1
|
Wang X, Liu H, Yu Z, Zhu W, Zhang L, Wang B. Characterization of wheat Wrab18 gene promoter and expression analysis under abiotic stress. Mol Biol Rep 2023; 50:5777-5789. [PMID: 37219670 DOI: 10.1007/s11033-023-08485-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/25/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Promoters play key roles in plant gene expression in complex and varied natural environments. The type and amount of cis-acting elements in the promoter sequence tend to indicate the response of genes to induction factors. WRAB18 is a group III member of the late embryogenesis abundant (LEA) protein family that performs multiple functions in plant stress physiology. To elucidate the particularly biological effects of WRAB18 on stress, exploration of its promoter sequence is necessary. METHODS AND RESULTS In this study, the full-length and promoter sequences of Wrab18 were isolated from the Zhengyin 1 cultivar of Triticum aestivum. The gene sequences and cis-acting elements in the promoter were analyzed using the Plant Promoter Database and bioinformatics methods. The results showed that Wrab18 possessed one intron with 100 bp, the promoter sequence contained various stress-related cis-acting elements, and the functionality of the promoter was checked using green fluorescent protein (GFP) marker protein expression by transient assay in Nicotiana benthamiana. Furthermore, based on promoter prediction analysis, quantitative real-time fluorescent PCR results confirmed the response of gene expression levels to stress factors. CONCLUSIONS In summary, the promoter sequence of Wrab18 plays a role in plant stress responses, contains multiple cis-acting elements, and provides insights into the role of WRAB18 in plant resilience to stress. This study has guiding significance for further studies of gene function and mechanism of action, and lays a theoretical foundation for improving wheat quality.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong, P. R. China
| | - Hao Liu
- College of Life Sciences, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shannxi, P. R. China
| | - Zhengyang Yu
- College of Life Sciences, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shannxi, P. R. China
| | - Weining Zhu
- College of Life Sciences, Northwest University, Xi'an, Shannxi, P. R. China
| | - Linsheng Zhang
- College of Life Sciences, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shannxi, P. R. China
| | - Bo Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong, P. R. China.
| |
Collapse
|
2
|
Lee Y, Do VG, Kim S, Kweon H, McGhie TK. Cold stress triggers premature fruit abscission through ABA-dependent signal transduction in early developing apple. PLoS One 2021; 16:e0249975. [PMID: 33836019 PMCID: PMC8034736 DOI: 10.1371/journal.pone.0249975] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/29/2021] [Indexed: 01/31/2023] Open
Abstract
Fruit abscission is a complex physiological process that is regulated by internal and environmental factors. During early development, apple fruit are exposed to extreme temperature fluctuations that are associated with premature fruit drop; however, their effect on fruit abscission is largely unknown. We hypothesized that fruit abscission is triggered by cold stress and investigated the molecular basis of premature fruit drop using RNA-Seq and metabolomics data from apple fruit undergoing abscission following cold stress in the field. Genes responsive to abscisic acid signaling and cell wall degradation were upregulated during abscission, consistent with the increased abscisic acid concentrations detected by liquid chromatography-mass spectrometry. We performed ex vivo cold shock experiments with excised tree subunits consisting of a branch, pedicel, and fruit. Abscission induction occurred in the cold-stressed subunits with concurrent upregulation of abscisic acid biosynthesis (MdNCED1) and metabolism (MdCYP707A) genes, and ethylene biosynthesis (MdACS1) and receptor (MdETR2) genes in the pedicel. Another key finding was the activation of cytoplasmic streaming in abscission-zone cells detected by electron microscopy. Our results provide a novel insight into the molecular basis of fruit abscission physiology in response to cold stress in apple.
Collapse
Affiliation(s)
- Youngsuk Lee
- Apple Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Gunwi, South Korea
- School of Biological Sciences, College of National Science, Seoul National University, Seoul, South Korea
- * E-mail:
| | - Van Giap Do
- Apple Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Gunwi, South Korea
| | - Seonae Kim
- Apple Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Gunwi, South Korea
| | - Hunjoong Kweon
- Apple Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Gunwi, South Korea
| | - Tony K. McGhie
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| |
Collapse
|
3
|
Wei H, Yang Y, Himmel ME, Tucker MP, Ding SY, Yang S, Arora R. Identification and Characterization of Five Cold Stress-Related Rhododendron Dehydrin Genes: Spotlight on a FSK-Type Dehydrin With Multiple F-Segments. Front Bioeng Biotechnol 2019; 7:30. [PMID: 30847341 PMCID: PMC6393390 DOI: 10.3389/fbioe.2019.00030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 02/05/2019] [Indexed: 11/13/2022] Open
Abstract
Dehydrins are a family of plant proteins that accumulate in response to dehydration stresses, such as low temperature, drought, high salinity, or during seed maturation. We have previously constructed cDNA libraries from Rhododendron catawbiense leaves of naturally non-acclimated (NA; leaf LT50, temperature that results in 50% injury of maximum, approximately -7°C) and cold-acclimated (CA; leaf LT50 approximately -50°C) plants and analyzed expressed sequence tags (ESTs). Five ESTs were identified as dehydrin genes. Their full-length cDNA sequences were obtained and designated as RcDhn 1-5. To explore their functionality vis-à-vis winter hardiness, their seasonal expression kinetics was studied at two levels. Firstly, in leaves of R. catawbiense collected from the NA, CA, and de-acclimated (DA) plants corresponding to summer, winter and spring, respectively. Secondly, in leaves collected monthly from August through February, which progressively increased freezing tolerance from summer through mid-winter. The expression pattern data indicated that RcDhn 1-5 had 6- to 15-fold up-regulation during the cold acclimation process, followed by substantial down-regulation during deacclimation (even back to NA levels for some). Interestingly, our data shows RcDhn 5 contains a histidine-rich motif near N-terminus, a characteristic of metal-binding dehydrins. Equally important, RcDhn 2 contains a consensus 18 amino acid sequence (i.e., ETKDRGLFDFLGKKEEEE) near the N-terminus, with two additional copies upstream, and it is the most acidic (pI of 4.8) among the five RcDhns found. The core of this consensus 18 amino acid sequence is a 11-residue amino acid sequence (DRGLFDFLGKK), recently designated in the literature as the F-segment (based on the pair of hydrophobic F residues it contains). Furthermore, the 208 orthologs of F-segment-containing RcDhn 2 were identified across a broad range of species in GenBank database. This study expands our knowledge about the types of F-segment from the literature-reported single F-segment dehydrins (FSKn) to two or three F-segment dehydrins: Camelina sativa dehydrin ERD14 as F2S2Kn type; and RcDhn 2 as F3SKn type identified here. Our results also indicate some consensus amino acid sequences flanking the core F-segment in dehydrins. Implications for these cold-responsive RcDhn genes in future genetic engineering efforts to improve plant cold hardiness are discussed.
