1
|
Nivedha M, Harish S, Angappan K, Karthikeyan G, Kumar KK, Murugan M, Infant Richard J. Profiling of Groundnut bud necrosis orthotospovirus-responsive microRNA and their targets in tomato based on deep sequencing. J Virol Methods 2024; 327:114924. [PMID: 38574773 DOI: 10.1016/j.jviromet.2024.114924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Tomato, an extensively cultivated vegetable crop produces miRNAs in response to infection with Groundnut bud necrosis orthotospovirus, a viral pathogen causing significant economic losses. High-throughput miRNA sequencing was performed on tomato leaves inoculated with GBNV and mock-inoculated leaves as controls. Analysis revealed 73 known miRNAs belonging to 24 miRNA families, with variable expression levels. Interestingly, 39 miRNAs were upregulated, and 34 were downregulated in response to GBNV infection. Stem-loop quantitative reverse transcription PCR validated the differential expression of selected miRNAs. Additionally, 30 miRNA encoded proteins were identified to be involved in disease resistance and susceptibility. The miRNA-target interactions were found to play significant roles in cellular and metabolic activities, as well as modulating signaling pathways during the plant-virus interaction. The findings shed light on the intricate regulatory network of miRNAs in tomato response to viral infection and may contribute to developing strategies for improving crop protection against viral diseases.
Collapse
Affiliation(s)
- M Nivedha
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003, India
| | - S Harish
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003, India.
| | - K Angappan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003, India
| | - G Karthikeyan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003, India
| | - K K Kumar
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003, India
| | - M Murugan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003, India
| | - J Infant Richard
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003, India
| |
Collapse
|
2
|
Wang X, Choi YM, Jeon YA, Yi J, Shin MJ, Desta KT, Yoon H. Analysis of Genetic Diversity in Adzuki Beans ( Vigna angularis): Insights into Environmental Adaptation and Early Breeding Strategies for Yield Improvement. PLANTS (BASEL, SWITZERLAND) 2023; 12:4154. [PMID: 38140482 PMCID: PMC10747723 DOI: 10.3390/plants12244154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Adzuki beans are widely cultivated in East Asia and are one of the earliest domesticated crops. In order to gain a deeper understanding of the genetic diversity and domestication history of adzuki beans, we conducted Genotyping by Sequencing (GBS) analysis on 366 landraces originating from Korea, China, and Japan, resulting in 6586 single-nucleotide polymorphisms (SNPs). Population structure analysis divided these 366 landraces into three subpopulations. These three subpopulations exhibited distinctive distributions, suggesting that they underwent extended domestication processes in their respective regions of origin. Phenotypic variance analysis of the three subpopulations indicated that the Korean-domesticated subpopulation exhibited significantly higher 100-seed weights, the Japanese-domesticated subpopulation showed significantly higher numbers of grains per pod, and the Chinese-domesticated subpopulation displayed significantly higher numbers of pods per plant. We speculate that these differences in yield-related traits may be attributed to varying emphases placed by early breeders in these regions on the selection of traits related to yield. A large number of genes related to biotic/abiotic stress resistance and defense were found in most quantitative trait locus (QTL) for yield-related traits using genome-wide association studies (GWAS). Genomic sliding window analysis of Tajima's D and a genetic differentiation coefficient (Fst) revealed distinct domestication selection signatures and genotype variations on these QTLs within each subpopulation. These findings indicate that each subpopulation would have been subjected to varied biotic/abiotic stress events in different origins, of which these stress events have caused balancing selection differences in the QTL of each subpopulation. In these balancing selections, plants tend to select genotypes with strong resistance under biotic/abiotic stress, but reduce the frequency of high-yield genotypes to varying degrees. These biotic/abiotic stressors impact crop yield and may even lead to selection purging, resulting in the loss of several high-yielding genotypes among landraces. However, this also fuels the flow of crop germplasms. Overall, balancing selection appears to have a more significant impact on the three yield-related traits compared to breeder-driven domestication selection. These findings are crucial for understanding the impact of domestication selection history on landraces and yield-related traits, aiding in the improvement of adzuki bean varieties.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hyemyeong Yoon
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (X.W.); (Y.-M.C.); (Y.-a.J.); (J.Y.); (M.-J.S.)
