1
|
Kelimujiang K, Zhang W, Zhang X, Waili A, Tang X, Chen Y, Chen L. Genome-wide investigation of WRKY gene family in Lavandula angustifolia and potential role of LaWRKY57 and LaWRKY75 in the regulation of terpenoid biosynthesis. FRONTIERS IN PLANT SCIENCE 2024; 15:1449299. [PMID: 39445139 PMCID: PMC11496791 DOI: 10.3389/fpls.2024.1449299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
The WRKY transcription factors are integral to plant biology, serving essential functions in growth, development, stress responses, and the control of secondary metabolism. Through the use of bioinformatics techniques, this research has effectively characterized 207 members of the WRKY family (LaWRKY) present in the entire genome of Lavandula angustifolia. Phylogenetic analysis classified LaWRKYs into three distinct categories based on conserved domains. Collinearity analysis revealed tandem repeats, segmental duplications, and whole genome duplications in LaWRKYs, especially for segmental duplication playing a significant role in gene family expansion. LaWRKYs displayed distinct tissue-specific expression profiles across six different tissues of L. angustifolia. Particularly noteworthy were 12 genes exhibiting high expression in flower buds and calyx, the primary sites of volatile terpenoid production, indicating their potential role in terpenoid biosynthesis in L. angustifolia. RT-qPCR analysis revealed a notable increase in the expression levels of most examined LaWRKY genes in flower buds in response to both intense light and low-temperature conditions, whereas the majority of these genes in leaves were primarily induced by drought stress. However, all genes exhibited downregulation following GA treatment in both flower buds and leaves. Overexpression of LaWRKY57 (La13G01665) and LaWRKY75 (La16G00030) in tobacco led to a reduction in the density of glandular trichomes on leaf surfaces, resulting in changes to the volatile terpenoid composition in the leaves. Specifically, the content of Neophytadiene was significantly elevated compared to wild-type tobacco, while compounds such as eucalyptol, cis-3-Hexenyl iso-butyrate, and D-Limonene were produced, which were absent in the wild type. These findings provide a valuable reference for future investigations into the biological functions of the WRKY gene family in L. angustifolia.
Collapse
Affiliation(s)
- Kelaremu Kelimujiang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Plant Stress Biology in Arid Land, School of Life Sciences, Xinjiang Normal University, Urumqi, China
| | - Wenying Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiaxia Zhang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Plant Stress Biology in Arid Land, School of Life Sciences, Xinjiang Normal University, Urumqi, China
| | - Aliya Waili
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Plant Stress Biology in Arid Land, School of Life Sciences, Xinjiang Normal University, Urumqi, China
| | - Xinyue Tang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Plant Stress Biology in Arid Land, School of Life Sciences, Xinjiang Normal University, Urumqi, China
| | - Yongkun Chen
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Plant Stress Biology in Arid Land, School of Life Sciences, Xinjiang Normal University, Urumqi, China
| | - Lingna Chen
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Plant Stress Biology in Arid Land, School of Life Sciences, Xinjiang Normal University, Urumqi, China
| |
Collapse
|
2
|
Darwish H, Al-Osaimi GS, Al Kashgry NAT, Sonbol H, Alayafi AAM, Alabdallah NM, Al-Humaid A, Al-Harbi NA, Al-Qahtani SM, Abbas ZK, Darwish DBE, Ibrahim MFM, Noureldeen A. Evaluating the genotoxicity of salinity stress and secondary products gene manipulation in lime, Citrus aurantifolia, plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1211595. [PMID: 37502705 PMCID: PMC10369181 DOI: 10.3389/fpls.2023.1211595] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023]
Abstract
Salinity is a significant abiotic stress that has a profound effect on growth, the content of secondary products, and the genotoxicity of cells. Lime, Citrus aurantifolia, is a popular plant belonging to the family Rutaceae. The interest in cultivating this plant is due to the importance of its volatile oil, which is included in many pharmaceutical industries, but C. aurantifolia plants are affected by the NaCl salinity levels. In the present study, a comet assay test has been applied to evaluate the genotoxic impact of salinity at 0, 50, 100, and 200 mM of NaCl on C. aurantifolia tissue-cultured plants. Furthermore, terpene gene expression was investigated using a semi-quantitative real-time polymerase chain reaction. Results from the two analyses revealed that 200 mM of NaCl stress resulted in high levels of severe damage to the C. aurantifolia plants' DNA tail 21.8%, tail length 6.56 µm, and tail moment 3.19 Unit. The relative highest expression of RtHK and TAT genes was 2.08, and 1.693, respectively, when plants were exposed to 200 mM of NaCl, whereas pv4CL2RT expressed 1.50 in plants subjected to 100 mM of NaCl. The accumulation of transcripts for the RTMYB was 0.951 when plants were treated with NaCl at 50 mM, and RtGPPS gene was significantly decreased to 0.446 during saline exposure at 100 mM. We conclude that the comet assay test offers an appropriate tool to detect DNA damage as well as RtHK, TAT, and pv4CL2RT genes having post-transcriptional regulation in C. aurantifolia plant cells under salinity stress. Future studies are needed to assess the application of gene expression and comet assay technologies using another set of genes that show vulnerability to different stresses on lime and other plants.
Collapse
Affiliation(s)
- Hadeer Darwish
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
- Department of Medicinal and Aromatic Plants, Horticulture Research Institute, Agricultural Research Center, Giza, Egypt
| | - Ghaida S. Al-Osaimi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | | | - Hana Sonbol
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Aisha A. M. Alayafi
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdulrahman Al-Humaid
- Plant Production and Protection Department, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Nadi Awad Al-Harbi
- Biology Department, University College of Tayma, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Zahid Khorshid Abbas
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Doaa Bahaa Eldin Darwish
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mohamed F. M. Ibrahim
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Ahmed Noureldeen
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
- Department of Agricultural Zoology, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| |
Collapse
|
3
|
Ali M, Abdelkawy AM, Darwish DBE, Alatawi HA, Alshehri D, Al-Amrah H, Soudy FA. Changes in Metabolite Profiling and Expression Levels of Key Genes Involved in the Terpenoid Biosynthesis Pathway in Garden Sage ( Salvia officinalis) under the Effect of Hydrazine Hydrate. Metabolites 2023; 13:807. [PMID: 37512514 PMCID: PMC10385164 DOI: 10.3390/metabo13070807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Mutagenesis is a highly efficient tool for establishing genetic variation and is widely used for genetic enhancement in various plants. The key benefit of mutation breeding is the prospect of enhancing one or several characteristics of a variety without altering the genetic background. In this study, we exposed the seeds of Salvia officinalis to four concentrations of hydrazine hydrate (HZ), i.e., (0%, 0.1%, 0.2%, and 0.3%) for 6 h. The contents of terpenoid compounds in the S. officinalis plantlets driven from the HZ-treated seeds were determined by GC-MS, which resulted in the identification of a total of 340 phytochemical compounds; 163 (87.48%), 145 (84.49%), 65 (97.45%), and 62 (98.32%), from the four concentrations of HZ (0%, 0.1%, 0.2%, and 0.3%), respectively. Furthermore, we used the qRT-PCR system to disclose the "transcriptional control" for twelve TPS genes related to terpenoid and terpene biosynthesis, namely, SoGPS, SoMYRS, SoNEOD, SoCINS, SoSABS, SoLINS, SoFPPS, SoHUMS, SoTPS6, SoSQUS, SoGGPS, and SoGA2. Altogether, results are likely to ensure some positive relationship between the concentrations of the chemical mutagen HZ used for treating the seeds, the type and amount of the produced terpenes, and the expression of their corresponding genes.
Collapse
Affiliation(s)
- Mohammed Ali
- Maryout Research Station, Genetic Resources Department, Desert Research Center, 1 Mathaf El-Matarya St., El-Matareya, Cairo 11753, Egypt
| | - Aisha M Abdelkawy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo 11751, Egypt
| | - Doaa Bahaa Eldin Darwish
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35511, Egypt
| | - Hanan Ali Alatawi
- Department of Biological Sciences, University Collage of Haqel, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Dikhnah Alshehri
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Hadba Al-Amrah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fathia A Soudy
- Genetics and Genetic Engineering Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| |
Collapse
|
4
|
Habán M, Korczyk-Szabó J, Čerteková S, Ražná K. Lavandula Species, Their Bioactive Phytochemicals, and Their Biosynthetic Regulation. Int J Mol Sci 2023; 24:ijms24108831. [PMID: 37240177 DOI: 10.3390/ijms24108831] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Lavandula species are one of the most useful aromatic and medicinal plants and have great economic potential. The phytopharmaceutical contribution of the secondary metabolites of the species is unquestionable. Most recent studies have been focusing on the elucidation of the genetic background of secondary metabolite production in lavender species. Therefore, knowledge of not only genetic but especially epigenetic mechanisms for the regulation of secondary metabolites is necessary for the modification of those biosynthesis processes and the understanding of genotypic differences in the content and compositional variability of these products. The review discusses the genetic diversity of Lavandula species in relation to the geographic area, occurrence, and morphogenetic factors. The role of microRNAs in secondary-metabolites biosynthesis is described.
Collapse
Affiliation(s)
- Miroslav Habán
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Joanna Korczyk-Szabó
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Simona Čerteková
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Katarína Ražná
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| |
Collapse
|
5
|
Adal AM, Najafianashrafi E, Sarker LS, Mahmoud SS. Cloning, functional characterization and evaluating potential in metabolic engineering for lavender ( +)-bornyl diphosphate synthase. PLANT MOLECULAR BIOLOGY 2023; 111:117-130. [PMID: 36271988 DOI: 10.1007/s11103-022-01315-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
We isolated and functionally characterized a new ( +)-bornyl diphosphate synthase (( +)-LiBPPS) from Lavandula x intermedia. The in planta functions of ( +)-LiBPPS were evaluated in sense and antisense transgenic plants. The monoterpene ( +)-borneol contributes scent and medicinal properties to some plants. It also is the immediate precursor to camphor, another important determinant of aroma and medicinal properties in many plants. ( +)-Borneol is generated through the dephosphorylation of bornyl diphosphate (BPP), which is itself derived from geranyl diphosphate (GPP) by the enzyme ( +)-bornyl diphosphate synthase (( +)-BPPS). In this study we isolated and functionally characterized a novel ( +)-BPPS cDNA from Lavandula x intermedia. The cDNA excluding its transit peptide was expressed in E. coli, and the corresponding recombinant protein was purified with Ni-NTA agarose affinity chromatography. The recombinant ( +)-LiBPPS catalyzed the conversion of GPP to BPP as a major product, and a few minor products. We also investigated the in planta role of ( +)-LiBPPS in terpenoid metabolism through its overexpression in sense and antisense orientations in stably transformed Lavandula latifolia plants. The overexpression of ( +)-LiBPPS in antisense resulted in reduced production of ( +)-borneol and camphor without compromising plant growth and development. As anticipated, the overexpression of the gene led to enhanced production of borneol and camphor, although growth and development were severely impaired in most transgenic lines strongly and ectopically expressing the ( +)-LiBPPS transgene in sense. Our results demonstrate that LiBPPS would be useful in studies aimed at the production of recombinant borneol and camphor in vitro, and in metabolic engineering efforts aimed at lowering borneol and camphor production in plants. However, overexpression in sense may require a targeted expression of the gene in glandular trichomes using a trichome-specific promoter.
Collapse
Affiliation(s)
- Ayelign M Adal
- Department of Biology, The University of British Columbia, Okanagan Campus, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada
- Innovate Phytoceuticals Inc, 3485 Velocity Ave, Kelowna, BC, V1V 3C2, Canada
| | - Elaheh Najafianashrafi
- Department of Biology, The University of British Columbia, Okanagan Campus, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada
- Department of Micro, Immuno and Cancer Biology, University of Virginia, 1340 Jefferson Park Ave, Charlottesville, VA, 22908, USA
| | - Lukman S Sarker
- Department of Biology, The University of British Columbia, Okanagan Campus, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada
- Innovate Phytoceuticals Inc, 3485 Velocity Ave, Kelowna, BC, V1V 3C2, Canada
| | - Soheil S Mahmoud
- Department of Biology, The University of British Columbia, Okanagan Campus, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
6
|
Zhang H, Zhang Y, Wang L, Song H, Li Z. Detection of odor difference between human milk and infant formula by sensory-directed analysis. Food Chem 2022; 382:132348. [PMID: 35149470 DOI: 10.1016/j.foodchem.2022.132348] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/16/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022]
Abstract
Infants who accustomed to consume human milk can hardly adapt to the odor of infant formula in a short time and prefer the odor of human milk. In this study, the sensory-directed analysis was used to investigate the odor differences between human milk and infant formula. Aroma extraction dilution analysis (AEDA) results showed that carbonyl compounds and alcohols were the most important components with the higher dilution factors (FD) in human milk and infant formula. There were 14 key aroma active compounds (OAV ≥ 1) in human milk, like octanal, linalool, benzaldehyde, and furfural, while 11 in infant formula, like hexanal, 1-octen-3-one, (E)-2-octenal, and octanal. The aroma recombination and omission experiment further revealed that compounds such as (E)-2-decenal, linalool, 2-furanmethanol, 2-pentylfuran, (E,E)-2,4-heptadienal, nonanal, (E)-2-nonenal, and 1-octen-3-one were the major reason for the odor difference between human milk and infant formula.
