1
|
Hou Z, Huang H, Wang Y, Chen L, Yue L, Liu B, Kong F, Yang H. Molecular Regulation of Shoot Architecture in Soybean. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39254042 DOI: 10.1111/pce.15138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Soybean (Glycine max [L.] Merr.) serves as a major source of protein and oil for humans and animals. Shoot architecture, the spatial arrangement of a plant's above-ground organs, strongly affects crop yield and is therefore a critical agronomic trait. Unlike wheat and rice crops that have greatly benefitted from the Green Revolution, soybean yield has not changed significantly in the past six decades owing to its unique shoot architecture. Soybean is a pod-bearing crop with pods adhered to the nodes, and variation in shoot architecture traits, such as plant height, node number, branch number and number of seeds per pod, directly affects the number of pods and seeds per plant, thereby determining yield. In this review, we summarize the relationship between soybean yield and these major components of shoot architecture. We also describe the latest advances in identifying the genes and molecular mechanisms underlying soybean shoot architecture and discuss possible directions and approaches for breeding new soybean varieties with ideal shoot architecture and improved yield.
Collapse
Affiliation(s)
- Zhihong Hou
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Huan Huang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yanan Wang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Liyu Chen
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Lin Yue
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Hui Yang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
2
|
Li J, Yang S, Wu Y, Wang R, Liu Y, Liu J, Ye Z, Tang R, Whiteway M, Lv Q, Yan L. Alternative Oxidase: From Molecule and Function to Future Inhibitors. ACS OMEGA 2024; 9:12478-12499. [PMID: 38524433 PMCID: PMC10955580 DOI: 10.1021/acsomega.3c09339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/26/2024]
Abstract
In the respiratory chain of the majority of aerobic organisms, the enzyme alternative oxidase (AOX) functions as the terminal oxidase and has important roles in maintaining metabolic and signaling homeostasis in mitochondria. AOX endows the respiratory system with flexibility in the coupling among the carbon metabolism pathway, electron transport chain (ETC) activity, and ATP turnover. AOX allows electrons to bypass the main cytochrome pathway to restrict the generation of reactive oxygen species (ROS). The inhibition of AOX leads to oxidative damage and contributes to the loss of adaptability and viability in some pathogenic organisms. Although AOXs have recently been identified in several organisms, crystal structures and major functions still need to be explored. Recent work on the trypanosome alternative oxidase has provided a crystal structure of an AOX protein, which contributes to the structure-activity relationship of the inhibitors of AOX. Here, we review the current knowledge on the development, structure, and properties of AOXs, as well as their roles and mechanisms in plants, animals, algae, protists, fungi, and bacteria, with a special emphasis on the development of AOX inhibitors, which will improve the understanding of respiratory regulation in many organisms and provide references for subsequent studies of AOX-targeted inhibitors.
Collapse
Affiliation(s)
- Jiye Li
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
- Institute
of Medicinal Biotechnology, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shiyun Yang
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yujie Wu
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Ruina Wang
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yu Liu
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Jiacun Liu
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Zi Ye
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Renjie Tang
- Beijing
South Medical District of Chinese PLA General Hospital, Beijing 100072, China
| | - Malcolm Whiteway
- Department
of Biology, Concordia University, Montreal, H4B 1R6 Quebec, Canada
| | - Quanzhen Lv
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
- Basic
Medicine Innovation Center for Fungal Infectious Diseases, (Naval Medical University), Ministry of Education, Shanghai 200433, China
- Key
Laboratory of Biosafety Defense (Naval Medical University), Ministry
of Education, Shanghai 200433, China
- Shanghai
Key Laboratory of Medical Biodefense, Shanghai 200433, China
| | - Lan Yan
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
- Basic
Medicine Innovation Center for Fungal Infectious Diseases, (Naval Medical University), Ministry of Education, Shanghai 200433, China
- Key
Laboratory of Biosafety Defense (Naval Medical University), Ministry
of Education, Shanghai 200433, China
- Shanghai
Key Laboratory of Medical Biodefense, Shanghai 200433, China
| |
Collapse
|
3
|
Porcher A, Guérin V, Macherel D, Lebrec A, Satour P, Lothier J, Vian A. High Expression of ALTERNATIVE OXIDASE 2 in Latent Axillary Buds Suggests Its Key Role in Quiescence Maintenance in Rosebush. PLANT & CELL PHYSIOLOGY 2023; 64:165-175. [PMID: 36287074 DOI: 10.1093/pcp/pcac153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Most vegetative axes remain quiescent as dormant axillary buds until metabolic and hormonal signals, driven by environmental changes, trigger bud outgrowth. While the resumption of growth activity is well documented, the establishment and maintenance of quiescence is comparatively poorly understood, despite its major importance in the adaptation of plants to the seasonal cycle or in the establishment of their shape. Here, using the rosebush Rosa hybrida 'Radrazz' as a plant model, we highlighted that the quiescent state was the consequence of an internal and active energy control of buds, under the influence of hormonal factors previously identified in the bud outgrowth process. We found that the quiescent state in the non-growing vegetative axis of dormant axillary buds displayed a low energy state along with a high expression of the ALTERNATIVE OXIDASE 2 (AOX2) and the accumulation of the corresponding protein. Conversely, AOX2 expression and protein amount strongly decreased during bud burst as energy status shifted to a high state, allowing growth. Since AOX2 can deviate electrons from the cytochrome pathway in the mitochondrial respiratory chain, it could drastically reduce the formation of ATP, which would result in a low energy status unfavorable for growth activities. We provide evidence that the presence/absence of AOX2 in quiescent/growing vegetative axes of buds was under hormonal control and thus may constitute the mechanistic basis of both quiescence and sink strength manifestation, two important aspects of budbreak.