| |
Collapse
|
3
|
Xue JY, Fan HY, Zeng Z, Zhou YH, Hu SY, Li SX, Cheng YJ, Meng XR, Chen F, Shao ZQ, Van de Peer Y. Comprehensive regulatory networks for tomato organ development based on the genome and RNAome of MicroTom tomato. HORTICULTURE RESEARCH 2023; 10:uhad147. [PMID: 37691964 PMCID: PMC10483172 DOI: 10.1093/hr/uhad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/15/2023] [Indexed: 09/12/2023]
Abstract
MicroTom has a short growth cycle and high transformation efficiency, and is a prospective model plant for studying organ development, metabolism, and plant-microbe interactions. Here, with a newly assembled reference genome for this tomato cultivar and abundant RNA-seq data derived from tissues of different organs/developmental stages/treatments, we constructed multiple gene co-expression networks, which will provide valuable clues for the identification of important genes involved in diverse regulatory pathways during plant growth, e.g. arbuscular mycorrhizal symbiosis and fruit development. Additionally, non-coding RNAs, including miRNAs, lncRNAs, and circRNAs were also identified, together with their potential targets. Interacting networks between different types of non-coding RNAs (miRNA-lncRNA), and non-coding RNAs and genes (miRNA-mRNA and lncRNA-mRNA) were constructed as well. Our results and data will provide valuable information for the study of organ differentiation and development of this important fruit. Lastly, we established a database (http://eplant.njau.edu.cn/microTomBase/) with genomic and transcriptomic data, as well as details of gene co-expression and interacting networks on MicroTom, and this database should be of great value to those who want to adopt MicroTom as a model plant for research.
Collapse
Affiliation(s)
- Jia-Yu Xue
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Hai-Yun Fan
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen Zeng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yu-Han Zhou
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai-Ya Hu
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Sai-Xi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ying-Juan Cheng
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang-Ru Meng
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Chen
- College of Tropical Crops, Sanya Nanfan Research Institute, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Zhu-Qing Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yves Van de Peer
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
- Department of Plant Biotechnology and Bioinformatics, VIB-UGent Center for Plant Systems Biology, Ghent University, B-9052 Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
4
|
A Novel miRNA in Rice Associated with the Low Seed Setting Rate Symptom of Rice Stripe Virus. Int J Mol Sci 2023; 24:ijms24043675. [PMID: 36835087 PMCID: PMC9967548 DOI: 10.3390/ijms24043675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
MicroRNAs play key regulatory roles in plant development. The changed pattern of miRNA expression is involved in the production of viral symptoms. Here, we showed that a small RNA, Seq119, a putative novel microRNA, is associated with the low seed setting rate, a viral symptom of rice stripe virus (RSV)-infected rice. The expression of Seq 119 was downregulated in RSV-infected rice. The overexpression of Seq119 in transgenic rice plants did not cause any obvious phenotypic changes in plant development. When the expression of Seq119 was suppressed in rice plants either by expressing a mimic target or by CRISPR/Cas editing, seed setting rates were extremely low, similar to the effects of RSV infection. The putative targets of Seq119 were then predicted. The overexpression of the target of Seq119 in rice caused a low seed setting rate, similar to that in Seq119-suppressed or edited rice plants. Consistently, the expression of the target was upregulated in Seq119-suppressed and edited rice plants. These results suggest that downregulated Seq119 is associated with the low seed setting rate symptom of the RSV in rice.
Collapse
|
5
|
Zhang A, Zhang S, Wang F, Meng X, Ma Y, Guan J, Zhang F. The roles of microRNAs in horticultural plant disease resistance. Front Genet 2023; 14:1137471. [PMID: 36923786 PMCID: PMC10009157 DOI: 10.3389/fgene.2023.1137471] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/31/2023] [Indexed: 03/03/2023] Open
Abstract
The development of the horticultural industry is largely limited by disease and excessive pesticide application. MicroRNAs constitute a major portion of the transcriptomes of eukaryotes. Various microRNAs have been recognized as important regulators of the expression of genes involved in essential biological processes throughout the whole life cycle of plants. Recently, small RNA sequencing has been applied to study gene regulation in horticultural plants. In this review, we summarize the current understanding of the biogenesis and contributions of microRNAs in horticultural plant disease resistance. These microRNAs may potentially be used as genetic resources for improving disease resistance and for molecular breeding. The challenges in understanding horticultural plant microRNA biology and the possibilities to make better use of these horticultural plant gene resources in the future are discussed in this review.
