1
|
Hu Z, Zou Y, Wang Y, Lou L, Cai Q. Elevated carbon dioxide concentrations increase the risk of Cd exposure in rice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120300-120314. [PMID: 37936041 DOI: 10.1007/s11356-023-30646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023]
Abstract
Since the Industrial Revolution, crops have been exposed to various changes in the environment, including elevated atmospheric carbon dioxide (CO2) concentration and cadmium (Cd) pollution in soil. However, information about how combined changes affect crop is limited. Here, we have investigated the changes of japonica and indica rice subspecies seedlings under elevated CO2 level (1200 ppm) and Cd exposure (5 μM Cd) conditions compared with ambient CO2 level (400 ppm) and without Cd exposure in CO2 growth chambers with hydroponic experiment. The results showed that elevated CO2 levels significantly promoted seedling growth and rescued the growth inhibition under Cd stress. However, the elevated CO2 levels led to a significant increase in the shoot Cd accumulation of the two rice subspecies. Especially, the increase of shoot Cd accumulation in indica rice was more than 50% compared with control. Further investigation revealed that the decreases in the photosynthetic pigments and photosynthetic rates caused by Cd were attenuated by the elevated CO2 levels. In addition, elevated CO2 levels increased the non-enzymatic antioxidants and significantly enhanced the ascorbate peroxidase (APX) and glutathione reductase (GR) activities, alleviating the lipid peroxidation and reactive oxygen species (ROS) accumulation induced by Cd. Overall, the research revealed how rice responded to the elevated CO2 levels and Cd exposure, which can help modify agricultural practices to ensure food security and food safety in a future high-CO2 world.
Collapse
Affiliation(s)
- Zhaoyang Hu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yiping Zou
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yulong Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Laiqing Lou
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qingsheng Cai
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Sanchez-Corrionero A, Sánchez-Vicente I, Arteaga N, Manrique-Gil I, Gómez-Jiménez S, Torres-Quezada I, Albertos P, Lorenzo O. Fine-tuned nitric oxide and hormone interface in plant root development and regeneration. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6104-6118. [PMID: 36548145 PMCID: PMC10575706 DOI: 10.1093/jxb/erac508] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Plant root growth and developmental capacities reside in a few stem cells of the root apical meristem (RAM). Maintenance of these stem cells requires regenerative divisions of the initial stem cell niche (SCN) cells, self-maintenance, and proliferative divisions of the daughter cells. This ensures sufficient cell diversity to guarantee the development of complex root tissues in the plant. Damage in the root during growth involves the formation of a new post-embryonic root, a process known as regeneration. Post-embryonic root development and organogenesis processes include primary root development and SCN maintenance, plant regeneration, and the development of adventitious and lateral roots. These developmental processes require a fine-tuned balance between cell proliferation and maintenance. An important regulator during root development and regeneration is the gasotransmitter nitric oxide (NO). In this review we have sought to compile how NO regulates cell rate proliferation, cell differentiation, and quiescence of SCNs, usually through interaction with phytohormones, or other molecular mechanisms involved in cellular redox homeostasis. NO exerts a role on molecular components of the auxin and cytokinin signaling pathways in primary roots that affects cell proliferation and maintenance of the RAM. During root regeneration, a peak of auxin and cytokinin triggers specific molecular programs. Moreover, NO participates in adventitious root formation through its interaction with players of the brassinosteroid and cytokinin signaling cascade. Lately, NO has been implicated in root regeneration under hypoxia conditions by regulating stem cell specification through phytoglobins.
