1
|
Lee Y, Kato S, Kim JY, Shimono Y, Shiga T. Two lineages of Lemna aequinoctialis (Araceae, Lemnoideae) based on physiology, morphology, and phylogeny. JOURNAL OF PLANT RESEARCH 2024; 137:359-376. [PMID: 38349478 DOI: 10.1007/s10265-023-01509-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/08/2023] [Indexed: 05/12/2024]
Abstract
Lemna aequinoctialis Welw. is a widely spread species that has diverse physiological and molecular properties. Flower characteristics are important factors in deducing taxonomical status; however, owing to the rarity of flowering observations in Lemna, studying them has been a prolonged challenge. In this study, physiological and morphological analyses were conducted by inducing flowering, and molecular analysis was done based on the two chloroplast DNA loci (matK, atpF-atpH intergeneric spacer) of L. aequinoctialis sensu Landolt (1986) from 70 strains found in 70 localities in Japan, Korea, Thailand, and the US. In total, 752 flowering fronds from 13 strains were observed based on axenic conditions. Two different trends in flower organ development-protogyny and adichogamy-were detected in these strains. Their physiological traits were divided into two groups, showing different morphological features based on frond thickness, root cap, and anther sizes. Molecular analysis showed two lineages corresponding to two physiological groups. These were identified as L. aequinoctialis sensu Beppu et al. (1985) and L. aoukikusa Beppu et Murata based on the description of the nomenclature of L. aoukikusa. These were concluded as independent taxa and can be treated as different species. Furthermore, the distribution of L. aoukikusa is not only limited to Japan.
Collapse
Affiliation(s)
- Yuri Lee
- Graduate School of Science and Technology, Niigata University, Ikarashi Ninocho, Nishi-ku, Niigata, 950-2181, Japan
- Faculty of Education, Niigata University, Ikarashi Ninocho, Nishi-ku, Niigata, 950-2181, Japan
| | - Syou Kato
- Faculty of Education, Niigata University, Ikarashi Ninocho, Nishi-ku, Niigata, 950-2181, Japan
| | - Jae Young Kim
- Division of Horticulture and Medicinal Plant, Andong National University, Andong, 36729, Republic of Korea
| | - Yoshiko Shimono
- Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takashi Shiga
- Graduate School of Science and Technology, Niigata University, Ikarashi Ninocho, Nishi-ku, Niigata, 950-2181, Japan.
- Faculty of Education, Niigata University, Ikarashi Ninocho, Nishi-ku, Niigata, 950-2181, Japan.
| |
Collapse
|
2
|
Zhang Y, Jia R, Hui T, Hu Y, Wang W, Wang Y, Wang Y, Zhu Y, Yang L, Xiang B. Transcriptomic and physiological analysis of the response of Spirodela polyrrhiza to sodium nitroprusside. BMC PLANT BIOLOGY 2024; 24:95. [PMID: 38331719 PMCID: PMC10851477 DOI: 10.1186/s12870-024-04766-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Spirodela polyrrhiza is a simple floating aquatic plant with great potential in synthetic biology. Sodium nitroprusside (SNP) stimulates plant development and increases the biomass and flavonoid content in some plants. However, the molecular mechanism of SNP action is still unclear. RESULTS To determine the effect of SNP on growth and metabolic flux in S. polyrrhiza, the plants were treated with different concentrations of SNP. Our results showed an inhibition of growth, an increase in starch, soluble protein, and flavonoid contents, and enhanced antioxidant enzyme activity in plants after 0.025 mM SNP treatment. Differentially expressed transcripts were analysed in S. polyrrhiza after 0.025 mM SNP treatment. A total of 2776 differentially expressed genes (1425 upregulated and 1351 downregulated) were identified. The expression of some genes related to flavonoid biosynthesis and NO biosynthesis was upregulated, while the expression of some photosynthesis-related genes was downregulated. Moreover, SNP stress also significantly influenced the expression of transcription factors (TFs), such as ERF, BHLH, NAC, and WRKY TFs. CONCLUSIONS Taken together, these findings provide novel insights into the mechanisms of underlying the SNP stress response in S. polyrrhiza and show that the metabolic flux of fixed CO2 is redirected into the starch synthesis and flavonoid biosynthesis pathways after SNP treatment.
Collapse
Affiliation(s)
- Yamei Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Rong Jia
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Tanyue Hui
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Yue Hu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Wenjing Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Yi Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Yong Wang
- College of Life Science, Nankai University, Tianjin, 300071, China
| | - Yerong Zhu
- College of Life Science, Nankai University, Tianjin, 300071, China
| | - Lin Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Beibei Xiang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China.
| |
Collapse
|
3
|
Chmilar SL, Laird RA. Effects of parental age on salt stress tolerance in an aquatic plant. OIKOS 2023. [DOI: 10.1111/oik.09218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Robert A. Laird
- Dept of Biological Sciences, Univ. of Lethbridge Lethbridge AB Canada
| |
Collapse
|
4
|
Piria M, Radočaj T, Vilizzi L, Britvec M. Climate change may exacerbate the risk of invasiveness of non-native aquatic plants: the case of the Pannonian and Mediterranean regions of Croatia. NEOBIOTA 2022. [DOI: 10.3897/neobiota.76.83320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Non-native aquatic plants are amongst the major threats to freshwater biodiversity and climate change is expected to facilitate their further spread and invasiveness. To date, in Croatia, no complete list of non-native extant and horizon aquatic plants has been compiled nor has a risk screening been performed. To address this knowledge gap, 10 extant and 14 horizon aquatic plant species were screened for their risk of invasiveness in the Pannonian and Mediterranean regions of Croatia under current and predicted (future) climate conditions. Overall, 90% and 60% of the extant species were classified as high risk for the Pannonian and Mediterranean regions, respectively, under both climate scenarios. Of the horizon species, 42% were classified as high risk under current conditions and, under climate change, this proportion increased to 78%. The ‘top invasive’ species (i.e. scored as very high risk) under both climate conditions and for both regions were extant Elodea nuttallii and horizon Lemna aequinoctialis. The horizon Hygrophila polysperma was very high risk for the Mediterranean Region under current climate conditions and for both regions under projected climate conditions. Azolla filiculoides, Elodea canadensis, Egeria densa and Utricularia gibba were also classified as high risk under current climate conditions and, after accounting for climate change, they became of very high risk in both regions. Further, Gymnocoronis spilanthoides and Lemna minuta were found to pose a very high risk under climate change only for the Pannonian Region. It is anticipated that the outcomes of this study will contribute to knowledge of the invasiveness of aquatic plants in different climatic regions and enable prioritisation measures for their control/eradication.