Collapse
Affiliation(s)
- Hao Zhang
- Beijing Research Center for Food Additive Engineering Technology, Laboratory of Molecular Sensory Science, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yu Zhang
- Department of Pediatrics, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100005, China
| | - Lijin Wang
- Beijing Research Center for Food Additive Engineering Technology, Laboratory of Molecular Sensory Science, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Huanlu Song
- Beijing Research Center for Food Additive Engineering Technology, Laboratory of Molecular Sensory Science, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Zhenghong Li
- Department of Pediatrics, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
7
|
Khakdan F, Govahi M, Mohebi Z, Ranjbar M. Water deficit stress responses of monoterpenes and sesquiterpenes in different Iranian cultivars of basil. PHYSIOLOGIA PLANTARUM 2021; 173:896-910. [PMID: 34161632 DOI: 10.1111/ppl.13485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 04/28/2021] [Indexed: 05/24/2023]
Abstract
Ocimum basilicum, a popular aromatic plant, contains aromatic terpenes of terpenoids with in vivo and in vitro verified cytotoxicity. Considering the characteristics and potential of its utilization, it would be attractive to reveal its regulation and biosynthesis, originally at the molecular level under water deficit stress. For this aim, for the first time, the gene encoding the enzyme involved in the end step of the MEP biosynthetic pathways (HDR) was cloned, and the accumulation ratio of linalool, germacrene D and γ-cadinene compounds as well as the expression trait of four critical genes (i.e., HDR, LinS, GerS, and GadS) was assessed under water deficit stress in three Iranian cultivars of basil. The highest value of linalool and γ-cadinene were detected for Cultivar 1 (Cult. 1) under mild stress (W1; 52.6 and 21.1%), while insignificant amounts were obtained for Cultivar 3 (Cult. 3). The germacrene D level of Cultivar 2 (Cult. 2) increased under severe and moderate water stresses as compared with mild water deficit stress. Apart from some expectation, all the studied genes demonstrated divergent transcription ratios under water deficit stress. Principal component analyses (PCA) showed that the relative water content (RWC) and HDR gene expression correlated significantly with essential oil components and gene expression in Cult. 1 and 2, which could represent an elevated demand for corresponding metabolites in the plant tissues. The present work elaborates on the regulation of the mentioned genes, and the results indicate that the production of terpenoids might be a drought stress-dependent and cultivar-dependent procedure.
Collapse
Affiliation(s)
| | - Mostafa Govahi
- Department of Nano Biotechnology, College of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Zahra Mohebi
- Department of Natural Resources, Faculty of Agricultural Sciences & Natural Resources, Razi University, Kermanshah, Iran
| | - Mojtaba Ranjbar
- Department of Microbial Biotechnology, College of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
8
|
Virgiliou C, Zisi C, Kontogiannopoulos KN, Nakas A, Iakovakis A, Varsamis V, Gika HG, Assimopoulou AN. Headspace gas chromatography-mass spectrometry in the analysis of lavender's essential oil: Optimization by response surface methodology. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122852. [PMID: 34274641 DOI: 10.1016/j.jchromb.2021.122852] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022]
Abstract
A static headspace gas chromatography - mass spectrometry (HS-GC/MS) method was developed and optimized with the aim to be applied in the analysis of lavender essential oil. To obtain a comprehensive profile of the essential oil, the optimum HS-GC/MS method parameters were selected based on a Design of Experiments (DοE) process. Plackett-Burman experimental design was applied by utilizing seven parameters of the HS injection system. Incubation equilibration temperature and time, agitator's vortex speed, post injection dwell time, inlet temperature, split ratio and injection flow rate were screened to select the optimum conditions on the basis of the number and the intensity of the identified compounds. Other parameters, such as sample volume and dilution solvent ratio, were also examined to achieve a comprehensive profile in a chromatographic run of 55 min. With the obtained optimum method, more than 40 volatile compounds were identified in lavender's essential oils from different geographical regions in Greece. The method can be utilized for the quality assessment of lavender's essential oil and provide information on its characteristic aroma and discrimination among species based on the acquired GC-MS profiles.
Collapse
Affiliation(s)
- Christina Virgiliou
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Center for Bioanalysis & Omics (BIOMIC_AUTH), CIRI Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | - Chrysostomi Zisi
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos N Kontogiannopoulos
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Natural Products Research Centre of Excellence (NatPro-AUTH), Center for Interdisciplinary Research and Innovation of Aristotle University of Thessaloniki (CIRI-AUTH), 57001 Thessaloniki, Greece
| | - Alexandros Nakas
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Natural Products Research Centre of Excellence (NatPro-AUTH), Center for Interdisciplinary Research and Innovation of Aristotle University of Thessaloniki (CIRI-AUTH), 57001 Thessaloniki, Greece
| | - Achilleas Iakovakis
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Center for Bioanalysis & Omics (BIOMIC_AUTH), CIRI Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | | | - Helen G Gika
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Center for Bioanalysis & Omics (BIOMIC_AUTH), CIRI Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece.
| | - Andreana N Assimopoulou
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Natural Products Research Centre of Excellence (NatPro-AUTH), Center for Interdisciplinary Research and Innovation of Aristotle University of Thessaloniki (CIRI-AUTH), 57001 Thessaloniki, Greece.
| |
Collapse
|
9
|
Quick and efficient approach to develop genomic resources in orphan species: Application in Lavandula angustifolia. PLoS One 2020; 15:e0243853. [PMID: 33306734 PMCID: PMC7732122 DOI: 10.1371/journal.pone.0243853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/27/2020] [Indexed: 12/24/2022] Open
Abstract
Next-Generation Sequencing (NGS) technologies, by reducing the cost and increasing the throughput of sequencing, have opened doors to generate genomic data in a range of previously poorly studied species. In this study, we propose a method for the rapid development of a large-scale molecular resources for orphan species. We studied as an example the true lavender (Lavandula angustifolia Mill.), a perennial sub-shrub plant native from the Mediterranean region and whose essential oil have numerous applications in cosmetics, pharmaceuticals, and alternative medicines. The heterozygous clone “Maillette” was used as a reference for DNA and RNA sequencing. We first built a reference Unigene, compound of coding sequences, thanks to de novo RNA-seq assembly. Then, we reconstructed the complete genes sequences (with introns and exons) using an Unigene-guided DNA-seq assembly approach. This aimed to maximize the possibilities of finding polymorphism between genetically close individuals despite the lack of a reference genome. Finally, we used these resources for SNP mining within a collection of 16 commercial lavender clones and tested the SNP within the scope of a genetic distance analysis. We obtained a cleaned reference of 8, 030 functionally in silico annotated genes. We found 359K polymorphic sites and observed a high SNP frequency (mean of 1 SNP per 90 bp) and a high level of heterozygosity (more than 60% of heterozygous SNP per genotype). On overall, we found similar genetic distances between pairs of clones, which is probably related to the out-crossing nature of the species and the restricted area of cultivation. The proposed method is transferable to other orphan species, requires little bioinformatics resources and can be realized within a year. This is also the first reported large-scale SNP development on Lavandula angustifolia. All the genomics resources developed herein are publicly available and provide a rich pool of molecular resources to explore and exploit lavender genetic diversity in breeding programs.
Collapse
|
10
|
Zaïri A, Nouir S, Khalifa MA, Ouni B, Haddad H, Khelifa A, Trabelsi M. Phytochemical Analysis and Assessment of Biological Properties of Essential Oils Obtained from Thyme and Rosmarinus Species. Curr Pharm Biotechnol 2020; 21:414-424. [PMID: 31738133 DOI: 10.2174/1389201020666191019124630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The plant species Thymus algeriensis (TA); Thymus capitatus (TC) and Rosmarinus officinalis (RO), are widely used in traditional medicine in Tunisia. The bioactivities of their essential oils have also been reported previously. The main objective of this work was to assess the phytochemical composition, the antioxidant activity, cytotoxic potential and the antibacterial, antifungal, of the essential oil (EO) of these plants. METHODS Gas Chromatography-Mass Spectrometry (GC-MS) was used to identify and quantify the constituents of the tested EO. Chemical tests, and spectrophotometric methods were used for antioxidant activities and for the screening and quantification of phytochemicals. The cytotoxic potential of the EO was checked using HCT 116 cultures. The extracts were evaluated for their antibacterial potential by the microdilution method. Antifungal activities were tested using the Poisoned food technique against Aspergillus niger and Aspergillus flavus. RESULTS The EO of tested plants presented several components, mainly monoterpenes and sesquiterpenes. The results revealed that T. capitatus EO is not toxic compared to the other tested samples. Phenolic compounds were detected and this EO showed excellent antioxidant activity presenting dosedependent relationship. Regarding antimicrobial activity, T. capitatus EO, also had the highest inhibition against all tested bacteria and fungi. CONCLUSION This study showed the importance of the bioactivities (antioxidant, antimicrobial, and safety potential) of EOs of the plant species TC, RO, and TA used in traditional medicine.
Collapse
Affiliation(s)
- Amira Zaïri
- Department of Biochemistry, Faculty of Medicine Sousse, University of Sousse Tunisia, 4002 Sousse, Tunisia.,Laboratory BIOLIVAL, High Institute of Biotechnology, University of Monastir, 5000 Monastir, Tunisia
| | - Sahar Nouir
- Department of Biochemistry, Faculty of Medicine Sousse, University of Sousse Tunisia, 4002 Sousse, Tunisia
| | - Mohamed A Khalifa
- Orthopedics and Trauma Surgery Department, Sahloul Hospital, Sousse, Tunisia
| | - Bouraoui Ouni
- Clinical Pharmacology Department, Faculty of Medicine Sousse, University of Sousse Tunisia 4002 Sousse, Tunisia
| | - Houda Haddad
- Department of Biochemistry, Faculty of Medicine Sousse, University of Sousse Tunisia, 4002 Sousse, Tunisia.,Laboratory BIOLIVAL, High Institute of Biotechnology, University of Monastir, 5000 Monastir, Tunisia
| | - Améni Khelifa
- Department of Biochemistry, Faculty of Medicine Sousse, University of Sousse Tunisia, 4002 Sousse, Tunisia.,Laboratory BIOLIVAL, High Institute of Biotechnology, University of Monastir, 5000 Monastir, Tunisia
| | - Mounir Trabelsi
- Laboratory of Cytogenetic, Molecular Biology and Biology of Reproduction, University of Tunis El-Manar, El-Manar, Tunisia
| |
Collapse
|
11
|
Transcriptome profiling of spike provides expression features of genes related to terpene biosynthesis in lavender. Sci Rep 2020; 10:6933. [PMID: 32332830 PMCID: PMC7181790 DOI: 10.1038/s41598-020-63950-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 04/07/2020] [Indexed: 11/25/2022] Open
Abstract
Lavender (Lavandula angustifolia) is an important economic plant because of the value of its essential oil (EO). The Yili Valley in Xinjiang has become the largest lavender planting base in China. However, there is a lack of research on the gene expression regulation of EO biosynthesis and metabolism in local varieties. Here, de novo transcriptome analysis of inflorescence of three development stages from initial flower bud to flowering stage 50% from two lavender cultivars with contrasting EO production revealed the dynamics of 100,177 differentially expressed transcripts (DETs) in various stages of spike development within and across the cultivars. The lavender transcriptome contained 77 DETs with annotations related to terpenoid biosynthesis. The expression profiles of the 27 genes involved in the methylerythritol phosphate (MEP) pathway, 22 genes in the mevalonate (MVA) pathway, 28 genes related to monoterpene and sesquiterpene biosynthesis during inflorescence development were comprehensively characterized, and possible links between the expression changes of genes and contents of EO constituents were explored. The upregulated genes were mainly concentrated in the MEP pathway, while most genes in the MVA pathway were downregulated during flower development, and cultivars with a higher EO content presented higher expression of genes in the MEP pathway, indicating that EOs were chiefly produced through the MEP pathway. Additionally, MYB transcription factors constituted the largest number of transcripts in all samples, suggesting their potential roles in regulating EO biosynthesis. The sequences and transcriptional patterns of the transcripts will be helpful for understanding the molecular basis of lavender terpene biosynthesis.