Collapse
Affiliation(s)
- Hui Wei
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO, United States.,Department of Horticulture, Iowa State University, Ames, IA, United States
| | - Yongfu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Michael E Himmel
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO, United States
| | - Melvin P Tucker
- National Renewable Energy Laboratory, National Bioenergy Center, Golden, CO, United States
| | - Shi-You Ding
- DOE-Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States.,Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Rajeev Arora
- Department of Horticulture, Iowa State University, Ames, IA, United States
| |
Collapse
|
4
|
Yu Z, Wang X, Zhang L. Structural and Functional Dynamics of Dehydrins: A Plant Protector Protein under Abiotic Stress. Int J Mol Sci 2018; 19:ijms19113420. [PMID: 30384475 PMCID: PMC6275027 DOI: 10.3390/ijms19113420] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 11/16/2022] Open
Abstract
Abiotic stress affects the growth and development of crops tremendously, worldwide. To avoid adverse environmental effects, plants have evolved various efficient mechanisms to respond and adapt to harsh environmental factors. Stress conditions are associated with coordinated changes in gene expressions at a transcriptional level. Dehydrins have been extensively studied as protectors in plant cells, owing to their vital roles in sustaining the integrity of membranes and lactate dehydrogenase (LDH). Dehydrins are highly hydrophilic and thermostable intrinsically disordered proteins (IDPs), with at least one Lys-rich K-segment. Many dehydrins are induced by multiple stress factors, such as drought, salt, extreme temperatures, etc. This article reviews the role of dehydrins under abiotic stress, regulatory networks of dehydrin genes, and the physiological functions of dehydrins. Advances in our understanding of dehydrin structures, gene regulation and their close relationships with abiotic stresses demonstrates their remarkable ability to enhance stress tolerance in plants.
Collapse
Affiliation(s)
- Zhengyang Yu
- College of Life Science/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
| | - Xin Wang
- College of Life Science/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
| | - Linsheng Zhang
- College of Life Science/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
5
|
Bielsa B, Hewitt S, Reyes-Chin-Wo S, Dhingra A, Rubio-Cabetas MJ. Identification of water use efficiency related genes in 'Garnem' almond-peach rootstock using time-course transcriptome analysis. PLoS One 2018; 13:e0205493. [PMID: 30308016 PMCID: PMC6181374 DOI: 10.1371/journal.pone.0205493] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/26/2018] [Indexed: 11/19/2022] Open
Abstract
Drought is one of the main abiotic stresses with far-reaching ecological and socioeconomic impacts, especially in perennial food crops such as Prunus. There is an urgent need to identify drought resilient rootstocks that can adapt to changes in water availability. In this study, we tested the hypothesis that PEG-induced water limitation stress will simulate drought conditions and drought-related genes, including transcription factors (TFs), will be differentially expressed in response to this stress. 'Garnem' genotype, an almond × peach hybrid [P. amygdalus Batsch, syn P. dulcis (Mill.) x P. persica (L.) Batsch] was exposed to PEG-6000 solution, and a time-course transcriptome analysis of drought-stressed roots was performed at 0, 2 and 24 h time points post-stress. Transcriptome analysis resulted in the identification of 12,693 unique differentially expressed contigs (DECs) at the 2 h time point, and 7,705 unique DECs at the 24 h time point after initiation of the drought treatment. Interestingly, three drought-induced genes, directly related to water use efficiency (WUE) namely, ERF023 TF; LRR receptor-like serine/threonine-kinase ERECTA; and NF-YB3 TF, were found induced under stress. The RNAseq results were validated with quantitative RT-PCR analysis of eighteen randomly selected differentially expressed contigs (DECs). Pathway analysis in the present study provides valuable information regarding metabolic events that occur during stress-induced signalling in 'Garnem' roots. This information is expected to be useful in understanding the potential mechanisms underlying drought stress responses and drought adaptation strategies in Prunus species.
Collapse
Affiliation(s)
- Beatriz Bielsa
- Hortofruticulture Department. Agrifood Research and Technology Centre of Aragon (CITA), Zaragoza, Spain
| | - Seanna Hewitt
- Molecular Plant Sciences, Washington State University, Pullman, Washington, United States of America
- Department of Horticulture, Washington State University, Pullman, Washington, United States of America
| | | | - Amit Dhingra
- Molecular Plant Sciences, Washington State University, Pullman, Washington, United States of America
- Department of Horticulture, Washington State University, Pullman, Washington, United States of America
| | - María José Rubio-Cabetas
- Hortofruticulture Department. Agrifood Research and Technology Centre of Aragon (CITA), Zaragoza, Spain
| |
Collapse
|
6
|
Lv A, Fan N, Xie J, Yuan S, An Y, Zhou P. Expression of CdDHN4, a Novel YSK 2-Type Dehydrin Gene from Bermudagrass, Responses to Drought Stress through the ABA-Dependent Signal Pathway. FRONTIERS IN PLANT SCIENCE 2017; 8:748. [PMID: 28559903 PMCID: PMC5433092 DOI: 10.3389/fpls.2017.00748] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/20/2017] [Indexed: 05/02/2023]
Abstract
Dehydrin improves plant resistance to many abiotic stresses. In this study, the expression profiles of a dehydrin gene, CdDHN4, were estimated under various stresses and abscisic acid (ABA) treatments in two bermudagrasses (Cynodon dactylon L.): Tifway (drought-tolerant) and C299 (drought-sensitive). The expression of CdDHN4 was up-regulated by high temperatures, low temperatures, drought, salt and ABA. The sensitivity of CdDHN4 to ABA and the expression of CdDHN4 under drought conditions were higher in Tifway than in C299. A 1239-bp fragment, CdDHN4-P, the partial upstream sequence of the CdDHN4 gene, was cloned by genomic walking from Tifway. Bioinformatic analysis showed that the CdDHN4-P sequence possessed features typical of a plant promoter and contained many typical cis elements, including a transcription initiation site, a TATA-box, an ABRE, an MBS, a MYC, an LTRE, a TATC-box and a GT1-motif. Transient expression in tobacco leaves demonstrated that the promoter CdDHN4-P can be activated by ABA, drought and cold. These results indicate that CdDHN4 is regulated by an ABA-dependent signal pathway and that the high sensitivity of CdDHN4 to ABA might be an important mechanism enhancing the drought tolerance of bermudagrass.
