutant phenotypes are expressed in this phase. RESULTS We perform a quantitative RNA-seq analysis of embryo sacs, comparator ovules with the embryo sacs removed, mature pollen, and seedlings to assist the identification of gametophyte functions in maize. Expression levels were determined for annotated genes in both gametophytes, and novel transcripts were identified from de novo assembly of RNA-seq reads. Transposon-related transcripts are present in high levels in both gametophytes, suggesting a connection between gamete production and transposon expression in maize not previously identified in any female gametophytes. Two classes of small signaling proteins and several transcription factor gene families are enriched in gametophyte transcriptomes. Expression patterns of maize genes with duplicates in subgenome 1 and subgenome 2 indicate that pollen-expressed genes in subgenome 2 are retained at a higher rate than subgenome 2 genes with other expression patterns. Analysis of available insertion mutant collections shows a statistically significant deficit in insertions in gametophyte-expressed genes. CONCLUSIONS This analysis, the first RNA-seq study to compare both gametophytes in a monocot, identifies maize gametophyte functions, gametophyte expression of transposon-related sequences, and unannotated, novel transcripts. Reduced recovery of mutations in gametophyte-expressed genes is supporting evidence for their function in the gametophytes. Expression patterns of extant, duplicated maize genes reveals that selective pressures based on male gametophytic function have likely had a disproportionate effect on plant genomes.
Collapse
|
15
|
Wang SS, Wang F, Tan SJ, Wang MX, Sui N, Zhang XS. Transcript profiles of maize embryo sacs and preliminary identification of genes involved in the embryo sac-pollen tube interaction. FRONTIERS IN PLANT SCIENCE 2014; 5:702. [PMID: 25566277 PMCID: PMC4269116 DOI: 10.3389/fpls.2014.00702] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/25/2014] [Indexed: 05/05/2023]
Abstract
The embryo sac, the female gametophyte of flowering plants, plays important roles in the pollination and fertilization process. Maize (Zea mays L.) is a model monocot, but little is known about the interactions between its embryo sac and the pollen tube. In this study, we compared the transcript profiles of mature embryo sacs, mature embryo sacs 14-16 h after pollination, and mature nucelli. Comparing the transcript profiles of the embryo sacs before and after the entry of the pollen tube, we identified 3467 differentially expressed transcripts (3382 differentially expressed genes; DEGs). The DEGs were grouped into 22 functional categories. Among the DEGs, 221 genes were induced upon the entry of the pollen tube, and many of them encoded proteins involved in RNA binding, processing, and transcription, signaling, miscellaneous enzyme family processes, and lipid metabolism processes. Genes in the DEG dataset were grouped into 17 classes in a gene ontology enrichment analysis. The DEGs included many genes encoding proteins involved in protein amino acid phosphorylation and protein ubiquitination, implying that these processes might play important roles in the embryo sac-pollen tube interaction. Additionally, our analyses indicate that the expression of 112 genes encoding cysteine-rich proteins (CRPs) is induced during pollination and fertilization. The CRPs likely regulate pollen tube guidance and embryo sac development. These results provide important information on the genes involved in the embryo sac-pollen tube interaction in maize.
Collapse
Affiliation(s)
- Shuai Shuai Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural UniversityTai'an, China
| | - Fang Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTai'an, China
| | - Su Jian Tan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTai'an, China
| | - Ming Xiu Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTai'an, China
| | - Na Sui
- College of Life Sciences, Shandong Normal UniversityJi'nan, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTai'an, China
- *Correspondence: Xian Sheng Zhang, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong Province, 271018 Shandong, China e-mail:
| |
Collapse
|
16
|
Comprehensive analysis of expressed sequence tags from cultivated and wild radish (Raphanus spp.). BMC Genomics 2013; 14:721. [PMID: 24144082 PMCID: PMC3816612 DOI: 10.1186/1471-2164-14-721] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/18/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Radish (Raphanus sativus L., 2n = 2× = 18) is an economically important vegetable crop worldwide. A large collection of radish expressed sequence tags (ESTs) has been generated but remains largely uncharacterized. RESULTS In this study, approximately 315,000 ESTs derived from 22 Raphanus cDNA libraries from 18 different genotypes were analyzed, for the purpose of gene and marker discovery and to evaluate large-scale genome duplication and phylogenetic relationships among Raphanus spp. The ESTs were assembled into 85,083 unigenes, of which 90%, 65%, 89% and 89% had homologous sequences in the GenBank nr, SwissProt, TrEMBL and Arabidopsis protein databases, respectively. A total of 66,194 (78%) could be assigned at least one gene ontology (GO) term. Comparative analysis identified 5,595 gene families unique to radish that were significantly enriched with genes related to small molecule metabolism, as well as 12,899 specific to the Brassicaceae that were enriched with genes related to seed oil body biogenesis and responses to phytohormones. The analysis further indicated that the divergence of radish and Brassica rapa occurred approximately 8.9-14.9 million years ago (MYA), following a whole-genome duplication event (12.8-21.4 MYA) in their common ancestor. An additional whole-genome duplication event in radish occurred at 5.1-8.4 MYA, after its divergence from B. rapa. A total of 13,570 simple sequence repeats (SSRs) and 28,758 high-quality single nucleotide polymorphisms (SNPs) were also identified. Using a subset of SNPs, the phylogenetic relationships of eight different accessions of Raphanus was inferred. CONCLUSION Comprehensive analysis of radish ESTs provided new insights into radish genome evolution and the phylogenetic relationships of different radish accessions. Moreover, the radish EST sequences and the associated SSR and SNP markers described in this study represent a valuable resource for radish functional genomics studies and breeding.
Collapse
|
17
|
Abiko M, Maeda H, Tamura K, Hara-Nishimura I, Okamoto T. Gene expression profiles in rice gametes and zygotes: identification of gamete-enriched genes and up- or down-regulated genes in zygotes after fertilization. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1927-40. [PMID: 23570690 PMCID: PMC3638821 DOI: 10.1093/jxb/ert054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In angiosperms, fertilization and subsequent zygotic development occur in embryo sacs deeply embedded in the ovaries; therefore, these processes are poorly elucidated. In this study, microarray-based transcriptome analyses were conducted on rice sperm cells, egg cells, and zygotes isolated from flowers to identify candidate genes involved in gametic and/or early zygotic development. Cell type-specific transcriptomes were obtained, and up- or down-regulated genes in zygotes after fertilization were identified, in addition to genes enriched in male and female gametes. A total of 325 putatively up-regulated and 94 putatively down-regulated genes in zygotes were obtained. Interestingly, several genes encoding homeobox proteins or transcription factors were identified as highly up-regulated genes after fertilization, and the gene ontology for up-regulated genes was highly enriched in functions related to chromatin/DNA organization and assembly. Because a gene encoding methyltransferase 1 was identified as a highly up-regulated gene in zygotes after fertilization, the effect of an inhibitor of this enzyme on zygote development was monitored. The inhibitor appeared partially to affect polarity or division asymmetry in rice zygotes, but it did not block normal embryo generation.