Collapse
|
5
|
Biodiversity of Duckweed (Lemnaceae) in Water Reservoirs of Ukraine and China Assessed by Chloroplast DNA Barcoding. PLANTS 2022; 11:plants11111468. [PMID: 35684242 PMCID: PMC9182681 DOI: 10.3390/plants11111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/30/2022]
Abstract
Monitoring and characterizing species biodiversity is essential for germplasm preservation, academic studies, and various practical applications. Duckweeds represent a group of tiny aquatic plants that include 36 species divided into 5 genera within the Lemnaceae family. They are an important part of aquatic ecosystems worldwide, often covering large portions of the water reservoirs they inhabit, and have many potential applications, including in bioremediation, biofuels, and biomanufacturing. Here, we evaluated the biodiversity of duckweeds in Ukraine and Eastern China by characterizing specimens using the two-barcode protocol with the chloroplast atpH–atpF and psbK–psbI spacer sequences. In total, 69 Chinese and Ukrainian duckweed specimens were sequenced. The sequences were compared against sequences in the NCBI database using BLAST. We identified six species from China (Spirodela polyrhiza, Landoltia punctata, Lemna aequinoctialis, Lemna minor, Lemna turionifera, and Wolffia globosa) and six from Ukraine (S. polyrhiza, Lemna gibba, Lemna minor, Lemna trisulca, Lemna turionifera, and Wolffia arrhiza). The most common duckweed species in the samples from Ukraine were Le. minor and S. polyrhiza, accounting for 17 and 15 out of 40 specimens, respectively. The most common duckweed species in the samples from China was S. polyrhiza, accounting for 15 out of 29 specimens. La. punctata and Le. aequinoctialis were also common in China, accounting for five and four specimens, respectively. According to both atpH–atpF and psbK–psbI barcode analyses, the species identified as Le. aequinoctialis does not form a uniform taxon similar to other duckweed species, and therefore the phylogenetic status of this species requires further clarification. By monitoring duckweeds using chloroplast DNA sequencing, we not only precisely identified local species and ecotypes, but also provided background for further exploration of native varieties with diverse genetic backgrounds. These data could be useful for future conservation, breeding, and biotechnological applications.
Collapse
|
6
|
Bog M, Appenroth KJ, Schneider P, Sree KS. Intraspecific Diversity in Aquatic Ecosystems: Comparison between Spirodela polyrhiza and Lemna minor in Natural Populations of Duckweed. PLANTS 2022; 11:plants11070968. [PMID: 35406948 PMCID: PMC9003317 DOI: 10.3390/plants11070968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022]
Abstract
Samples of two duckweed species, Spirodela polyrhiza and Lemna minor, were collected around small ponds and investigated concerning the question of whether natural populations of duckweeds constitute a single clone, or whether clonal diversity exists. Amplified fragment length polymorphism was used as a molecular method to distinguish clones of the same species. Possible intraspecific diversity was evaluated by average-linkage clustering. The main criterion to distinguish one clone from another was the 95% significance level of the Jaccard dissimilarity index for replicated samples. Within natural populations of L. minor, significant intraspecific genetic differences were detected. In each of the three small ponds harbouring populations of L. minor, based on twelve samples, between four and nine distinct clones were detected. Natural populations of L. minor consist of a mixture of several clones representing intraspecific biodiversity in an aquatic ecosystem. Moreover, identical distinct clones were discovered in more than one pond, located at a distance of 1 km and 2.4 km from each other. Evidently, fronds of L. minor were transported between these different ponds. The genetic differences for S. polyrhiza, however, were below the error-threshold of the method within a pond to detect distinct clones, but were pronounced between samples of two different ponds.
Collapse
Affiliation(s)
- Manuela Bog
- Institute of Botany and Landscape Ecology, University of Greifswald, D-17489 Greifswald, Germany;
| | - Klaus-Juergen Appenroth
- Matthias Schleiden Institute-Plant Physiology, University of Jena, D-07743 Jena, Germany;
- Correspondence: (K.-J.A.); or (K.S.S.); Tel.: +49-3641-949233 (K.-J.A.); +91-9999-672921 (K.S.S.)
| | - Philipp Schneider
- Matthias Schleiden Institute-Plant Physiology, University of Jena, D-07743 Jena, Germany;
| | - K. Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periye 671320, India
- Correspondence: (K.-J.A.); or (K.S.S.); Tel.: +49-3641-949233 (K.-J.A.); +91-9999-672921 (K.S.S.)
| |
Collapse
|
7
|
Braglia L, Breviario D, Gianì S, Gavazzi F, De Gregori J, Morello L. New Insights into Interspecific Hybridization in Lemna L. Sect. Lemna (Lemnaceae Martinov). PLANTS 2021; 10:plants10122767. [PMID: 34961238 PMCID: PMC8703825 DOI: 10.3390/plants10122767] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022]
Abstract
Duckweeds have been increasingly studied in recent years, both as model plants and in view of their potential applications as a new crop in a circular bioeconomy perspective. In order to select species and clones with the desired attributes, the correct identification of the species is fundamental. Molecular methods have recently provided a more solid base for taxonomy and yielded a consensus phylogenetic tree, although some points remain to be elucidated. The duckweed genus Lemna L. comprises twelve species, grouped in four sections, which include very similar sister species. The least taxonomically resolved is sect. Lemna, presenting difficulties in species delimitation using morphological and even barcoding molecular markers. Ambiguous species boundaries between Lemna minor L. and Lemna japonica Landolt have been clarified by Tubulin Based Polymorphism (TBP), with the discovery of interspecific hybrids. In the present work, we extended TBP profiling to a larger number of clones in sect. Lemna, previously classified using only morphological features, in order to test that classification, and to investigate the possible existence of other hybrids in this section. The analysis revealed several misidentifications of clones, in particular among the species L. minor, L. japonica and Lemna gibba L., and identified six putative ‘L. gibba’ clones as interspecific hybrids between L. minor and L. gibba.
Collapse
|
8
|
Al-Dakhil M, Alghamdi S, Migdadi H, Afzal M, Ali AA. Morphological Characterization and DNA Barcoding of Duckweed Species in Saudi Arabia. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112438. [PMID: 34834801 PMCID: PMC8620982 DOI: 10.3390/plants10112438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Duckweeds, or Lemnaceae, are widespread aquatic plants. Morphology-based identification of duckweed species is difficult because of their structural complexity. Hence, molecular tools provide significant advantages for characterizing and selecting species or clones for sustainable commercial use. In this study, we collected and characterized ten duckweed isolates from nine different regions in Saudi Arabia (SA). Based on the morphological characterization and phylogenetic analysis of intergenic spacer sequences of chloroplast DNA using six barcoding markers, the clones were classified into three genera, represented by seven species: Lemna gibba L., Lemna minor L., Lemna japonica Landolt, Lemna aequinoctialis Welw., Lemna perpusilla Torr., Spirodela polyryiza (L.) Schleid., and Landoltia punctate G. Mey. Lemna gibba was revealed to be a distinct dominant duckweed species in many regions of SA. Five barcoding markers showed that L. gibba, L. minor, and L. punctata were the most widely distributed species in the country. However, L. punctata, L. perpusilla, and S. polyryiza were the dominant species in the Al-Qassim, Madinah-1, and Madinah-2 regions, respectively. Moreover, the morphological traits revealed variations for these clones, relative to other studied duckweed clones. According to the results obtained in this study, three out of six plastid markers (trnH-psbA, matK, and atpF-atpH) helped to identify the dominant duckweed species in Saudi Arabia. Further evaluation based on adaptability, molecular genetic studies, and functional genomics is needed for these species to be used at the commercial level in Saudi Arabia.
Collapse
Affiliation(s)
- Mohammed Al-Dakhil
- Natural Resources and Environmental Research Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (M.A.); (A.A.A.)
| | - Salem Alghamdi
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (M.A.); (A.A.A.)
| | - Hussein Migdadi
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (M.A.); (A.A.A.)