Collapse
Affiliation(s)
- Alvaro Sanchez-Corrionero
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
- Universidad Politécnica de Madrid, Madrid, Spain
| | - Inmaculada Sánchez-Vicente
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Noelia Arteaga
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Isabel Manrique-Gil
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Sara Gómez-Jiménez
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Isabel Torres-Quezada
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Pablo Albertos
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Oscar Lorenzo
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| |
Collapse
|
3
|
Shi Y, Guo S, Zhao X, Xu M, Xu J, Xing G, Zhang Y, Ahammed GJ. Comparative physiological and transcriptomics analysis revealed crucial mechanisms of silicon-mediated tolerance to iron deficiency in tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:1094451. [PMID: 36618612 PMCID: PMC9811145 DOI: 10.3389/fpls.2022.1094451] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/02/2022] [Indexed: 06/07/2023]
Abstract
Iron (Fe) deficiency is a common abiotic stress in plants grown in alkaline soil that causes leaf chlorosis and affects root development due to low plant-available Fe concentration. Silicon (Si) is a beneficial element for plant growth and can also improve plant tolerance to abiotic stress. However, the effect of Si and regulatory mechanisms on tomato plant growth under Fe deficiency remain largely unclear. Here, we examined the effect of Si application on the photosynthetic capacity, antioxidant defense, sugar metabolism, and organic acid contents under Fe deficiency in tomato plants. The results showed that Si application promoted plant growth by increasing photosynthetic capacity, strengthening antioxidant defense, and reprogramming sugar metabolism. Transcriptomics analysis (RNA-seq) showed that Si application under Fe deficiency up-regulated the expression of genes related to antioxidant defense, carbohydrate metabolism and organic acid synthesis. In addition, Si application under Fe deficiency increased Fe distribution to leaves and roots. Combined with physiological assessment and molecular analysis, these findings suggest that Si application can effectively increase plant tolerance to low Fe stress and thus can be implicated in agronomic management of Fe deficiency for sustainable crop production. Moreover, these findings provide important information for further exploring the genes and underlying regulatory mechanisms of Si-mediated low Fe stress tolerance in crop plants.
Collapse
Affiliation(s)
- Yu Shi
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Shuxun Guo
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xin Zhao
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Mengzhu Xu
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jin Xu
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Guoming Xing
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yi Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, Henan, China
- Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, Henan, China
| |
Collapse
|
4
|
Medrano-Macías J, Flores-Gallegos AC, Nava-Reyna E, Morales I, Tortella G, Solís-Gaona S, Benavides-Mendoza A. Reactive Oxygen, Nitrogen, and Sulfur Species (RONSS) as a Metabolic Cluster for Signaling and Biostimulation of Plants: An Overview. PLANTS (BASEL, SWITZERLAND) 2022; 11:3203. [PMID: 36501243 PMCID: PMC9740111 DOI: 10.3390/plants11233203] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
This review highlights the relationship between the metabolism of reactive oxygen species (ROS), reactive nitrogen species (RNS), and H2S-reactive sulfur species (RSS). These three metabolic pathways, collectively termed reactive oxygen, nitrogen, and sulfur species (RONSS), constitute a conglomerate of reactions that function as an energy dissipation mechanism, in addition to allowing environmental signals to be transduced into cellular information. This information, in the form of proteins with posttranslational modifications or signaling metabolites derived from RONSS, serves as an inducer of many processes for redoxtasis and metabolic adjustment to the changing environmental conditions to which plants are subjected. Although it is thought that the role of reactive chemical species was originally energy dissipation, during evolution they seem to form a cluster of RONSS that, in addition to dissipating excess excitation potential or reducing potential, also fulfils essential signaling functions that play a vital role in the stress acclimation of plants. Signaling occurs by synthesizing many biomolecules that modify the activity of transcription factors and through modifications in thiol groups of enzymes. The result is a series of adjustments in plants' gene expression, biochemistry, and physiology. Therefore, we present an overview of the synthesis and functions of the RONSS, considering the importance and implications in agronomic management, particularly on the biostimulation of crops.
Collapse
Affiliation(s)
- Julia Medrano-Macías
- Department of Horticulture, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Mexico
| | - Adriana Carolina Flores-Gallegos
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Mexico
| | - Erika Nava-Reyna
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, National Center for Disciplinary Research in Water, Soil, Plants and Atmosphere Relations, Gomez Palacio 35150, Mexico
| | - Isidro Morales
- Instituto Politécnico Nacional, Interdisciplinary Research Center for Regional Integral Development, Oaxaca 71230, Mexico
| | - Gonzalo Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| | | | | |
Collapse
|
5
|
Sun C, Zhang Y, Liu L, Liu X, Li B, Jin C, Lin X. Molecular functions of nitric oxide and its potential applications in horticultural crops. HORTICULTURE RESEARCH 2021; 8:71. [PMID: 33790257 PMCID: PMC8012625 DOI: 10.1038/s41438-021-00500-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 05/04/2023]
Abstract
Nitric oxide (NO) regulates plant growth, enhances nutrient uptake, and activates disease and stress tolerance mechanisms in most plants, making NO a potential tool for use in improving the yield and quality of horticultural crop species. Although the use of NO in horticulture is still in its infancy, research on NO in model plant species has provided an abundance of valuable information on horticultural crop species. Emerging evidence implies that the bioactivity of NO can occur through many potential mechanisms but occurs mainly through S-nitrosation, the covalent and reversible attachment of NO to cysteine thiol. In this context, NO signaling specifically affects crop development, immunity, and environmental interactions. Moreover, NO can act as a fumigant against a wide range of postharvest diseases and pests. However, for effective use of NO in horticulture, both understanding and exploring the biological significance and potential mechanisms of NO in horticultural crop species are critical. This review provides a picture of our current understanding of how NO is synthesized and transduced in plants, and particular attention is given to the significance of NO in breaking seed dormancy, balancing root growth and development, enhancing nutrient acquisition, mediating stress responses, and guaranteeing food safety for horticultural production.