Collapse
Affiliation(s)
- Mafumi Abiko
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192–0397, Japan
| | - Hiroki Maeda
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192–0397, Japan
| | - Kentaro Tamura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606–8502, Japan
| | - Ikuko Hara-Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606–8502, Japan
| | - Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192–0397, Japan
| |
Collapse
|
18
|
Rietz S, Bernsdorff FE, Cai D. Members of the germin-like protein family in Brassica napus are candidates for the initiation of an oxidative burst that impedes pathogenesis of Sclerotinia sclerotiorum. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5507-19. [PMID: 22888126 PMCID: PMC3444267 DOI: 10.1093/jxb/ers203] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Germin-like proteins (GLPs) are defined by their sequence homology to germins from barley and are present ubiquitously in plants. Analyses of corresponding genes have revealed diverse functions of GLPs in plant development and biotic and abiotic stresses. This study describes the identification of a family of 14 germin-like genes from Brassica napus (BnGLP) designated BnGLP1-BnGLP14 and investigated potential functions of BnGLPs in plant defense against the necrotrophic fungus Sclerotinia sclerotiorum. Sequence alignment and phylogenetic analyses classify the 14 BnGLPs into four groups, which were clearly distinguished from known germin oxalic acid oxidases. Transcriptional responses of the BnGLP genes to S. sclerotiorum infection was determined by comparing cultivars of susceptible B. napus 'Falcon' and partially resistant B. napus 'Zhongshuang 9'. Of the 14 BnGLP genes tested, BnGLP3 was transcriptionally upregulated in both B. napus cultivars at 6h after S. sclerotiorum infection, while upregulation of BnGLP12 was restricted to resistant B. napus 'Zhongshuang 9'. Biochemical analysis of five representative BnGLP members identified a H(2)O(2)-generating superoxide dismutase activity only for higher molecular weight complexes of BnGLP3 and BnGLP12. By analogy, H(2)O(2) formation at infected leaf sites increased after 6h, with even higher H(2)O(2) production in B. napus 'Zhongshuang 9' compared with B. napus 'Falcon'. Conversely, exogenous application of H(2)O(2) significantly reduced the susceptibility of B. napus 'Falcon'. These data suggest that early induction of BnGLP3 and BnGLP12 participates in an oxidative burst that may play a pivotal role in defence of B. napus against S. sclerotiorum.
Collapse
Affiliation(s)
- Steffen Rietz
- Department of Molecular Phytopathology, Institute of Phytopathology, Christian-Albrechts-Universität of KielGermany, Hermann, Rodewald Str. 9 D-24118 KielGermany
| | - Friederike E.M. Bernsdorff
- Department of Molecular Phytopathology, Institute of Phytopathology, Christian-Albrechts-Universität of KielGermany, Hermann, Rodewald Str. 9 D-24118 KielGermany
| | - Daguang Cai
- Department of Molecular Phytopathology, Institute of Phytopathology, Christian-Albrechts-Universität of KielGermany, Hermann, Rodewald Str. 9 D-24118 KielGermany
| |
Collapse
|
19
|
Niedojadło K, Pięciński S, Smoliński DJ, Bednarska-Kozakiewicz E. Transcriptional activity of Hyacinthus orientalis L. female gametophyte cells before and after fertilization. PLANTA 2012; 236:153-69. [PMID: 22293855 PMCID: PMC3382649 DOI: 10.1007/s00425-012-1599-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 01/05/2012] [Indexed: 05/19/2023]
Abstract
We characterized three phases of Hyacinthus orientalis L. embryo sac development, in which the transcriptional activity of the cells differed using immunolocalization of incorporated 5′-bromouracil, the total RNA polymerase II pool and the hypo- (initiation) and hyperphosphorylated (elongation) forms of RNA Pol II. The first stage, which lasts from the multinuclear stage to cellularization, is a period of high transcriptional activity, probably related to the maturation of female gametophyte cells. The second stage, encompassing the period of embryo sac maturity and the progamic phase, involves the transcriptional silencing of cells that will soon undergo fusion with male gametes. During this period in the hyacinth egg cell, there are almost no newly formed transcripts, and only a small pool of RNA Pol II is present in the nucleus. The transcriptional activity of the central cell is only slightly higher than that observed in the egg cell. The post-fertilization stage is related to the transcriptional activation of the zygote and the primary endosperm cell. The rapid increase in the pool of newly formed transcripts in these cells is accompanied by an increase in the pool of RNA Pol II, and the pattern of enzyme distribution in the zygote nucleus is similar to that observed in the somatic cells of the ovule. Our data, together with the earlier results of Pięciński et al. (2008), indicate post-fertilization synthesis and the maturation of numerous mRNA transcripts, suggesting that fertilization in H. orientalis induces the activation of the zygote and endosperm genomes.
Collapse
Affiliation(s)
- Katarzyna Niedojadło
- Department of Cell Biology, Institute of General and Molecular Biology, Nicolaus Copernicus University, Gagarina 9, 87-100 Toruń, Poland.
| | | | | | | |
Collapse
|
20
|
Schmidt A, Schmid MW, Grossniklaus U. Analysis of plant germline development by high-throughput RNA profiling: technical advances and new insights. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:18-29. [PMID: 22449040 DOI: 10.1111/j.1365-313x.2012.04897.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Reproduction is a crucial step in the life cycle of plants. The male and female germline lineages develop in the reproductive organs of the flower, which in higher plants are the anthers and ovules, respectively. Development of the germline lineage initiates from a dedicated sporophytic cell that undergoes meiosis to form spores that subsequently give rise to the gametophytes through mitotic cell divisions. The mature male and female gametophytes harbour the male (sperm cells) and female gametes (egg and central cell), respectively. Those unite during double fertilization to initiate embryo and endosperm development in sexually reproducing higher plants. While cytological changes involved in development of the germline lineages have been well characterized in a number of species, investigation of the transcriptional basis underlying their development and the specification of the gametes proved challenging. This is largely due to the inaccessibility of the cells constituting the germline lineages, which are enclosed by sporophytic tissues. Only recently, these technical limitations could be overcome by combining new methods to isolate the relevant cells with powerful transcriptional profiling methods, such as microarrays or high-throughput sequencing of RNA. This review focuses on these technical advances and the new insights gained from them concerning the transcriptional basis and molecular mechanisms underlying germline development.