- National Agricultural Research Center, Baqa, Amman 19381, Jordan
| | - Muhammad Afzal
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (M.A.); (A.A.A.)
| | - Ahmed Abdelrahim Ali
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (M.A.); (A.A.A.)
| |
Collapse
|
9
|
Acosta K, Appenroth KJ, Borisjuk L, Edelman M, Heinig U, Jansen MAK, Oyama T, Pasaribu B, Schubert I, Sorrels S, Sree KS, Xu S, Michael TP, Lam E. Return of the Lemnaceae: duckweed as a model plant system in the genomics and postgenomics era. THE PLANT CELL 2021; 33:3207-3234. [PMID: 34273173 PMCID: PMC8505876 DOI: 10.1093/plcell/koab189] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/18/2021] [Indexed: 05/05/2023]
Abstract
The aquatic Lemnaceae family, commonly called duckweed, comprises some of the smallest and fastest growing angiosperms known on Earth. Their tiny size, rapid growth by clonal propagation, and facile uptake of labeled compounds from the media were attractive features that made them a well-known model for plant biology from 1950 to 1990. Interest in duckweed has steadily regained momentum over the past decade, driven in part by the growing need to identify alternative plants from traditional agricultural crops that can help tackle urgent societal challenges, such as climate change and rapid population expansion. Propelled by rapid advances in genomic technologies, recent studies with duckweed again highlight the potential of these small plants to enable discoveries in diverse fields from ecology to chronobiology. Building on established community resources, duckweed is reemerging as a platform to study plant processes at the systems level and to translate knowledge gained for field deployment to address some of society's pressing needs. This review details the anatomy, development, physiology, and molecular characteristics of the Lemnaceae to introduce them to the broader plant research community. We highlight recent research enabled by Lemnaceae to demonstrate how these plants can be used for quantitative studies of complex processes and for revealing potentially novel strategies in plant defense and genome maintenance.
Collapse
Affiliation(s)
- Kenneth Acosta
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Klaus J Appenroth
- Plant Physiology, Matthias Schleiden Institute, University of Jena, Jena 07737, Germany
| | - Ljudmilla Borisjuk
- The Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben D-06466, Germany
| | - Marvin Edelman
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Uwe Heinig
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Marcel A K Jansen
- School of Biological, Earth and Environmental Sciences, Environmental Research Institute, University College Cork, Cork T23 TK30, Ireland
| | - Tokitaka Oyama
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Buntora Pasaribu
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Ingo Schubert
- The Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben D-06466, Germany
| | - Shawn Sorrels
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - K Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periye 671320, India
| | - Shuqing Xu
- Institute for Evolution and Biodiversity, University of Münster, Münster 48149, Germany
| | - Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute of Biological Studies, La Jolla, California 92037, USA
| | - Eric Lam
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
10
|
|
11
|
Braglia L, Lauria M, Appenroth KJ, Bog M, Breviario D, Grasso A, Gavazzi F, Morello L. Duckweed Species Genotyping and Interspecific Hybrid Discovery by Tubulin-Based Polymorphism Fingerprinting. FRONTIERS IN PLANT SCIENCE 2021; 12:625670. [PMID: 33763089 PMCID: PMC7982733 DOI: 10.3389/fpls.2021.625670] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/04/2021] [Indexed: 05/21/2023]
Abstract
Duckweeds (Lemnaceae) are the smallest and fastest-growing angiosperms. This feature, together with high starch production and good nutritional properties, makes them suitable for several applications, including wastewater treatment, bioenergy production, or feed and food supplement. Due to their reduced morphology and great similarity between diverse species, taxonomic identification of duckweeds is a challenging issue even for experts. Among molecular genotyping methods, DNA barcoding is the most useful tool for species identification without a need for cluster analysis. The combination of two plastid barcoding loci is now considered the gold standard for duckweed classification. However, not all species can be defined with confidence by these markers, and a fast identification method able to solve doubtful cases is missing. Here we show the potential of tubulin-based polymorphism (TBP), a molecular marker based on the intron length polymorphisms of β-tubulin loci, in the genomic profiling of the genera Spirodela, Landoltia, and Lemna. Ninety-four clones were analyzed, including at least two representatives of each species of the three genera, with a special focus on the very heterogeneous species Lemna minor. We showed that a single PCR amplification with universal primers, followed by agarose gel analysis, was able to provide distinctive fingerprinting profiles for 10 out of 15 species. Cluster analysis of capillary electrophoresis-TBP data provided good separation for the remaining species, although the relationship between L. minor and Lemna japonica was not fully resolved. However, an accurate comparison of TBP profiles provided evidence for the unexpected existence of intraspecific hybrids between Lemna turionifera and L. minor, as further confirmed by amplified fragment length polymorphism and sequence analysis of a specific β-tubulin locus. Such hybrids could possibly correspond to L. japonica, as originally suggested by E. Landolt. The discovery of interspecific hybrids opens a new perspective to understand the speciation mechanisms in the family of duckweeds.
Collapse
Affiliation(s)
- Luca Braglia
- Institute of Agricultural Biology and Biotechnology, National Research Council, Milan, Italy
| | - Massimiliano Lauria
- Institute of Agricultural Biology and Biotechnology, National Research Council, Milan, Italy
| | - Klaus J. Appenroth
- Institute of Plant Physiology, Friedrich Schiller University Jena, Jena, Germany
| | - Manuela Bog
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Diego Breviario
- Institute of Agricultural Biology and Biotechnology, National Research Council, Milan, Italy
| | - Aldo Grasso
- Institute of Agricultural Biology and Biotechnology, National Research Council, Milan, Italy
| | - Floriana Gavazzi
- Institute of Agricultural Biology and Biotechnology, National Research Council, Milan, Italy
| | - Laura Morello
- Institute of Agricultural Biology and Biotechnology, National Research Council, Milan, Italy
- *Correspondence: Laura Morello,
| |
Collapse
|
12
|
Hoang PTN, Fiebig A, Novák P, Macas J, Cao HX, Stepanenko A, Chen G, Borisjuk N, Scholz U, Schubert I. Chromosome-scale genome assembly for the duckweed Spirodela intermedia, integrating cytogenetic maps, PacBio and Oxford Nanopore libraries. Sci Rep 2020; 10:19230. [PMID: 33154426 PMCID: PMC7645714 DOI: 10.1038/s41598-020-75728-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022] Open
Abstract
Duckweeds are small, free-floating, morphologically highly reduced organisms belonging to the monocot order Alismatales. They display the most rapid growth among flowering plants, vary ~ 14-fold in genome size and comprise five genera. Spirodela is the phylogenetically oldest genus with only two mainly asexually propagating species: S. polyrhiza (2n = 40; 160 Mbp/1C) and S. intermedia (2n = 36; 160 Mbp/1C). This study combined comparative cytogenetics and de novo genome assembly based on PacBio, Illumina and Oxford Nanopore (ON) reads to obtain the first genome reference for S. intermedia and to compare its genomic features with those of the sister species S. polyrhiza. Both species' genomes revealed little more than 20,000 putative protein-coding genes, very low rDNA copy numbers and a low amount of repetitive sequences, mainly Ty3/gypsy retroelements. The detection of a few new small chromosome rearrangements between both Spirodela species refined the karyotype and the chromosomal sequence assignment for S. intermedia.