Collapse
Affiliation(s)
- Alexis Porcher
- Institut Agro Rennes-Angers, INRAE, IRHS, SFR QUASAV, University of Angers, 42 Rue Georges Morel, Angers 49000, France
| | - Vincent Guérin
- Institut Agro Rennes-Angers, INRAE, IRHS, SFR QUASAV, University of Angers, 42 Rue Georges Morel, Angers 49000, France
| | - David Macherel
- Institut Agro Rennes-Angers, INRAE, IRHS, SFR QUASAV, University of Angers, 42 Rue Georges Morel, Angers 49000, France
| | - Anita Lebrec
- Institut Agro Rennes-Angers, INRAE, IRHS, SFR QUASAV, University of Angers, 42 Rue Georges Morel, Angers 49000, France
| | - Pascale Satour
- Institut Agro Rennes-Angers, INRAE, IRHS, SFR QUASAV, University of Angers, 42 Rue Georges Morel, Angers 49000, France
| | - Jérémy Lothier
- Institut Agro Rennes-Angers, INRAE, IRHS, SFR QUASAV, University of Angers, 42 Rue Georges Morel, Angers 49000, France
| | - Alain Vian
- Institut Agro Rennes-Angers, INRAE, IRHS, SFR QUASAV, University of Angers, 42 Rue Georges Morel, Angers 49000, France
| |
Collapse
|
4
|
Oh GGK, O’Leary BM, Signorelli S, Millar AH. Alternative oxidase (AOX) 1a and 1d limit proline-induced oxidative stress and aid salinity recovery in Arabidopsis. PLANT PHYSIOLOGY 2022; 188:1521-1536. [PMID: 34919733 PMCID: PMC8896607 DOI: 10.1093/plphys/kiab578] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/12/2021] [Indexed: 05/24/2023]
Abstract
Proline (Pro) catabolism and reactive oxygen species production have been linked in mammals and Caenorhabditis elegans, while increases in leaf respiration rate follow Pro exposure in plants. Here, we investigated how alternative oxidases (AOXs) of the mitochondrial electron transport chain accommodate the large, atypical flux resulting from Pro catabolism and limit oxidative stress during Pro breakdown in mature Arabidopsis (Arabidopsis thaliana) leaves. Following Pro treatment, AOX1a and AOX1d accumulate at transcript and protein levels, with AOX1d approaching the level of the typically dominant AOX1a isoform. We therefore sought to determine the function of both AOX isoforms under Pro respiring conditions. Oxygen consumption rate measurements in aox1a and aox1d leaves suggested these AOXs can functionally compensate for each other to establish enhanced AOX catalytic capacity in response to Pro. Generation of aox1a.aox1d lines showed complete loss of AOX proteins and activity upon Pro treatment, yet full respiratory induction in response to Pro remained possible via the cytochrome pathway. However, aox1a.aox1d leaves displayed symptoms of elevated oxidative stress and suffered increased oxidative damage during Pro metabolism compared to the wild-type (WT) or the single mutants. During recovery from salt stress, when relatively high rates of Pro catabolism occur naturally, photosynthetic rates in aox1a.aox1d recovered slower than in the WT or the single aox lines, showing that both AOX1a and AOX1d are beneficial for cellular metabolism during Pro drawdown following osmotic stress. This work provides physiological evidence of a beneficial role for AOX1a but also the less studied AOX1d isoform in allowing safe catabolism of alternative respiratory substrates like Pro.