Collapse
Affiliation(s)
- Anja Schmidt
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, Zürich, Switzerland.
| | | | | |
Collapse
|
21
|
Koszegi D, Johnston AJ, Rutten T, Czihal A, Altschmied L, Kumlehn J, Wüst SEJ, Kirioukhova O, Gheyselinck J, Grossniklaus U, Bäumlein H. Members of the RKD transcription factor family induce an egg cell-like gene expression program. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:280-91. [PMID: 21457369 DOI: 10.1111/j.1365-313x.2011.04592.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In contrast to animals, the life cycle of higher plants alternates between a gamete-producing (gametophyte) and a spore-producing (sporophyte) generation. The female gametophyte of angiosperms consists of four distinct cell types, including two gametes, the egg and the central cell, which give rise to embryo and endosperm, respectively. Based on a combined subtractive hybridization and virtual subtraction approach in wheat (Triticum aestivum L.), we have isolated a class of transcription factors not found in animal genomes, the RKD (RWP-RK domain-containing) factors, which share a highly conserved RWP-RK domain. Single-cell RT-PCR revealed that the genes TaRKD1 and TaRKD2 are preferentially expressed in the egg cell of wheat. The Arabidopsis genome contains five RKD genes, at least two of them, AtRKD1 and AtRKD2, are preferentially expressed in the egg cell of Arabidopsis. Ectopic expression of the AtRKD1 and AtRKD2 genes induces cell proliferation and the expression of an egg cell marker. Analyses of RKD-induced proliferating cells exhibit a shift of gene expression towards an egg cell-like transcriptome. Promoters of selected RKD-induced genes were shown to be predominantly active in the egg cell and can be activated by RKD in a transient protoplast expression assay. The data show that egg cell-specific RKD factors control a transcriptional program, which is characteristic for plant egg cells.
Collapse
Affiliation(s)
- Dávid Koszegi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Candela H, Pérez-Pérez JM, Micol JL. Uncovering the post-embryonic functions of gametophytic- and embryonic-lethal genes. TRENDS IN PLANT SCIENCE 2011; 16:336-345. [PMID: 21420345 DOI: 10.1016/j.tplants.2011.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 02/09/2011] [Accepted: 02/17/2011] [Indexed: 05/30/2023]
Abstract
An estimated 500-1 000 Arabidopsis (Arabidopsis thaliana) genes mutate to embryonic lethality. In addition, several hundred mutations have been identified that cause gametophytic lethality. Thus, a significant fraction of the ∼25,000 protein-coding genes in Arabidopsis are indispensable to the early stages of the diploid phase or to the haploid gametophytic phase. The expression patterns of many of these genes indicate that they also act later in development but, because the mutants die at such early stages, conventional methods limit the study of their roles in adult diploid plants. Here, we describe the toolset that allows researchers to assess the post-embryonic functions of plant genes for which only gametophytic- and embryonic-lethal alleles have been isolated.
Collapse
Affiliation(s)
- Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | | | | |
Collapse
|
23
|
Marshall E, Costa LM, Gutierrez-Marcos J. Cysteine-rich peptides (CRPs) mediate diverse aspects of cell-cell communication in plant reproduction and development. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1677-86. [PMID: 21317212 DOI: 10.1093/jxb/err002] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Cell-cell communication in plants is essential for the correct co-ordination of reproduction, growth, and development. Studies to dissect this mode of communication have previously focussed primarily on the action of plant hormones as mediators of intercellular signalling. In animals, peptide signalling is a well-documented intercellular communication system, however, relatively little is known about this system in plants. In recent years, numerous reports have emerged about small, secreted peptides controlling different aspects of plant reproduction. Interestingly, most of these peptides are cysteine-rich, and there is convincing evidence suggesting multiple roles for related cysteine-rich peptides (CRPs) as signalling factors in developmental patterning as well as during plant pathogen responses and symbiosis. In this review, we discuss how CRPs are emerging as key signalling factors in regulating multiple aspects of vegetative growth and reproductive development in plants.
Collapse
Affiliation(s)
- Eleanor Marshall
- School of Life Sciences, University of Warwick, Wellesbourne Campus, Wellesbourne, UK
| | | | | |
Collapse
|
24
|
Berger F. Imaging fertilization in flowering plants, not so abominable after all. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1651-8. [PMID: 20952626 DOI: 10.1093/jxb/erq305] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Although the discovery of double fertilization in flowering plants took place at the end of the nineteenth century little progress had been made in understanding the cellular and molecular mechanisms involved until the end of the twentieth century. After attempts to study fertilization with isolated male and female gametes, researchers turned to Arabidopsis thaliana as a model for genetic analysis and in vivo imaging. The development of confocal imaging and fluorescent proteins, coupled with new molecular insights into cell fate specification of plant gametes, allowed the development of robust markers for cells participating in double fertilization. These markers enabled the imaging of double fertilization in vivo in Arabidopsis. These studies have been coupled with the identification and molecular characterization of genes controlling fertilization in Arabidopsis. Live imaging has already provided new insights on sperm cell delivery, the equivalence of the fate of the sperm cells, gamete fusion, and re-initiation of the zygotic life. This review covers these topics and outlines many important aspects of double fertilization that remain unknown.
Collapse
Affiliation(s)
- Frédéric Berger
- Temasek LifeScience Laboratory, 1 Research Link, National University of Singapore, Singapore.
| |
Collapse
|
25
|
Nuclear behavior, cell polarity, and cell specification in the female gametophyte. ACTA ACUST UNITED AC 2011; 24:123-36. [PMID: 21336612 DOI: 10.1007/s00497-011-0161-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Accepted: 01/15/2011] [Indexed: 12/18/2022]
Abstract
In flowering plants, the haploid gamete-forming generation comprises only a few cells and develops within the reproductive organs of the flower. The female gametophyte has become an attractive model system to study the genetic and molecular mechanisms involved in pattern formation and gamete specification. It originates from a single haploid spore through three free nuclear division cycles, giving rise to four different cell types. Research over recent years has allowed to catch a glimpse of the mechanisms that establish the distinct cell identities and suggests dynamic cell-cell communication to orchestrate not only development among the cells of the female gametophyte but also the interaction between male and female gametophytes. Additionally, cytological observations and mutant studies have highlighted the importance of nuclei migration- and positioning for patterning the female gametophyte. Here we review current knowledge on the mechanisms of cell specification in the female gametophyte, emphasizing the importance of positional cues for the establishment of distinct molecular profiles.