Collapse
Affiliation(s)
- Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Yuxue Zhang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Lijuan Liu
- Interdisciplinary Research Academy, Zhejiang Shuren University, 310015, Hangzhou, China
| | - Xiaoxia Liu
- Zhejiang Provincial Cultivated Land Quality and Fertilizer Administration Station, Hangzhou, China
| | - Baohai Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Chongwei Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
6
|
Bencke-Malato M, De Souza AP, Ribeiro-Alves M, Schmitz JF, Buckeridge MS, Alves-Ferreira M. Short-term responses of soybean roots to individual and combinatorial effects of elevated [CO 2] and water deficit. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:283-296. [PMID: 30824006 DOI: 10.1016/j.plantsci.2018.12.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/14/2018] [Accepted: 12/18/2018] [Indexed: 05/15/2023]
Abstract
Climate change increasingly threatens plant growth and productivity. Soybean (Glycine max) is one of the most important crops in the world. Although its responses to increased atmospheric carbon dioxide concentration ([CO2]) have been previously studied, root molecular responses to elevated [CO2] (E[CO2]) or the combination/interaction of E[CO2] and water deficit remain unexamined. In this study, we evaluated the individual and combinatory effects of E[CO2] and water deficit on the physiology and root molecular responses in soybean. Plants growing under E[CO2] exhibited increased photosynthesis that resulted in a higher biomass, plant height, and leaf area. E[CO2] decreased the transcripts levels of genes involved in iron uptake and transport, antioxidant activity, secondary metabolism and defense, and stress responses in roots. When plants grown under E[CO2] are treated with instantaneous water deficit, E[CO2] reverted the expression of water deficit-induced genes related to stress, defense, transport and nutrient deficiency. Furthermore, the interaction of both treatments uniquely affected the expression of genes. Both physiological and transcriptomic analyses demonstrated that E[CO2] may mitigate the negative effects of water deficit on the soybean roots. In addition, the identification of genes that are modulated by the interaction of E[CO2] and water deficit suggests an emergent response that is triggered only under this specific condition.
Collapse
Affiliation(s)
- Marta Bencke-Malato
- Departamento de Genética, Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Biologia, s/n Prédio do CCS, 2° andar-sala 93, Rio de Janeiro, RJ, 219410-970, Brazil.
| | - Amanda Pereira De Souza
- Departamento de Botânica, Universidade de São Paulo (USP), Instituto de Biociências, Rua do Matão, 277, sala 122, Cidade Universitária - Butantã, São Paulo, SP, 05508-090, Brazil.
| | - Marcelo Ribeiro-Alves
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz -(FIOCRUZ) Av. Brasil, 4365-Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil.
| | - Jacqueline Flores Schmitz
- Departamento de Genética, Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Biologia, s/n Prédio do CCS, 2° andar-sala 93, Rio de Janeiro, RJ, 219410-970, Brazil.
| | - Marcos Silveira Buckeridge
- Departamento de Botânica, Universidade de São Paulo (USP), Instituto de Biociências, Rua do Matão, 277, sala 122, Cidade Universitária - Butantã, São Paulo, SP, 05508-090, Brazil.
| | - Marcio Alves-Ferreira
- Departamento de Genética, Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Biologia, s/n Prédio do CCS, 2° andar-sala 93, Rio de Janeiro, RJ, 219410-970, Brazil.