Collapse
Affiliation(s)
- Glenda Guek Khim Oh
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley WA 6009, Australia
| | - Brendan M O’Leary
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley WA 6009, Australia
- Saskatoon Research and Development Centre, Agriculture and Agri-food, Saskatoon, SK S7N 0X2, Canada
| | - Santiago Signorelli
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley WA 6009, Australia
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Uruguay
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley WA 6009, Australia
| |
Collapse
|
5
|
Myat AA, Zhou Y, Gao Y, Zhao X, Liang C, Abid MA, Wang P, Akram U, Abbas M, Askari M, Guo S, Zhang R, Meng Z. Overexpression of GhKTI12 Enhances Seed Yield and Biomass Production in Nicotiana Tabacum. Genes (Basel) 2022; 13:426. [PMID: 35327981 PMCID: PMC8953243 DOI: 10.3390/genes13030426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Crop molecular breeding primarily focuses on increasing the trait of plant yield. An elongator-associated protein, KTI12, is closely associated with plant biomass and yield. KTI12 is involved in developmental processes of most organs, including the leaf, root, flower, and seed, through regulating cell division and differentiation. Previous work has shown that in upland cotton (Gossypium hirsutum), GhKTI12 regulates plant height, flowering, and tolerance to salt and drought stress. However, little is known about the molecular regulation mechanism of GhKTI12 in plant developmental processes. In this study, we identified the main GhKTI12 (Gh_D02G144400) gene and transformed it into tobacco (Nicotonia tabacum cv NC89). From seven transgenic lines, we obtained three (OE5, OE6 and OE8) with high expression of GhKTI12; compared with wild type plants, these three lines exhibited larger plant size, later flowering, and higher seed yield. Microscopic observation revealed that the number of leaf epidermal cells and stem parenchyma cells was increased by ~55%. Biochemical analysis showed that chlorophyll content and starch accumulation were significantly increased in younger leaves at the top canopy of transgenic plants, which may contribute to improved photosynthetic rate and, in turn, increased seed yield. To understand the molecular mechanism of GhKTI12 in transgenic plants development, two lines (OE6 and OE8) with higher expression levels of GhKTI12 were used as representative plants to conduct RNA-seq analysis. Through transcriptome analysis of the plant's shoot apical meristematic tissue of these two lines, we identified 518 upregulated genes and 406 downregulated genes common to both overexpression lines. A large number of cellular component genes associated with cell division and differentiation, such as RD21, TET8, KTN80, AOX1, AOX2, CP1, and KIC, were found to be upregulated, and genes showing the most downregulation included MADS-box genes related to flowering time, such as MADS6, AP1, AP3, AGL8, AGL6, SEP1, and SEP2. Downregulation of these genes caused delayed flowering time and longer vegetative stage during development. Combined with the upregulation of the yield-related gene RD21, the GhKTI12 transgenic plants could produce a higher seed yield. We here show that the overexpression of GhKTI12 could positively improve key agronomic traits in tobacco by regulating cell proliferation, photosynthesis, and organ development, and suggest that homologs of GhKTI12 may also be important in the genetic improvement of other crop plants.
Collapse
Affiliation(s)
- Aye Aye Myat
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| | - Yu Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| | - Yuan Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| | - Xiang Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| | - Chengzhen Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| | - Muhammad Ali Abid
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| | - Peilin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| | - Umar Akram
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
- Institute of Plant Breeding and Biotechnology, MNS—University of Agriculture, Multan 60000, Pakistan
| | - Mubashir Abbas
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| | - Muhammad Askari
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| | - Sandui Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| | - Rui Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| | - Zhigang Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| |
Collapse
|
6
|
Campos MD, Campos C, Nogales A, Cardoso H. Carrot AOX2a Transcript Profile Responds to Growth and Chilling Exposure. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112369. [PMID: 34834732 PMCID: PMC8625938 DOI: 10.3390/plants10112369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 05/28/2023]
Abstract
Alternative oxidase (AOX) is a key enzyme of the alternative respiration, known to be involved in plant development and in response to various stresses. To verify the role of DcAOX1 and DcAOX2a genes in carrot tap root growth and in response to cold stress, their expression was analyzed in two experiments: during root growth for 13 weeks and in response to a cold challenge trial of 7 days, in both cases using different carrot cultivars. Carrot root growth is initially characterized by an increase in length, followed by a strong increase in weight. DcAOX2a presented the highest expression levels during the initial stages of root growth for all cultivars, but DcAOX1 showed no particular trend in expression. Cold stress had a negative impact on root growth, and generally up-regulated DcAOX2a with no consistent effect on DcAOX1. The identification of cis-acting regulatory elements (CAREs) located at the promoters of both genes showed putative sequences involved in cold stress responsiveness, as well as growth. However, DcAOX2a promoter presented more CAREs related to hormonal pathways, including abscisic acid and gibberellins synthesis, than DcAOX1. These results point to a dual role of DcAOX2a on carrot tap root secondary growth and cold stress response.
Collapse
Affiliation(s)
- Maria Doroteia Campos
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (C.C.); (A.N.)
| | - Catarina Campos
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (C.C.); (A.N.)
| | - Amaia Nogales
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (C.C.); (A.N.)
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Hélia Cardoso
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (C.C.); (A.N.)
| |
Collapse
|
7
|
Vanlerberghe GC, Dahal K, Alber NA, Chadee A. Photosynthesis, respiration and growth: A carbon and energy balancing act for alternative oxidase. Mitochondrion 2020; 52:197-211. [PMID: 32278748 DOI: 10.1016/j.mito.2020.04.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/28/2020] [Accepted: 04/06/2020] [Indexed: 12/26/2022]
Abstract
This review summarizes knowledge of alternative oxidase, a mitochondrial electron transport chain component that lowers the ATP yield of plant respiration. Analysis of mutant and transgenic plants has established that alternative oxidase activity supports leaf photosynthesis. The interaction of alternative oxidase respiration with chloroplast metabolism is important under conditions that challenge energy and/or carbon balance in the photosynthetic cell. Under such conditions, alternative oxidase provides an extra-chloroplastic means to optimize the status of chloroplast energy pools (ATP, NADPH) and to manage cellular carbohydrate pools in response to changing rates of carbon fixation and carbon demand for growth and maintenance. Transcriptional and post-translational mechanisms ensure that alternative oxidase can respond effectively when carbon and energy balance are being challenged. This function appears particularly significant under abiotic stress conditions such as water deficit, high salinity, or temperature extremes. Under such conditions, alternative oxidase respiration positively affects growth and stress tolerance, despite it lowering the energy yield and carbon use efficiency of respiration. In part, this beneficial effect relates to the ability of alternative oxidase respiration to prevent excessive reactive oxygen species generation in both mitochondria and chloroplasts. Recent evidence suggests that alternative oxidase respiration is an interesting target for crop improvement.