Collapse
|
26
|
Liu Y, Yan Z, Chen N, Di X, Huang J, Guo G. Development and function of central cell in angiosperm female gametophyte. Genesis 2011; 48:466-78. [PMID: 20506265 DOI: 10.1002/dvg.20647] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The central cell characterizes the angiosperm female gametophyte (embryo sac or megagametophyte) in that it directly participates in "double fertilization" to initiate endosperm development, a feature distinguishing angiosperm from all other plant taxa. Polygonum-type central cell is a binucleate cell that, upon fertilization with one of the two sperm cells, forms triploid endosperm to nourish embryo development. Although the formation and the structure of central cell have well been elucidated, the molecular mechanisms for its specification and development remain largely unknown. The central cell plays a critical role in pollen tube guidance during pollination and in endosperm initiation after fertilization. Recently, a group of mutants affecting specific steps of central cell development and function have been identified, providing some clues in understanding these questions. This review summarizes our current knowledge about central cell development and function, and presents overview about hypotheses for its evolution.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Cell Biology, School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | | | | | | | | | | |
Collapse
|
27
|
Ohnishi T, Takanashi H, Mogi M, Takahashi H, Kikuchi S, Yano K, Okamoto T, Fujita M, Kurata N, Tsutsumi N. Distinct gene expression profiles in egg and synergid cells of rice as revealed by cell type-specific microarrays. PLANT PHYSIOLOGY 2011; 155:881-91. [PMID: 21106719 PMCID: PMC3032473 DOI: 10.1104/pp.110.167502] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 11/22/2010] [Indexed: 05/06/2023]
Abstract
Double fertilization in flowering plants refers to a process in which two sperm cells, carried by the pollen tube, fertilize both the egg and the central cell after their release into a synergid cell of the female gametophyte. The molecular processes by which the female gametophytic cells express their unique functions during fertilization are not well understood. Genes expressed in egg and synergid cells might be important for multiple stages of the plant reproductive process. Here, we profiled genome-wide gene expression in egg and synergid cells in rice (Oryza sativa), a model monocot, using a nonenzymatic cell isolation technique. We found that the expression profiles of the egg and synergid cells were already specified at the micropylar end of the female gametophyte during the short developmental period that comprises the three consecutive mitotic nuclear divisions after megaspore generation. In addition, we identified a large number of genes expressed in the rice egg and synergid cells and characterized these genes using Gene Ontology analysis. The analysis suggested that epigenetic and posttranscriptional regulatory mechanisms are involved in the specification and/or maintenance of these cells. Comparisons between the rice profiles and reported Arabidopsis (Arabidopsis thaliana) profiles revealed that genes enriched in the egg/synergid cell of rice were distinct from those in Arabidopsis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Nobuhiro Tsutsumi
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113–8657, Japan (T. Ohnishi, H. Takanashi, M.M., H. Takahashi, N.T.); Department of Life Sciences, Faculty of Agriculture, Meiji University, Kawasaki, Kanagawa 214–8571, Japan (S.K., K.Y.); Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192–0397, Japan (T. Okamoto); and Genetic Strain Stock Center, National Institute of Genetics, Mishima, Shizuoka 411–8540, Japan (M.F., N.K.)
| |
Collapse
|
28
|
Techniques of cell type-specific transcriptome analysis and applications in researches of sexual plant reproduction. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11515-011-1090-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
29
|
Analysis of stunter1, a maize mutant with reduced gametophyte size and maternal effects on seed development. Genetics 2011; 187:1085-97. [PMID: 21270392 DOI: 10.1534/genetics.110.125286] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Many higher eukaryotes have evolved strategies for the maternal control of growth and development of their offspring. In higher plants this is achieved in part by postmeiotic gene activity controlling the development of the haploid female gametophyte. stunter1 (stt1) is a novel, recessive, maternal effect mutant in maize that displays viable, miniature kernels. Maternal inheritance of stt1 results in seeds with reduced but otherwise normal endosperms and embryos. The stt1 mutation displays reduced transmission through the male and female parents and causes significant changes in the sizes of both male and female gametophytes. stt1 pollen grains are smaller than wild type, have reduced germination efficiency, and reduced pollen tube growth. stt1 embryo sacs have smaller central cells and abnormal antipodal cells that are larger, more vacuolated, and fewer in number than wild type. Embryos and endosperms produced by fertilization of stt1 embryo sacs develop and grow more slowly than wild type. The data suggest that the morphology of mutant embryo sacs influences endosperm development, leading to the production of miniature kernels in stt1. Analysis of seeds carrying a mutant maternal allele of stt1 over a deletion of the paternal allele demonstrates that both parental alleles are active after fertilization in both the endosperm and embryo. This analysis also indicates that embryo development until the globular stage in maize can proceed without endosperm development and is likely supported directly by the diploid mother plant.
Collapse
|
30
|
Abstract
The angiosperm female gametophyte is critical for plant reproduction. It contains the egg cell and central cell that become fertilized and give rise to the embryo and endosperm of the seed, respectively. Female gametophyte development begins early in ovule development with the formation of a diploid megaspore mother cell that undergoes meiosis. One resulting haploid megaspore then develops into the female gametophyte. Genetic and epigenetic processes mediate specification of megaspore mother cell identity and limit megaspore mother cell formation to a single cell per ovule. Auxin gradients influence female gametophyte polarity and a battery of transcription factors mediate female gametophyte cell specification and differentiation. The mature female gametophyte secretes peptides that guide the pollen tube to the embryo sac and contains protein complexes that prevent seed development before fertilization. Post-fertilization, the female gametophyte influences seed development through maternal-effect genes and by regulating parental contributions. Female gametophytes can form by an asexual process called gametophytic apomixis, which involves formation of a diploid female gametophyte and fertilization-independent development of the egg into the embryo. These functions collectively underscore the important role of the female gametophyte in seed and food production.
Collapse
Affiliation(s)
- Gary N. Drews
- Department of Biology, University of Utah, Salt Lake City, UT 84112
- Address correspondence to
| | - Anna M.G Koltunow
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Waite Campus, South Australia 5064, Australia
| |
Collapse
|
31
|
Abstract
The flowering plant germline is produced during the haploid gametophytic stage. Defining the germline is complicated by the extreme reduction of the male and female gametophytes, also referred to as pollen and embryo sac, respectively. Both male and female gamete progenitors are segregated by an asymmetric cell division, as is the case for the germline in animals. Genetic studies and access to the transcriptome of isolated gametes have provided a regulatory framework for the mechanisms that define the male germline. What specifies female germline identity remains unknown. Recent evidence indicates that an auxin gradient provides positional information and plays a role in defining the identity of the female gamete lineage. The animal germline is also marked by production of small RNAs, and recent evidence indicates that this trait might be shared with the plant gamete lineage.
Collapse
Affiliation(s)
- Frédéric Berger
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604
| | | |
Collapse
|
32
|
Abstract
Plant reproduction occurs through the production of gametes by a haploid generation, the gametophyte. Flowering plants have highly reduced male and female gametophytes, called pollen grains and embryo sacs, respectively, consisting of only a few cells. Gametophytes are critical for sexual reproduction, but detailed understanding of their development remains poor as compared to the diploid sporophyte. This article reviews recent progress in understanding the mechanisms underlying gametophytic development and function in flowering plants. The focus is on genes and molecules involved in the processes of initiation, growth, cell specification, and fertilization of the male and female gametophytes derived primarily from studies in model systems.