| |
Collapse
|
7
|
Adavi SB, Sathee L. Elevated CO 2-induced production of nitric oxide differentially modulates nitrate assimilation and root growth of wheat seedlings in a nitrate dose-dependent manner. PROTOPLASMA 2019; 256:147-159. [PMID: 30032354 DOI: 10.1007/s00709-018-1285-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/11/2018] [Indexed: 05/12/2023]
Abstract
Wheat is a major staple food crop worldwide contributing approximately 20% of total protein consumed by mankind. The nitrogen and protein concentration of wheat crop and grain often decline as a result of exposure of the crop to elevated CO2 (EC). The changes in nitrogen (N) assimilation, root system architecture, and nitric oxide (NO)-mediated N signaling and expression of genes involved in N assimilation and high affinity nitrate uptake were examined in response to different nitrate levels and EC in wheat. Activity of enzyme nitrate reductase (NRA) was downregulated under EC both in leaf and root tissues. Plants grown under EC displayed enhanced production of NO and more so when nitrate supply was high. Based on exogenous supply of NO, inhibitors of NO production, and NO scavenger, regulatory role of NO on EC mediated changes in root morphology and NRA was revealed. The enhanced NO production under EC and high N levels negatively regulated the transcript abundance of NR and high affinity nitrate transporters (HATS).
Collapse
Affiliation(s)
- Sandeep B Adavi
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Lekshmy Sathee
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
8
|
Liu M, Liu XX, He XL, Liu LJ, Wu H, Tang CX, Zhang YS, Jin CW. Ethylene and nitric oxide interact to regulate the magnesium deficiency-induced root hair development in Arabidopsis. THE NEW PHYTOLOGIST 2017; 213:1242-1256. [PMID: 27775153 DOI: 10.1111/nph.14259] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/07/2016] [Indexed: 05/20/2023]
Abstract
Nitric oxide (NO) and ethylene respond to biotic and abiotic stresses through either similar or independent processes. This study examines the mechanism underlying the effects of NO and ethylene on promoting root hair development in Arabidopsis under magnesium (Mg) deficiency. The interaction between NO and ethylene in the regulation of Mg deficiency-induced root hair development was investigated using NO- and ethylene-related mutants and pharmacological methods. Mg deficiency triggered a burst of NO and ethylene, accompanied by a stimulated development of root hairs. Interestingly, ethylene facilitated NO generation by activation of both nitrate reductase and nitric oxide synthase-like (NOS-L) in the roots of Mg-deficient plants. In turn, NO enhanced ethylene synthesis through stimulating the activities of 1-aminocyclopropane-1-carboxylate (ACC) oxidase and ACC synthase (ACS). These two processes constituted an NO-ethylene feedback loop. Blocking either of these two processes inhibited the stimulation of root hair development under Mg deficiency. In conclusion, we suggest that Mg deficiency increases the production of NO and ethylene in roots, each influencing the accumulation and role of the other, and thus these two signals interactively regulate Mg deficiency-induced root hair morphogenesis.
Collapse
Affiliation(s)
- Miao Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xing Xing Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Lin He
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Li Juan Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Wu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Cai Xian Tang
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, Vic., 3086, Australia
| | - Yong Song Zhang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chong Wei Jin
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Plant Physiology and Biochemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
9
|
Niu Y, Ahammed GJ, Tang C, Guo L, Yu J. Physiological and Transcriptome Responses to Combinations of Elevated CO2 and Magnesium in Arabidopsis thaliana. PLoS One 2016; 11:e0149301. [PMID: 26881808 PMCID: PMC4755599 DOI: 10.1371/journal.pone.0149301] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 01/29/2016] [Indexed: 12/15/2022] Open
Abstract
The unprecedented rise in atmospheric CO2 concentration and injudicious fertilization or heterogeneous distribution of Mg in the soil warrant further research to understand the synergistic and holistic mechanisms involved in the plant growth regulation. This study investigated the influence of elevated CO2 (800 μL L(-1)) on physiological and transcriptomic profiles in Arabidopsis cultured in hydroponic media treated with 1 μM (low), 1000 μM (normal) and 10,000 μM (high) Mg2+. Following 7-d treatment, elevated CO2 increased the shoot growth and chlorophyll content under both low and normal Mg supply, whereas root growth was improved exclusively under normal Mg nutrition. Notably, the effect of elevated CO2 on mineral homeostasis in both shoots and roots was less than that of Mg supply. Irrespective of CO2 treatment, high Mg increased number of young leaf but decreased root growth and absorption of P, K, Ca, Fe and Mn whereas low Mg increased the concentration of P, K, Ca and Fe in leaves. Transcriptomics results showed that elevated CO2 decreased the expression of genes related to cell redox homeostasis, cadmium response, and lipid localization, but enhanced signal transduction, protein phosphorylation, NBS-LRR disease resistance proteins and subsequently programmed cell death in low-Mg shoots. By comparison, elevated CO2 enhanced the response of lipid localization (mainly LTP transfer protein/protease inhibitor), endomembrane system, heme binding and cell wall modification in high-Mg roots. Some of these transcriptomic results are substantially in accordance with our physiological and/or biochemical analysis. The present findings broaden our current understanding on the interactive effect of elevated CO2 and Mg levels in the Arabidopsis, which may help to design the novel metabolic engineering strategies to cope with Mg deficiency/excess in crops under elevated CO2.