Collapse
Affiliation(s)
- Greg C Vanlerberghe
- Department of Biological Sciences, and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C1A4, Canada.
| | - Keshav Dahal
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, P.O. Box 20280, Fredericton, New Brunswick E3B4Z7, Canada
| | - Nicole A Alber
- Department of Biological Sciences, and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C1A4, Canada
| | - Avesh Chadee
- Department of Biological Sciences, and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C1A4, Canada
| |
Collapse
|
8
|
Ünlü ES, Ünüvar ÖC, Aydın M. Identification of alternative oxidase encoding genes in Caulerpa cylindracea by de novo RNA-Seq assembly analysis. Mar Genomics 2019; 46:41-48. [PMID: 30922784 DOI: 10.1016/j.margen.2019.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/06/2019] [Accepted: 03/06/2019] [Indexed: 11/29/2022]
Abstract
Alternative oxidases (AOX) are defined in plants, fungi and algae. The main function of AOX proteins has been described for electron flow through electron transport chain and regulation of mitochondrial retrograde signaling pathway. The roles of AOX proteins have been characterized in reproduction and resistance against oxidative stress, cold stress, starvation, and biotic attacks. Caulerpa cylindracea is an invasive marine green alga. Although the natural habitats of the species are Australia coasts, the impact of the invasion has been monitored through the Mediterranean Sea and the Aegean Sea. C. cylindracea species have advantages against others by showing higher resistance to stress conditions such as cold, starvation, pathogen attacks and by their capability of sexual and vegetative reproduction. Comparing the advantages of C. cylindracea over the niche and defined functional roles of mitochondrial AOX proteins, it is evident that AOX proteins are likely involved in developing those advantageous skills in C. cylindracea. However, there is limited data about biochemical and molecular mechanisms that take part in stress resistance and invasion characteristics. We aimed to identify mitochondrial alternative oxidase encoding genes in C. cylindracea while annotating whole transcriptome data for the species. Samples were collected from Seferihisar/İzmir. Transcriptome analysis from pooled RNA samples revealed 47,400 assembled contigs represented by 33,340 unigenes. Using standalone Blast analysis, we were able to identify two alternative oxidase encoding genes.
Collapse
Affiliation(s)
- Ercan Selçuk Ünlü
- Bolu Abant İzzet Baysal University, Faculty of Arts and Science, Department of Chemistry, Bolu 14280, Turkey.
| | - Ömer Can Ünüvar
- Bolu Abant İzzet Baysal University, Faculty of Arts and Science, Department of Chemistry, Bolu 14280, Turkey
| | - Meryem Aydın
- Bolu Abant İzzet Baysal University, Faculty of Arts and Science, Department of Chemistry, Bolu 14280, Turkey
| |
Collapse
|
9
|
Sweetman C, Soole KL, Jenkins CLD, Day DA. Genomic structure and expression of alternative oxidase genes in legumes. PLANT, CELL & ENVIRONMENT 2019; 42:71-84. [PMID: 29424926 DOI: 10.1111/pce.13161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/22/2018] [Accepted: 01/25/2018] [Indexed: 05/26/2023]
Abstract
Mitochondria isolated from chickpea (Cicer arietinum) possess substantial alternative oxidase (AOX) activity, even in non-stressed plants, and one or two AOX protein bands were detected immunologically, depending on the organ. Four different AOX isoforms were identified in the chickpea genome: CaAOX1 and CaAOX2A, B and D. CaAOX2A was the most highly expressed form and was strongly expressed in photosynthetic tissues, whereas CaAOX2D was found in all organs examined. These results are very similar to those of previous studies with soybean and siratro. Searches of available databases showed that this pattern of AOX genes and their expression was common to at least 16 different legume species. The evolution of the legume AOX gene family is discussed, as is the in vivo impact of an inherently high AOX capacity in legumes on growth and responses to environmental stresses.