Collapse
Affiliation(s)
- Hong Ma
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Institute of Plant Biology, Fudan University, Shanghai, China
| | | |
Collapse
|
33
|
Hunter B, Bomblies K. Progress and Promise in using Arabidopsis to Study Adaptation, Divergence, and Speciation. THE ARABIDOPSIS BOOK 2010; 8:e0138. [PMID: 22303263 PMCID: PMC3244966 DOI: 10.1199/tab.0138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Fundamental questions remain to be answered on how lineages split and new species form. The Arabidopsis genus, with several increasingly well characterized species closely related to the model system A. thaliana, provides a rare opportunity to address key questions in speciation research. Arabidopsis species, and in some cases populations within a species, vary considerably in their habitat preferences, adaptations to local environments, mating system, life history strategy, genome structure and chromosome number. These differences provide numerous open doors for understanding the role these factors play in population divergence and how they may cause barriers to arise among nascent species. Molecular tools available in A. thaliana are widely applicable to its relatives, and together with modern comparative genomic approaches they will provide new and increasingly mechanistic insights into the processes underpinning lineage divergence and speciation. We will discuss recent progress in understanding the molecular basis of local adaptation, reproductive isolation and genetic incompatibility, focusing on work utilizing the Arabidopsis genus, and will highlight several areas in which additional research will provide meaningful insights into adaptation and speciation processes in this genus.
Collapse
Affiliation(s)
- Ben Hunter
- Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Ave., Cambridge, MA, USA
| | - Kirsten Bomblies
- Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Ave., Cambridge, MA, USA
| |
Collapse
|
34
|
Okuda S, Higashiyama T. Pollen tube guidance by attractant molecules: LUREs. Cell Struct Funct 2010; 35:45-52. [PMID: 20562497 DOI: 10.1247/csf.10003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sexual reproduction in flowering plants requires pollen-tube guidance, which is thought to be mediated by chemoattractants derived from target ovules. To date, however, no convincing evidence has been reported of a particular molecule being the true attractant. Emerging data indicate that two synergid cells, which are on either side of the egg cell, emit a diffusible, species-specific signal to attract the pollen tube at the last step of pollen-tube guidance. Recently, it was demonstrated that LUREs (LURE1 and LURE2), cysteine-rich polypeptides secreted from the synergid cell, are the key molecules in pollen-tube guidance. In this review, we summarize the mechanism of pollen-tube guidance, with special focus on gametophytic guidance and the attractants.
Collapse
|
35
|
Xin H, Sun M. What we have learned from transcript profile analyses of male and female gametes in flowering plants. SCIENCE CHINA-LIFE SCIENCES 2010; 53:927-33. [PMID: 20821291 DOI: 10.1007/s11427-010-4033-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 06/21/2010] [Indexed: 11/30/2022]
Abstract
Double fertilization is one of the predominant features of sexual reproduction in flowering plants but, because of the physical inaccessibility of gametes, the essential molecular mechanisms in these processes are largely unknown. Based on the techniques for isolating highly purified gametes from several species and well-developed methods for manipulating RNA from limited quantities of gametes, genome-wide investigations of gamete transcription profiles were recently conducted in flowering plants. In this review, we survey the accumulated knowledge on gamete collection and purification, cDNA library construction, and transcript profile analysis to assess our understanding of the molecular mechanisms of gamete specialization and fertilization.
Collapse
Affiliation(s)
- HaiPing Xin
- Key Laboratory of the Ministry of Education for Plant Developmental Biology, College of Life Science, Wuhan University, Wuhan, China
| | | |
Collapse
|
36
|
Wang D, Zhang C, Hearn DJ, Kang IH, Punwani JA, Skaggs MI, Drews GN, Schumaker KS, Yadegari R. Identification of transcription-factor genes expressed in the Arabidopsis female gametophyte. BMC PLANT BIOLOGY 2010; 10:110. [PMID: 20550711 PMCID: PMC3236301 DOI: 10.1186/1471-2229-10-110] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 06/16/2010] [Indexed: 05/04/2023]
Abstract
BACKGROUND In flowering plants, the female gametophyte is typically a seven-celled structure with four cell types: the egg cell, the central cell, the synergid cells, and the antipodal cells. These cells perform essential functions required for double fertilization and early seed development. Differentiation of these distinct cell types likely involves coordinated changes in gene expression regulated by transcription factors. Therefore, understanding female gametophyte cell differentiation and function will require dissection of the gene regulatory networks operating in each of the cell types. These efforts have been hampered because few transcription factor genes expressed in the female gametophyte have been identified. To identify such genes, we undertook a large-scale differential expression screen followed by promoter-fusion analysis to detect transcription-factor genes transcribed in the Arabidopsis female gametophyte. RESULTS Using quantitative reverse-transcriptase PCR, we analyzed 1,482 Arabidopsis transcription-factor genes and identified 26 genes exhibiting reduced mRNA levels in determinate infertile 1 mutant ovaries, which lack female gametophytes, relative to ovaries containing female gametophytes. Spatial patterns of gene transcription within the mature female gametophyte were identified for 17 transcription-factor genes using promoter-fusion analysis. Of these, ten genes were predominantly expressed in a single cell type of the female gametophyte including the egg cell, central cell and the antipodal cells whereas the remaining seven genes were expressed in two or more cell types. After fertilization, 12 genes were transcriptionally active in the developing embryo and/or endosperm. CONCLUSIONS We have shown that our quantitative reverse-transcriptase PCR differential-expression screen is sufficiently sensitive to detect transcription-factor genes transcribed in the female gametophyte. Most of the genes identified in this study have not been reported previously as being expressed in the female gametophyte. Therefore, they might represent novel regulators and provide entry points for reverse genetic and molecular approaches to uncover the gene regulatory networks underlying female gametophyte development.