Collapse
Affiliation(s)
- Yaofang Niu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Chin
| | - Golam Jalal Ahammed
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Chin
| | - Caixian Tang
- Centre for AgriBioscience, La Trobe University, Melbourne Campus, Victoria, 3086, Australia
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jingquan Yu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Chin
| |
Collapse
|
10
|
Begara-Morales JC. Nitric oxide signalling in a CO2-enriched environment. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:560-561. [PMID: 26839220 DOI: 10.1093/jxb/erw010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Juan C Begara-Morales
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, UK
| |
Collapse
|
11
|
Du S, Zhang R, Zhang P, Liu H, Yan M, Chen N, Xie H, Ke S. Elevated CO2-induced production of nitric oxide (NO) by NO synthase differentially affects nitrate reductase activity in Arabidopsis plants under different nitrate supplies. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:893-904. [PMID: 26608644 DOI: 10.1093/jxb/erv506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
CO2 elevation often alters the plant's nitrate reductase (NR) activity, the first enzyme acting in the nitrate assimilation pathway. However, the mechanism underlying this process remains unknown. The association between elevated CO2-induced alterations of NR activity and nitric oxide (NO) was examined in Col-0 Arabidopsis fed with 0.2-10 mM nitrate, using NO donors, NO scavenger, and NO synthase (NOS) inhibitor. The noa1 mutant, in which most NOS activity was lost, and the NR activity-null mutant nia1 nia2 were also used to examine the above association. In response to CO2 elevation, NR activity increased in low-nitrate Col-0 plants but was inhibited in high-nitrate Col-0 plants. NO scavenger and NOS inhibitor could eliminate these two responses, whereas the application of NO donors mimicked these distinct responses in ambient CO2-grown Col-0 plants. Furthermore, in both low- and high-nitrate conditions, elevated CO2 increased NOS activity and NO levels in Col-0 and nia1 nia2 plants but had little effect on NO level and NR activity in noa1 plants. Considering all of these findings, this study concluded that, in response to CO2 elevation, either the NR activity induction in low-nitrate plants or the NR activity inhibition in high-nitrate plants is regulated by NOS-generated NO.
Collapse
Affiliation(s)
- Shaoting Du
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Ranran Zhang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Peng Zhang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Huijun Liu
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Minggang Yan
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Ni Chen
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Huaqiang Xie
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Shouwei Ke
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| |
Collapse
|
12
|
Li J, Zhu D, Wang R, Shen W, Guo Y, Ren Y, Shen W, Huang L. β-Cyclodextrin-hemin complex-induced lateral root formation in tomato: involvement of nitric oxide and heme oxygenase 1. PLANT CELL REPORTS 2015; 34:381-93. [PMID: 25433859 DOI: 10.1007/s00299-014-1716-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/06/2014] [Accepted: 11/20/2014] [Indexed: 05/26/2023]
Abstract
β-Cyclodextrin-hemin complex-induced tomato lateral root formation was associated with nitric oxide and heme oxygenase 1 by modulating cell cycle regulatory genes. β-Cyclodextrin-hemin complex (β-CDH), a complex by combining β-cyclodextrin (β-CD) with hemin, a heme oxygenase 1 (HO1) inducer, was a trigger of cucumber adventitious root formation by enhancing HO1 gene expression. In this report, our results identified the previously unknown function of β-CDH in plants: the inducer of tomato lateral root (LR) formation. β-CDH-triggered LR formation is hemin-specific, since β-CD failed to induce LR development. Because nitric oxide (NO) is involved in LR formation, the correlation of β-CDH with NO and HO1 was investigated. Our analysis suggested that β-CDH induced an increase in endogenous NO production, followed by up-regulation of tomato HO1 gene and LR formation, all of which were mimicked by hemin and two NO-releasing compounds (SNP and GSNO). The induction of HO1 gene expression and LR formation triggered by β-CDH or hemin were significantly blocked by an inhibitor of HO1. Further results revealed that both β-CDH- and SNP-stimulated HO1 gene expression and thereafter LR formation were sensitive to the removal of NO with a potent NO scavenger, and the responses of SNP were significantly blocked by an inhibitor of HO1. Molecular evidence illustrated that representative cell cycle regulatory genes, including SlCDKA1, SlCYCA3;1, SlCYCA2;1, and SlCYCD3;1, were significantly up-regulated by β-CDH and SNP, but obviously blocked when seedlings were co-treated with the scavenger of NO or the inhibitor of HO1. In summary, our physiological and molecular evidence demonstrated that both NO and HO1 were involved in the β-CDH-induced LR formation with, at least partially, HO1 acting downstream of NO signaling.