Collapse
Affiliation(s)
- Aimin Lv
- School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| | - Nana Fan
- School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| | - Jianping Xie
- School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| | - Shili Yuan
- School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
- Key Laboratory of Urban Agriculture (South), Ministry of AgricultureShanghai, China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
7
|
Artlip TS, Wisniewski ME, Takatsuji H, Bassett CL. Engineering carpel-specific cold stress tolerance: a case study in Arabidopsis. PHYSIOLOGIA PLANTARUM 2016; 157:469-478. [PMID: 26806544 DOI: 10.1111/ppl.12420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 06/05/2023]
Abstract
Climate change predictions forecast an increase in early spring frosts that could result in severe damage to perennial crops. For example, the Easter freeze of April 2007 left several states in the United States reporting a complete loss of that year's peach crop. The most susceptible organ to early frost damage in fruit trees is the carpel, particularly during bloom opening. In this study, we explored the use of a carpel-specific promoter (ZPT2-10) from petunia (Petunia hybrida var. Mitchell) to drive expression of the peach dehydrin PpDhn1. In peach, this gene is exceptionally responsive to low temperature but has not been observed to be expressed in carpels. This study examined carpel-specific properties of a petunia promoter driving the expression of the GUS gene (uidA) in transgenic Arabidopsis flowers and developed a carpel-specific ion leakage test to assess freezing tolerance. A homozygous Arabidopsis line (line 1-20) carrying the petunia ZPT2-10 promoter::PpDhn1 construct was obtained and freezing tolerance in the transgenic line was compared with an untransformed control. Overexpression of PpDhn1 in line 1-20 provided as much as a 1.9°C increase in carpel freezing tolerance as measured by electrolyte leakage.
Collapse
Affiliation(s)
- Timothy S Artlip
- USDA, ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV, 25430, USA
| | - Michael E Wisniewski
- USDA, ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV, 25430, USA
| | - Hiroshi Takatsuji
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | | |
Collapse
|
8
|
Qin YX, Qin F. Dehydrins from wheat x Thinopyrum ponticum amphiploid increase salinity and drought tolerance under their own inducible promoters without growth retardation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 99:142-9. [PMID: 26756791 DOI: 10.1016/j.plaphy.2015.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 12/17/2015] [Accepted: 12/21/2015] [Indexed: 05/14/2023]
Abstract
Dehydrins confer abiotic stress tolerance in seedlings, but few dehydrins have been studied by transgenic analysis under their own promoters in relation to abiotic stress tolerance. Also the inducible promoters for transgenic engineering are limited. In this study, we isolated from wheat three salt-induced YSK2 dehydrin genes and their promoters. The cDNA sequences were 711, 785, and 932 bp in length, encoding proteins containing 133, 166 and 231 amino acids, respectively, and were named TaDHN1, TaDHN2, and TaDHN3. TaDHN2 doesn't contain introns, while the other two genes each contain one. Semi-quantitative reverse transcription PCR analysis revealed all three dehydrin genes are substantially induced by ABA and NaCl, but only TaDHN2 is induced in seedlings by PEG and by cold (4 °C). Regulatory sequences upstream of the first translation codon (775, 1615 and 889 bp) of the three dehydrin genes were also cloned. Cis-element prediction indicated the presence of ABRE and other abiotic-stress-related elements. Histochemical analysis using GUS expression demonstrated that all three promoters were induced by ABA, cold or NaCl. Ectopic over-expression of TaDHN1 or TaDHN3 in Arabidopsis under their own inducible promoters enhanced NaCl- and drought-stress tolerance without growth retardation.
Collapse
Affiliation(s)
- Yu-Xiang Qin
- University of Jinan, School of Biological Science and Technology, Department of Biological Science, Jinan 250022, PR China.
| | - Fangyuan Qin
- Department of School of Liquor and Food Engineering, Guizhou University, 550025, PR China
| |
Collapse
|
9
|
Shin H, Oh Y, Kim D. Differences in cold hardiness, carbohydrates, dehydrins and related gene expressions under an experimental deacclimation and reacclimation in Prunus persica. PHYSIOLOGIA PLANTARUM 2015; 154:485-99. [PMID: 25272204 DOI: 10.1111/ppl.12293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 09/09/2014] [Indexed: 05/15/2023]
Abstract
To boost our understanding of a recent outbreak of freezing injury, we sought to confirm distinctive features between the shoot tissues of the peach (Prunus persica) cultivars Daewol and Kiraranokiwami by mimicking unseasonable changes of temperatures that occur in the early spring through repeated deacclimation and reacclimation treatments. Patterns of cold hardiness declined dramatically during the deacclimation and rose during the reacclimation in both cultivars. Our results indicated that 'Daewol' possessed higher capacity in response to repeated deacclimation and reacclimation treatments than 'Kiraranokiwami'. 'Daewol' showed more sensitive changes in the carbohydrates in response to warm and low temperatures compared with 'Kiraranokiwami'. 'Daewol' indicated almost similar repeated down- and up-patterns in soluble sugar content in response to repeated deacclimation and reacclimation, whereas it indicated repeated up- and down-patterns in starch content. However, 'Kiraranokiwami' showed a progressive increase in the soluble sugar content and a progressive decrease in starch content. Notably, patterns of accumulation of a 60-kDa dehydrin protein encoded by the PpDhn1 gene were confirmed through western blotting and paralleled fluctuations of cold hardiness in both cultivars. Expression of this dehydrin was weak in both cultivars during deacclimation but its band intensity increased during reacclimation. Changes in related genes (β-amylase, PpDhn1, PpDhn2 and PpDhn3) were positively correlated with changes in cold hardiness throughout the experiment. Our results indicate that recent repeated warm periods may cause premature deacclimation in the early spring, and that more cold-tolerant cultivar may be more resilient to freezing injury caused by unstable temperature conditions.
Collapse
Affiliation(s)
- Hyunsuk Shin
- Department of Horticulture, Chungbuk National University, Cheongju, 361-763, Korea
| | - Youngjae Oh
- Department of Horticulture, Chungbuk National University, Cheongju, 361-763, Korea
| | - Daeil Kim
- Department of Horticulture, Chungbuk National University, Cheongju, 361-763, Korea
| |
Collapse
|
10
|
Chakraborty S, Britton M, Wegrzyn J, Butterfield T, Martínez-García PJ, Reagan RL, Rao BJ, Leslie CA, Aradhaya M, Neale D, Woeste K, Dandekar AM. YeATS - a tool suite for analyzing RNA-seq derived transcriptome identifies a highly transcribed putative extensin in heartwood/sapwood transition zone in black walnut. F1000Res 2015; 4:155. [PMID: 26870317 PMCID: PMC4732554 DOI: 10.12688/f1000research.6617.2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2015] [Indexed: 11/20/2022] Open
Abstract
The transcriptome provides a functional footprint of the genome by enumerating the molecular components of cells and tissues. The field of transcript discovery has been revolutionized through high-throughput mRNA sequencing (RNA-seq). Here, we present a methodology that replicates and improves existing methodologies, and implements a workflow for error estimation and correction followed by genome annotation and transcript abundance estimation for RNA-seq derived transcriptome sequences (YeATS - Yet Another Tool Suite for analyzing RNA-seq derived transcriptome). A unique feature of YeATS is the upfront determination of the errors in the sequencing or transcript assembly process by analyzing open reading frames of transcripts. YeATS identifies transcripts that have not been merged, result in broken open reading frames or contain long repeats as erroneous transcripts. We present the YeATS workflow using a representative sample of the transcriptome from the tissue at the heartwood/sapwood transition zone in black walnut. A novel feature of the transcriptome that emerged from our analysis was the identification of a highly abundant transcript that had no known homologous genes (GenBank accession: KT023102). The amino acid composition of the longest open reading frame of this gene classifies this as a putative extensin. Also, we corroborated the transcriptional abundance of proline-rich proteins, dehydrins, senescence-associated proteins, and the DNAJ family of chaperone proteins. Thus, YeATS presents a workflow for analyzing RNA-seq data with several innovative features that differentiate it from existing software.