Collapse
Affiliation(s)
- Dongfang Wang
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721-0036, USA
| | - Changqing Zhang
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721-0036, USA
- Current Address: The Section of Molecular, Cell and Developmental Biology, University of Texas at Austin, Austin, Texas 78712-0159, USA
| | - David J Hearn
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721-0036, USA
- Current Address: Department of Biological Sciences, Towson University, Towson, Maryland 21252-0001, USA
| | - Il-Ho Kang
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721-0036, USA
- Department of Biology, University of Utah, Salt Lake City, Utah 84112-0840, USA
- Current Address: Department of Horticulture, Iowa State University, Ames, Iowa 50011-1100, USA
| | - Jayson A Punwani
- Department of Biology, University of Utah, Salt Lake City, Utah 84112-0840, USA
- Current Address: Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA
| | - Megan I Skaggs
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721-0036, USA
| | - Gary N Drews
- Department of Biology, University of Utah, Salt Lake City, Utah 84112-0840, USA
| | - Karen S Schumaker
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721-0036, USA
| | - Ramin Yadegari
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721-0036, USA
| |
Collapse
|
37
|
Amien S, Kliwer I, Márton ML, Debener T, Geiger D, Becker D, Dresselhaus T. Defensin-like ZmES4 mediates pollen tube burst in maize via opening of the potassium channel KZM1. PLoS Biol 2010; 8:e1000388. [PMID: 20532241 PMCID: PMC2879413 DOI: 10.1371/journal.pbio.1000388] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 04/22/2010] [Indexed: 12/31/2022] Open
Abstract
Species-preferential osmotic pollen tube burst and sperm discharge in maize involve induced opening of the pollen tube-expressed potassium channel KZM1 by the egg apparatus-derived defensin-like protein ZmES4. In contrast to animals and lower plant species, sperm cells of flowering plants are non-motile and are transported to the female gametes via the pollen tube, i.e. the male gametophyte. Upon arrival at the female gametophyte two sperm cells are discharged into the receptive synergid cell to execute double fertilization. The first players involved in inter-gametophyte signaling to attract pollen tubes and to arrest their growth have been recently identified. In contrast the physiological mechanisms leading to pollen tube burst and thus sperm discharge remained elusive. Here, we describe the role of polymorphic defensin-like cysteine-rich proteins ZmES1-4 (Zea mays embryo sac) from maize, leading to pollen tube growth arrest, burst, and explosive sperm release. ZmES1-4 genes are exclusively expressed in the cells of the female gametophyte. ZmES4-GFP fusion proteins accumulate in vesicles at the secretory zone of mature synergid cells and are released during the fertilization process. Using RNAi knock-down and synthetic ZmES4 proteins, we found that ZmES4 induces pollen tube burst in a species-preferential manner. Pollen tube plasma membrane depolarization, which occurs immediately after ZmES4 application, as well as channel blocker experiments point to a role of K+-influx in the pollen tube rupture mechanism. Finally, we discovered the intrinsic rectifying K+ channel KZM1 as a direct target of ZmES4. Following ZmES4 application, KZM1 opens at physiological membrane potentials and closes after wash-out. In conclusion, we suggest that vesicles containing ZmES4 are released from the synergid cells upon male-female gametophyte signaling. Subsequent interaction between ZmES4 and KZM1 results in channel opening and K+ influx. We further suggest that K+ influx leads to water uptake and culminates in osmotic tube burst. The species-preferential activity of polymorphic ZmES4 indicates that the mechanism described represents a pre-zygotic hybridization barrier and may be a component of reproductive isolation in plants. Sperm cells of animals and lower plants are mobile and can swim to the oocyte or egg cell. In contrast, flowering plants generate immobile sperm encased in a pollen coat to protect them from drying out and are transported via the pollen tube cell towards the egg apparatus to achieve double fertilization. Upon arrival the pollen tube tip bursts to deliver two sperm cells, one fusing with the egg cell to generate the embryo and the other fusing with the central cell to generate the endosperm. Here, we report the mechanisms leading to pollen tube burst and sperm discharge in maize. We found that before fertilization the defensin-like protein ZmES1-4 is stored in the secretory zone of the egg apparatus cells and that pollen tubes cannot discharge sperm in ZmES1-4 knock-down plants. Application of chemically synthesized ZmES4 leads to pollen tube burst within seconds in maize, but not in other plant species, suggesting this mechanism may be species specific. Finally, we identified the pollen tube-expressed potassium channel KZM1 as a target of ZmES4, which opens after ZmES4 treatment and probably leads to K+ influx and sperm release after osmotic burst.
Collapse
Affiliation(s)
- Suseno Amien
- Plant Breeding Laboratory, University of Padjadjaran, Bandung, Indonesia
| | - Irina Kliwer
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Mihaela L. Márton
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Thomas Debener
- Institute for Plant Genetics, Molecular Plant Breeding, Leibniz University of Hannover, Hannover, Germany
| | - Dietmar Geiger
- Plant Molecular Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Dirk Becker
- Plant Molecular Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
- * E-mail:
| |
Collapse
|
38
|
Abstract
The various classes of small non-coding RNAs are a fundamentally important component of the transcriptome. These molecules have roles in many essential processes such as regulation of gene expression at the transcriptional and post-transcriptional levels, guidance of DNA methylation and defence against selfish replicators such as transposons. Their diversity and functions in the sporophytic generation of angiosperms is well explored compared with the gametophytic generation, where little is known about them. Recent progress in understanding their abundance, diversity and function in the gametophyte is reviewed.
Collapse
|
39
|
Abstract
Plant fertilization is achieved through the involvement of various pollen-pistil interactions. Self-/non-self-recognition in pollination is important to avoid inbreeding, and directional and sustainable control of pollen tube growth is critical for the pollen tube to deliver male germ cells. Recently, various secreted peptides (polypeptides) have been reported to be involved in cell-cell communication of pollen-pistil interactions. These include determinants of self-incompatibility, factors for pollen germination and tube growth, and pollen tube attractants. Interestingly, many of them are cysteine-rich peptides/polypeptides (CRPs). In this review, I focus on the peptides involved in pollen-pistil interactions and discuss properties of peptide signaling in each step from pollination to fertilization.
Collapse
Affiliation(s)
- Tetsuya Higashiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 Aichi, Japan/PRESTO, JST.
| |
Collapse
|
40
|
Whittle CA, Malik MR, Li R, Krochko JE. Comparative transcript analyses of the ovule, microspore, and mature pollen in Brassica napus. PLANT MOLECULAR BIOLOGY 2010; 72:279-99. [PMID: 19949835 DOI: 10.1007/s11103-009-9567-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Accepted: 10/26/2009] [Indexed: 05/20/2023]
Abstract
Transcriptome data for plant reproductive organs/cells currently is very limited as compared to sporophytic tissues. Here, we constructed cDNA libraries and obtained ESTs for Brassica napus pollen (4,864 ESTs), microspores (i.e., early stage pollen development; 6,539 ESTs) and ovules (10,468 ESTs). Clustering and assembly of the 21,871 ESTs yielded a total of 10,782 unigenes, with 3,362 contigs and 7,420 singletons. The pollen transcriptome contained high levels of polygalacturonases and pectinesterases, which are involved in cell wall synthesis and expansion, and very few transcription factors or transcripts related to protein synthesis. The set of genes expressed in mature pollen showed little overlap with genes expressed in ovules or in microspores, suggesting in the latter case that a marked differentiation had occurred from the early microspore stages through to pollen development. Remarkably, the microspores and ovules exhibited a high number of co-expressed genes (N = 1,283) and very similar EST functional profiles, including high transcript numbers for transcriptional and translational processing genes, protein modification genes and unannotated genes. In addition, examination of expression values for genes co-expressed among microspores and ovules revealed a highly statistically significant correlation among these two tissues (R = 0.360, P = 1.2 x 10(-40)) as well as a lack of differentially expressed genes. Overall, the results provide new insights into the transcriptional profile of rarely studied ovules, the transcript changes during pollen development, transcriptional regulation of pollen tube growth and germination, and describe the parallels in the transcript populations of microspore and ovules which could have implications for understanding the molecular foundation of microspore totipotency in B. napus.
Collapse
Affiliation(s)
- Carrie A Whittle
- Plant Biotechnology Institute, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | | | | | | |
Collapse
|
41
|
Sundaresan V, Alandete-Saez M. Pattern formation in miniature: the female gametophyte of flowering plants. Development 2010; 137:179-89. [DOI: 10.1242/dev.030346] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Plant reproduction involves gamete production by a haploid generation, the gametophyte. For flowering plants, a defining characteristic in the evolution from the ‘naked-seed’ plants, or gymnosperms, is a reduced female gametophyte, comprising just seven cells of four different types – a microcosm of pattern formation and gamete specification about which only little is known. However, several genes involved in the differentiation, fertilization and post-fertilization functions of the female gametophyte have been identified and, recently, the morphogenic activity of the plant hormone auxin has been found to mediate patterning and egg cell specification. This article reviews recent progress in understanding the pattern formation, maternal effects and evolution of this essential unit of plant reproduction.