Collapse
Affiliation(s)
- Crystal Sweetman
- Australian Research Council Industrial Transformation Research Hub, Legumes for Sustainable Agriculture, College of Science and Engineering, Flinders University of South Australia, Adelaide, South Australia, GPO Box 2001, Australia
| | - Kathleen L Soole
- Australian Research Council Industrial Transformation Research Hub, Legumes for Sustainable Agriculture, College of Science and Engineering, Flinders University of South Australia, Adelaide, South Australia, GPO Box 2001, Australia
| | - Colin L D Jenkins
- Australian Research Council Industrial Transformation Research Hub, Legumes for Sustainable Agriculture, College of Science and Engineering, Flinders University of South Australia, Adelaide, South Australia, GPO Box 2001, Australia
| | - David A Day
- Australian Research Council Industrial Transformation Research Hub, Legumes for Sustainable Agriculture, College of Science and Engineering, Flinders University of South Australia, Adelaide, South Australia, GPO Box 2001, Australia
| |
Collapse
|
10
|
Brew-Appiah RAT, York ZB, Krishnan V, Roalson EH, Sanguinet KA. Genome-wide identification and analysis of the ALTERNATIVE OXIDASE gene family in diploid and hexaploid wheat. PLoS One 2018; 13:e0201439. [PMID: 30074999 PMCID: PMC6075773 DOI: 10.1371/journal.pone.0201439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/16/2018] [Indexed: 11/19/2022] Open
Abstract
A comprehensive understanding of wheat responses to environmental stress will contribute to the long-term goal of feeding the planet. ALERNATIVE OXIDASE (AOX) genes encode proteins involved in a bypass of the electron transport chain and are also known to be involved in stress tolerance in multiple species. Here, we report the identification and characterization of the AOX gene family in diploid and hexaploid wheat. Four genes each were found in the diploid ancestors Triticum urartu, and Aegilops tauschii, and three in Aegilops speltoides. In hexaploid wheat (Triticum aestivum), 20 genes were identified, some with multiple splice variants, corresponding to a total of 24 proteins for those with observed transcription and translation. These proteins were classified as AOX1a, AOX1c, AOX1e or AOX1d via phylogenetic analysis. Proteins lacking most or all signature AOX motifs were assigned to putative regulatory roles. Analysis of protein-targeting sequences suggests mixed localization to the mitochondria and other organelles. In comparison to the most studied AOX from Trypanosoma brucei, there were amino acid substitutions at critical functional domains indicating possible role divergence in wheat or grasses in general. In hexaploid wheat, AOX genes were expressed at specific developmental stages as well as in response to both biotic and abiotic stresses such as fungal pathogens, heat and drought. These AOX expression patterns suggest a highly regulated and diverse transcription and expression system. The insights gained provide a framework for the continued and expanded study of AOX genes in wheat for stress tolerance through breeding new varieties, as well as resistance to AOX-targeted herbicides, all of which can ultimately be used synergistically to improve crop yield.
Collapse
Affiliation(s)
- Rhoda A. T. Brew-Appiah
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America
| | - Zara B. York
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America
| | - Vandhana Krishnan
- Stanford Center for Genomics and Personalized Medicine, Department of Genetics, Stanford University, Stanford, United States of America
| | - Eric H. Roalson
- School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Karen A. Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
11
|
Selinski J, Scheibe R, Day DA, Whelan J. Alternative Oxidase Is Positive for Plant Performance. TRENDS IN PLANT SCIENCE 2018; 23:588-597. [PMID: 29665989 DOI: 10.1016/j.tplants.2018.03.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/15/2018] [Accepted: 03/22/2018] [Indexed: 05/02/2023]
Abstract
The alternative pathway of mitochondrial electron transport, which terminates in the alternative oxidase (AOX), uncouples oxidation of substrate from mitochondrial ATP production, yet plant performance is improved under adverse growth conditions. AOX is regulated at different levels. Identification of regulatory transcription factors shows that Arabidopsis thaliana AOX1a is under strong transcriptional suppression. At the protein level, the primary structure is not optimised for activity. Maximal activity requires the presence of various metabolites, such as tricarboxylic acid-cycle intermediates that act in an isoform-specific manner. In this opinion article we propose that the regulatory mechanisms that keep AOX activity suppressed, at both the gene and protein level, are positive for plant performance due to the flexible short- and long-term fine-tuning.
Collapse
Affiliation(s)
- Jennifer Selinski
- Department of Animal, Plant, and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University Bundoora, VIC 3083, Australia.
| | - Renate Scheibe
- Division of Plant Physiology, Department of Biology/Chemistry, University of Osnabrueck, D-49069 Osnabrueck, Germany
| | - David A Day
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - James Whelan
- Department of Animal, Plant, and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University Bundoora, VIC 3083, Australia
| |
Collapse
|
12
|
Dahal K, Vanlerberghe GC. Improved chloroplast energy balance during water deficit enhances plant growth: more crop per drop. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1183-1197. [PMID: 29281082 PMCID: PMC6018952 DOI: 10.1093/jxb/erx474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/07/2017] [Indexed: 05/02/2023]
Abstract
The non-energy-conserving alternative oxidase (AOX) respiration of plant mitochondria is known to interact with chloroplast photosynthesis. This may have consequences for growth, particularly under sub-optimal conditions when energy imbalances can impede photosynthesis. This hypothesis was tested by comparing the metabolism and growth of wild-type Nicotiana tabacum with that of AOX knockdown and overexpression lines during a prolonged steady-state mild to moderate water deficit. Under moderate water deficit, the AOX amount was an important determinant of the rate of both mitochondrial respiration in the light and net photosynthetic CO2 assimilation (A) at the growth irradiance. In particular, AOX respiration was necessary to maintain optimal proton and electron fluxes at the chloroplast thylakoid membrane, which in turn prevented a water-deficit-induced biochemical limitation of photosynthesis. As a result of differences in A, AOX overexpressors gained more biomass and knockdowns gained less biomass than wild-type during moderate water deficit. Biomass partitioning also differed, with the overexpressors having a higher percentage, and the knockdowns having a lower percentage, of total above-ground biomass in reproductive tissue than wild-type. The results establish that improving chloroplast energy balance by using a non-energy-conserving respiratory electron sink can increase photosynthesis and growth during prolonged water deficit.