Collapse
Affiliation(s)
- Jiale Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Verstraeten I, Schotte S, Geelen D. Hypocotyl adventitious root organogenesis differs from lateral root development. FRONTIERS IN PLANT SCIENCE 2014; 5:495. [PMID: 25324849 PMCID: PMC4179338 DOI: 10.3389/fpls.2014.00495] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 09/06/2014] [Indexed: 05/02/2023]
Abstract
Wound-induced adventitious root (AR) formation is a requirement for plant survival upon root damage inflicted by pathogen attack, but also during the regeneration of plant stem cuttings for clonal propagation of elite plant varieties. Yet, adventitious rooting also takes place without wounding. This happens for example in etiolated Arabidopsis thaliana hypocotyls, in which AR initiate upon de-etiolation or in tomato seedlings, in which AR initiate upon flooding or high water availability. In the hypocotyl AR originate from a cell layer reminiscent to the pericycle in the primary root (PR) and the initiated AR share histological and developmental characteristics with lateral roots (LRs). In contrast to the PR however, the hypocotyl is a determinate structure with an established final number of cells. This points to differences between the induction of hypocotyl AR and LR on the PR, as the latter grows indeterminately. The induction of AR on the hypocotyl takes place in environmental conditions that differ from those that control LR formation. Hence, AR formation depends on differentially regulated gene products. Similarly to AR induction in stem cuttings, the capacity to induce hypocotyl AR is genotype-dependent and the plant growth regulator auxin is a key regulator controlling the rooting response. The hormones cytokinins, ethylene, jasmonic acid, and strigolactones in general reduce the root-inducing capacity. The involvement of this many regulators indicates that a tight control and fine-tuning of the initiation and emergence of AR exists. Recently, several genetic factors, specific to hypocotyl adventitious rooting in A. thaliana, have been uncovered. These factors reveal a dedicated signaling network that drives AR formation in the Arabidopsis hypocotyl. Here we provide an overview of the environmental and genetic factors controlling hypocotyl-born AR and we summarize how AR formation and the regulating factors of this organogenesis are distinct from LR induction.
Collapse
Affiliation(s)
| | | | - Danny Geelen
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| |
Collapse
|
14
|
Blondel C, Melesan M, San Miguel A, Veyrenc S, Meresse P, Pezet M, Reynaud S, Raveton M. Cell cycle disruption and apoptosis as mechanisms of toxicity of organochlorines in Zea mays roots. JOURNAL OF HAZARDOUS MATERIALS 2014; 276:312-322. [PMID: 24892778 DOI: 10.1016/j.jhazmat.2014.05.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/13/2014] [Accepted: 05/15/2014] [Indexed: 06/03/2023]
Abstract
Organochlorine pesticides (OCPs) are widespread environmental pollutants; two of them are highly persistent: lindane (γHCH) and chlordecone (CLD). Maize plants cope with high levels of OCP-environmental pollution, however little is known about cellular mechanisms involved in plant response to such OCP-exposures. This research was aimed at understanding the physiological pathways involved in the plant response to OCPs in function of a gradient of exposure. Here we provide the evidences that OCPs might disrupt root cell cycle leading to a rise in the level of polyploidy possibly through mechanisms of endoreduplication. In addition, low-to-high doses of γHCH were able to induce an accumulation of H2O2 without modifying NO contents, while CLD modulated neither H2O2 nor NO production. [Ca(2+)]cytosolic, the caspase-3-like activity as well as TUNEL-positive nuclei and IP-positive cells increased after exposure to low-to-high doses of OCPs. These data strongly suggest a cascade mechanism of the OCP-induced toxic effect, notably with an increase in [Ca(2+)]cytosolic and caspase-3-like activity, suggesting the activation of programmed cell death pathway.