Collapse
Affiliation(s)
- Phuong T N Hoang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany
- Biology Faculty, Dalat University, District 8, Dalat City, Lamdong Province, Vietnam
| | - Anne Fiebig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany
| | - Petr Novák
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, 37005, Czech Republic
| | - Jiří Macas
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, 37005, Czech Republic
| | - Hieu X Cao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, 06120, Halle, Germany
| | - Anton Stepanenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Guimin Chen
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany.
| |
Collapse
|
13
|
Tiny Plants with Enormous Potential: Phylogeny and Evolution of Duckweeds. THE DUCKWEED GENOMES 2020. [DOI: 10.1007/978-3-030-11045-1_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Bog M, Xu S, Himmelbach A, Brandt R, Wagner F, Appenroth KJ, Sree KS. Genotyping-by-Sequencing for Species Delimitation in Lemna Section Uninerves Hegelm. (Lemnaceae). THE DUCKWEED GENOMES 2020. [DOI: 10.1007/978-3-030-11045-1_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
|
16
|
Bog M, Appenroth KJ, Sree KS. Duckweed (Lemnaceae): Its Molecular Taxonomy. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Ho EKH, Bartkowska M, Wright SI, Agrawal AF. Population genomics of the facultatively asexual duckweed Spirodela polyrhiza. THE NEW PHYTOLOGIST 2019; 224:1361-1371. [PMID: 31298732 DOI: 10.1111/nph.16056] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
Clonal propagation allows some plant species to achieve massive population sizes quickly but also reduces the evolutionary independence of different sites in the genome. We examine genome-wide genetic diversity in Spirodela polyrhiza, a duckweed that reproduces primarily asexually. We find that this geographically widespread and numerically abundant species has very low levels of genetic diversity. Diversity at nonsynonymous sites relative to synonymous sites is high, suggesting that purifying selection is weak. A potential explanation for this observation is that a very low frequency of sex renders selection ineffective. However, there is a pronounced decay in linkage disequilibrium over 40 kb, suggesting that though sex may be rare at the individual level it is not too infrequent at the population level. In addition, neutral diversity is affected by the physical proximity of selected sites, which would be unexpected if sex was exceedingly rare at the population level. The amount of genetic mixing as assessed by the decay in linkage disequilibrium is not dissimilar from selfing species such as Arabidopsis thaliana, yet selection appears to be much less effective in duckweed. We discuss alternative explanations for the signature of weak purifying selection.
Collapse
Affiliation(s)
- Eddie K H Ho
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Magdalena Bartkowska
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
- Center for Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Aneil F Agrawal
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
- Center for Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
18
|
Ekperusi AO, Sikoki FD, Nwachukwu EO. Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: State and future perspective. CHEMOSPHERE 2019; 223:285-309. [PMID: 30784736 DOI: 10.1016/j.chemosphere.2019.02.025] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 05/18/2023]
Abstract
Over the past 50 years, different strategies have been developed for the remediation of polluted air, land and water. Driven by public opinion and regulatory bottlenecks, ecological based strategies are preferable than conventional methods in the treatments of chemical effluents. Ecological systems with the application of microbes, fungi, earthworms, plants, enzymes, electrode and nanoparticles have been applied to varying degrees in different media for the remediation of various categories of pollutants. Aquatic macrophytes have been used extensively for the remediation of pollutants in wastewater effluents and aquatic environment over the past 30 years with the common duckweed (L. minor) as one of the most effective macrophytes that have been applied for remediation studies. Duckweed has shown strong potentials for the phytoremediation of organic pollutants, heavy metals, agrochemicals, pharmaceuticals and personal care products, radioactive waste, nanomaterials, petroleum hydrocarbons, dyes, toxins, and related pollutants. This review covers the state of duckweed application for the remediation of diverse aquatic pollutants and identifies gaps that are necessary for further studies as we find pragmatic and sound ecological solutions for the remediation of polluted environment for sustainable development.
Collapse
Affiliation(s)
- Abraham O Ekperusi
- World Bank Africa Centre of Excellence, Centre for Oilfield Chemicals Research, Institute of Petroleum Studies, University of Port Harcourt, Choba, Rivers State, Nigeria; Department of Marine Environment & Pollution Control, Faculty of Marine Environmental Management, Nigeria Maritime University, Okerenkoko, Delta State, Nigeria.
| | - Francis D Sikoki
- Department of Animal & Environmental Biology, Faculty of Science, University of Port Harcourt, Choba, Rivers State, Nigeria
| | - Eunice O Nwachukwu
- Department of Plant Science & Biotechnology, Faculty of Science, University of Port Harcourt, Choba, Rivers State, Nigeria
| |
Collapse
|
19
|
Hoang PTN, Schubert V, Meister A, Fuchs J, Schubert I. Variation in genome size, cell and nucleus volume, chromosome number and rDNA loci among duckweeds. Sci Rep 2019; 9:3234. [PMID: 30824726 PMCID: PMC6397220 DOI: 10.1038/s41598-019-39332-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/18/2019] [Indexed: 12/01/2022] Open
Abstract
Duckweeds are small, free-floating, largely asexual and highly neotenous organisms. They display the most rapid growth among flowering plants and are of growing interest in aquaculture and genome biology. Genomic and chromosomal data are still rare. Applying flow-cytometric genome size measurement, microscopic determination of frond, cell and nucleus morphology, as well as fluorescence in situ hybridization (FISH) for localization of ribosomal DNA (rDNA), we compared eleven species, representative for the five duckweed genera to search for potential correlations between genome size, cell and nuclei volume, simplified body architecture (neoteny), chromosome numbers and rDNA loci. We found a ~14-fold genome size variation (from 160 to 2203 Mbp), considerable differences in frond size and shape, highly variable guard cell and nucleus size, chromosome number (from 2n = 36 to 82) and number of 5S and 45S rDNA loci. In general, genome size is positively correlated with guard cell and nucleus volume (p < 0.001) and with the neoteny level and inversely with the frond size. In individual cases these correlations could be blurred for instance by particular body and cell structures which seem to be linked to specific floating styles. Chromosome number and rDNA loci variation between the tested species was independent of the genome size. We could not confirm previously reported intraspecific variation of chromosome numbers between individual clones of the genera Spirodela and Landoltia.
Collapse
Affiliation(s)
- Phuong T N Hoang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466, Seeland, Germany.,Dalat University, Lamdong Province, Vietnam
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466, Seeland, Germany
| | - Armin Meister
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466, Seeland, Germany
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466, Seeland, Germany
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466, Seeland, Germany.
| |
Collapse
|
20
|
Chu P, Wilson GM, Michael TP, Vaiciunas J, Honig J, Lam E. Sequence-guided approach to genotyping plant clones and species using polymorphic NB-ARC-related genes. PLANT MOLECULAR BIOLOGY 2018; 98:219-231. [PMID: 30191440 DOI: 10.1007/s11103-018-0774-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/23/2018] [Indexed: 05/13/2023]
Abstract
Leveraging the heightened levels of polymorphism in NB-ARC-related protein encoding genes in higher plants, a bioinformatic pipeline was created to identify regions in this gene family from sequenced plant genomes that exhibit fragment length or single nucleotide differences in different accessions of the same species. Testing this approach with the aquatic plant Spirodela polyrhiza demonstrated its superior performance in comparison with currently available genotyping technologies based on PCR amplification. Rapid and economical genotyping tools that can reliably distinguish species and intraspecific variations in plants can be powerful tools for biogeographical and ecological studies. Clones of the cosmopolitan duckweed species, Spirodela polyrhiza, are difficult to distinguish morphologically due to their highly abbreviated architecture and inherently low levels of sequence variation. The use of plastidic markers and generic Amplification Fragment Length Polymorphism approaches have met with limited success in resolving clones of S. polyrhiza from diverse geographical locales. Using whole genome sequencing data from nine S. polyrhiza clones as a training set, we created an informatic pipeline to identify and rank polymorphic regions from nuclear-encoded NB-ARC-related genes to design markers for PCR, Sanger sequencing (barcoding), and fragment length analysis. With seven primer sets, we found 21 unique fingerprints from a set of 23 S. polyrhiza clones. However, three of these clones share the same fingerprint and are indistinguishable by these markers. These primer sets can also be used as interspecific barcoding tools to rapidly resolve S. polyrhiza from the closely related S. intermedia species without the need for DNA sequencing. Our work demonstrates a general approach of using hyper-polymorphic loci within genomes as a resource to produce facile tools that can have high resolving power for genotyping applications.