Collapse
Affiliation(s)
- Venkatesan Sundaresan
- Department of Plant Biology, University of California, 1 Shields Avenue, Davis, CA 95616, USA
- Department of Plant Sciences, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Monica Alandete-Saez
- Department of Plant Biology, University of California, 1 Shields Avenue, Davis, CA 95616, USA
- Department of Plant Sciences, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
42
|
Srilunchang KO, Krohn NG, Dresselhaus T. DiSUMO-like DSUL is required for nuclei positioning, cell specification and viability during female gametophyte maturation in maize. Development 2010; 137:333-45. [PMID: 20040499 DOI: 10.1242/dev.035964] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Reversible post-translational modification of numerous proteins by small ubiquitin-related modifiers (SUMOs) represents a major regulatory process in various eukaryotic cellular and developmental processes. To study the role of sumoylation during female gametophyte (FG) development in maize, we identified Zea mays genes encoding SUMO (ZmSUMO1a and ZmSUMO1b) and a diSUMO-like protein called ZmDSUL that contains two head-to-tail SUMO-like domains. Whereas ZmSUMO1a and ZmSUMO1b are almost ubiquitously expressed, ZmDSUL transcripts were detected exclusively in the egg apparatus and zygote. ZmDSUL was selected for detailed studies. ZmDSUL is processed close to the C-terminus, generating a dimeric protein that is similar to animal FAT10 and ISG15, which contain two ubiquitin-like domains. Whereas GFP fused to the ZmDSUL N-terminus was located in the cytoplasm and predominately in the nucleoplasm of some transiently transformed maize suspension cells, C-terminal GFP fusions exclusively accumulated at the nuclear surface. GFP or ZmDSUL-GFP under control of the ZmDSUL promoter first displayed GFP signals in the micropylar-most position of the FG at stage 5/6, when migration of polar nuclei and cellularization occurs. Mature FGs displayed GFP signals exclusively in the egg cell, but the strongest signals were observed shortly after fertilization and disappeared during the first asymmetric zygotic division. RNAi silencing of ZmDSUL showed that it is required for FG viability. Moreover, nuclei segregation and positioning defects occurred at stage FG 5 after mitotic nuclear divisions were completed. In summary, we report a diSUMO-like protein that appears to be essential for nuclei segregation and positioning, the prerequisite for cell specification during FG maturation.
Collapse
Affiliation(s)
- Kanok-orn Srilunchang
- Cell Biology and Plant Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | | | | |
Collapse
|
43
|
Yang WC, Shi DQ, Chen YH. Female gametophyte development in flowering plants. ANNUAL REVIEW OF PLANT BIOLOGY 2010; 61:89-108. [PMID: 20192738 DOI: 10.1146/annurev-arplant-042809-112203] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The multicellular female gametophyte, a unique feature of higher plants, provides us with an excellent experimental system to address fundamental questions in biology. During the past few years, we have gained significant insight into the mechanisms that control embryo sac polarity, gametophytic cell specification, and recognition between male and female gametophytic cells. An auxin gradient has been shown for the first time to function in the female gametophyte to regulate gametic cell fate, and key genes that control gametic cell fate have also been identified. This review provides an overview of these exciting discoveries with a focus on molecular and genetic data.
Collapse
Affiliation(s)
- Wei-Cai Yang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | | | | |
Collapse
|
44
|
Kägi C, Gross-Hardt R. Analyzing female gametophyte development and function: There is more than one way to crack an egg. Eur J Cell Biol 2009; 89:258-61. [PMID: 20018400 DOI: 10.1016/j.ejcb.2009.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
In flowering plants, gametes are formed in specialized haploid structures, termed gametophytes. The female gametophyte is a few-celled structure that integrates such diverse functions as pollen tube attraction, sperm cell release, gamete fusion and seed initiation. These processes are realized by distinct cell types, which ensure reproductive success in a coordinated manner. In the past decade, much progress has been made concerning the molecular nature of the functions carried out by the different cell types. Here, we review recent work that has shed light on female gametophyte development and function with a particular focus on approaches that have led to the isolation of genes involved in these processes.
Collapse
Affiliation(s)
- Christina Kägi
- ZMBP Developmental Genetics, University of Tübingen, Auf der Morgenstelle 1, 72076 Tübingen, Germany
| | | |
Collapse
|
45
|
Gou X, Yuan T, Wei X, Russell SD. Gene expression in the dimorphic sperm cells of Plumbago zeylanica: transcript profiling, diversity, and relationship to cell type. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:33-47. [PMID: 19500307 DOI: 10.1111/j.1365-313x.2009.03934.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plumbago zeylanica produces cytoplasmically dimorphic sperm cells that target the egg and central cell during fertilization. In mature pollen, the larger sperm cell contains numerous mitochondria, is associated with the vegetative nucleus (S(vn)), and fuses preferentially with the central cell, forming endosperm. The other, plastid-enriched sperm cell (S(ua)) fuses with the egg cell, forming the zygote and embryo. Sperm expressed genes were investigated using ESTs produced from each sperm type; differential expression was validated through suppression subtractive hybridization, custom microarrays, real-time RT-PCR and in situ hybridization. The expression profiles of dimorphic sperm cells reflect a diverse and broad complement of genes, including high proportions of conserved and unknown genes, as well as distinct patterns of expression. A number of genes were highly up-regulated in the male germ line, including some genes that were differentially expressed in either the S(ua) or the S(vn). Differentially up-regulated genes in the egg-targeted S(ua) showed increased expression in transcription and translation categories, whereas the central cell-targeted S(vn) displayed expanded expression in the hormone biosynthesis category. Interestingly, the up-regulated genes expressed in the sperm cells appeared to reflect the expected post-fusion profiles of the future embryo and endosperm. As sperm cytoplasm is known to be transmitted during fertilization in this plant, sperm-contributed mRNAs are probably transported during fertilization, which could influence early embryo and endosperm development.
Collapse
Affiliation(s)
- Xiaoping Gou
- Department of Botany, University of Oklahoma, Norman, OK 73019, USA
| | | | | | | |
Collapse
|
46
|
Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 2009; 458:357-61. [PMID: 19295610 DOI: 10.1038/nature07882] [Citation(s) in RCA: 415] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 02/10/2009] [Indexed: 11/08/2022]
Abstract
For more than 140 years, pollen tube guidance in flowering plants has been thought to be mediated by chemoattractants derived from target ovules. However, there has been no convincing evidence of any particular molecule being the true attractant that actually controls the navigation of pollen tubes towards ovules. Emerging data indicate that two synergid cells on the side of the egg cell emit a diffusible, species-specific signal to attract the pollen tube at the last step of pollen tube guidance. Here we report that secreted, cysteine-rich polypeptides (CRPs) in a subgroup of defensin-like proteins are attractants derived from the synergid cells. We isolated synergid cells of Torenia fournieri, a unique plant with a protruding embryo sac, to identify transcripts encoding secreted proteins as candidate molecules for the chemoattractant(s). We found two CRPs, abundantly and predominantly expressed in the synergid cell, which are secreted to the surface of the egg apparatus. Moreover, they showed activity in vitro to attract competent pollen tubes of their own species and were named as LUREs. Injection of morpholino antisense oligomers against the LUREs impaired pollen tube attraction, supporting the finding that LUREs are the attractants derived from the synergid cells of T. fournieri.