Collapse
Affiliation(s)
- Claire Blondel
- Laboratoire d'Ecologie Alpine, UMR CNRS n°5553, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09, France; Université de Grenoble - Alpes, France
| | - Marc Melesan
- Laboratoire d'Ecologie Alpine, UMR CNRS n°5553, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09, France; Université de Grenoble - Alpes, France
| | - Angélique San Miguel
- Laboratoire d'Ecologie Alpine, UMR CNRS n°5553, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09, France; Université de Grenoble - Alpes, France
| | - Sylvie Veyrenc
- Laboratoire d'Ecologie Alpine, UMR CNRS n°5553, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09, France; Université de Grenoble - Alpes, France
| | - Patrick Meresse
- Université de Grenoble - Alpes, France; Centre Universitaire de Biologie Expérimentale, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09, France
| | - Mylène Pezet
- Centre de Recherche Inserm/UJF U823, Institut Albert Bonniot, BP 170, 38042 Grenoble Cedex 09, France
| | - Stephane Reynaud
- Laboratoire d'Ecologie Alpine, UMR CNRS n°5553, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09, France; Université de Grenoble - Alpes, France
| | - Muriel Raveton
- Laboratoire d'Ecologie Alpine, UMR CNRS n°5553, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09, France; Université de Grenoble - Alpes, France.
| |
Collapse
|
15
|
Li YJ, Shi ZQ, Gan LJ, Chen J. Hydrogen sulfide is a novel gasotransmitter with pivotal role in regulating lateral root formation in plants. PLANT SIGNALING & BEHAVIOR 2014; 9:e29127. [PMID: 24832131 PMCID: PMC4203638 DOI: 10.4161/psb.29127] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Hydrogen sulfide (H 2S), the third gasotransmitter after nitric oxide (NO) and carbon monoxide (CO), is a critical neuromodulator in the pathogenesis of various diseases from neurodegenerative diseases to diabetes or heart failure. The crosstalk between NO and H 2S has been well established in mammalian physiology. In planta, NO is demonstrated to regulate lateral root formation by acting downstream of auxin. The recent reports revealed that H 2S is a novel inducer of lateral root (LR) formation by stimulating the expression of cell cycle regulatory genes (CCRGs), acting similarly with NO, CO, and IAA. Interestingly, during the initiation of lateral root primordia, IAA is a potent inducer of endogenous H 2S and CO, which is produced by L-cysteine desulfhydrase (LCD) and heme oxygenase-1 (HO-1), respectively. The increasing evidences suggest that H 2S-promoted LR growth is dependent on the endogenous production of CO. In addition, our results indicate that the H 2S signaling in the regulation of LR formation can be associated to NO and Ca 2+. In this addendum, we advanced a proposed schematic model for H 2S-mediated signaling pathway of plant LR development.
Collapse
Affiliation(s)
- Yan-Jun Li
- Institute of Food Quality and Safety; Jiangsu Academy of Agricultural Sciences; Nanjing, PR China
| | - Zhi-Qi Shi
- Institute of Food Quality and Safety; Jiangsu Academy of Agricultural Sciences; Nanjing, PR China
| | - Li-Jun Gan
- College of Life Sciences; Nanjing Agricultural University; Nanjing, PR China
| | - Jian Chen
- Institute of Food Quality and Safety; Jiangsu Academy of Agricultural Sciences; Nanjing, PR China
- Correspondence to: Jian Chen,
| |
Collapse
|
16
|
Zhang Y, Liu H, Yin H, Wang W, Zhao X, Du Y. Nitric oxide mediates alginate oligosaccharides-induced root development in wheat (Triticum aestivum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 71:49-56. [PMID: 23872742 DOI: 10.1016/j.plaphy.2013.06.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 06/25/2013] [Indexed: 05/27/2023]
Abstract
Alginate oligosaccharides (AOS), which are marine oligosaccharides, are involved in regulating plant root growth, but the promotion mechanism for AOS remains unclear. Here, AOS (10-80 mg L(-1)) were found to induce the generation of nitric oxide (NO) in the root system of wheat (Triticum aestivum L.), which promoted the formation and elongation of wheat roots in a dose-dependent manner. NO inhibitors suggested that nitrate reductase (NR), rather than nitric oxide synthase (NOS), was essential for AOS-induced root development. Further studies confirmed that AOS-induced NO generation in wheat roots by up-regulating the gene expression and enzyme activity of NR at the post-transcriptional level. The anatomy and RT-PCR results showed that AOS accelerated the division and growth of stele cells, leading to an increase in the ratio of stele area to root transverse area. This could be inhibited by the NR inhibitor, sodium tungstate, which indicated that NO catalyzed by the NR was involved in AOS regulation of root development. Taken together, in the early stage of AOS-induced root development, NO generation was a novel mechanism by which AOS regulated plant growth. The results also showed that this marine resource could be widely used for crop development.