Collapse
Affiliation(s)
| | - Monica Britton
- UC Davis Genome Center Bioinformatics Core Facility, University of California, Davis, CA, 95616, USA
| | - Jill Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | | | | | - Russell L Reagan
- Plant Sciences Department, University of California, Davis, CA, 95616, USA
| | - Basuthkar J Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhaba Road, Mumbai, 400, India
| | - Charles A Leslie
- Plant Sciences Department, University of California, Davis, CA, 95616, USA
| | | | - David Neale
- Plant Sciences Department, University of California, Davis, CA, 95616, USA
| | - Keith Woeste
- USDA Forest Service Hardwood Tree Improvement and Regeneration Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Abhaya M Dandekar
- Plant Sciences Department, University of California, Davis, CA, 95616, USA
| |
Collapse
|
11
|
Chakraborty S, Britton M, Wegrzyn J, Butterfield T, Martínez-García PJ, Reagan RL, Rao BJ, Leslie CA, Aradhaya M, Neale D, Woeste K, Dandekar AM. YeATS - a tool suite for analyzing RNA-seq derived transcriptome identifies a highly transcribed putative extensin in heartwood/sapwood transition zone in black walnut. F1000Res 2015; 4:155. [PMID: 26870317 DOI: 10.12688/f1000research.6617.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2015] [Indexed: 11/20/2022] Open
Abstract
The transcriptome provides a functional footprint of the genome by enumerating the molecular components of cells and tissues. The field of transcript discovery has been revolutionized through high-throughput mRNA sequencing (RNA-seq). Here, we present a methodology that replicates and improves existing methodologies, and implements a workflow for error estimation and correction followed by genome annotation and transcript abundance estimation for RNA-seq derived transcriptome sequences (YeATS - Yet Another Tool Suite for analyzing RNA-seq derived transcriptome). A unique feature of YeATS is the upfront determination of the errors in the sequencing or transcript assembly process by analyzing open reading frames of transcripts. YeATS identifies transcripts that have not been merged, result in broken open reading frames or contain long repeats as erroneous transcripts. We present the YeATS workflow using a representative sample of the transcriptome from the tissue at the heartwood/sapwood transition zone in black walnut. A novel feature of the transcriptome that emerged from our analysis was the identification of a highly abundant transcript that had no known homologous genes (GenBank accession: KT023102). The amino acid composition of the longest open reading frame of this gene classifies this as a putative extensin. Also, we corroborated the transcriptional abundance of proline-rich proteins, dehydrins, senescence-associated proteins, and the DNAJ family of chaperone proteins. Thus, YeATS presents a workflow for analyzing RNA-seq data with several innovative features that differentiate it from existing software.
Collapse
Affiliation(s)
| | - Monica Britton
- UC Davis Genome Center Bioinformatics Core Facility, University of California, Davis, CA, 95616, USA
| | - Jill Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | | | | | - Russell L Reagan
- Plant Sciences Department, University of California, Davis, CA, 95616, USA
| | - Basuthkar J Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhaba Road, Mumbai, 400, India
| | - Charles A Leslie
- Plant Sciences Department, University of California, Davis, CA, 95616, USA
| | | | - David Neale
- Plant Sciences Department, University of California, Davis, CA, 95616, USA
| | - Keith Woeste
- USDA Forest Service Hardwood Tree Improvement and Regeneration Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Abhaya M Dandekar
- Plant Sciences Department, University of California, Davis, CA, 95616, USA
| |
Collapse
|
12
|
Bianchi VJ, Rubio M, Trainotti L, Verde I, Bonghi C, Martínez-Gómez P. Prunus transcription factors: breeding perspectives. FRONTIERS IN PLANT SCIENCE 2015; 6:443. [PMID: 26124770 PMCID: PMC4464204 DOI: 10.3389/fpls.2015.00443] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/29/2015] [Indexed: 05/18/2023]
Abstract
Many plant processes depend on differential gene expression, which is generally controlled by complex proteins called transcription factors (TFs). In peach, 1533 TFs have been identified, accounting for about 5.5% of the 27,852 protein-coding genes. These TFs are the reference for the rest of the Prunus species. TF studies in Prunus have been performed on the gene expression analysis of different agronomic traits, including control of the flowering process, fruit quality, and biotic and abiotic stress resistance. These studies, using quantitative RT-PCR, have mainly been performed in peach, and to a lesser extent in other species, including almond, apricot, black cherry, Fuji cherry, Japanese apricot, plum, and sour and sweet cherry. Other tools have also been used in TF studies, including cDNA-AFLP, LC-ESI-MS, RNA, and DNA blotting or mapping. More recently, new tools assayed include microarray and high-throughput DNA sequencing (DNA-Seq) and RNA sequencing (RNA-Seq). New functional genomics opportunities include genome resequencing and the well-known synteny among Prunus genomes and transcriptomes. These new functional studies should be applied in breeding programs in the development of molecular markers. With the genome sequences available, some strategies that have been used in model systems (such as SNP genotyping assays and genotyping-by-sequencing) may be applicable in the functional analysis of Prunus TFs as well. In addition, the knowledge of the gene functions and position in the peach reference genome of the TFs represents an additional advantage. These facts could greatly facilitate the isolation of genes via QTL (quantitative trait loci) map-based cloning in the different Prunus species, following the association of these TFs with the identified QTLs using the peach reference genome.