Collapse
Affiliation(s)
- Philomena Chu
- Department of Plant Biology, Rutgers University, 59 Dudley Rd., New Brunswick, NJ, 08901-8520, USA
| | - Glen M Wilson
- Department of Mathematics, University of Oslo, Postboks 1053, 0316 OSLO, Blindern, Norway
| | | | - Jennifer Vaiciunas
- Department of Plant Biology, Rutgers University, 59 Dudley Rd., New Brunswick, NJ, 08901-8520, USA
| | - Joshua Honig
- Department of Plant Biology, Rutgers University, 59 Dudley Rd., New Brunswick, NJ, 08901-8520, USA
| | - Eric Lam
- Department of Plant Biology, Rutgers University, 59 Dudley Rd., New Brunswick, NJ, 08901-8520, USA.
| |
Collapse
|
21
|
Yang J, Li G, Bishopp A, Heenatigala PPM, Hu S, Chen Y, Wu Z, Kumar S, Duan P, Yao L, Hou H. A Comparison of Growth on Mercuric Chloride for Three Lemnaceae Species Reveals Differences in Growth Dynamics That Effect Their Suitability for Use in Either Monitoring or Remediating Ecosystems Contaminated With Mercury. Front Chem 2018; 6:112. [PMID: 29713627 PMCID: PMC5911492 DOI: 10.3389/fchem.2018.00112] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/26/2018] [Indexed: 11/13/2022] Open
Abstract
Mercury (Hg) is a toxic heavy metal that can alter the ecological balance when it contaminates aquatic ecosystems. Previously, researchers have used various Lemnaceae species either to monitor and/or remove heavy metals from freshwater systems. As Hg contamination is a pressing issue for aquatic systems worldwide, we assessed its impact on the growth of three commonly species of Lemnaceae- Lemna gibba 6745, Lemna minor 6580 and Spirodela polyrhiza 5543. We exposed plants to different concentrations of mercuric chloride (HgCl2) and monitored their growth, including relative growth rate, frond number (FN), and fresh weight (FW). These data were coupled with measurements of starch content, levels of photosynthetic pigment and the activities of antioxidant substances. The growth of all three lines showed significant negative correlations with Hg concentrations, and starch content, photosynthetic pigment, soluble protein and antioxidant enzymes levels were all clearly affected. Our results indicate that the L. gibba line used in this study was the most suitable of the three for biomonitoring of water contaminated with Hg. Accumulation of Hg was highest in the S. polyrhiza line with a bioconcentration factor over 1,000, making this line the most suitable of the three tested for use in an Hg bioremediation system.
Collapse
Affiliation(s)
- Jingjing Yang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, China
| | - Gaojie Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, China
| | - Anthony Bishopp
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham, United Kingdom
| | - P P M Heenatigala
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, China
| | - Shiqi Hu
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, China
| | - Yan Chen
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, China
| | - Zhigang Wu
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, China
| | - Sunjeet Kumar
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, China
| | - Pengfei Duan
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project, College of Agricultural Engineering, Nanyang Normal University, Henan, China
| | - Lunguang Yao
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project, College of Agricultural Engineering, Nanyang Normal University, Henan, China
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
22
|
Flower induction, microscope-aided cross-pollination, and seed production in the duckweed Lemna gibba with discovery of a male-sterile clone. Sci Rep 2017; 7:3047. [PMID: 28596580 PMCID: PMC5465175 DOI: 10.1038/s41598-017-03240-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/25/2017] [Indexed: 11/30/2022] Open
Abstract
Duckweed species have a great potential to develop into fast-growing crops for water remediation and bioenergy production. Seed production and utilization of hybrid vigour are essential steps in this process. However, even in the extensively-studied duckweed species, Lemna gibba, flower primordia were often aborted prior to maturation. Salicylic acid (SA) and agar solidification of the medium promoted flower maturation and resulted in high flowering rates in L. gibba 7741 and 5504. Artificial cross-pollination between individuals of L. gibba 7741 yielded seeds at high frequencies unlike that in L. gibba 5504. In contrast to clone 7741, the anthers of 5504 did not dehisce upon maturation, its artificially released pollen grains had pineapple-like exine with tilted spines. These pollens were not stained by 2,5-diphenylmonotetrazoliumbromide (MTT) and failed to germinate. Therefore, clone 5504 is male sterile and has potential application with respect to hybrid vigour. Moreover, pollination of flowers of 5504 with 7741 pollen grains resulted in intraspecific hybrid seeds, which was confirmed by inter-simple sequence repeat (ISSR) markers. These hybrid seeds germinated at a high frequency, forming new clones.
Collapse
|
23
|
Yu C, Zhao X, Qi G, Bai Z, Wang Y, Wang S, Ma Y, Liu Q, Hu R, Zhou G. Integrated analysis of transcriptome and metabolites reveals an essential role of metabolic flux in starch accumulation under nitrogen starvation in duckweed. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:167. [PMID: 28670341 PMCID: PMC5485579 DOI: 10.1186/s13068-017-0851-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/16/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND Duckweed is considered a promising source of energy due to its high starch content and rapid growth rate. Starch accumulation in duckweed involves complex processes that depend on the balanced expression of genes controlled by various environmental and endogenous factors. Previous studies showed that nitrogen starvation induces a global stress response and results in the accumulation of starch in duckweed. However, relatively little is known about the mechanisms underlying the regulation of starch accumulation under conditions of nitrogen starvation. RESULTS In this study, we used next-generation sequencing technology to examine the transcriptome responses of Lemna aequinoctialis 6000 at three stages (0, 3, and 7 days) during nitrogen starvation in the presence of exogenously applied sucrose. Overall, 2522, 628, and 1832 differentially expressed unigenes (DEGs) were discovered for the treated and control samples. Clustering and enrichment analysis of DEGs revealed several biological processes occurring under nitrogen starvation. Genes involved in nitrogen metabolism showed the earliest responses to nitrogen starvation, whereas genes involved in carbohydrate biosynthesis were responded subsequently. The expression of genes encoding nitrate reductase, glutamine synthetase, and glutamate synthase was down-regulated under nitrogen starvation. The expression of unigenes encoding enzymes involved in gluconeogenesis was up-regulated, while the majority of unigenes involved in glycolysis were down-regulated. The metabolite results showed that more ADP-Glc was accumulated and lower levels of UDP-Glc were accumulated under nitrogen starvation, the activity of AGPase was significantly increased while the activity of UGPase was dramatically decreased. These changes in metabolite levels under nitrogen starvation are roughly consistent with the gene expression changes in the transcriptome. CONCLUSIONS Based on these results, it can be concluded that the increase of ADP-glucose and starch contents under nitrogen starvation is a consequence of increased output from the gluconeogenesis and TCA pathways, accompanied with the reduction of lipids and pectin biosynthesis. The results provide novel insights into the underlying mechanisms of starch accumulation during nitrogen starvation, which provide a foundation for the improvement of advanced bioethanol production in duckweed.