Collapse
|
12
|
Ding W, Ouyang Q, Li Y, Shi T, Li L, Yang X, Ji K, Wang L, Yue Y. Genome-wide investigation of WRKY transcription factors in sweet osmanthus and their potential regulation of aroma synthesis. TREE PHYSIOLOGY 2020; 40:557-572. [PMID: 31860707 DOI: 10.1093/treephys/tpz129] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/28/2019] [Accepted: 09/17/2019] [Indexed: 05/20/2023]
Abstract
WRKY transcription factors, one of the largest transcription factor families, play important roles in regulating the synthesis of secondary metabolites. In sweet osmanthus (Osmanthus fragrans), the monoterpenes have been demonstrated as the most important volatile compounds, and the W-box, which is the cognate binding site of WRKY transcription factors, could be identified in most of the terpene-synthesis-related genes' promoters. However, the role of the WRKY family in terpene synthesis in sweet osmanthus has rarely been examined. In this study, 154 WRKY genes with conserved WRKY domain were identified and classified into three groups. The group II was further divided into five subgroups, and almost all members of IId contained a plant zinc cluster domain. Eight OfWRKYs (OfWRKY7/19/36/38/42/84/95/139) were screened from 20 OfWRKYs for their flower-specific expression patterns in different tissues. Simultaneously, the expression patterns of OfWRKYs and emission patterns of volatile compounds during the flowering process were determined and gas chromatography-mass spectrometry results showed that monoterpenes, such as linalool and ocimene, accounted for the highest proportion, contributing to the floral scent of sweet osmanthus in two cultivars. In addition, correlation analysis revealed the expression patterns of OfWRKYs (OfWRKY7/19/36/139) were each correlated with distinct monoterpenes (linalool, linalool derivatives, ocimene and ocimene derivatives). Subcellular localization analysis showed that p35S::GFP-OfWRKY7/38/95/139 were localized in the nucleus and OfWRKY139 had very strong transactivation activity. Collectively, the results indicated potential roles of OfWRKY139 and OfWRKYs with plant zinc cluster domain in regulating synthesis of aromatic compounds in sweet osmanthus, laying the foundation for use of OfWRKYs to improve the aroma of ornamental plants.
Collapse
Affiliation(s)
- Wenjie Ding
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, PR China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China
| | - Qixia Ouyang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, PR China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yuli Li
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, PR China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China
| | - Tingting Shi
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, PR China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China
| | - Ling Li
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, PR China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xiulian Yang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, PR China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China
| | - Kongshu Ji
- Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, 210037, PR China
| | - Lianggui Wang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, PR China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yuanzheng Yue
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, PR China
| |
Collapse
|
13
|
Adal AM, Mahmoud SS. Short-chain isoprenyl diphosphate synthases of lavender (Lavandula). PLANT MOLECULAR BIOLOGY 2020; 102:517-535. [PMID: 31927660 DOI: 10.1007/s11103-020-00962-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/03/2020] [Indexed: 05/07/2023]
Abstract
KEY MESSAGE We reported the functional characterization of cDNAs encoding short-chain isoprenyl diphosphate synthases that control the partitioning of precursors for lavender terpenoids. Lavender essential oil is composed of regular and irregular monoterpenes, which are derived from linear precursors geranyl diphosphate (GPP) and lavandulyl diphosphate (LPP), respectively. Although this plant strongly expresses genes responsible for the biosynthesis of both monoterpene classes, it is unclear why regular monoterpenes dominate the oil. Here, we cloned and characterized Lavandula x intermedia cDNAs encoding geranyl diphosphate synthase (LiGPPS), geranylgeranyl diphosphate synthase (LiGGPPS) and farnesyl diphosphate synthase (LiFPPS). LiGPPS was heteromeric protein, consisting of a large subunit (LiGPPS.LSU) and a small subunit for which two different cDNAs (LiGPPS.SSU1 and LiGPPS.SSU2) were detected. Neither recombinant LiGPPS subunits was active by itself. However, when co-expressed in E. coli LiGPPS.LSU and LiGPPS.SSU1 formed an active heteromeric GPPS, while LiGPPS.LSU and LiGPPS.SSU2 did not form an active protein. Recombinant LiGGPPS, LiFPPS and LPP synthase (LPPS) proteins were active individually. Further, LiGPPS.SSU1 modified the activity of LiGGPPS (to produce GPP) in bacterial cells co-expressing both proteins. Given this, and previous evidence indicating that GPPS.SSU can modify the activity of GGPPS to GPPS in vitro and in plants, we hypothesized that LiGPPS.SSU1 modifies the activity of L. x intermedia LPP synthase (LiLPPS), thus accounting for the relatively low abundance of LPP-derived irregular monoterpenes in this plant. However, LiGPPS.SSU1 did not affect the activity of LiLPPS. These results, coupled to the observation that LiLPPS transcripts are more abundant than those of GPPS subunits in L. x intermedia flowers, suggest that regulatory mechanisms other than transcriptional control of LPPS regulate precursor partitioning in lavender flowers.
Collapse
Affiliation(s)
- Ayelign M Adal
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Soheil S Mahmoud
- Department of Biology, University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
14
|
Marques NT, Filipe A, Pinto P, Barroso J, Trindade H, Power DM, Figueiredo AC. Trichome Density in Relation to Volatiles Emission and 1,8-Cineole Synthase Gene Expression in Thymus albicans Vegetative and Reproductive Organs. Chem Biodivers 2020; 17:e1900669. [PMID: 31984627 DOI: 10.1002/cbdv.201900669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/23/2020] [Indexed: 11/09/2022]
Abstract
1,8-Cineole is the main volatile produced by Thymus albicans Hoffmanns. & Link 1,8-cineole chemotype. To understand the contribution of distinct plant organs to the high 1,8-cineole production, trichome morphology and density, as well as emitted volatiles and transcriptional expression of the 1,8-cineole synthase (CIN) gene were determined separately for T. albicans leaves, bracts, calyx, corolla and inflorescences. Scanning electron microscopy (SEM) and stereoscope microscopy observations showed the highest peltate trichome density in leaves and bracts, significantly distinct from calyx and corolla. T. albicans volatiles were collected by solid phase micro extraction (SPME) and analyzed by gas chromatography-mass spectrometry (GC/MS) and by GC for component identification and quantification, respectively. Of the 23 components identified, 1,8-cineole was the dominant volatile (57-93 %) in all T. albicans plant organs. The relative amounts of emitted volatiles clearly separated vegetative from reproductive organs. Gene expression of CIN was assigned to all organs analyzed and was consistent with the relatively high emission of 1,8-cineole in leaves and bracts. Further studies will be required to analyze monoterpenoid biosynthesis by each type of glandular trichome.
Collapse
Affiliation(s)
- Natália T Marques
- Centro de Eletrónica, Optoeletrónica e Telecomunicações, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Alexandra Filipe
- Núcleo de Biologia Comparativa e Integrativa, Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Patrícia Pinto
- Núcleo de Biologia Comparativa e Integrativa, Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - José Barroso
- Centro de Estudos do Ambiente e do Mar (CESAM Lisboa), Faculdade de Ciências da Universidade de Lisboa, Centro de Biotecnologia Vegetal (CBV), DBV, C2, Piso 1, Campo Grande, 1749-016, Lisboa, Portugal
| | - Helena Trindade
- Centro de Estudos do Ambiente e do Mar (CESAM Lisboa), Faculdade de Ciências da Universidade de Lisboa, Centro de Biotecnologia Vegetal (CBV), DBV, C2, Piso 1, Campo Grande, 1749-016, Lisboa, Portugal
| | - Deborah M Power
- Núcleo de Biologia Comparativa e Integrativa, Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Ana Cristina Figueiredo
- Centro de Estudos do Ambiente e do Mar (CESAM Lisboa), Faculdade de Ciências da Universidade de Lisboa, Centro de Biotecnologia Vegetal (CBV), DBV, C2, Piso 1, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
15
|
Tohidi B, Rahimmalek M, Arzani A, Trindade H. Sequencing and variation of terpene synthase gene (TPS2) as the major gene in biosynthesis of thymol in different Thymus species. PHYTOCHEMISTRY 2020; 169:112126. [PMID: 31644985 DOI: 10.1016/j.phytochem.2019.112126] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Thyme (Thymus spp.) is a valuable genus of Lamiaceae family with different pharmaceutical and food properties. Thymol has also been considered as the major essential oil compound in most of the studied Thymus species. In this research, the gene encoding γ-terpinene synthase (Ttps2) was sequenced in T. vulgaris and in eight Iranian thymes including T. carmanicus, T. daenensis, T. fedtschenkoi, T. kotschyanus, T. migricus, T. pubescens, T. serpyllum, and T. trautvetteri. Genetic relationships based on terpene synthase genes were also determined among the studied species. Rapid Amplification of cDNA Ends (RACE) PCR was done to complete the sequence of all species. The cDNA of the studied species possessed an open reading frame ranging from 1788 to 1794 bp that encode for a protein of 596-598 amino acids, presenting all the conserved motifs characteristics of monoterpene synthases. The taxonomic status of Thymus species was determined based on eight reported sections. The species were classified in three major groups. The first and second group comprised species of Micantes and Mastichina sections. The third cluster included the species belonging to Serpyllum and Pseudothymbra sections. Overall, phylogenetic analysis according to whole sequence of Ttps2 gene can help providing insights in respect to its evolutionary process. Finally, clustering based on the amount of main essential oils components (thymol and carvacrol) was compared with that based on Ttps2 gene classification in the studied Thymus species, showing that clustering is not always in accordance.
Collapse
Affiliation(s)
- Behnaz Tohidi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156 83111, Iran
| | - Mehdi Rahimmalek
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156 83111, Iran.
| | - Ahmad Arzani
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156 83111, Iran
| | - Helena Trindade
- Centro de Estudos Do Ambiente e Do Mar Lisboa, Faculdade de Ciências, Universidade de Lisboa, CBV, DBV, 1749-016, Lisboa, Portugal
| |
Collapse
|
16
|
Chemical composition, Fatty acids profile and Biological properties of Thymus capitatus (L.) Hoffmanns, essential Oil. Sci Rep 2019; 9:20134. [PMID: 31882812 PMCID: PMC6934870 DOI: 10.1038/s41598-019-56580-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 11/30/2019] [Indexed: 12/19/2022] Open
Abstract
T. capitatus is widely used in traditional medicine in Tunisia. The main goal of this study was to evaluate the phytochemical composition, the fatty acids profile, the antioxidant, antibacterial, and antifungal activities as well as the cytotoxic potential of the essential oil (EO) of this plant. The identification and the quantification of the different constituents of the tested EO was determined by gas chromatography–mass spectrometry (GC-MS). Antioxidant activities were evaluated by spectrophotometric methods and chemical tests. HCT 116 cells were used to evaluate the cytotoxic effect of the EO. The microdilution method was conducted to evaluate the antibacterial activity. Poisoned food method was used to test the antifungal activities against fungi species such Aspergillus niger and Aspergillus flavus. The EO presented several components, mainly monoterpenes. Results revealed that T. capitatus EO is not cytotoxic and showed excellent antioxidant activity with a dose dependent manner. Regarding antimicrobial activity, T. capitatus EO was efficient against all tested bacteria and fungi.