Collapse
|
47
|
Wang H, Boavida LC, Ron M, McCormick S. Truncation of a protein disulfide isomerase, PDIL2-1, delays embryo sac maturation and disrupts pollen tube guidance in Arabidopsis thaliana. THE PLANT CELL 2008; 20:3300-11. [PMID: 19050167 PMCID: PMC2630445 DOI: 10.1105/tpc.108.062919] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Pollen tubes must navigate through different female tissues to deliver sperm to the embryo sac for fertilization. Protein disulfide isomerases play important roles in the maturation of secreted or plasma membrane proteins. Here, we show that certain T-DNA insertions in Arabidopsis thaliana PDIL2-1, a protein disulfide isomerase (PDI), have reduced seed set, due to delays in embryo sac maturation. Reciprocal crosses indicate that these mutations acted sporophytically, and aniline blue staining and scanning electron microscopy showed that funicular and micropylar pollen tube guidance were disrupted. A PDIL2-1-yellow fluorescent protein fusion was mainly localized in the endoplasmic reticulum and was expressed in all tissues examined. In ovules, expression in integument tissues was much higher in the micropylar region in later developmental stages, but there was no expression in embryo sacs. We show that reduced seed set occurred when another copy of full-length PDIL2-1 or when enzymatically active truncated versions were expressed, but not when an enzymatically inactive version was expressed, indicating that these T-DNA insertion lines are gain-of-function mutants. Our results suggest that these truncated versions of PDIL2-1 function in sporophytic tissues to affect ovule structure and impede embryo sac development, thereby disrupting pollen tube guidance.
Collapse
Affiliation(s)
- Huanzhong Wang
- Plant Gene Expression Center and Department of Plant and Microbial Biology, U.S. Department of Agriculture/Agricultural Research Service and University of California at Berkeley, Albany, California 94710, USA
| | | | | | | |
Collapse
|
48
|
Histological comparison between wheat embryos developing in vitro from isolated zygotes and those developing in vivo. ACTA ACUST UNITED AC 2008; 22:15-25. [PMID: 20033452 DOI: 10.1007/s00497-008-0087-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 09/17/2008] [Indexed: 01/09/2023]
Abstract
There is currently great interest shown in understanding the process of embryogenesis and, due to the relative inaccessibility of these structures in planta, extended studies are carried out in various in vitro systems. The culture of isolated zygotes in particular provides an excellent platform to study the process of in planta embryogenesis. However, very few comparisons have been made between zygotic embryos grown entirely in cultures and those grown in vivo. The present study analyses the differences and similarities between the in vitro and in vivo development of wheat zygotic embryos at the level of morphology and histology. The study was possible thanks to an efficient culture system and an appropriate method of preparing isolated wheat zygotes for microscopy. The in vitro embryos were fixed, embedded and sectioned in the two-celled, globular, club-shaped and fully differentiated stages. Embryos developing in vitro closely followed the morphology of their in planta counterparts and their cell types and tissues were also similar, demonstrating the applicability of the present culture system for studying the process of zygotic embryogenesis. However, some important differences were also detected in the case of in vitro development: the disturbance of or lack of initial polarity led to changes in the division symmetry of the zygotes and subsequently to the formation of uniform cells in the globular structures. Presumably, differences between the in vitro and in planta environments resulted in a lower level of differentiation and maturation in in vitro embryos and in abundant starch and protein accumulation in the scutellum.
Collapse
|
49
|
Sex-biased lethality or transmission of defective transcription machinery in Arabidopsis. Genetics 2008; 180:207-18. [PMID: 18723889 DOI: 10.1534/genetics.108.090621] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Unlike animals, whose gametes are direct products of meiosis, plant meiotic products undergo additional rounds of mitosis, developing into multicellular haploid gametophytes that produce egg or sperm cells. The complex development of gametophytes requires extensive expression of the genome, with DNA-dependent RNA polymerases I, II, and III being the key enzymes for nuclear gene expression. We show that loss-of-function mutations in genes encoding key subunits of RNA polymerases I, II, or III are not transmitted maternally due to the failure of female megaspores to complete the three rounds of mitosis required for the development of mature gametophytes. However, male microspores bearing defective polymerase alleles develop into mature gametophytes (pollen) that germinate, grow pollen tubes, fertilize wild-type female gametophytes, and transmit the mutant genes to the next generation at moderate frequency. These results indicate that female gametophytes are autonomous with regard to gene expression, relying on transcription machinery encoded by their haploid nuclei. By contrast, male gametophytes make extensive use of transcription machinery that is synthesized by the diploid parent plant (sporophyte) and persists in mature pollen. As a result, the expected stringent selection against nonfunctional essential genes in the haploid state occurs in the female lineage but is relaxed in the male lineage.
Collapse
|
50
|
Alandete-Saez M, Ron M, McCormick S. GEX3, expressed in the male gametophyte and in the egg cell of Arabidopsis thaliana, is essential for micropylar pollen tube guidance and plays a role during early embryogenesis. MOLECULAR PLANT 2008; 1:586-98. [PMID: 19825564 DOI: 10.1093/mp/ssn015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Double fertilization in flowering plants occurs when the two sperm cells, carried by the pollen tube, are released in a synergid cell of the embryo sac and then fertilize the egg and the central cell. Proteins on the surfaces of the sperm, egg, central, and synergid cells might be important for guidance and recognition/fusion of the gametes. Here, we present functional analyses of Arabidopsis GEX3, which encodes a plasma membrane-localized protein that has homologs in other plants. GEX3 is expressed in both the vegetative and sperm cells of the male gametophyte and in the egg cell of the female gametophyte. Transgenic lines in which GEX3 was down-regulated or overexpressed, using the Arabidopsis GEX2 promoter, had reduced seed set. Reciprocal crosses and imaging after pollination with a reporter line showed that, in both cases, the defect causing reduced seed set occurred in the female. In the antisense lines, micropylar pollen tube guidance failed. In the overexpression lines, fertilization of mutant ovules was mostly blocked because pollen tube guidance failed, although, occasionally, non-viable embryos were formed. We conclude that properly regulated expression of GEX3 in the egg cell of Arabidopsis is essential for pollen tube guidance.
Collapse
Affiliation(s)
- Monica Alandete-Saez
- Department of Plant and Microbial Biology, USDA/ARS-UC-Berkeley, Albany, CA 94710, USA
| | | | | |
Collapse
|