Collapse
Affiliation(s)
- Keshav Dahal
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Greg C Vanlerberghe
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Velada I, Cardoso HG, Ragonezi C, Nogales A, Ferreira A, Valadas V, Arnholdt-Schmitt B. Alternative Oxidase Gene Family in Hypericum perforatum L.: Characterization and Expression at the Post-germinative Phase. FRONTIERS IN PLANT SCIENCE 2016; 7:1043. [PMID: 27563303 PMCID: PMC4980395 DOI: 10.3389/fpls.2016.01043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/04/2016] [Indexed: 05/05/2023]
Abstract
Alternative oxidase (AOX) protein is located in the inner mitochondrial membrane and is encoded in the nuclear genome being involved in plant response upon a diversity of environmental stresses and also in normal plant growth and development. Here we report the characterization of the AOX gene family of Hypericum perforatum L. Two AOX genes were identified, both with a structure of four exons (HpAOX1, acc. KU674355 and HpAOX2, acc. KU674356). High variability was found at the N-terminal region of the protein coincident with the high variability identified at the mitochondrial transit peptide. In silico analysis of regulatory elements located at intronic regions identified putative sequences coding for miRNA precursors and trace elements of a transposon. Simple sequence repeats were also identified. Additionally, the mRNA levels for the HpAOX1 and HpAOX2, along with the ones for the HpGAPA (glyceraldehyde-3-phosphate dehydrogenase A subunit) and the HpCAT1 (catalase 1), were evaluated during the post-germinative development. Gene expression analysis was performed by RT-qPCR with accurate data normalization, pointing out HpHYP1 (chamba phenolic oxidative coupling protein 1) and HpH2A (histone 2A) as the most suitable reference genes (RGs) according to GeNorm algorithm. The HpAOX2 transcript demonstrated larger stability during the process with a slight down-regulation in its expression. Contrarily, HpAOX1 and HpGAPA (the corresponding protein is homolog to the chloroplast isoform involved in the photosynthetic carbon assimilation in other plant species) transcripts showed a marked increase, with a similar expression pattern between them, during the post-germinative development. On the other hand, the HpCAT1 (the corresponding protein is homolog to the major H2O2-scavenging enzyme in other plant species) transcripts showed an opposite behavior with a down-regulation during the process. In summary, our findings, although preliminary, highlight the importance to investigate in more detail the participation of AOX genes during the post-germinative development in H. perforatum, in order to explore their functional role in optimizing photosynthesis and in the control of reactive oxygen species (ROS) levels during the process.
Collapse
Affiliation(s)
- Isabel Velada
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Laboratório de Biologia Molecular, Universidade de ÉvoraPólo da Mitra, Évora, Portugal
| | - Hélia G. Cardoso
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Laboratório de Biologia Molecular, Universidade de ÉvoraPólo da Mitra, Évora, Portugal
- *Correspondence: Hélia G. Cardoso
| | - Carla Ragonezi
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Laboratório de Biologia Molecular, Universidade de ÉvoraPólo da Mitra, Évora, Portugal
| | - Amaia Nogales
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia-Universidade de LisboaLisboa, Portugal
| | - Alexandre Ferreira
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Laboratório de Biologia Molecular, Universidade de ÉvoraPólo da Mitra, Évora, Portugal
| | - Vera Valadas
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Laboratório de Biologia Molecular, Universidade de ÉvoraPólo da Mitra, Évora, Portugal
| | - Birgit Arnholdt-Schmitt
- EU Marie Curie Chair, ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de ÉvoraPólo da Mitra, Évora, Portugal
- Birgit Arnholdt-Schmitt
| |
Collapse
|
14
|
Pu X, Lv X, Tan T, Fu F, Qin G, Lin H. Roles of mitochondrial energy dissipation systems in plant development and acclimation to stress. ANNALS OF BOTANY 2015; 116:583-600. [PMID: 25987710 PMCID: PMC4577992 DOI: 10.1093/aob/mcv063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/16/2015] [Accepted: 03/27/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plants are sessile organisms that have the ability to integrate external cues into metabolic and developmental signals. The cues initiate specific signal cascades that can enhance the tolerance of plants to stress, and these mechanisms are crucial to the survival and fitness of plants. The adaption of plants to stresses is a complex process that involves decoding stress inputs as energy-deficiency signals. The process functions through vast metabolic and/or transcriptional reprogramming to re-establish the cellular energy balance. Members of the mitochondrial energy dissipation pathway (MEDP), alternative oxidases (AOXs) and uncoupling proteins (UCPs), act as energy mediators and might play crucial roles in the adaption of plants to stresses. However, their roles in plant growth and development have been relatively less explored. SCOPE This review summarizes current knowledge about the role of members of the MEDP in plant development as well as recent advances in identifying molecular components that regulate the expression of AOXs and UCPs. Highlighted in particular is a comparative analysis of the expression, regulation and stress responses between AOXs and UCPs when plants are exposed to stresses, and a possible signal cross-talk that orchestrates the MEDP, reactive oxygen species (ROS), calcium signalling and hormone signalling. CONCLUSIONS The MEDP might act as a cellular energy/metabolic mediator that integrates ROS signalling, energy signalling and hormone signalling with plant development and stress accumulation. However, the regulation of MEDP members is complex and occurs at transcriptional, translational, post-translational and metabolic levels. How this regulation is linked to actual fluxes through the AOX/UCP in vivo remains elusive.