Collapse
|
17
|
Li H, Li J, Dong Y, Hao H, Ling Z, Bai H, Wang H, Cui H, Shi L. Time-series transcriptome provides insights into the gene regulation network involved in the volatile terpenoid metabolism during the flower development of lavender. BMC PLANT BIOLOGY 2019; 19:313. [PMID: 31307374 PMCID: PMC6632208 DOI: 10.1186/s12870-019-1908-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/27/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Essential oils (EOs) of Lavandula angustifolia, mainly consist of monoterpenoids and sesquiterpenoids, are of great commercial value. The multi-flower spiciform thyrse of lavender not only determines the output of EOs but also reflects an environmental adaption strategy. With the flower development and blossom in turn, the fluctuation of the volatile terpenoids displayed a regular change at each axis. However, the molecular mechanism underlying the regulation of volatile terpenoids during the process of flowering is poorly understood in lavender. Here, we combine metabolite and RNA-Seq analyses of flowers of five developmental stages at first- and second-axis (FFDSFSA) and initial flower bud (FB0) to discover the active terpenoid biosynthesis as well as flowering-related genes. RESULTS A total of 56 mono- and sesquiterpenoids were identified in the EOs of L. angustifolia 'JX-2'. FB0' EO consists of 55 compounds and the two highest compounds, β-trans-ocimene (20.57%) and (+)-R-limonene (17.00%), can get rid of 74.71 and 78.41% aphids in Y-tube olfactometer experiments, respectively. With sequential and successive blossoms, temporally regulated volatiles were linked to pollinator attraction in field and olfaction bioassays. In three characteristic compounds of FFDSFSA' EOs, linalyl acetate (72.73%) and lavandulyl acetate (72.09%) attracted more bees than linalool (45.35%). Many transcripts related to flowering time and volatile terpenoid metabolism expressed differently during the flower development. Similar metabolic and transcriptomic profiles were observed when florets from the two axes were maintained at the same maturity grade. Besides both compounds and differentially expressed genes were rich in FB0, most volatile compounds were significantly correlated with FB0-specific gene module. Most key regulators related to flowering and terpenoid metabolism were interconnected in the subnetwork of FB0-specific module, suggesting the cross-talk between the two biological processes to some degree. CONCLUSIONS Characteristic compounds and gene expression profile of FB0 exhibit ecological value in pest control. The precise control of each-axis flowering and regular emissions at transcriptional and metabolic level are important to pollinators attraction for lavender. Our study sheds new light on lavender maximizes its fitness from "gene-volatile terpenoid-insect" three layers.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093 China
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Jingrui Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yanmei Dong
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Haiping Hao
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093 China
| | - Zhengyi Ling
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Hongtong Bai
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093 China
| | - Huafang Wang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Hongxia Cui
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093 China
| | - Lei Shi
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093 China
| |
Collapse
|
18
|
Malli RPN, Adal AM, Sarker LS, Liang P, Mahmoud SS. De novo sequencing of the Lavandula angustifolia genome reveals highly duplicated and optimized features for essential oil production. PLANTA 2019; 249:251-256. [PMID: 30269192 DOI: 10.1007/s00425-018-3012-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/15/2018] [Indexed: 05/11/2023]
Abstract
The first draft genome for a member of the genus Lavandula is described. This 870 Mbp genome assembly is composed of over 688 Mbp of non-gap sequences comprising 62,141 protein-coding genes. Lavenders (Lavandula: Lamiaceae) are economically important plants widely grown around the world for their essential oils (EOs), which contribute to the cosmetic, personal hygiene, and pharmaceutical industries. To better understand the genetic mechanisms involved in EO production, identify genes involved in important biological processes, and find genetic markers for plant breeding, we generated the first de novo draft genome assembly for L. angustifolia (Maillette). This high-quality draft reveals a moderately repeated (> 48% repeated elements) 870 Mbp genome, composed of over 688 Mbp of non-gap sequences in 84,291 scaffolds with an N50 value of 96,735 bp. The genome contains 62,141 protein-coding genes and 2003 RNA-coding genes, with a large proportion of genes showing duplications, possibly reflecting past genome polyploidization. The draft genome contains full-length coding sequences for all genes involved in both cytosolic and plastidial pathways of isoprenoid metabolism, and all terpene synthase genes previously described from lavenders. Of particular interest is the observation that the genome contains a high copy number (14 and 7, respectively) of DXS (1-deoxyxylulose-5-phosphate synthase) and HDR (4-hydroxy-3-methylbut-2-enyl diphosphate reductase) genes, encoding the two known regulatory steps in the plastidial isoprenoid biosynthetic pathway. The latter generates precursors for the production of monoterpenes, the most abundant essential oil constituents in lavender. Furthermore, the draft genome contains a variety of monoterpene synthase genes, underlining the production of several monoterpene essential oil constituents in lavender. Taken together, these findings indicate that the genome of L. angustifolia is highly duplicated and optimized for essential oil production.
Collapse
Affiliation(s)
- Radesh P N Malli
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Ayelign M Adal
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Lukman S Sarker
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada.
| | - Soheil S Mahmoud
- Department of Biology, University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
19
|
Demissie ZA, Tarnowycz M, Adal AM, Sarker LS, Mahmoud SS. A lavender ABC transporter confers resistance to monoterpene toxicity in yeast. PLANTA 2019; 249:139-144. [PMID: 30535718 DOI: 10.1007/s00425-018-3064-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Functional expression of a multidrug resistance-type ABC transporter from Lavandulaangustifolia improved yeast resistance to geraniol, a monoterpene constituent of lavender essential oil. Plant ATP-binding cassette (ABC) transporters are a large family of membrane proteins involved in active and selective transport of structurally diverse compounds. In this study, we functionally evaluated LaABCB1, a multidrug resistance (MDR)-type ABC transporter strongly expressed in the secretory cells of lavender glandular trichomes, where monoterpene essential oil constituents are synthesized and secreted. We used LaABCB1 to complement a yeast knockout mutant in which 16 ABC transporters were deleted. Expression of LaABCB1 enhanced tolerance of yeast mutants to geraniol, a key constituent of essential oils in lavenders and numerous other plants. Our findings suggest a role for the MDR-type ABC transporters in the toxicity tolerance of at least certain essential oil constituents in lavender oil glands.
Collapse
Affiliation(s)
- Zerihun A Demissie
- Department of Biology, University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
- National Research Council of Canada, Ottawa, ON, K1A 0R6, Canada.
| | - Mike Tarnowycz
- Department of Biology, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Ayelign M Adal
- Department of Biology, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Lukman S Sarker
- Department of Biology, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Soheil S Mahmoud
- Department of Biology, University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
20
|
Adal AM, Sarker LS, Malli RPN, Liang P, Mahmoud SS. RNA-Seq in the discovery of a sparsely expressed scent-determining monoterpene synthase in lavender (Lavandula). PLANTA 2019; 249:271-290. [PMID: 29948128 DOI: 10.1007/s00425-018-2935-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/01/2018] [Indexed: 05/07/2023]
Abstract
Using RNA-Seq, we cloned and characterized a unique monoterpene synthase responsible for the formation of a scent-determining S-linalool constituent of lavender oils from Lavandula × intermedia. Several species of Lavandula produce essential oils (EOs) consisting mainly of monoterpenes including linalool, one of the most abundant and scent-determining oil constituents. Although R-linalool dominates the EOs of lavenders, varying amounts (depending on the species) of the S-linalool enantiomer can also be found in these plants. Despite its relatively low abundance, S-linalool contributes a sweet, pleasant scent and is an important constituent of lavender EOs. While several terpene synthase genes including R-linalool synthase have been cloned from lavenders many important terpene synthases including S-linalool synthase have not been described from these plants. In this study, we employed RNA-Seq and other complementary sequencing data to clone and functionally characterize the sparsely expressed S-linalool synthase cDNA (LiS-LINS) from Lavandula × intermedia. Recombinant LiS-LINS catalyzed the conversion of the universal monoterpene precursor geranyl diphosphate to S-linalool as the sole product. Intriguingly, LiS-LINS exhibited very low (~ 30%) sequence similarity to other Lavandula terpene synthases, including R-linalool synthase. However, the predicted 3D structure of this protein, including the composition and arrangement of amino acids at the active site, is highly homologous to known terpene synthase proteins. LiS-LINS transcripts were detected in flowers, but were much less abundant than those corresponding to LiR-LINS, paralleling enantiomeric composition of linalool in L. × intermedia oils. These data indicate that production of S-linalool is at least partially controlled at the level of transcription from LiS-LINS. The cloned LiS-LINS cDNA may be used to enhance oil composition in lavenders and other plants through metabolic engineering.
Collapse
Affiliation(s)
- Ayelign M Adal
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Lukman S Sarker
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Radesh P N Malli
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Soheil S Mahmoud
- Department of Biology, University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
21
|
Ali M, Hussain RM, Rehman NU, She G, Li P, Wan X, Guo L, Zhao J. De novo transcriptome sequencing and metabolite profiling analyses reveal the complex metabolic genes involved in the terpenoid biosynthesis in Blue Anise Sage (Salvia guaranitica L.). DNA Res 2018; 25:597-617. [PMID: 30188980 PMCID: PMC6289780 DOI: 10.1093/dnares/dsy028] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/25/2018] [Indexed: 02/04/2023] Open
Abstract
Many terpenoid compounds have been extracted from different tissues of Salvia guaranitica. However, the molecular genetic basis of terpene biosynthesis pathways is virtually unknown. In this study, approximately 4 Gb of raw data were generated from the transcriptome of S. guaranitica leaves using Illumina HiSeq 2000 sequencing. After filtering and removing the adapter sequences from the raw data, the number of reads reached 32 million, comprising 186 million of high-quality nucleotide bases. A total of 61,400 unigenes were assembled de novo and annotated for establishing a valid database for studying terpenoid biosynthesis. We identified 267 unigenes that are putatively involved in terpenoid metabolism (including, 198 mevalonate and methyl-erythritol phosphate (MEP) pathways, terpenoid backbone biosynthesis genes and 69 terpene synthases genes). Moreover, three terpene synthase genes were studied for their functions in terpenoid biosynthesis by using transgenic Arabidopsis; most transgenic Arabidopsis plants expressing these terpene synthetic genes produced increased amounts of terpenoids compared with wild-type control. The combined data analyses from the transcriptome and metabolome provide new insights into our understanding of the complex metabolic genes in terpenoid-rich blue anise sage, and our study paves the way for the future metabolic engineering of the biosynthesis of useful terpene compounds in S. guaranitica.
Collapse
Affiliation(s)
- Mohammed Ali
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Egyptian Deserts Gene Bank, North Sinai Research Station, Department of Plant Genetic Resources, Desert Research Center, Egypt
| | - Reem M Hussain
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Naveed Ur Rehman
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guangbiao She
- State Key Laboratories of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Penghui Li
- State Key Laboratories of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiaochun Wan
- State Key Laboratories of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jian Zhao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- State Key Laboratories of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
22
|
Andrys D, Kulpa D. In Vitro propagation affects the composition of narrow-leaved lavender essential oils. ACTA CHROMATOGR 2018. [DOI: 10.1556/1326.2017.00317] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Dominika Andrys
- West Pomeranian University of Technology, Szczecin, Faculty of Environmental Management and Agriculture, Department of Plant Genetics, Breeding and Biotechnology, Szczecin, Poland
| | - Danuta Kulpa
- West Pomeranian University of Technology, Szczecin, Faculty of Environmental Management and Agriculture, Department of Plant Genetics, Breeding and Biotechnology, Szczecin, Poland
| |
Collapse
|
23
|
Blerot B, Martinelli L, Prunier C, Saint-Marcoux D, Legrand S, Bony A, Sarrabère L, Gros F, Boyer N, Caissard JC, Baudino S, Jullien F. Functional Analysis of Four Terpene Synthases in Rose-Scented Pelargonium Cultivars ( Pelargonium × hybridum) and Evolution of Scent in the Pelargonium Genus. FRONTIERS IN PLANT SCIENCE 2018; 9:1435. [PMID: 30483274 PMCID: PMC6240891 DOI: 10.3389/fpls.2018.01435] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/10/2018] [Indexed: 05/26/2023]
Abstract
Pelargonium genus contains about 280 species among which at least 30 species are odorant. Aromas produced by scented species are remarkably diverse such as rose, mint, lemon, nutmeg, ginger and many others scents. Amongst odorant species, rose-scented pelargoniums, also named pelargonium rosat, are the most famous hybrids for their production of essential oil (EO), widely used by perfume and cosmetic industries. Although EO composition has been extensively studied, the underlying biosynthetic pathways and their regulation, most notably of terpenes, are largely unknown. To gain a better understanding of the terpene metabolic pathways in pelargonium rosat, we generated a transcriptome dataset of pelargonium leaf and used a candidate gene approach to functionally characterise four terpene synthases (TPSs), including a geraniol synthase, a key enzyme responsible for the biosynthesis of the main rose-scented terpenes. We also report for the first time the characterisation of a novel sesquiterpene synthase catalysing the biosynthesis of 10-epi-γ-eudesmol. We found a strong correlation between expression of the four genes encoding the respective TPSs and accumulation of the corresponding products in several pelargonium cultivars and species. Finally, using publically available RNA-Seq data and de novo transcriptome assemblies, we inferred a maximum likelihood phylogeny from 270 pelargonium TPSs, including the four newly discovered enzymes, providing clues about TPS evolution in the Pelargonium genus. Notably, we show that, by contrast to other TPSs, geraniol synthases from the TPS-g subfamily conserved their molecular function throughout evolution.