Collapse
Affiliation(s)
- Valmor J. Bianchi
- Department of Plant Physiology, Instituto de Biologia, Universidade Federal de PelotasPelotas-RS, Brazil
| | - Manuel Rubio
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones CientíficasMurcia, Spain
| | | | - Ignazio Verde
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CRA) - Centro di ricerca per la frutticolturaRoma, Italy
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, and Environment (DAFNAE). University of PaduaPadova, Italy
| | - Pedro Martínez-Gómez
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones CientíficasMurcia, Spain
| |
Collapse
|
13
|
Morelos RM, Ramírez JL, García-Gasca A, Ibarra AM. Expression of the myostatin gene in the adductor muscle of the Pacific lion-paw scallop Nodipecten subnodosus in association with growth and environmental conditions. ACTA ACUST UNITED AC 2015; 323:239-55. [PMID: 25731876 DOI: 10.1002/jez.1914] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 11/07/2014] [Accepted: 12/27/2014] [Indexed: 12/25/2022]
Abstract
The cDNA sequence of the myostatin gene in the Pacific lion-paw Nodipecten subnodosus (Ns-mstn) was characterized, and the temporal expression during grow-out was analyzed for the first time in a scallop. Ns-mstn encodes a 459-amino-acid protein in which two propeptide proteolytic sites were identified, the previously recognized (RSKR) and a second one at position 266-269 aa (RRKR). The alternative furin cleavage site could be related with post-translational processing, or it could be a tissue-specific mechanism for signaling activity. The Ns-mstn transcript was located by in situ hybridization in sarcomeres and around the nucleus of muscle fibers. The temporal expression analysis by qPCR in the adductor muscle showed that Ns-mstn expression was significantly different (P < 0.05) between months during the grow-out period, increasing largely during the summer months when both biomass and muscle weight did not increase or even decreased; muscle fiber size and number were found to decrease significantly. Exogenous and endogenous factors such as high temperature and low food availability, as well as gametogenesis and reproduction, can be associated with the growth pattern and Ns-mstn expression changes. Our results indicate that MSTN is involved in adductor muscle growth regulation in N. subnodosus as it occurs in vertebrate skeletal muscle although Ns-mstn expression in non-muscle organs/tissues suggests additional functions.
Collapse
Affiliation(s)
- Rosa M Morelos
- Aquaculture Genetics and Breeding Laboratory, Centro de Investigaciones Biológicas del Noroeste S.C., La Paz, Mexico
| | | | | | | |
Collapse
|
14
|
The dehydrin wzy2 promoter from wheat defines its contribution to stress tolerance. Funct Integr Genomics 2013; 14:111-25. [PMID: 24363037 DOI: 10.1007/s10142-013-0354-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/16/2013] [Accepted: 12/02/2013] [Indexed: 10/25/2022]
Abstract
Dehydrins (DHNs), which are stress-related proteins, are important for plant survival under various abiotic and biotic stresses. To elucidate the regulatory mechanisms of wheat-derived DHNs under these stresses, we characterized the DHN wzy2 promoter of the wheat cultivar Zhengyin 1 and studied its contribution to stress tolerance. Sequence analysis indicated that the wzy2 gene contains one 109-bp intron inserted in the nucleotide sequence encoding the S-motif and characterized by a GT-AG border. The wzy2 promoter was revealed to contain several potential stress-related cis-acting regulatory elements, including elements responsive to abscisic acid (ABA; ABREs), anoxia (GC motifs), low temperature (LTREs), auxin (TGA elements), methyl jasmonate (MeJA; TGACG motifs), and gibberellin (TATC boxes). Quantitative real-time PCR analysis showed that transcript accumulation occurred in response to low temperature, anoxia, indoleacetic acid, MeJA, ABA, and gibberellin (GA) treatments. Histochemical analysis of GUS expression demonstrated that wzy2 promoter activity could be upregulated by low temperature, anoxia, ABA, and GA treatments. Interestingly, wzy2 promoter element-driven β-glucuronidase expression was first observed in meristemoids rather than calli of wheat seeds subjected to anoxia. Taken together, these results indicate that YSK2-type wzy2 can be induced directly by ABA, low temperature, anoxia, and GA treatments and indirectly by drought, implying that different cis-acting elements interact in stress response cross talk.
Collapse
|
15
|
Artlip TS, Wisniewski ME, Bassett CL, Norelli JL. CBF gene expression in peach leaf and bark tissues is gated by a circadian clock. TREE PHYSIOLOGY 2013; 33:866-77. [PMID: 23956128 DOI: 10.1093/treephys/tpt056] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
CBF (C-repeat Binding Factor) transcription factors are part of the AP2/ERF (Apetala2-ethylene responsive factor) domain family of DNA-binding proteins that recognize a C-repeat response cis-acting element that regulates a number of cold-responsive genes (CBF regulon). Induction of CBF gene expression by low temperature in Arabidopsis has been shown to be gated by a circadian clock. In peach (Prunus persica L.), five CBF genes are arranged in tandem on scaffold (linkage group) 5 of the peach genome. Since CBF gene regulation has been shown to be more complex in woody plants than herbaceous plants, the present study was conducted to determine if temperature-modulated CBF gene expression in peach leaf and bark tissues was also influenced by a circadian clock. One-year-old 'Loring' peach trees grafted on 'Bailey' rootstocks were entrained to a 12-h day/12-h night photoperiod at 25 °C. After 2 weeks, trees were exposed to 4 °C under continuous light for up to 48 h beginning at either subjective dawn + 4 h (ZT4; where ZT is Zeitgeber time) or subjective dawn + 16 h (ZT16) with leaf and bark tissues harvested at various time points. Gene expression of the five peach CBF genes and a DREB2 gene was assessed by real-time quantitative polymerase chain reaction. Results revealed a distinct gating of CBF gene expression by a circadian clock for four CBF genes in both leaf and bark tissues. CBF genes were highly induced by 4 °C in ZT4 leaf samples with expression peaking at 6-24 h depending on the specific CBF gene. In contrast, CBF gene expression was highly attenuated in leaf, and to a lesser extent in bark, samples exposed to 4 °C at ZT16. These results are similar to reports for Arabidopsis. Further experiments were conducted to verify environmental influence on the induction of CBF and DREB2 genes. In contrast to DREB2 genes from other dicots, the peach DREB2 ortholog was induced by both low temperature and dehydration. Induction of the peach CBFs and DREB2 by either low temperature or dehydration corresponded with regulatory motifs present in their promoter sequences. Low temperature and dehydration induction data for three peach dehydrin genes indicated that the regulation of these genes in peach is complex, with individual dehydrin gene expression being correlated with the expression of one or more CBF genes.