Collapse
Affiliation(s)
- Changjiang Yu
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Xiaowen Zhao
- College of Life Sciences, China Agricultural University, Beijing, 100094 People’s Republic of China
| | - Guang Qi
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 People’s Republic of China
| | - Zetao Bai
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 People’s Republic of China
| | - Yu Wang
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 People’s Republic of China
| | - Shumin Wang
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 People’s Republic of China
| | - Yubin Ma
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 People’s Republic of China
| | - Qian Liu
- Guangzhou Genedenovo Biotechnology Co., Ltd, Guangzhou, 510006 China
| | - Ruibo Hu
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 People’s Republic of China
| | - Gongke Zhou
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 People’s Republic of China
| |
Collapse
|
24
|
Van Hoeck A, Horemans N, Monsieurs P, Cao HX, Vandenhove H, Blust R. The first draft genome of the aquatic model plant Lemna minor opens the route for future stress physiology research and biotechnological applications. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:188. [PMID: 26609323 PMCID: PMC4659200 DOI: 10.1186/s13068-015-0381-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/10/2015] [Indexed: 05/21/2023]
Abstract
BACKGROUND Freshwater duckweed, comprising the smallest, fastest growing and simplest macrophytes has various applications in agriculture, phytoremediation and energy production. Lemna minor, the so-called common duckweed, is a model system of these aquatic plants for ecotoxicological bioassays, genetic transformation tools and industrial applications. Given the ecotoxic relevance and high potential for biomass production, whole-genome information of this cosmopolitan duckweed is needed. RESULTS The 472 Mbp assembly of the L. minor genome (2n = 40; estimated 481 Mbp; 98.1 %) contains 22,382 protein-coding genes and 61.5 % repetitive sequences. The repeat content explains 94.5 % of the genome size difference in comparison with the greater duckweed, Spirodela polyrhiza (2n = 40; 158 Mbp; 19,623 protein-coding genes; and 15.79 % repetitive sequences). Comparison of proteins from other monocot plants, protein ortholog identification, OrthoMCL, suggests 1356 duckweed-specific groups (3367 proteins, 15.0 % total L. minor proteins) and 795 Lemna-specific groups (2897 proteins, 12.9 % total L. minor proteins). Interestingly, proteins involved in biosynthetic processes in response to various stimuli and hydrolase activities are enriched in the Lemna proteome in comparison with the Spirodela proteome. CONCLUSIONS The genome sequence and annotation of L. minor protein-coding genes provide new insights in biological understanding and biomass production applications of Lemna species.
Collapse
Affiliation(s)
- Arne Van Hoeck
- />Biosphere Impact Studies, SCK•CEN, Boeretang 200, 2400 Mol, Belgium
- />Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Nele Horemans
- />Biosphere Impact Studies, SCK•CEN, Boeretang 200, 2400 Mol, Belgium
- />Centre for Environmental Research, University of Hasselt, Universiteitslaan 1, 3590 Diepenbeek, Belgium
| | | | - Hieu Xuan Cao
- />Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstrasse 3, 06466 Stadt Seeland, Germany
| | | | - Ronny Blust
- />Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
25
|
Appenroth KJ, Crawford DJ, Les DH. After the genome sequencing of duckweed - how to proceed with research on the fastest growing angiosperm? PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17 Suppl 1:1-4. [PMID: 25571946 DOI: 10.1111/plb.12248] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- K-J Appenroth
- Institute of Plant Physiology, Friedrich Schiller University, Dornburger Str. 159, 07743, Jena, Germany.
| | | | | |
Collapse
|
26
|
Wang W, Messing J. Status of duckweed genomics and transcriptomics. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17 Suppl 1:10-5. [PMID: 24995947 DOI: 10.1111/plb.12201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 03/28/2014] [Indexed: 05/06/2023]
Abstract
Duckweeds belong to the smallest flowering plants that undergo fast vegetative growth in an aquatic environment. They are commonly used in wastewater treatment and animal feed. Whereas duckweeds have been studied at the biochemical level, their reduced morphology and wide environmental adaption had not been subjected to molecular analysis until recently. Here, we review the progress that has been made in using a DNA barcode system and the sequences of chloroplast and mitochondrial genomes to identify duckweed species at the species or population level. We also review analysis of the nuclear genome sequence of Spirodela that provides new insights into fundamental biological questions. Indeed, reduced gene families and missing genes are consistent with its compact morphogenesis, aquatic floating and suppression of juvenile-to-adult transition. Furthermore, deep RNA sequencing of Spirodela at the onset of dormancy and Landoltia in exposure of nutrient deficiency illustrate the molecular network for environmental adaption and stress response, constituting major progress towards a post-genome sequencing phase, where further functional genomic details can be explored. Rapid advances in sequencing technologies could continue to promote a proliferation of genome sequences for additional ecotypes as well as for other duckweed species.
Collapse
Affiliation(s)
- W Wang
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | | |
Collapse
|
27
|
Tippery NP, Les DH, Crawford DJ. Evaluation of phylogenetic relationships in Lemnaceae using nuclear ribosomal data. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17 Suppl 1:50-8. [PMID: 24942778 DOI: 10.1111/plb.12203] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/04/2014] [Indexed: 05/13/2023]
Abstract
Nuclear DNA sequence data are essential for obtaining a complete understanding of plant species relationships, yet these data have been conspicuously absent from phylogenetic analyses of Lemnaceae (duckweeds). Using a modified Sanger sequencing protocol, we obtained DNA sequences of duckweed nuclear ribosomal regions, including 18S and 26S rDNA genes, the external transcribed spacer (ETS) and the frequently used internal transcribed spacer (ITS). After obtaining sequence data for all Lemnaceae species, we ascertained that prior difficulty in sequencing the ITS regions likely resulted from extremely rigid secondary structures, precipitated by a high proportion of G/C nucleotides. In phylogenetic analyses, nuclear ribosomal data largely supported relationships that had been inferred using chloroplast DNA sequence data.
Collapse
Affiliation(s)
- N P Tippery
- Department of Biological Sciences, University of Wisconsin - Whitewater, Whitewater, WI, USA
| | | | | |
Collapse
|
28
|
Borisjuk N, Chu P, Gutierrez R, Zhang H, Acosta K, Friesen N, Sree KS, Garcia C, Appenroth KJ, Lam E. Assessment, validation and deployment strategy of a two-barcode protocol for facile genotyping of duckweed species. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17 Suppl 1:42-9. [PMID: 25115915 DOI: 10.1111/plb.12229] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/01/2014] [Indexed: 05/13/2023]
Abstract
Lemnaceae, commonly called duckweeds, comprise a diverse group of floating aquatic plants that have previously been classified into 37 species based on morphological and physiological criteria. In addition to their unique evolutionary position among angiosperms and their applications in biomonitoring, the potential of duckweeds as a novel sustainable crop for fuel and feed has recently increased interest in the study of their biodiversity and systematics. However, due to their small size and abbreviated structure, accurate typing of duckweeds based on morphology can be challenging. In the past decade, attempts to employ molecular barcoding techniques for species assignment have produced promising results; however, they have yet to be codified into a simple and quantitative protocol. A study that compiles and compares the barcode sequences within all known species of this family would help to establish the fidelity and limits of this DNA-based approach. In this work, we compared the level of conservation between over 100 strains of duckweed for two intergenic barcode sequences derived from the plastid genome. By using over 300 sequences publicly available in the NCBI database, we determined the utility of each of these two barcodes for duckweed species identification. Through sequencing of these barcodes from additional accessions, 30 of the 37 known species of duckweed could be identified with varying levels of confidence using this approach. From our analyses using this reference dataset, we also confirmed two instances where mis-assignment of species has likely occurred. Potential strategies for further improving the scope of this technology are discussed.