Collapse
Affiliation(s)
- Bernard Blerot
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
- IFF-LMR Naturals, Grasse, France
| | - Laure Martinelli
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Cécile Prunier
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Denis Saint-Marcoux
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | | | - Aurélie Bony
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Loïc Sarrabère
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Florence Gros
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Nicolas Boyer
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Jean-Claude Caissard
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Sylvie Baudino
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Frédéric Jullien
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| |
Collapse
|
24
|
Formighieri C, Melis A. Cyanobacterial production of plant essential oils. PLANTA 2018; 248:933-946. [PMID: 29974209 DOI: 10.1007/s00425-018-2948-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/25/2018] [Indexed: 05/12/2023]
Abstract
Synechocystis (a cyanobacterium) was employed as an alternative host for the production of plant essential oil constituents. β-Phellandrene synthase (PHLS) genes from different plants, when expressed in Synechocystis, enabled synthesis of variable monoterpene hydrocarbon blends, converting Synechocystis into a cell factory that photosynthesized and released useful products. Monoterpene synthases are secondary metabolism enzymes that catalyze the generation of essential oil constituents in terrestrial plants. Essential oils, including monoterpene hydrocarbons, are of interest for their commercial application and value. Therefore, heterologous expression of monoterpene synthases for high-capacity essential oil production in photosynthetic microorganism transformants is of current interest. In the present work, the cyanobacterium Synechocystsis PCC 6803 was employed as an alternative host for the production of plant essential oil constituents. As a case study, β-phellandrene synthase (PHLS) genes from different plants were heterologously expressed in Synechocystis. Genomic integration of individual PHLS-encoding sequences endowed Synechocystis with constitutive monoterpene hydrocarbons generation, occurring concomitant with photosynthesis and cell growth. Specifically, the β-phellandrene synthase from Lavandula angustifolia (lavender), Solanum lycopersicum (tomato), Pinus banksiana (pine), Picea sitchensis (Sitka spruce) and Abies grandis (grand fir) were active in Synechocystis transformants but, instead of a single product, they generated a blend of terpene hydrocarbons comprising β-phellandrene, α-phellandrene, β-myrcene, β-pinene, and δ-carene with variable percentage ratios ranging from < 10 to > 90% in different product combinations and proportions. Our results suggested that PHLS enzyme conformation and function depends on the cytosolic environment in which they reside, with the biochemical properties of the latter causing catalytic deviations from the products naturally observed in the corresponding gene-encoding plants, giving rise to the terpene hydrocarbon blends described in this work. These findings may have commercial application in the generation of designer essential oil blends and will further assist the development of heterologous cyanobacterial platforms for the generation of desired monoterpene hydrocarbon products.
Collapse
Affiliation(s)
- Cinzia Formighieri
- Plant and Microbial Biology, University of California, Berkeley, CA, 94720-3102, USA
| | - Anastasios Melis
- Plant and Microbial Biology, University of California, Berkeley, CA, 94720-3102, USA.
| |
Collapse
|
25
|
Wells R, Truong F, Adal AM, Sarker LS, Mahmoud SS. Lavandula Essential Oils: A Current Review of Applications in Medicinal, Food, and Cosmetic Industries of Lavender. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801301038] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The global essential oil market has been steadily increasing in size over the past few years, and is estimated to reach ca. $7.5 billion USD per annum by 2018. Lavenders ( Lavandula; Lamiaceae) contribute significantly to this market, yielding ca. 1500 tons of essential oils which are primarily used in cosmetics, personal care products, and medicines. Recent literature indicates that these oils may also have applications in food preservation and pest control, among others. The medicinal and pharmaceutical properties of lavenders are chiefly due their essential oils, in particular the major essential oil constituents linalool and linalyl acetate, although certain activities have been attributed to the phenolic compounds. In addition, there is evidence that the major and minor essential oil constituents act synergistically to provide various biological effects. A substantial amount of current research focuses on evaluating the biological activities of lavender essential oils for potential use in traditional and complementary medicine, food systems, cosmetic and fragrance formulations, and insect control products. This review examines recent progress in these areas, and highlights the current and future implications for these economically and medicinally valuable plants.
Collapse
Affiliation(s)
- Rebecca Wells
- The University of British Columbia Okanagan Campus, 3333 University Way, Kelowna, BC Canada V1V 1V7
| | - Felisha Truong
- The University of British Columbia Okanagan Campus, 3333 University Way, Kelowna, BC Canada V1V 1V7
| | - Ayelign M. Adal
- The University of British Columbia Okanagan Campus, 3333 University Way, Kelowna, BC Canada V1V 1V7
| | - Lukman S. Sarker
- The University of British Columbia Okanagan Campus, 3333 University Way, Kelowna, BC Canada V1V 1V7
| | - Soheil S. Mahmoud
- The University of British Columbia Okanagan Campus, 3333 University Way, Kelowna, BC Canada V1V 1V7
| |
Collapse
|
26
|
Chrysargyris A, Michailidi E, Tzortzakis N. Physiological and Biochemical Responses of Lavandula angustifolia to Salinity Under Mineral Foliar Application. FRONTIERS IN PLANT SCIENCE 2018; 9:489. [PMID: 29731759 PMCID: PMC5920160 DOI: 10.3389/fpls.2018.00489] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/29/2018] [Indexed: 05/10/2023]
Abstract
Saline water has been proposed as a solution to partially cover plant water demands due to scarcity of irrigation water in hot arid areas. Lavender (Lavandula angustifolia Mill.) plants were grown hydroponically under salinity (0-25-50-100 mM NaCl). The overcome of salinity stress was examined by K, Zn, and Si foliar application for the plant physiological and biochemical characteristics. The present study indicated that high (100 mM NaCl) salinity decreased plant growth, content of phenolics and antioxidant status and essential oil (EO) yield, while low-moderate salinity levels maintained the volatile oil profile in lavender. The integrated foliar application of K and Zn lighten the presumable detrimental effects of salinity in terms of fresh biomass, antioxidant capacity, and EO yield. Moderate salinity stress along with balanced concentration of K though foliar application changed the primary metabolites pathways in favor of major volatile oil constituents biosynthesis and therefore lavender plant has the potential for cultivation under prevalent semi-saline conditions. Zn and Si application, had lesser effects on the content of EO constituents, even though altered salinity induced changings. Our results have demonstrated that lavender growth/development and EO production may be affected by saline levels, whereas mechanisms for alteration of induced stress are of great significance considering the importance of the oil composition, as well.
Collapse
|
27
|
Gonçalves JCR, de Meneses DA, de Vasconcelos AP, Piauilino CA, Almeida FRDC, Napoli EM, Ruberto G, de Araújo DAM. Essential oil composition and antinociceptive activity of Thymus capitatus. PHARMACEUTICAL BIOLOGY 2017; 55:782-786. [PMID: 28103733 PMCID: PMC6130693 DOI: 10.1080/13880209.2017.1279672] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
CONTEXT The essential oil (EO) from Thymus capitatus Hoff. et Link. (Lamiaceae) has been traditionally used for its medicinal properties, such as anti-inflammatory, analgesic, antioxidant and antimicrobial properties. OBJECTIVE Characterize the constituents from T. capitatus EO and further evaluate the antinociceptive activity by in vivo and in vitro procedures. MATERIALS AND METHODS Gas chromatography-mass spectrometry was used to identify and quantify the constituents of the T. capitatus EO. The antinociceptive activity was evaluated in vivo by the glutamate-induced nociception model in male Swiss mice (25 g), at doses of 3, 6 and 12 mg/kg, 1 h before evaluation of the licking time response (0-15 min). The mechanism of T. capitatus EO (1-500 μg/mL) on the isolated nerve excitability of Wistar rat (300 g) was assessed by the single sucrose technique. RESULTS AND DISCUSSION The EO of T. capitatus presented 33 components, mainly monoterpenes and sesquiterpenes, carvacrol (ca. 80%) was its major constituent. T. capitatus EO induced antinociception in orally treated mice (3, 6, and 12 mg/kg) reducing the licking time from control (100.3 ± 11.9 s) to 84.8 ± 12.2, 62.7.6 ± 9.9, and 41.5 ± 12.7 s, respectively (n = 8; p < 0.05). Additionally, we have demonstrated that T. capitatus EO (500 μg/mL) decreased the compound action potential amplitude (VCAP) of about 80.0 ± 4.3% from control recordings (n = 4; p < 0.05). Such activity was presumably mediated through a voltage-gated Na+ channels. CONCLUSIONS The present study demonstrated the antinociceptive activity of Thymus capitatus essential oil, which acts via peripheral nervous excitability blockade.
Collapse
Affiliation(s)
- Juan Carlos Ramos Gonçalves
- Núcleo de Pesquisas em Plantas Medicinais, Universidade Federal do Piauí, Teresina, Brazil
- Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil
- CONTACT Juan Carlos Ramos GonçalvesDepartment of Biochemistry and Pharmacology, Federal University of Piauí, 64049-550Teresina, Brazil
| | | | | | | | | | - Edoardo Marco Napoli
- Consiglio Nazionale delle Ricerche, Istituto di Chimica Biomolecolare, Catania, Italy
| | - Giuseppe Ruberto
- Consiglio Nazionale delle Ricerche, Istituto di Chimica Biomolecolare, Catania, Italy
| | | |
Collapse
|
28
|
Ali M, Li P, She G, Chen D, Wan X, Zhao J. Transcriptome and metabolite analyses reveal the complex metabolic genes involved in volatile terpenoid biosynthesis in garden sage (Salvia officinalis). Sci Rep 2017; 7:16074. [PMID: 29167468 PMCID: PMC5700130 DOI: 10.1038/s41598-017-15478-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 10/27/2017] [Indexed: 11/29/2022] Open
Abstract
A large number of terpenoid compounds have been extracted from different tissues of S. officinalis. However, the molecular genetic basis of terpene biosynthesis pathways is virtually unknown. In this study, approximately 6.6 Gb of raw data were generated from the transcriptome of S. officinalis leaves using Illumina HiSeq 2000 sequencing. After filtering and removing the adapter sequences from the raw data, the number of reads reached 21 million, comprising 98 million of high-quality nucleotide bases. 48,671 unigenes were assembled de novo and annotated for establishing a valid database for studying terpenoid biosynthesis. We identified 135 unigenes that are putatively involved in terpenoid metabolism, including 70 mevalonate and methyl-erythritol phosphate pathways, terpenoid backbone biosynthesis genes, and 65 terpene synthase genes. Moreover, five terpene synthase genes were studied for their functions in terpenoid biosynthesis by using transgenic tobacco; most transgenic tobacco plants expressing these terpene synthetic genes produced increased amounts of terpenoids compared with wild-type control. The combined data analyses from the transcriptome and metabolome provide new insights into our understanding of the complex metabolic genes in terpenoid-rich sage, and our study paves the way for the future metabolic engineering of the biosynthesis of useful terpene compounds in S. officinalis.
Collapse
Affiliation(s)
- Mohammed Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Penghui Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangbiao She
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Daofu Chen
- Wuhan Doublehelix Biology Science and Technology Co. Ltd, Wuhan, 430070, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Jian Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
29
|
Adal AM, Sarker LS, Lemke AD, Mahmoud SS. Isolation and functional characterization of a methyl jasmonate-responsive 3-carene synthase from Lavandula x intermedia. PLANT MOLECULAR BIOLOGY 2017; 93:641-657. [PMID: 28258552 DOI: 10.1007/s11103-017-0588-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
A methyl jasmonate responsive 3-carene synthase (Li3CARS) gene was isolated from Lavandula x intermedia and functionally characterized in vitro. Lavenders produce essential oils consisting mainly of monoterpenes, including the potent antimicrobial and insecticidal monoterpene 3-carene. In this study we isolated and functionally characterized a leaf-specific, methyl jasmonate (MeJA)-responsive monoterpene synthase (Li3CARS) from Lavandula x intermedia. The ORF excluding transit peptides encoded a 64.9 kDa protein that was expressed in E. coli, and purified with Ni-NTA agarose affinity chromatography. The recombinant Li3CARS converted GPP into 3-carene as the major product, with K m and k cat of 3.69 ± 1.17 µM and 2.01 s-1 respectively. Li3CARS also accepted NPP as a substrate to produce multiple products including a small amount of 3-carene. The catalytic efficiency of Li3CARS to produce 3-carene was over ten fold higher for GPP (k cat /K m = 0.56 µM-1s-1) than NPP (k cat /K m = 0.044 µM-1s-1). Production of distinct end product profiles from different substrates (GPP versus NPP) by Li3CARS indicates that monoterpene metabolism may be controlled in part through substrate availability. Li3CARS transcripts were found to be highly abundant in leaves (16-fold) as compared to flower tissues. The transcriptional activity of Li3CARS correlated with 3-carene production, and was up-regulated (1.18- to 3.8-fold) with MeJA 8-72 h post-treatment. The results suggest that Li3CARS may have a defensive role in Lavandula.
Collapse
Affiliation(s)
- Ayelign M Adal
- Department of Biology, University of British Columbia, 1177 Research Rd, Kelowna, BC. V1V 1V7, Canada
| | - Lukman S Sarker
- Department of Biology, University of British Columbia, 1177 Research Rd, Kelowna, BC. V1V 1V7, Canada
| | - Ashley D Lemke
- Department of Biology, University of British Columbia, 1177 Research Rd, Kelowna, BC. V1V 1V7, Canada
| | - Soheil S Mahmoud
- Department of Biology, University of British Columbia, 1177 Research Rd, Kelowna, BC. V1V 1V7, Canada.
| |
Collapse
|
30
|
Adal A, Demissie Z, Mahmoud S. EST-SSR Analysis and Cross-species Transferability Study in Lavandula. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.1891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
31
|
Rudolph K, Parthier C, Egerer-Sieber C, Geiger D, Muller YA, Kreis W, Müller-Uri F. Expression, crystallization and structure elucidation of γ-terpinene synthase from Thymus vulgaris. Acta Crystallogr F Struct Biol Commun 2016; 72:16-23. [PMID: 26750479 PMCID: PMC4708045 DOI: 10.1107/s2053230x15023043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/01/2015] [Indexed: 01/30/2023] Open
Abstract
The biosynthesis of γ-terpinene, a precursor of the phenolic isomers thymol and carvacrol found in the essential oil from Thymus sp., is attributed to the activitiy of γ-terpinene synthase (TPS). Purified γ-terpinene synthase from T. vulgaris (TvTPS), the Thymus species that is the most widely spread and of the greatest economical importance, is able to catalyze the enzymatic conversion of geranyl diphosphate (GPP) to γ-terpinene. The crystal structure of recombinantly expressed and purified TvTPS is reported at 1.65 Å resolution, confirming the dimeric structure of the enzyme. The putative active site of TvTPS is deduced from its pronounced structural similarity to enzymes from other species of the Lamiaceae family involved in terpenoid biosynthesis: to (+)-bornyl diphosphate synthase and 1,8-cineole synthase from Salvia sp. and to (4S)-limonene synthase from Mentha spicata.