Collapse
Affiliation(s)
- Timothy S Artlip
- USDA-ARS, Appalachian Fruit Research Station, Kearneysville, WV 25430, USA
| | | | | | | |
Collapse
|
16
|
Ning DL, Liu CC, Liu JW, Shen Z, Chen S, Liu F, Wang BC, Yang CP. Label-free quantitative proteomics analysis of dormant terminal buds of poplar. Mol Biol Rep 2013; 40:4529-42. [PMID: 23677710 DOI: 10.1007/s11033-013-2548-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 04/29/2013] [Indexed: 01/02/2023]
Abstract
Induction and break of bud dormancy are important features for perennial plants surviving extreme seasonal variations in climate. However, the molecular mechanism of the dormancy regulation, still remain poorly understood. To better understand the molecular basis of poplar bud dormancy, we used a label-free quantitative proteomics method based on nanoscale ultra performance liquid chromatography-ESI-MS(E) for investigation of differential protein expression during dormancy induction, dormancy, and dormancy break in apical buds of poplar (Populus simonii × P. nigra). Among these identified over 300 proteins during poplar bud dormancy, there are 74 significantly altered proteins, most of which involved in carbohydrate metabolism (22 %), redox regulation (19 %), amino acid transport and metabolism (10 %), and stress response (8 %). Thirty-one of these proteins were up-regulated, five were down-regulated during three phase, and thirty-eight were expressed specifically under different conditions. Pathway analysis suggests that there are still the presence of various physiological activities and a particular influence on photosynthesis and energy metabolism during poplar bud dormancy. Differential expression patterns were identified for key enzymes involved in major metabolic pathways such as glycolysis and the pentose phosphate pathway, thus manifesting the interplay of intricate molecular events in energy generation for new protein synthesis in the dormant buds. Furthermore, there are significant changes present in redox regulation and defense response proteins, for instance in peroxidase and ascorbate peroxidase. Overall, this study provides a better understanding of the possible regulation mechanisms during poplar bud dormancy.
Collapse
Affiliation(s)
- De-Li Ning
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Dubé MP, Castonguay Y, Cloutier J, Michaud J, Bertrand A. Characterization of two novel cold-inducible K3 dehydrin genes from alfalfa (Medicago sativa spp. sativa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013. [PMID: 23188214 DOI: 10.1007/s00122-012-2020-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Dehydrin defines a complex family of intrinsically disordered proteins with potential adaptive value with regard to freeze-induced cell dehydration. Search within an expressed sequence tags library from cDNAs of cold-acclimated crowns of alfalfa (Medicago sativa spp. sativa L.) identified transcripts putatively encoding K(3)-type dehydrins. Analysis of full-length coding sequences unveiled two highly homologous sequence variants, K(3)-A and K(3)-B. An increase in the frequency of genotypes yielding positive genomic amplification of the K(3)-dehydrin variants in response to selection for superior tolerance to freezing and the induction of their expression at low temperature strongly support a link with cold adaptation. The presence of multiple allelic forms within single genotypes and independent segregation indicate that the two K(3) dehydrin variants are encoded by distinct genes located at unlinked loci. The co-inheritance of the K(3)-A dehydrin with a Y(2)K(4) dehydrin restriction fragment length polymorphism with a demonstrated impact on freezing tolerance suggests the presence of a genome domain where these functionally related genes are located. These results provide additional evidence that dehydrin play important roles with regard to tolerance to subfreezing temperatures. They also underscore the value of recurrent selection to help identify variants within a large multigene family in allopolyploid species like alfalfa.
Collapse
Affiliation(s)
- Marie-Pier Dubé
- Crops and Soils Research and Development Center, Agriculture and Agri-Food Canada, 2560 Hochelaga Blvd., Quebec, QC, G1V 2J3, Canada
| | | | | | | | | |
Collapse
|
18
|
Davik J, Koehler G, From B, Torp T, Rohloff J, Eidem P, Wilson RC, Sønsteby A, Randall SK, Alsheikh M. Dehydrin, alcohol dehydrogenase, and central metabolite levels are associated with cold tolerance in diploid strawberry (Fragaria spp.). PLANTA 2013; 237:265-77. [PMID: 23014928 DOI: 10.1007/s00425-012-1771-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/11/2012] [Indexed: 05/07/2023]
Abstract
The use of artificial freezing tests, identification of biomarkers linked to or directly involved in the low-temperature tolerance processes, could prove useful in applied strawberry breeding. This study was conducted to identify genotypes of diploid strawberry that differ in their tolerance to low-temperature stress and to investigate whether a set of candidate proteins and metabolites correlate with the level of tolerance. 17 Fragaria vesca, 2 F. nilgerrensis, 2 F. nubicola, and 1 F. pentaphylla genotypes were evaluated for low-temperature tolerance. Estimates of temperatures where 50 % of the plants survived (LT₅₀) ranged from -4.7 to -12.0 °C between the genotypes. Among the F. vesca genotypes, the LT₅₀ varied from -7.7 °C to -12.0 °C. Among the most tolerant were three F. vesca ssp. bracteata genotypes (FDP821, NCGR424, and NCGR502), while a F. vesca ssp. californica genotype (FDP817) was the least tolerant (LT₅₀) -7.7 °C). Alcohol dehydrogenase (ADH), total dehydrin expression, and content of central metabolism constituents were assayed in select plants acclimated at 2 °C. The LT₅₀ estimates and the expression of ADH and total dehydrins were highly correlated (r(adh) = -0.87, r (dehyd) = -0.82). Compounds related to the citric acid cycle were quantified in the leaves during acclimation. While several sugars and acids were significantly correlated to the LT₅₀ estimates early in the acclimation period, only galactinol proved to be a good LT₅₀ predictor after 28 days of acclimation (r(galact) = 0.79). It is concluded that ADH, dehydrins, and galactinol show great potential to serve as biomarkers for cold tolerance in diploid strawberry.
Collapse
Affiliation(s)
- Jahn Davik
- Bioforsk-Norwegian Institute for Agricultural and Environmental Research, Kvithamar, 7500 Stjordal, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Du D, Zhang Q, Cheng T, Pan H, Yang W, Sun L. Genome-wide identification and analysis of late embryogenesis abundant (LEA) genes in Prunus mume. Mol Biol Rep 2012. [PMID: 23086279 DOI: 10.1007/s11033‐012‐2250‐3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Late embryogenesis abundant (LEA) proteins play important roles in plant desiccation tolerance. In this study, 30 LEA genes were identified from Chinese plum (Prunus mume) through genome-wide analysis. The PmLEA genes are distributed on all Chinese plum chromosomes except chromosome 3. Twelve (40 %) and five PmLEA genes are arranged in tandem and segmental duplications, respectively. The PmLEA genes could be divided into eight groups (LEA_1, LEA_2, LEA_3, LEA_4, LEA_5, PvLEA18, dehydrin and seed maturation protein). Ten gene conversion events were observed and most of them (70 %) were identified in dehydrin group. Most PmLEA genes were highly expressed in flower (22/30) and up-regulated by ABA treatment (19/30).