Collapse
Affiliation(s)
- N Borisjuk
- Department of Plant Biology & Pathology, The Rutgers Duckweed Stock Cooperative, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Through thick and thin: cryptic sympatric speciation in the submersed genus Najas (Hydrocharitaceae). Mol Phylogenet Evol 2014; 82 Pt A:15-30. [PMID: 25300454 DOI: 10.1016/j.ympev.2014.09.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 09/12/2014] [Accepted: 09/22/2014] [Indexed: 11/22/2022]
Abstract
Cryptic sympatric species arise when reproductive isolation is established in sympatry, leading to genetically divergent lineages that are highly similar morphologically or virtually indistinguishable. Although cryptic sympatric species have been reported in various animals, fungi, and protists, there are few compelling examples for plants. This investigation presents a case for cryptic sympatric speciation in Najas flexilis, a widespread aquatic plant, which extends throughout northern North America and Eurasia. The taxon is noted for its variable seed morphology, which earlier research associated with cytotypes; i.e., diploids were characterized by thicker seeds and tetraploids by thinner seeds. However, cytotypes are not patterned geographically with diploid and tetraploid plants often found in close proximity within the same lake. Using digital image and DNA sequence analyses, we found that diploids and tetraploids are well-isolated and remain genetically distinct throughout their sympatric range, where sterile hybrids occur frequently. Incorporation of sequence data from the single-copy nuclear phytoene desaturase locus revealed further that the tetraploids are allopolyploid derivatives of N. flexilis and N. guadalupensis, the latter a closely related species with an overlapping distribution. We conclude that the taxon widely known as N. flexilis actually comprises two cryptic, sibling species, which diverged in sympatry by interspecific hybridization and subsequent chromosomal isolation. By comparing seed morphology of type specimens, we associated the names N. flexilis and N. canadensis to the diploids and tetraploids respectively. Additionally, the narrowly restricted taxon known formerly as N. muenscheri is shown via morphological and genetic evidence to be synonymous with N. canadensis.
Collapse
|
30
|
Tang J, Zhang F, Cui W, Ma J. Genetic structure of duckweed population of Spirodela, Landoltia and Lemna from Lake Tai, China. PLANTA 2014; 239:1299-1307. [PMID: 24663442 DOI: 10.1007/s00425-014-2053-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/04/2014] [Indexed: 06/03/2023]
Abstract
Duckweed is widely used in environmental biotechnology and has recently emerged as a potential feedstock for biofuels due to its high growth rate and starch content. The genetic diversity and composition of a natural duckweed population in genera Spirodela, Landoltia and Lemna from Lake Tai, China, were investigated using probabilistic analysis of multilocus sequence typing (MLST). The 78 strains were categorized into five lineages, among which strains representing L. aequinoctialis and S. polyrhiza were predominant. Among the five lineages, interlineage transfers of markers were infrequent and no recombination was statistically detected. Tajima's D tests determined that all loci are subject to population bottlenecks, which is likely one of the main reasons for the low genetic diversity observed within the lineages. Interestingly, strains of L. turionifera are found to contain small admixture from L. minor, providing rare evidence of transfer of genetic materials in duckweed. This was discussed with respect to the hypothesis that a cross of these two gave rise to L. japonica. Moreover, the conventional maximum-likelihood phylogenetic analysis clearly recognized all the species in the three genera with high bootstrap supports. In conclusion, this work offers a basic framework for using MLST to characterize Spirodela, Landoltia and in particular Lemna strains at the species level, and to study population genetics and evolution history of natural duckweed populations.
Collapse
Affiliation(s)
- Jie Tang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | | | | | | |
Collapse
|
31
|
Tao X, Fang Y, Xiao Y, Jin YL, Ma XR, Zhao Y, He KZ, Zhao H, Wang HY. Comparative transcriptome analysis to investigate the high starch accumulation of duckweed (Landoltia punctata) under nutrient starvation. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:72. [PMID: 23651472 PMCID: PMC3654882 DOI: 10.1186/1754-6834-6-72] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/01/2013] [Indexed: 05/10/2023]
Abstract
BACKGROUND Duckweed can thrive on anthropogenic wastewater and produce tremendous biomass production. Due to its relatively high starch and low lignin percentage, duckweed is a good candidate for bioethanol fermentation. Previous studies have observed that water devoid of nutrients is good for starch accumulation, but its molecular mechanism remains unrevealed. RESULTS This study globally analyzed the response to nutrient starvation in order to investigate the starch accumulation in duckweed (Landoltia punctata). L. punctata was transferred from nutrient-rich solution to distilled water and sampled at different time points. Physiological measurements demonstrated that the activity of ADP-glucose pyrophosphorylase, the key enzyme of starch synthesis, as well as the starch percentage in duckweed, increased continuously under nutrient starvation. Samples collected at 0 h, 2 h and 24 h time points respectively were used for comparative gene expression analysis using RNA-Seq. A comprehensive transcriptome, comprising of 74,797 contigs, was constructed by a de novo assembly of the RNA-Seq reads. Gene expression profiling results showed that the expression of some transcripts encoding key enzymes involved in starch biosynthesis was up-regulated, while the expression of transcripts encoding enzymes involved in starch consumption were down-regulated, the expression of some photosynthesis-related transcripts were down-regulated during the first 24 h, and the expression of some transporter transcripts were up-regulated within the first 2 h. Very interestingly, most transcripts encoding key enzymes involved in flavonoid biosynthesis were highly expressed regardless of starvation, while transcripts encoding laccase, the last rate-limiting enzyme of lignifications, exhibited very low expression abundance in all three samples. CONCLUSION Our study provides a comprehensive expression profiling of L. punctata under nutrient starvation, which indicates that nutrient starvation down-regulated the global metabolic status, redirects metabolic flux of fixed CO2 into starch synthesis branch resulting in starch accumulation in L. punctata.
Collapse
Affiliation(s)
- Xiang Tao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China
- College of Life Sciences, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Yang Fang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China
| | - Yao Xiao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China
| | - Yan-ling Jin
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China
| | - Xin-rong Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China
| | - Yun Zhao
- College of Life Sciences, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Kai-ze He
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China
| | - Hai Zhao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China
| | - Hai-yan Wang
- College of Life Sciences, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Sichuan University, Chengdu, Sichuan, 610064, China
| |
Collapse
|
32
|
Bog M, Schneider P, Hellwig F, Sachse S, Kochieva EZ, Martyrosian E, Landolt E, Appenroth KJ. Genetic characterization and barcoding of taxa in the genus Wolffia Horkel ex Schleid. (Lemnaceae) as revealed by two plastidic markers and amplified fragment length polymorphism (AFLP). PLANTA 2013; 237:1-13. [PMID: 23053544 DOI: 10.1007/s00425-012-1777-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 09/14/2012] [Indexed: 05/11/2023]
Abstract
The genus Wolffia of the duckweed family (Lemnaceae) contains the smallest flowering plants. Presently, 11 species are recognized and categorized mainly on the basis of morphology. Because of extreme reduction of structure of all species, molecular methods are especially required for barcoding and identification of species and clones of this genus. We applied AFLP combined with Bayesian analysis of population structure to 66 clones covering all 11 species. Nine clusters were identified: (1) W. angusta and W. microscopica (only one clone), (2) W. arrhiza, (3) W. cylindracea (except one clone that might be a transition form), (4) W. australiana, (5) W. globosa, (6) W. globosa, W. neglecta, and W. borealis, (7) W. brasiliensis, and W. columbiana, (8) W. columbiana, (9) W. elongata. Furthermore, we investigated the sequences of plastidic regions rps16 (54 clones) and rpl16 (55 clones), and identified the following species: W. angusta, W. australiana, W. brasiliensis, W. cylindracea, W. elongata, W. microscopica, and W. neglecta. Wolffia globosa has been separated into two groups by both methods. One group which consists only of clones from North America and East Asia was labelled here "typical W. globosa". The other group of W. globosa, termed operationally "W. neglecta", contains also clones of W. neglecta and shows high similarity to W. borealis. None of the methods recognized W. borealis as a distinct species. Although each clone could be characterized individually by AFLP and plastidic sequences, and most species could be bar-coded, the presently available data are not sufficient to identify all taxa of Wolffia.