Collapse
Affiliation(s)
- Kristin Rudolph
- Lehrstuhl für Pharmazeutische Biologie, Department für Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | - Christoph Parthier
- Arbeitsgruppe Physikalische Biotechnologie, Institut für Biochemie/Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Strasse 3, D-06120 Halle/Saale, Germany
| | - Claudia Egerer-Sieber
- Lehrstuhl für Biotechnik, Department für Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 91, D-91052 Erlangen, Germany
| | - Daniel Geiger
- Lehrstuhl für Pharmazeutische Biologie, Department für Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | - Yves A. Muller
- Lehrstuhl für Biotechnik, Department für Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 91, D-91052 Erlangen, Germany
| | - Wolfgang Kreis
- Lehrstuhl für Pharmazeutische Biologie, Department für Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | - Frieder Müller-Uri
- Lehrstuhl für Pharmazeutische Biologie, Department für Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| |
Collapse
|
32
|
Sarker LS, Mahmoud SS. Cloning and functional characterization of two monoterpene acetyltransferases from glandular trichomes of L. x intermedia. PLANTA 2015; 242:709-719. [PMID: 25998527 DOI: 10.1007/s00425-015-2325-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 05/07/2015] [Indexed: 06/04/2023]
Abstract
Two alcohol acetyltransferases, LiAAT-3 and LiAAT-4, from L. x intermedia were cloned, expressed in bacteria, and functionally characterized. Two monoterpene acetyltransferase cDNA clones (LiAAT-3 and LiAAT-4) were isolated from L. x intermedia glandular trichomes, expressed in bacteria to produce, and functionally characterize the encoded proteins in vitro. The recombinant LiAAT-3 and LiAAT-4 proteins had molecular weights of ca. 47 and 49 kDa, respectively, as evidenced by SDS-PAGE. The K m (mM) values for the recombinant LiAAT-3 and LiAAT-4 were 1.046 and 0.354 for lavandulol, 1.31 and 0.279 for geraniol, and 0.87 and 0.113 for nerol, respectively. The V max (pkat/mg) values for LiAAT-3 and LiAAT-4 were 92.13 and 105.1 for lavandulol, 81.07 and 52.17 for geraniol, and 15.02 and 15.8 for nerol, correspondingly. Catalytic efficiencies (mM(-1) min(-1)) for LiAAT-3 and LiAAT-4 were 0.27 and 0.85 for lavandulol, 0.19 and 0.54 for geraniol, and 0.052 and 0.4 for nerol, respectively. These kinetic properties are in the range of those reported for other plant acetyltransferases, and indicate that LiAAT-4 has a better catalytic efficiency than LiAAT-3, with lavandulol serving as the preferred substrate for both enzymes. Transcripts for both genes were abundant in L. angustifolia and L. x intermedia flowers, where monoterpene acetates are produced, and were undetectable (or present in trace quantities) in L. latifolia flowers, which do not accumulate significant amounts of these metabolites.
Collapse
Affiliation(s)
- Lukman S Sarker
- Department of Biology, University of British Columbia, Okanagan Campus, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada
| | | |
Collapse
|
33
|
Adal AM, Demissie ZA, Mahmoud SS. Identification, validation and cross-species transferability of novel Lavandula EST-SSRs. PLANTA 2015; 241:987-1004. [PMID: 25534945 DOI: 10.1007/s00425-014-2226-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/08/2014] [Indexed: 06/04/2023]
Abstract
We identified and characterized EST-SSRs with strong discrimination power against Lavandula angustifolia and Lavandula x intermedia . The markers also showed considerable cross-species transferability rate into six related Lavandula species. Lavenders (Lavandula) are important economical crops grown around the globe for essential oil production. In an attempt to develop genetic markers for these plants, we analyzed over 13,000 unigenes developed from L. angustifolia and L. x intermedia EST databases, and identified 3,459 simple sequence repeats (SSR), which were dominated by trinucleotides (41.2 %) and dinucleotides (31.45 %). Approximately, 19 % of the unigenes contained at least one SSR marker, over 60 % of which were localized in the UTRs. Only 252 EST-SSRs were 18 bp or longer from which 31 loci were validated, and 24 amplified discrete fragments with 85 % polymorphism in L. x intermedia and L. angustifolia. The average number of alleles in L. x intermedia and L. angustifolia were 3.42 and 3.71 per marker with average PIC values of 0.47 and 0.52, respectively. These values suggest a moderate to strong level of informativeness for the markers, with some loci producing unique fingerprints. The cross-species transferability rate of the markers ranges 50-100 % across eight species. The utility of these markers was assessed in eight Lavandula species and 15 L. angustifolia and L. x intermedia cultivars, and the dendrogram deduced from their similarity indexes successfully delineated the species into their respective sections and the cultivars into their respective species. These markers have potential for application in fingerprinting, diversity studies and marker-assisted breeding of Lavandula.
Collapse
Affiliation(s)
- Ayelign M Adal
- Department of Biology, University of British Columbia, 1177 Research Rd, Kelowna, BC, V1V 1V7, Canada
| | | | | |
Collapse
|
34
|
Singh P, Kalunke RM, Giri AP. Towards comprehension of complex chemical evolution and diversification of terpene and phenylpropanoid pathways in Ocimum species. RSC Adv 2015. [DOI: 10.1039/c5ra16637c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Evolution of chemical diversity and diversification of terpene and phenylpropanoid pathway inOcimumspecies.
Collapse
Affiliation(s)
- Priyanka Singh
- Plant Molecular Biology Unit
- Division of Biochemical Sciences
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| | - Raviraj M. Kalunke
- Plant Molecular Biology Unit
- Division of Biochemical Sciences
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| | - Ashok P. Giri
- Plant Molecular Biology Unit
- Division of Biochemical Sciences
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| |
Collapse
|
35
|
Zeng X, Liu C, Zheng R, Cai X, Luo J, Zou J, Wang C. Emission and Accumulation of Monoterpene and the Key Terpene Synthase (TPS) Associated with Monoterpene Biosynthesis in Osmanthus fragrans Lour. FRONTIERS IN PLANT SCIENCE 2015; 6:1232. [PMID: 26793212 PMCID: PMC4709469 DOI: 10.3389/fpls.2015.01232] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/19/2015] [Indexed: 05/22/2023]
Abstract
Osmanthus fragrans is an ornamental and economically important plant known for its magnificent aroma, and the most important aroma-active compounds in flowers are monoterpenes, mainly β-ocimene, linalool and linalool derivatives. To understand the molecular mechanism of monoterpene production, we analyzed the emission and accumulation patterns of these compounds and the transcript levels of the genes involved in their biosynthesis in two O. fragrans cultivars during flowering stages. The results showed that both emission and accumulation of monoterpenes varied with flower development and glycosylation had an important impact on floral linalool emission during this process. Gene expression demonstrated that the transcript levels of terpene synthase (TPS) genes probably played a key role in monoterpene production, compared to the genes in the MEP pathway. Phylogenetic analysis showed that OfTPS1 and OfTPS2 belonged to a TPS-g subfamily, and OfTPS3 and OfTPS4 clustered into a TPS-b subfamily. Their transient and stable expression in tobacco leaves suggested that OfTPS1 and OfTPS2 exclusively produced β-linalool, and trans-β-ocimene was the sole product from OfTPS3, while OfTPS4, a predictive sesquiterpene synthase, produced α-farnesene. These results indicate that OfTPS1, OfTPS2, and OfTPS3 could account for the major floral monoterpenes, linalool and trans-β-ocimene, produced in O. fragrans flowers.
Collapse
Affiliation(s)
- Xiangling Zeng
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| | - Cai Liu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| | - Riru Zheng
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| | - Xuan Cai
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| | - Jing Luo
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| | - Jingjing Zou
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
- School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and TechnologyXianning, China
| | - Caiyun Wang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
- *Correspondence: Caiyun Wang,
| |
Collapse
|
36
|
Mendes MD, Barroso JG, Oliveira MM, Trindade H. Identification and characterization of a second isogene encoding γ-terpinene synthase in Thymus caespititius. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1017-1027. [PMID: 24974328 DOI: 10.1016/j.jplph.2014.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/26/2014] [Accepted: 04/01/2014] [Indexed: 06/03/2023]
Abstract
Thymus caespititius Brot. is an Iberian endemic species, whose essential oils possess high polymorphism. They consist mostly of mono- and sesquiterpene, some of them with interest for the pharmaceutical and food industries. The search for terpene synthase genes was performed in three in vitro T. caespititius genotypes. For these plants, the expression of a previously described γ-terpinene synthase gene, Tctps2, was confirmed, occurring concomitantly with a new gene encoding an enzyme with similar activity, named Thymus caespititius terpene synthase 4 (Tctps4). The two isogenes were isolated and functionally characterized in the three plant genotypes. Alignment of the two Tctps revealed a transit peptide much shorter in Tctps4 than in Tctps2 (3-4 amino acids instead of 47). The Tctps4 open reading frame is shorter than Tctps2 (1665 bp versus 1794 bp). The amino acid sequence of both γ-terpinene synthases shared an 88% pairwise identity. The fact that T. caespititius carries two isogenes for γ-terpinene synthases, suggests gene duplication along the evolutionary process, followed by mutations leading to the differentiation of both genes. These mutations didn't compromise protein activity. A high accumulation of transcripts from both genes was found in shoots of in vitro plantlets, while in roots they could not be detected. Still, γ-terpinene levels in aerial parts were reduced, probably due to fast conversion into carvacrol and thymol, the main components from T. caespititius essential oils. This study is a contribution to the identification of terpene synthase genes in Lamiaceae.
Collapse
Affiliation(s)
- Marta D Mendes
- Universidade de Lisboa, Faculdade de Ciências de Lisboa, Departamento de Biologia Vegetal, Instituto de Biotecnologia e Bioengenharia, Centro de Biotecnologia Vegetal, C2, Piso 1, Campo Grande, 1749-016 Lisboa, Portugal
| | - José G Barroso
- Universidade de Lisboa, Faculdade de Ciências de Lisboa, Departamento de Biologia Vegetal, Instituto de Biotecnologia e Bioengenharia, Centro de Biotecnologia Vegetal, C2, Piso 1, Campo Grande, 1749-016 Lisboa, Portugal
| | - M Margarida Oliveira
- Instituto de Tecnologia Química e Biológica (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
| | - Helena Trindade
- Universidade de Lisboa, Faculdade de Ciências de Lisboa, Departamento de Biologia Vegetal, Instituto de Biotecnologia e Bioengenharia, Centro de Biotecnologia Vegetal, C2, Piso 1, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
37
|
Galata M, Sarker LS, Mahmoud SS. Transcriptome profiling, and cloning and characterization of the main monoterpene synthases of Coriandrum sativum L. PHYTOCHEMISTRY 2014; 102:64-73. [PMID: 24636455 DOI: 10.1016/j.phytochem.2014.02.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/23/2013] [Accepted: 02/18/2014] [Indexed: 05/06/2023]
Abstract
Terpenoids are a large and diverse class of specialized metabolites that are essential for the growth and development of plants, and have tremendous industrial applications. The mericarps of Coriandrum sativum L. (coriander) produce an essential oil (EO) rich in monoterpenes, volatile C10 terpenoids. To investigate EO metabolism, the transcriptome of coriander mericarps, at three developmental stages (early, mid, late) was sequenced via Illumina technology and a transcript library was produced. To validate the usability of the transcriptome sequences, two terpene synthase candidate genes, CsγTRPS and CsLINS, encoding 558 and 562 amino acid proteins were expressed in bacteria, and the recombinant proteins purified by Ni-NTA affinity chromatography. The 65.16 (CsγTRPS) and 65.91 (CsLINS)kDa recombinant proteins catalyzed the conversion of geranyl diphosphate, the precursor to monoterpenes, to γ-terpinene and (S)-linalool, respectively, with apparent Vmax and Km values of 2.24±0.16 (CsγTRPS); 19.63±1.05 (CsLINS)pkat/mg and 66.25±13 (CsγTRPS); 2.5±0.6 (CsLINS)μM, respectively. Together, CsγTRPS and CsLINS account for the majority of EO constituents in coriander mericarps. Investigation of the coriander transcriptome, and knowledge gained from these experiments will facilitate future studies concerning essential and fatty acid oil production in coriander. They also enable efforts to improve the coriander oils through metabolic engineering or plant breeding.