Collapse
Affiliation(s)
- Dongliang Du
- College of Landscape Architecture, China National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, 100083, China
| | | | | | | | | | | |
Collapse
|
20
|
Genome-wide identification and analysis of late embryogenesis abundant (LEA) genes in Prunus mume. Mol Biol Rep 2012; 40:1937-46. [PMID: 23086279 DOI: 10.1007/s11033-012-2250-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 10/10/2012] [Indexed: 10/27/2022]
Abstract
Late embryogenesis abundant (LEA) proteins play important roles in plant desiccation tolerance. In this study, 30 LEA genes were identified from Chinese plum (Prunus mume) through genome-wide analysis. The PmLEA genes are distributed on all Chinese plum chromosomes except chromosome 3. Twelve (40 %) and five PmLEA genes are arranged in tandem and segmental duplications, respectively. The PmLEA genes could be divided into eight groups (LEA_1, LEA_2, LEA_3, LEA_4, LEA_5, PvLEA18, dehydrin and seed maturation protein). Ten gene conversion events were observed and most of them (70 %) were identified in dehydrin group. Most PmLEA genes were highly expressed in flower (22/30) and up-regulated by ABA treatment (19/30).
Collapse
|
21
|
Genome-wide identification and expression profiling of dehydrin gene family in Malus domestica. Mol Biol Rep 2012; 39:10759-68. [DOI: 10.1007/s11033-012-1968-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 10/01/2012] [Indexed: 10/27/2022]
|
22
|
Barros PM, Gonçalves N, Saibo NJM, Oliveira MM. Functional characterization of two almond C-repeat-binding factors involved in cold response. TREE PHYSIOLOGY 2012; 32:1113-28. [PMID: 22832014 DOI: 10.1093/treephys/tps067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Low temperature plays a crucial role in seasonal development of woody plants and may directly impact crop production, more particularly in temperate fruit trees. Given its high genetic variability and adaptability to different climatic conditions, almond (Prunus dulcis Mill.) is an interesting model to understand the mechanisms regulating low temperature sensing in fruit trees. In this paper, we report the cloning and characterization of two genes (PdCBF1 and PdCBF2) belonging to the C-repeat-binding factor (CBF) family of transcription factors. Southern blotting analysis showed that this family is composed of at least five members. In almond shoots propagated in vitro, transcription of these genes was rapidly induced by low temperature, suggesting an involvement in cold acclimation. Transactivation assays showed that PdCBF1 and PdCBF2 could bind to dehydration responsive element/C-repeat containing sequences, as activators of gene expression. In addition, induction of both PdCBFs by cold was higher towards the end of the day, which agreed with the expression pattern of PdDehydrin1, a predicted CBF target gene. Furthermore, PdCBF1 and PdCBF2 were also transiently induced by abscisic acid and drought treatments. Considering the bin mapping analysis that correlated PdCBFs and PdDHN1 (respectively in linkage groups 5 and 7) with two different quantitative trait locicontrolling blooming time, it is relevant to perform further association studies that may validate their effect on this trait.
Collapse
Affiliation(s)
- Pedro M Barros
- Genomics of Plant Stress Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | | | | | | |
Collapse
|
23
|
Barros PM, Gonçalves N, Saibo NJM, Oliveira MM. Cold acclimation and floral development in almond bud break: insights into the regulatory pathways. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4585-96. [PMID: 22685307 DOI: 10.1093/jxb/ers144] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In temperate fruit trees, seasonal dormancy and cold acclimation have a major impact on blooming time and, consequently, fruit production. To gain insight into the still unclear molecular processes underlying blooming, expression of genes putatively involved in the cold response was studied in almond (Prunus dulcis Mill.), which is the earliest fruit tree in the family Rosaceae to bloom. The transcript levels of two C-repeat binding factor (PdCBF) genes and one of their putative targets, PdDehydrin1 (PdDHN1), were analysed in flower buds and shoot internodes during seasonal dormancy up to bud break. In parallel, expression of candidate genes related to flower development was also followed. In a 2-year study, PdCBF2 showed a progressive increase in transcript abundance during the autumn in close correlation with cold acclimation, while high transcript levels of PdCBF1 and PdDHN1 were already found by summer. After bud break, with temperatures still within the chilling range, both PdCBF genes and PdDHN1 were found to sharply reduce transcription in flower buds and internodes, suggesting damping of CBF-mediated cold signalling during growth resumption, in correlation with cold hardiness decline. Flower bud break was also followed by a decrease in the expression of PdGA20OX, a candidate gene involved in gibberellin biosynthesis, and an increase in the expression of two homeotic genes related to floral organ development, PdMADS1 and -3. These genes may also be relevant players in the regulation of anthesis in this model Rosaceae species.
Collapse
Affiliation(s)
- Pedro M Barros
- Genomics of Plant Stress Laboratory (GPlantS), Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal and IBET, Apartado 12, 2781-901 Oeiras, Portugal
| | | | | | | |
Collapse
|
24
|
Ochoa-Alfaro AE, Rodríguez-Kessler M, Pérez-Morales MB, Delgado-Sánchez P, Cuevas-Velazquez CL, Gómez-Anduro G, Jiménez-Bremont JF. Functional characterization of an acidic SK(3) dehydrin isolated from an Opuntia streptacantha cDNA library. PLANTA 2012; 235:565-78. [PMID: 21984262 DOI: 10.1007/s00425-011-1531-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 09/25/2011] [Indexed: 05/12/2023]
Abstract
Cactus pears are succulent plants of the Cactaceae family adapted to extremely arid, hot and cold environments, making them excellent models for the study of molecular mechanisms underlying abiotic stress tolerance. Herein, we report a directional cDNA library from 12-month-old cladodes of Opuntia streptacantha plants subjected to abiotic stresses. A total of 442 clones were sequenced, representing 329 cactus pear unigenes, classified into eleven functional categories. The most abundant EST (unigen 33) was characterized under abiotic stress. This cDNA of 905 bp encodes a SK(3)-type acidic dehydrin of 248 amino acids. The OpsDHN1 gene contains an intron inserted within the sequence encoding the S-motif. qRT-PCR analysis shows that the OpsDHN1 transcript is specifically accumulated in response to cold stress, and induced by abscisic acid. Over-expression of the OpsDHN1 gene in Arabidopsis thaliana leads to enhanced tolerance to freezing treatment, suggesting that OpsDHN1 participates in freezing stress responsiveness. Generation of the first EST collection for the characterization of cactus pear genes constitutes a useful platform for the understanding of molecular mechanisms of stress tolerance in Opuntia and other CAM plants.