Collapse
Affiliation(s)
- Manuela Bog
- Institute of Plant Physiology, University of Jena, Dornburger Str. 159, 07743 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Zhao H, Appenroth K, Landesman L, Salmeán AA, Lam E. Duckweed rising at Chengdu: summary of the 1st International Conference on Duckweed Application and Research. PLANT MOLECULAR BIOLOGY 2012; 78:627-32. [PMID: 22318677 DOI: 10.1007/s11103-012-9889-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 01/19/2012] [Indexed: 05/11/2023]
Abstract
Duckweeds, plants of the Lemnaceae family, have the distinction of being the smallest angiosperms in the world with the fastest doubling time. Together with its naturally ability to thrive on abundant anthropogenic wastewater, these plants hold tremendous potential to helping solve critical water, climate and fuel issues facing our planet this century. With the conviction that rapid deployment and optimization of the duckweed platform for biomass production will depend on close integration between basic and applied research of these aquatic plants, the first International Conference on Duckweed Research and Applications (ICDRA) was organized and took place in Chengdu, China, from October 7th to 10th of 2011. Co-organized with Rutgers University of New Jersey (USA), this Conference attracted participants from Germany, Denmark, Japan, Australia, in addition to those from the US and China. The following are concise summaries of the various oral presentations and final discussions over the 2.5 day conference that serve to highlight current research interests and applied research that are paving the way for the imminent deployment of this novel aquatic crop. We believe the sharing of this information with the broad Plant Biology community is an important step toward the renaissance of this excellent plant model that will have important impact on our quest for sustainable development of the world.
Collapse
Affiliation(s)
- Hai Zhao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.
| | | | | | | | | |
Collapse
|
35
|
Topp C, Henke R, Keresztes A, Fischer W, Eberius M, Appenroth KJ. A novel mechanism of abscission in fronds of Lemna minor L. and the effect of silver ions. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:517-523. [PMID: 21489103 DOI: 10.1111/j.1438-8677.2010.00394.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Lemna minor L. (duckweed) forms colonies through vegetative propagation because mother fronds remain connected for some time with their daughter fronds by stipes. The colony size is controlled by abscission of stipes at a specific preformed abscission zone. Application of silver ions (Ag(+) ) enhances the rate of frond abscission, thus resulting in smaller colonies. The mechanism behind this process has not yet been identified. Silver caused an abscission response that saturated after 7 h of treatment. The half-maximal effective concentration was 0.72 μm Ag(+) for the standard clone, L. minor St. Other clones of the same species show sensitivities that differ by one order of magnitude. Transmission electron microscopy revealed: (i) large numbers of vesicles close to the plasmalemma in cells adjacent to the abscission zone, which proves a vesicular type secretory activity; and (ii) a moderately electron-dense secretion accumulated in the enlarging intercellular spaces, and seemed to flow from the adjacent cells towards the abscission zone. We assume that increasing pressure causes this material to push apart the cells, thereby causing the break in the abscission zone of the stipe. This is a novel mechanism of abscission that has not previously been described. The same mechanism occurs in stipes of both control and Ag(+) -treated samples. Silver ions only accelerate the process leading to abscission of stipes, without affecting the mechanism involved.
Collapse
Affiliation(s)
- C Topp
- University of Jena, Institute of General Botany and Plant Physiology, Jena, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Chhabra G, Chaudhary D, Sainger M, Jaiwal PK. Genetic transformation of Indian isolate of Lemna minor mediated by Agrobacterium tumefaciens and recovery of transgenic plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2011; 17:129-36. [PMID: 23573002 PMCID: PMC3550542 DOI: 10.1007/s12298-011-0059-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Transgenic plants of an Indian isolate of Lemna minor have been developed for the first time using Agrobacterium tumefaciens and hard nodular cell masses 'nodular calli' developed on the BAP - pretreated daughter frond explants in B5 medium containing sucrose (1.0 %) with 2,4-D (5.0 μM) and 2-iP (50.0 μM) or 2,4-D (50.0 μM) and TDZ (5.0 μM) under light conditions. These calli were co-cultured with A. tumefaciens strain EHA105 harboring a binary vector that contained genes for β-glucuronidase with intron and neomycin phosphortransferase. Transformed cells selected on kanamycin selection medium were regenerated into fronds whose transgenic nature was confirmed by histochemical assay for GUS activity, PCR analysis and Southern hybridization. The frequency of transformation obtained was 3.8 % and a period of 11-13 weeks was required from initiation of cultures from explants to fully grown transgenic fronds. The pretreatment of daughter fronds with BAP, use of non-ionic surfactant, presence of acetosyringone in co-cultivation medium, co-culture duration of 3 d and 16 h photoperiod during culture were found crucial for callus induction, frond regeneration and transformation of L. minor. This transformation system can be used for the production of pharmaceutically important protein and in bioremediation.
Collapse
Affiliation(s)
- Gulshan Chhabra
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001 India
| | - Darshna Chaudhary
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001 India
| | - Manish Sainger
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001 India
| | - Pawan K. Jaiwal
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001 India
| |
Collapse
|
37
|
Henke R, Eberius M, Appenroth KJ. Induction of frond abscission by metals and other toxic compounds in Lemna minor. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 101:261-265. [PMID: 21093934 DOI: 10.1016/j.aquatox.2010.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 09/21/2010] [Accepted: 10/16/2010] [Indexed: 05/30/2023]
Abstract
Fronds of the duckweed Lemna minor L. clone St form colonies of different sizes on the basis of stipes connecting mother and daughter fronds for some time after the development of daughter fronds. All the metals (AsO(4)(3-), AsO(2)(-), Cd(2+), CrO(4)(2-), Co(2+), Cu(2+), Ni(2+), Hg(2+), Tl(+) and Zn(2+)) and one non-metal (SeO(4)(2-), SeO(3)(2-)) tested here induced frond abscission, thus decreasing the colony size on the basis of a novel mechanism of abscission described recently. Concentration-response curves were created based on percentages of frond abscission after 7 and 24h of toxic compound application, and response concentrations were calculated accordingly. The following conclusions could be drawn: (1) in most cases the response demonstrates less sensitivity than the bio test based on the ISO protocol 20079. (2) Even applying 1mM of the metals, AsO(4)(3-), CrO(4)(2-), Co(2+) and Zn(2+) did not reach the half-maximal effects. (3) The concentration-response curves are bell-shaped with AsO(2-), Cd(2+), Hg(2+), SeO(3)(2-) and Tl(+), which demonstrates that abscission is induced by lower but not by higher concentrations. (4) Frond abscission shows fast and sensitive effects (24h) for Ag(+), Cu(2+), AsO(2-), SeO(4)(2-), SeO(3)(2-) and Tl(+). The mechanisms and responses described here quantitatively for the first time complement and explain observations within the frame of the ISO protocol. Therefore, frond abscission should be regularly reported in the standard test protocols as abscission always indicates massive physiological effects.
Collapse
Affiliation(s)
- Rebekka Henke
- University of Jena, Institute of General Botany and Plant Physiology, Jena, Germany
| | | | | |
Collapse
|