Collapse
Affiliation(s)
- Mariana Galata
- Department of Biology, University of British Columbia Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| | - Lukman S Sarker
- Department of Biology, University of British Columbia Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| | - Soheil S Mahmoud
- Department of Biology, University of British Columbia Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7, Canada.
| |
Collapse
|
38
|
Mendoza-Poudereux I, Muñoz-Bertomeu J, Navarro A, Arrillaga I, Segura J. Enhanced levels of S-linalool by metabolic engineering of the terpenoid pathway in spike lavender leaves. Metab Eng 2014; 23:136-44. [PMID: 24685653 DOI: 10.1016/j.ymben.2014.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/03/2014] [Accepted: 03/20/2014] [Indexed: 11/17/2022]
Abstract
Transgenic Lavandula latifolia plants overexpressing the linalool synthase (LIS) gene from Clarkia breweri, encoding the LIS enzyme that catalyzes the synthesis of linalool were generated. Most of these plants increased significantly their linalool content as compared to controls, especially in the youngest leaves, where a linalool increase up to a 1000% was observed. The phenotype of increased linalool content observed in young leaves was maintained in those T1 progenies that inherit the LIS transgene, although this phenotype was less evident in the flower essential oil. Cross-pollination of transgenic spike lavender plants allowed the generation of double transgenic plants containing the DXS (1-deoxy-d-xylulose-5-P synthase), coding for the first enzyme of the methyl-d-erythritol-4-phosphate pathway, and LIS genes. Both essential oil yield and linalool content in double DXS-LIS transgenic plants were lower than that of their parentals, which could be due to co-suppression effects linked to the structures of the constructs used.
Collapse
Affiliation(s)
- Isabel Mendoza-Poudereux
- Departamento de Biología Vegetal, Universidad de Valencia, Av. Vicent Andrés Estellés S/N, Burjasot, 46100 Valencia, Spain; ISIC/ERI de Biotecnología y Biomedicina, Universidad de Valencia, Av. Vicent Andrés Estellés S/N, Burjasot, 46100 Valencia, Spain
| | - Jesús Muñoz-Bertomeu
- Instituto de Biología Molecular y Celular de Plantas, Departamento Biotecnología, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, C/Ingeniero Fausto Elio, 46022 Valencia, Spain
| | - Alicia Navarro
- Departamento de Biología Vegetal, Universidad de Valencia, Av. Vicent Andrés Estellés S/N, Burjasot, 46100 Valencia, Spain; ISIC/ERI de Biotecnología y Biomedicina, Universidad de Valencia, Av. Vicent Andrés Estellés S/N, Burjasot, 46100 Valencia, Spain
| | - Isabel Arrillaga
- Departamento de Biología Vegetal, Universidad de Valencia, Av. Vicent Andrés Estellés S/N, Burjasot, 46100 Valencia, Spain; ISIC/ERI de Biotecnología y Biomedicina, Universidad de Valencia, Av. Vicent Andrés Estellés S/N, Burjasot, 46100 Valencia, Spain
| | - Juan Segura
- Departamento de Biología Vegetal, Universidad de Valencia, Av. Vicent Andrés Estellés S/N, Burjasot, 46100 Valencia, Spain; ISIC/ERI de Biotecnología y Biomedicina, Universidad de Valencia, Av. Vicent Andrés Estellés S/N, Burjasot, 46100 Valencia, Spain.
| |
Collapse
|
39
|
Jullien F, Moja S, Bony A, Legrand S, Petit C, Benabdelkader T, Poirot K, Fiorucci S, Guitton Y, Nicolè F, Baudino S, Magnard JL. Isolation and functional characterization of a τ-cadinol synthase, a new sesquiterpene synthase from Lavandula angustifolia. PLANT MOLECULAR BIOLOGY 2014; 84:227-41. [PMID: 24078339 DOI: 10.1007/s11103-013-0131-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 09/15/2013] [Indexed: 05/12/2023]
Abstract
In this paper we characterize three sTPSs: a germacrene D (LaGERDS), a (E)-β-caryophyllene (LaCARS) and a τ-cadinol synthase (LaCADS). τ-cadinol synthase is reported here for the first time and its activity was studied in several biological models including transiently or stably transformed tobacco species. Three dimensional structure models of LaCADS and Ocimum basilicum γ-cadinene synthase were built by homology modeling using the template structure of Gossypium arboreum δ-cadinene synthase. The depiction of their active site organization provides evidence of the global influence of the enzymes on the formation of τ-cadinol: instead of a unique amino-acid, the electrostatic properties and solvent accessibility of the whole active site in LaCADS may explain the stabilization of the cadinyl cation intermediate. Quantitative PCR performed from leaves and inflorescences showed two patterns of expression. LaGERDS and LaCARS were mainly expressed during early stages of flower development and, at these stages, transcript levels paralleled the accumulation of the corresponding terpene products (germacrene D and (E)-β-caryophyllene). By contrast, the expression level of LaCADS was constant in leaves and flowers. Phylogenetic analysis provided informative results on potential duplication process leading to sTPS diversification in lavender.
Collapse
|
40
|
Champagne A, Boutry M. Proteomic snapshot of spearmint (Mentha spicata
L.) leaf trichomes: A genuine terpenoid factory. Proteomics 2013; 13:3327-32. [DOI: 10.1002/pmic.201300280] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/12/2013] [Accepted: 09/17/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Antoine Champagne
- Institut des Sciences de la Vie; University of Louvain; Louvain-la-Neuve Belgium
| | - Marc Boutry
- Institut des Sciences de la Vie; University of Louvain; Louvain-la-Neuve Belgium
| |
Collapse
|
41
|
Sarker LS, Demissie ZA, Mahmoud SS. Cloning of a sesquiterpene synthase from Lavandula x intermedia glandular trichomes. PLANTA 2013; 238:983-989. [PMID: 23918183 DOI: 10.1007/s00425-013-1937-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/18/2013] [Indexed: 06/02/2023]
Abstract
The essential oil (EO) of Lavandula is dominated by monoterpenes, but can also contain small amounts of sesquiterpenes, depending on species and environmental conditions. For example, the sesquiterpene 9-epi-caryophyllene can make up to 8 % of the EO in a few species, including those commercially propagated for EO production. Here, we report the cloning and functional characterization of 9-epi-caryophyllene synthase (LiCPS) from the glandular trichomes of Lavandula x intermedia, cv. Grosso. The 1,617 bp open reading frame of LiCPS, which did not encode a transit peptide, was expressed in Escherichia coli and the recombinant protein purified by Ni-NTA agarose affinity chromatography. The ca. 60 kDa recombinant protein specifically converted farnesyl diphosphate to 9-epi-caryophyllene. LiCPS also produced a few monoterpenes when assayed with the monoterpene precursor geranyl diphosphate (GPP), but--unlike most monoterpene synthases--was not able to derive detectable amounts of any products from the cis isomer of GPP, neryl diphosphate. The LiCPS transcripts accumulated in developing L. x intermedia flowers and were highly enriched in glandular trichomes, but were not detected in leaves suggesting that the transcriptional expression of this gene is spatially and developmentally regulated.
Collapse
|
42
|
Passinho-Soares HC, Meira PR, David JP, Mesquita PRR, do Vale AE, de M. Rodrigues F, de P. Pereira PA, de Santana JRF, de Oliveira FS, de Andrade JB, David JM. Volatile organic compounds obtained by in vitro callus cultivation of Plectranthus ornatus Codd. (Lamiaceae). Molecules 2013; 18:10320-33. [PMID: 24064448 PMCID: PMC6269817 DOI: 10.3390/molecules180910320] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/10/2013] [Accepted: 08/22/2013] [Indexed: 11/16/2022] Open
Abstract
Plectranthus spp (Lamiaceae) are plants of economic importance because they are sources of aromatic essential oils and are also cultivated and several species of this genus are used as folk medicines. This paper describes the effects of different concentrations of the 2,4-dichlorophenoxyacetic acid (2,4-D) and 1-naphthaleneacetic acid (NAA) on the induction of callus from nodal segments of Plectranthus ornatus Codd and in the production of volatile organic compounds (monoterpenes and sesquiterpenes). The 20 and 40 day calli were subjected to solid phase micro extraction (HS-SPME) and submitted to GCMS analysis. Variations in VOCs between the samples were observed and, a direct relationship was observed between of the major constituent detected (α-terpinyl acetate) and the monoterpenes α-thujene, α-pinene, β-pinene, camphene, sabinene and α-limonene that were present in the volatile fractions. Besides α-terpinyl acetate, isobornyl acetate and α-limonene were also major constituents. Variations were observed in VOCs in the analyzed periods. The best cultivation media for the production of VOCs was found to be MS0 (control). Moderate success was achieved by treatment with 2.68 µM and 5:37 µM NAA (Group 2). With 2,4-D (9.0 µM), only the presence of α-terpinyl acetate and isocumene were detected and, with 2.26 µM of 2,4-D was produced mainly α-terpinyl acetate, α-thujene and β-caryophyllene (16.2%). The VOC profiles present in P. ornatus were interpreted using PCA and HCA. The results permitted us to determine the best cultivation media for VOC production and, the PCA and HCA analysis allowed us to recognize four groups among the different treatments from the compounds identified in this set of treatments.
Collapse
Affiliation(s)
- Helna C. Passinho-Soares
- Faculdade de Farmácia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s/n, 41810-290, Salvador (BA), Brazil; E-Mails: (H.C.P.-S.); (P.R.M.); (A.E.V.)
- Programa de Pós- graduação em Biotecnologia, Universidade Estadual de Feira de Santana, 44031-460, Feira de Santana (BA), Brazil; E-Mail:
| | - Paloma R. Meira
- Faculdade de Farmácia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s/n, 41810-290, Salvador (BA), Brazil; E-Mails: (H.C.P.-S.); (P.R.M.); (A.E.V.)
| | - Juceni P. David
- Faculdade de Farmácia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s/n, 41810-290, Salvador (BA), Brazil; E-Mails: (H.C.P.-S.); (P.R.M.); (A.E.V.)
| | - Paulo R. R. Mesquita
- Instituto de Química, Universidade Federal da Bahia, Campus de Ondina, 40170290, Salvador (BA), Brazil; E-Mails: (P.R.R.M.); (P.A.P.P.); (J.B.A.); (J.M.D.)
| | - Ademir E. do Vale
- Faculdade de Farmácia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s/n, 41810-290, Salvador (BA), Brazil; E-Mails: (H.C.P.-S.); (P.R.M.); (A.E.V.)
| | | | - Pedro A. de P. Pereira
- Instituto de Química, Universidade Federal da Bahia, Campus de Ondina, 40170290, Salvador (BA), Brazil; E-Mails: (P.R.R.M.); (P.A.P.P.); (J.B.A.); (J.M.D.)
| | - José Raniere F. de Santana
- Programa de Pós- graduação em Biotecnologia, Universidade Estadual de Feira de Santana, 44031-460, Feira de Santana (BA), Brazil; E-Mail:
| | - Fabio S. de Oliveira
- Centro de Ciências da Saúde, Universidade Federal de Recôncavo Baiano, 44574-490, Santo Antonio de Jesus (BA), Brazil; E-Mail:
| | - Jailson B. de Andrade
- Instituto de Química, Universidade Federal da Bahia, Campus de Ondina, 40170290, Salvador (BA), Brazil; E-Mails: (P.R.R.M.); (P.A.P.P.); (J.B.A.); (J.M.D.)
| | - Jorge M. David
- Instituto de Química, Universidade Federal da Bahia, Campus de Ondina, 40170290, Salvador (BA), Brazil; E-Mails: (P.R.R.M.); (P.A.P.P.); (J.B.A.); (J.M.D.)
| |
Collapse
|
43
|
Lima AS, Schimmel J, Lukas B, Novak J, Barroso JG, Figueiredo AC, Pedro LG, Degenhardt J, Trindade H. Genomic characterization, molecular cloning and expression analysis of two terpene synthases from Thymus caespititius (Lamiaceae). PLANTA 2013; 238:191-204. [PMID: 23624978 DOI: 10.1007/s00425-013-1884-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 04/09/2013] [Indexed: 05/28/2023]
Abstract
The identification, isolation and functional characterization of two genes encoding two monoterpene synthases-γ-terpinene synthase (Tctps2) and α-terpineol synthase (Tctps5)-from three chemically distinct Thymus caespititius (Lamiaceae) genotypes were performed. Genomic exon-intron structure was also determined for both terpene synthase genes, revealing an organization with seven exons and six introns. The cDNA of Tctps2 was 2,308 bp long and had an open reading frame of 1,794 bp encoding for a protein with 598 amino acids. Tctps5 was longer, mainly due to intron sequences, and presented high intraspecific variability on the plants analyzed. It encoded for a protein of 602 amino acids from an open reading frame of 1,806 bp comprising a total of 2,507 bp genomic sequence. The amino acid sequence of these two active Tctps genes shared 74 % pairwise identity, ranging between 42 and 94 % similarity with about 50 known terpene synthases of other Lamiaceae species. Gene expression revealed a multi-product Tctps2 and Tctps5 enzymes, producing γ-terpinene and α-terpineol as major components, respectively. These enzymatic results were consistent with the monoterpene profile present in T. caespititius field plants, suggesting a transcriptional regulation in leaves. Herewith reported for the first time for this species, these two newly characterized Tctps genes improve the understanding of the molecular mechanisms of reaction responsible for terpene biosynthesis and chemical diversity found in T. caespititius.