Collapse
Affiliation(s)
- Yunhong Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Liaoning Provincial Key Laboratory of Carbohydrates, 457 Zhongshan Road, Dalian 116023, Liaoning, PR China
| | | | | | | | | | | |
Collapse
|
17
|
Orman-Ligeza B, Parizot B, Gantet PP, Beeckman T, Bennett MJ, Draye X. Post-embryonic root organogenesis in cereals: branching out from model plants. TRENDS IN PLANT SCIENCE 2013; 18:459-67. [PMID: 23727199 DOI: 10.1016/j.tplants.2013.04.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/23/2013] [Accepted: 04/29/2013] [Indexed: 05/07/2023]
Abstract
The root architecture of higher plants is amazingly diverse. In this review, we compare the lateral root developmental programme in cereals and Arabidopsis thaliana. In cereals, cells in the endodermis are recruited to form the new root cap and overlying cortical cells divide to facilitate the emergence of the lateral root primordium. The TIR1/ABF2 auxin receptors and the AUX/IAA, ARF, and LBD transcriptional regulatory proteins are conserved in cereals and Arabidopsis. Several elements of this regulatory network are common to lateral and crown roots in cereals. Also, the ground meristem from which crown roots differentiate shows similarities with the root pericycle. Studies in cereals promise to give complementary insights into the mechanisms regulating the development of post-embryonic roots in plants.
Collapse
Affiliation(s)
- Beata Orman-Ligeza
- Université catholique de Louvain, Earth and Life Institute, Louvain-la-Neuve, Belgium
| | | | | | | | | | | |
Collapse
|
18
|
Wang H, Niu Y, Chai R, Liu M, Zhang Y. Cross-talk between nitric oxide and Ca (2+) in elevated CO 2-induced lateral root formation. PLANT SIGNALING & BEHAVIOR 2013; 8:e23106. [PMID: 23299426 PMCID: PMC3657006 DOI: 10.4161/psb.23106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This study demonstrates a potential signaling pathway of CO 2-dependent stimulation in lateral root (LR) formation. Elevated CO 2 increases production of nitric oxide (NO), which subsequently stimulates the generation of cytosolic Ca (2+) concentration by activating plasma membrane and/or intracellular Ca (2+)-permeable channels. Meanwhile, nitric oxide synthase (NOS), as one of the main NO source, requires Ca (2+) and CaM as cofactors. This complex interaction involves transduction cascades of multiple signals that lead to the LR formation and development. Finally, this review highlights the the role of Ca (2+) in the process that elevated CO 2 enhances the development of LRs through increased NO level.
Collapse
Affiliation(s)
- Huan Wang
- Ministry of Education Key Laboratory of Environment Remediation and Ecosystem Health; College of Environmental and Resource Science; Zhejiang University; Hangzhou, China
| | - Yaofang Niu
- Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition; College of Environmental and Resource Science; Zhejiang University; Hangzhou, China
| | - Rushan Chai
- Ministry of Education Key Laboratory of Environment Remediation and Ecosystem Health; College of Environmental and Resource Science; Zhejiang University; Hangzhou, China
| | - Miao Liu
- Ministry of Education Key Laboratory of Environment Remediation and Ecosystem Health; College of Environmental and Resource Science; Zhejiang University; Hangzhou, China
| | - Yongsong Zhang
- Ministry of Education Key Laboratory of Environment Remediation and Ecosystem Health; College of Environmental and Resource Science; Zhejiang University; Hangzhou, China
- Correspondence to: Yongsong Zhang,
| |
Collapse
|