Collapse
Affiliation(s)
- Xiaojun Pu
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Xin Lv
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Tinghong Tan
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Faqiong Fu
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Gongwei Qin
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
15
|
Ivanova A, Law SR, Narsai R, Duncan O, Lee JH, Zhang B, Van Aken O, Radomiljac JD, van der Merwe M, Yi K, Whelan J. A Functional Antagonistic Relationship between Auxin and Mitochondrial Retrograde Signaling Regulates Alternative Oxidase1a Expression in Arabidopsis. PLANT PHYSIOLOGY 2014; 165:1233-1254. [PMID: 24820025 PMCID: PMC4081334 DOI: 10.1104/pp.114.237495] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/04/2014] [Indexed: 05/18/2023]
Abstract
The perception and integration of stress stimuli with that of mitochondrion function are important during periods of perturbed cellular homeostasis. In a continuous effort to delineate these mitochondrial/stress-interacting networks, forward genetic screens using the mitochondrial stress response marker alternative oxidase 1a (AOX1a) provide a useful molecular tool to identify and characterize regulators of mitochondrial stress signaling (referred to as regulators of alternative oxidase 1a [RAOs] components). In this study, we reveal that mutations in genes coding for proteins associated with auxin transport and distribution resulted in a greater induction of AOX1a in terms of magnitude and longevity. Three independent mutants for polarized auxin transport, rao3/big, rao4/pin-formed1, and rao5/multidrug-resistance1/abcb19, as well as the Myb transcription factor rao6/asymmetric leaves1 (that displays altered auxin patterns) were identified and resulted in an acute sensitivity toward mitochondrial dysfunction. Induction of the AOX1a reporter system could be inhibited by the application of auxin analogs or reciprocally potentiated by blocking auxin transport. Promoter activation studies with AOX1a::GUS and DR5::GUS lines further confirmed a clear antagonistic relationship between the spatial distribution of mitochondrial stress and auxin response kinetics, respectively. Genome-wide transcriptome analyses revealed that mitochondrial stress stimuli, such as antimycin A, caused a transient suppression of auxin signaling and conversely, that auxin treatment repressed a part of the response to antimycin A treatment, including AOX1a induction. We conclude that mitochondrial stress signaling and auxin signaling are reciprocally regulated, balancing growth and stress response(s).
Collapse
Affiliation(s)
- Aneta Ivanova
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (A.I., S.R.L., O.D., B.Z., J.D.R., J.W.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (A.I., R.N., J.-H.L., O.V.A., J.D.R., M.v.d.M.); andState Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (K.Y.)
| | - Simon R Law
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (A.I., S.R.L., O.D., B.Z., J.D.R., J.W.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (A.I., R.N., J.-H.L., O.V.A., J.D.R., M.v.d.M.); andState Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (K.Y.)
| | - Reena Narsai
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (A.I., S.R.L., O.D., B.Z., J.D.R., J.W.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (A.I., R.N., J.-H.L., O.V.A., J.D.R., M.v.d.M.); andState Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (K.Y.)
| | - Owen Duncan
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (A.I., S.R.L., O.D., B.Z., J.D.R., J.W.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (A.I., R.N., J.-H.L., O.V.A., J.D.R., M.v.d.M.); andState Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (K.Y.)
| | - Jae-Hoon Lee
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (A.I., S.R.L., O.D., B.Z., J.D.R., J.W.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (A.I., R.N., J.-H.L., O.V.A., J.D.R., M.v.d.M.); andState Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (K.Y.)
| | - Botao Zhang
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (A.I., S.R.L., O.D., B.Z., J.D.R., J.W.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (A.I., R.N., J.-H.L., O.V.A., J.D.R., M.v.d.M.); andState Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (K.Y.)
| | - Olivier Van Aken
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (A.I., S.R.L., O.D., B.Z., J.D.R., J.W.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (A.I., R.N., J.-H.L., O.V.A., J.D.R., M.v.d.M.); andState Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (K.Y.)
| | - Jordan D Radomiljac
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (A.I., S.R.L., O.D., B.Z., J.D.R., J.W.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (A.I., R.N., J.-H.L., O.V.A., J.D.R., M.v.d.M.); andState Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (K.Y.)
| | - Margaretha van der Merwe
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (A.I., S.R.L., O.D., B.Z., J.D.R., J.W.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (A.I., R.N., J.-H.L., O.V.A., J.D.R., M.v.d.M.); andState Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (K.Y.)
| | - KeKe Yi
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (A.I., S.R.L., O.D., B.Z., J.D.R., J.W.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (A.I., R.N., J.-H.L., O.V.A., J.D.R., M.v.d.M.); andState Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (K.Y.)