Collapse
Affiliation(s)
- A Sofia Lima
- Departmento de Biologia Vegetal, Faculdade de Ciências, Centro de Biotecnologia Vegetal, Instituto de Biotecnologia e Bioengenharia, Universidade de Lisboa, C2, Campo Grande, 1749-016 Lisbon, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lange BM, Turner GW. Terpenoid biosynthesis in trichomes--current status and future opportunities. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:2-22. [PMID: 22979959 DOI: 10.1111/j.1467-7652.2012.00737.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 07/24/2012] [Accepted: 07/31/2012] [Indexed: 05/19/2023]
Abstract
Glandular trichomes are anatomical structures specialized for the synthesis of secreted natural products. In this review we focus on the description of glands that accumulate terpenoid essential oils and oleoresins. We also provide an in-depth account of the current knowledge about the biosynthesis of terpenoids and secretion mechanisms in the highly specialized secretory cells of glandular trichomes, and highlight the implications for metabolic engineering efforts.
Collapse
Affiliation(s)
- B Markus Lange
- Institute of Biological Chemistry, M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, USA.
| | | |
Collapse
|
45
|
Molecular cloning and functional characterization of borneol dehydrogenase from the glandular trichomes of Lavandula x intermedia. Arch Biochem Biophys 2012; 528:163-70. [DOI: 10.1016/j.abb.2012.09.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/28/2012] [Accepted: 09/29/2012] [Indexed: 11/21/2022]
|
46
|
Gonçalves S, Romano A. In vitro culture of lavenders (Lavandula spp.) and the production of secondary metabolites. Biotechnol Adv 2012; 31:166-74. [PMID: 23022737 DOI: 10.1016/j.biotechadv.2012.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/21/2012] [Accepted: 09/22/2012] [Indexed: 10/27/2022]
Abstract
Lavenders (Lavandula spp., Lamiaceae) are aromatic ornamental plants that are used widely in the food, perfume and pharmaceutical industries. The large-scale production of lavenders requires efficient in vitro propagation techniques to avoid the overexploitation of natural populations and to allow the application of biotechnology-based approaches for plant improvement and the production of valuable secondary metabolites. In this review we discuss micropropagation methods that have been developed in several lavender species, mainly based on meristem proliferation and organogenesis. Specific requirements during stages of micropropagation (establishment, shoot multiplication, root induction and acclimatization) and requisites for plant regeneration trough organogenesis, as an important step for the implementation of plant improvement programs, were revised. We also discuss different methods for the in vitro production of valuable secondary metabolites, focusing on the prospects for highly scalable cultures to meet the market demand for lavender-derived products.
Collapse
Affiliation(s)
- Sandra Gonçalves
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology (IBB/CGB), Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal
| | | |
Collapse
|
47
|
Demissie ZA, Cella MA, Sarker LS, Thompson TJ, Rheault MR, Mahmoud SS. Cloning, functional characterization and genomic organization of 1,8-cineole synthases from Lavandula. PLANT MOLECULAR BIOLOGY 2012; 79:393-411. [PMID: 22592779 DOI: 10.1007/s11103-012-9920-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 04/27/2012] [Indexed: 05/07/2023]
Abstract
Several members of the genus Lavandula produce valuable essential oils (EOs) that are primarily constituted of the low molecular weight isoprenoids, particularly monoterpenes. We isolated over 8,000 ESTs from the glandular trichomes of L. x intermedia flowers (where bulk of the EO is synthesized) to facilitate the discovery of genes that control the biosynthesis of EO constituents. The expression profile of these ESTs in L. x intermedia and its parents L. angustifolia and L. latifolia was established using microarrays. The resulting data highlighted a differentially expressed, previously uncharacterized cDNA with strong homology to known 1,8-cineole synthase (CINS) genes. The ORF, excluding the transit peptide, of this cDNA was expressed in E. coli, purified by Ni-NTA agarose affinity chromatography and functionally characterized in vitro. The ca. 63 kDa bacterially produced recombinant protein, designated L. x intermedia CINS (LiCINS), converted geranyl diphosphate (the linear monoterpene precursor) primarily to 1,8-cineole with K ( m ) and k ( cat ) values of 5.75 μM and 8.8 × 10(-3) s(-1), respectively. The genomic DNA of CINS in the studied Lavandula species had identical exon-intron architecture and coding sequences, except for a single polymorphic nucleotide in the L. angustifolia ortholog which did not alter protein function. Additional nucleotide variations restricted to L. angustifolia introns were also observed, suggesting that LiCINS was most likely inherited from L. latifolia. The LiCINS mRNA levels paralleled the 1,8-cineole content in mature flowers of the three lavender species, and in developmental stages of L. x intermedia inflorescence indicating that the production of 1,8 cineole in Lavandula is most likely controlled through transcriptional regulation of LiCINS.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Carbon-Carbon Lyases/chemistry
- Carbon-Carbon Lyases/genetics
- Carbon-Carbon Lyases/metabolism
- Cloning, Molecular
- Cyclohexanols/metabolism
- DNA, Plant/genetics
- Eucalyptol
- Expressed Sequence Tags
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Gene Library
- Genome, Plant
- Lavandula/enzymology
- Lavandula/genetics
- Lavandula/growth & development
- Metabolic Networks and Pathways
- Molecular Sequence Data
- Monoterpenes/metabolism
- Oils, Volatile/metabolism
- Phylogeny
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Zerihun A Demissie
- Department of Biology, University of British Columbia, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Voo SS, Grimes HD, Lange BM. Assessing the biosynthetic capabilities of secretory glands in Citrus peel. PLANT PHYSIOLOGY 2012; 159:81-94. [PMID: 22452856 PMCID: PMC3375987 DOI: 10.1104/pp.112.194233] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/19/2012] [Indexed: 05/17/2023]
Abstract
Epithelial cells (ECs) lining the secretory cavities of Citrus peel have been hypothesized to be responsible for the synthesis of essential oil, but direct evidence for such a role is currently sparse. We used laser-capture microdissection and pressure catapulting to isolate ECs and parenchyma cells (as controls not synthesizing oil) from the peel of young grapefruit (Citrus × paradisi 'Duncan'), isolated RNA, and evaluated transcript patterns based on oligonucleotide microarrays. A Gene Ontology analysis of these data sets indicated an enrichment of genes involved in the biosynthesis of volatile terpenoids and nonvolatile phenylpropanoids in ECs (when compared with parenchyma cells), thus indicating a significant metabolic specialization in this cell type. The gene expression patterns in ECs were consistent with the accumulation of the major essential oil constituents (monoterpenes, prenylated coumarins, and polymethoxylated flavonoids). Morphometric analyses demonstrated that secretory cavities are formed early during fruit development, whereas the expansion of cavities, and thus oil accumulation, correlates with later stages of fruit expansion. Our studies have laid the methodological and experimental groundwork for a vastly improved knowledge of the as yet poorly understood processes controlling essential oil biosynthesis in Citrus peel.
Collapse
Affiliation(s)
- Siau Sie Voo
- Institute of Biological Chemistry (S.S.V., B.M.L.), M.J. Murdock Metabolomics Laboratory (B.M.L.), and School of Molecular Biosciences (H.D.G.), Washington State University, Pullman, Washington 99164–6340
| | - Howard D. Grimes
- Institute of Biological Chemistry (S.S.V., B.M.L.), M.J. Murdock Metabolomics Laboratory (B.M.L.), and School of Molecular Biosciences (H.D.G.), Washington State University, Pullman, Washington 99164–6340
| | - B. Markus Lange
- Institute of Biological Chemistry (S.S.V., B.M.L.), M.J. Murdock Metabolomics Laboratory (B.M.L.), and School of Molecular Biosciences (H.D.G.), Washington State University, Pullman, Washington 99164–6340
| |
Collapse
|
49
|
Grausgruber-Gröger S, Schmiderer C, Steinborn R, Novak J. Seasonal influence on gene expression of monoterpene synthases in Salvia officinalis (Lamiaceae). JOURNAL OF PLANT PHYSIOLOGY 2012; 169:353-9. [PMID: 22196947 DOI: 10.1016/j.jplph.2011.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/01/2011] [Accepted: 11/01/2011] [Indexed: 05/13/2023]
Abstract
Garden sage (Salvia officinalis L., Lamiaceae) is one of the most important medicinal and aromatic plants and possesses antioxidant, antimicrobial, spasmolytic, astringent, antihidrotic and specific sensorial properties. The essential oil of the plant, formed mainly in very young leaves, is in part responsible for these activities. It is mainly composed of the monoterpenes 1,8-cineole, α- and β-thujone and camphor synthesized by the 1,8-cineole synthase, the (+)-sabinene synthase and the (+)-bornyl diphosphate synthase, respectively, and is produced and stored in epidermal glands. In this study, the seasonal influence on the formation of the main monoterpenes in young, still expanding leaves of field-grown sage plants was studied in two cultivars at the level of mRNA expression, analyzed by qRT-PCR, and at the level of end-products, analyzed by gas chromatography. All monoterpene synthases and monoterpenes were significantly influenced by cultivar and season. 1,8-Cineole synthase and its end product 1,8-cineole remained constant until August and then decreased slightly. The thujones increased steadily during the vegetative period. The transcript level of their corresponding terpene synthase, however, showed its maximum in the middle of the vegetative period and declined afterwards. Camphor remained constant until August and then declined, exactly correlated with the mRNA level of the corresponding terpene synthase. In summary, terpene synthase mRNA expression and respective end product levels were concordant in the case of 1,8-cineole (r=0.51 and 0.67 for the two cultivars, respectively; p<0.05) and camphor (r=0.75 and 0.82; p<0.05) indicating basically transcriptional control, but discordant for α-/β-thujone (r=-0.05 and 0.42; p=0.87 and 0.13, respectively).
Collapse
Affiliation(s)
- Sabine Grausgruber-Gröger
- Institute for Applied Botany and Pharmacognosy, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | | | | | | |
Collapse
|
50
|
Demissie ZA, Sarker LS, Mahmoud SS. Cloning and functional characterization of β-phellandrene synthase from Lavandula angustifolia. PLANTA 2011; 233:685-696. [PMID: 21165645 DOI: 10.1007/s00425-010-1332-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 11/30/2010] [Indexed: 05/30/2023]
Abstract
En route to building genomics resources for Lavandula, we have obtained over 14,000 ESTs for leaves and flowers of L. angustifolia, a major essential oil crop, and identified a number of previously uncharacterized terpene synthase (TPS) genes. Here we report the cloning, expression in E. coli, and functional characterization of β-phellandrene synthase, LaβPHLS. The ORF--excluding the transit peptide--for this gene encoded a 62.3 kDa protein that contained all conserved motifs present in plant TPSs. Expression in bacteria resulted in the production of a soluble protein that was purified by Ni-NTA agarose affinity chromatography. While the recombinant LaβPHLS did not utilize FPP as a substrate, it converted GPP (the preferred substrate) and NPP into β-phellandrene as the major product, with K (m) and k (cat) of 6.55 μM and 1.75 × 10(-2) s(-1), respectively, for GPP. The LaβPHLS transcripts were highly abundant in young leaves where β-phellandrene is produced, but were barely detectable in flowers and older leaves, where β-phellandrene is not synthesized in significant quantities. This data indicate that β-phellandrene biosynthesis is transcriptionally and developmentally regulated. We also cloned and expressed in E. coli a second TPS-like protein, LaTPS-I, that lacks an internal stretch of 73 amino acids, including the signature DDxxD divalent metal binding motif, compared to other plant TPSs. The recombinant LaTPS-I did not produce detectable products in vitro when assayed with GPP, NPP or FPP as substrates. The lack of activity is most likely due to the absence of catalytically important amino acid residues within the missing region.
Collapse
Affiliation(s)
- Zerihun A Demissie
- Department of Biology, University of British Columbia-Okanagan, 3333 University Way, Kelowna, British Columbia, V1V 1V7, Canada
| | | | | |
Collapse
|