Collapse
Affiliation(s)
- A E Ochoa-Alfaro
- Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa de San Jose 2055, Apartado Postal 3-74 Tangamanga, CP 78216 San Luis Potosi, SLP, Mexico
| | | | | | | | | | | | | |
Collapse
|
25
|
Prinsi B, Negri AS, Fedeli C, Morgutti S, Negrini N, Cocucci M, Espen L. Peach fruit ripening: A proteomic comparative analysis of the mesocarp of two cultivars with different flesh firmness at two ripening stages. PHYTOCHEMISTRY 2011; 72:1251-62. [PMID: 21315381 DOI: 10.1016/j.phytochem.2011.01.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/30/2010] [Accepted: 01/10/2011] [Indexed: 05/21/2023]
Abstract
A proteomic analysis was conducted on peach fruit mesocarp in order to better elucidate the biochemical and physiological events which characterize the transition of fruit from the "unripe" to the "ripe" phase. The first goal of the present work was to set-up a protocol suitable for improving protein extraction from peach mesocarp. The use of freeze-dried powdered tissue, together with the addition of phenol prior to the extraction with an aqueous buffer, significantly increased the protein yield and the quality of 2-DE gels. The proteomic profiles of the mesocarp from peach fruit of a non-melting flesh (NMF; 'Oro A') and a melting flesh (MF; 'Bolero') cultivar, at "unripe" and "ripe" stages as defined by some parameters typical of ripening, were then analyzed. The comparative analysis of the 2-DE gels showed that in NMF and MF peaches the relative volumes of 53 protein spots significantly changed in relation to both the ripening stage ("unripe" versus "ripe") and/or the genetic background of the cultivar ('Oro A' versus 'Bolero'). Thirty out of the 53 differently abundant spots were identified by LC-ESI-MS/MS. The analysis revealed enzymes involved in primary metabolism (e.g. C-compounds, carbohydrates, organic acids and amino acids) and in ethylene biosynthesis as well as proteins involved in secondary metabolism and responses to stress. Among these, 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) appeared to be one of the proteins with the largest change in relative abundance during the fruit transition from the pre-climacteric ("unripe") to the climacteric ("ripe") phase. Other proteins, such as S-adenosylmethionine synthetase and β-cyanoalanine synthase involved in ethylene metabolism, were also identified. Moreover, the changes in the relative abundances of a sucrose synthase and an α-amylase suggested differences between the two cultivars in the carbohydrate import activity of ripe fruit. The different accumulation of a few typical ROS-scavenger enzymes suggested that a higher oxidative stress occurred in MF with respect to NMF fruit. This result, together with data concerning the levels of total proteins and free amino acids and those regarding proteins involved in the maintenance of tissue integrity, was consistent with the hypothesis that the last phase of ripening in MF fruit is characterized by the appearance of a senescence status. The present study appears to define well some of the biochemical and physiological events that characterize the ripening of peach and, at the same time, provides interesting indications that could be employed in future marker assisted selection (MAS) programmes aimed to obtain MF fruits with higher ability to preserve tissue functionality maintaining for a longer time their organoleptic characteristics.
Collapse
Affiliation(s)
- Bhakti Prinsi
- Dipartimento di Produzione Vegetale, University of Milan, Via Celoria 2, I-20133 Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
New approaches to Prunus transcriptome analysis. Genetica 2011; 139:755-69. [PMID: 21584650 DOI: 10.1007/s10709-011-9580-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 04/26/2011] [Indexed: 12/11/2022]
Abstract
The recent sequencing of the complete genome of the peach offers new opportunities for further transcriptomic studies in Prunus species in the called post-genomics era. First works on transcriptome analysis in Prunus species started in the early 2000s with the development of ESTs (expressed sequence tags) and the analysis of several candidate genes. Later, new strategies of massive analysis (high throughput) of transcriptomes have been applied, producing larger amounts of data in terms of expression of a large number of genes in a single experiment. One of these systems is massive transcriptome analysis using cDNA biochips (microarrays) to analyze thousands of genes by hybridization of mRNA labelled with fluorescence. However, the recent emergence of a massive sequencing methodology ("deep-sequencing") of the transcriptome (RNA-Seq), based on lowering the costs of DNA (in this cases complementary, cDNA) sequencing, could be more suitable than the application of microarrays. Recent papers have described the tremendous power of this technology, both in terms of profiling coverage and quantitative accuracy in transcriptomic studies. Now this technology is being applied to plant species, including Prunus. In this work, we analyze the potential in using this RNA-Seq technology in the study of Prunus transcriptomes and the development of genomic tools. In addition, the strengths and limitations of RNA-Seq relative to microarray profiling have been discussed.
Collapse
|
27
|
Wisniewski M, Norelli J, Bassett C, Artlip T, Macarisin D. Ectopic expression of a novel peach (Prunus persica) CBF transcription factor in apple (Malus × domestica) results in short-day induced dormancy and increased cold hardiness. PLANTA 2011; 233:971-83. [PMID: 21274560 DOI: 10.1007/s00425-011-1358-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 01/10/2011] [Indexed: 05/02/2023]
Abstract
Low, non-freezing temperatures and/or short daylength (SD) regulates cold acclimation and dormancy in fruit trees. Regarding cold acclimation, C-repeat binding factor (CBF/DREB) transcriptional activator genes have the well-documented ability to induce the expression of a suite of genes associated with increased cold tolerance. We isolated a full-length cDNA of a peach CBF gene, designated PpCBF1 (GenBank Accession HM992943), and constitutively expressed it using an enhanced 35S promoter in apple. Unexpectedly, constitutive overexpression of the PpCBF1 in apple resulted in strong sensitivity to short daylength. Growth cessation and leaf senescence were induced in transgenic lines exposed to SD and optimal growth temperatures of 25°C over a 4-week period. Following 1-4 weeks of SD and 25°C trees were returned to LD and 25°C in the greenhouse. Control (untransformed) plants continued to grow while transgenic lines receiving two or more weeks of SD remained dormant and began to drop leaves. Constitutive overexpression of the PpCBF1 in apple resulted in a 4-6°C increase in freezing tolerance in both the non-acclimated and acclimated states, respectively, compared with untransformed M.26 trees. This is the first instance that constitutive overexpression of a CBF gene has resulted in SD-induction of dormancy and to our knowledge the first time apple has been shown to strongly respond to short daylength as a result of the insertion of a transgene.
Collapse
Affiliation(s)
- Michael Wisniewski
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), The Appalachian Fruit Research Station, Kearneysville, WV 25430, USA.
| | | | | | | | | |
Collapse
|
28
|
Subtle proteome differences identified between post-dormant vegetative and floral peach buds. J Proteomics 2011; 74:607-19. [DOI: 10.1016/j.jprot.2011.01.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/20/2011] [Accepted: 01/28/2011] [Indexed: 01/09/2023]
|