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (A.I., S.R.L., O.D., B.Z., J.D.R., J.W.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (A.I., R.N., J.-H.L., O.V.A., J.D.R., M.v.d.M.); andState Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (K.Y.)
| |
Collapse
|
16
|
Cavalcanti JHF, Oliveira GM, Saraiva KDDC, Torquato JPP, Maia IG, de Melo DF, Costa JH. Identification of duplicated and stress-inducible Aox2b gene co-expressed with Aox1 in species of the Medicago genus reveals a regulation linked to gene rearrangement in leguminous genomes. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1609-19. [PMID: 23891563 DOI: 10.1016/j.jplph.2013.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/08/2013] [Accepted: 06/21/2013] [Indexed: 05/24/2023]
Abstract
In flowering plants, alternative oxidase (Aox) is encoded by 3-5 genes distributed in 2 subfamilies (Aox1 and Aox2). In several species only Aox1 is reported as a stress-responsive gene, but in the leguminous Vigna unguiculata Aox2b is also induced by stress. In this work we investigated the Aox genes from two leguminous species of the Medicago genus (Medicago sativa and Medicago truncatula) which present one Aox1, one Aox2a and an Aox2b duplication (named here Aox2b1 and Aox2b2). Expression analyses by semi-quantitative RT-PCR in M. sativa revealed that Aox1, Aox2b1 and Aox2b2 transcripts increased during seed germination. Similar analyses in leaves and roots under different treatments (SA, PEG, H2O2 and cysteine) revealed that these genes are also induced by stress, but with peculiar spatio-temporal differences. Aox1 and Aox2b1 showed basal levels of expression under control conditions and were induced by stress in leaves and roots. Aox2b2 presented a dual behavior, i.e., it was expressed only under stress conditions in leaves, and showed basal expression levels in roots that were induced by stress. Moreover, Aox2a was expressed at higher levels in leaves and during seed germination than in roots and appeared to be not responsive to stress. The Aox expression profiles obtained from a M. truncatula microarray dataset also revealed a stress-induced co-expression of Aox1, Aox2b1 and Aox2b2 in leaves and roots. These results reinforce the stress-inducible co-expression of Aox1/Aox2b in some leguminous plants. Comparative genomic analysis indicates that this regulation is linked to Aox1/Aox2b proximity in the genome as a result of the gene rearrangement that occurred in some leguminous plants during evolution. The differential expression of Aox2b1/2b2 suggests that a second gene has been originated by recent gene duplication with neofunctionalization.
Collapse
MESH Headings
- Chromosomes, Plant/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Plant
- Gene Rearrangement/genetics
- Genes, Duplicate/genetics
- Genes, Plant/genetics
- Genome, Plant/genetics
- Germination/genetics
- Medicago/drug effects
- Medicago/enzymology
- Medicago/genetics
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Molecular Sequence Data
- Oxidoreductases/genetics
- Oxidoreductases/metabolism
- Phylogeny
- Plant Growth Regulators/pharmacology
- Plant Leaves/enzymology
- Plant Leaves/genetics
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plant Roots/enzymology
- Plant Roots/genetics
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
Collapse
|
17
|
Vanlerberghe GC. Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int J Mol Sci 2013; 14:6805-47. [PMID: 23531539 PMCID: PMC3645666 DOI: 10.3390/ijms14046805] [Citation(s) in RCA: 416] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 02/07/2023] Open
Abstract
Alternative oxidase (AOX) is a non-energy conserving terminal oxidase in the plant mitochondrial electron transport chain. While respiratory carbon oxidation pathways, electron transport, and ATP turnover are tightly coupled processes, AOX provides a means to relax this coupling, thus providing a degree of metabolic homeostasis to carbon and energy metabolism. Beside their role in primary metabolism, plant mitochondria also act as "signaling organelles", able to influence processes such as nuclear gene expression. AOX activity can control the level of potential mitochondrial signaling molecules such as superoxide, nitric oxide and important redox couples. In this way, AOX also provides a degree of signaling homeostasis to the organelle. Evidence suggests that AOX function in metabolic and signaling homeostasis is particularly important during stress. These include abiotic stresses such as low temperature, drought, and nutrient deficiency, as well as biotic stresses such as bacterial infection. This review provides an introduction to the genetic and biochemical control of AOX respiration, as well as providing generalized examples of how AOX activity can provide metabolic and signaling homeostasis. This review also examines abiotic and biotic stresses in which AOX respiration has been critically evaluated, and considers the overall role of AOX in growth and stress tolerance.
Collapse
Affiliation(s)
- Greg C Vanlerberghe
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C1A4, Canada.
| |
Collapse
|