Collapse
Affiliation(s)
- Aiai Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shunshun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feng Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xianmin Meng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yue Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Jiantao Guan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feng Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Li J, Li Y, Wang R, Fu J, Zhou X, Fang Y, Wang Y, Liu Y. Multiple Functions of MiRNAs in Brassica napus L. Life (Basel) 2022; 12:1811. [PMID: 36362967 PMCID: PMC9694376 DOI: 10.3390/life12111811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 09/05/2023] Open
Abstract
The worldwide climate changes every year due to global warming, waterlogging, drought, salinity, pests, and pathogens, impeding crop productivity. Brassica napus is one of the most important oil crops in the world, and rapeseed oil is considered one of the most health-beneficial edible vegetable oils. Recently, miRNAs have been found and confirmed to control the expression of targets under disruptive environmental conditions. The mechanism is through the formation of the silencing complex that mediates post-transcriptional gene silencing, which pairs the target mRNA and target cleavage and/or translation inhibition. However, the functional role of miRNAs and targets in B. napus is still not clarified. This review focuses on the current knowledge of miRNAs concerning development regulation and biotic and abiotic stress responses in B. napus. Moreover, more strategies for miRNA manipulation in plants are discussed, along with future perspectives, and the enormous amount of transcriptome data available provides cues for miRNA functions in B. napus. Finally, the construction of the miRNA regulatory network can lead to the significant development of climate change-tolerant B. napus through miRNA manipulation.
Collapse
Affiliation(s)
- Jian Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221121, China
| | - Yangyang Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221121, China
| | - Rongyuan Wang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221121, China
| | - Jiangyan Fu
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221121, China
| | - Xinxing Zhou
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221121, China
| | - Yujie Fang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Youping Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Yaju Liu
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221121, China
| |
Collapse
|
7
|
Gong Q, Wang Y, Jin Z, Hong Y, Liu Y. Transcriptional and post-transcriptional regulation of RNAi-related gene expression during plant-virus interactions. STRESS BIOLOGY 2022; 2:33. [PMID: 37676459 PMCID: PMC10441928 DOI: 10.1007/s44154-022-00057-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/14/2022] [Indexed: 09/08/2023]
Abstract
As sessile organisms, plants encounter diverse invasions from pathogens including viruses. To survive and thrive, plants have evolved multilayered defense mechanisms to combat virus infection. RNAi, also known as RNA silencing, is an across-kingdom innate immunity and gene regulatory machinery. Molecular framework and crucial roles of RNAi in antiviral defense have been well-characterized. However, it is largely unknown that how RNAi is transcriptionally regulated to initiate, maintain and enhance cellular silencing under normal or stress conditions. Recently, insights into the transcriptional and post-transcriptional regulation of RNAi-related genes in different physiological processes have been emerging. In this review, we integrate these new findings to provide updated views on how plants modulate RNAi machinery at the (post-) transcriptional level to respond to virus infection.
Collapse
Affiliation(s)
- Qian Gong
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Yunjing Wang
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Zhenhui Jin
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- School of Science and the Environment, University of Worcester, Worcester, WR2 6AJ, UK
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- School of Science and the Environment, University of Worcester, Worcester, WR2 6AJ, UK
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| |
Collapse
|
8
|
Wu F, Xu J, Gao T, Huang D, Jin W. Molecular mechanism of modulating miR482b level in tomato with botrytis cinerea infection. BMC PLANT BIOLOGY 2021; 21:496. [PMID: 34706648 PMCID: PMC8555085 DOI: 10.1186/s12870-021-03203-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Plant miRNAs are involved in the response to biotic and abiotic stresses by altering their expression levels, and they play an important role in the regulation of plant resistance to stress. However, the molecular mechanism that regulates the expression levels of miRNAs in plants with biotic and abiotic stress still needs to be explored. Previously, we found that the expression of the miR482 family was changed in tomato infected by Botrytis cinerea. In this study, we investigated and uncovered the mechanism underlying the response of miR482 to B. cinerea infection in tomato. RESULTS First, RT-qPCR was employed to detect the expression patterns of miR482b in tomato infected by B. cinerea, and results showed that miR482b primary transcripts (pri-miR482b) were up-regulated in B. cinerea-infected leaves, but the mature miR482b was down-regulated. Subsequently, we used rapid amplification cDNA end method to amplify the full-length of pri-miR482b. Result showed that the pri-miR482b had two isoforms, with the longer one (consisting 300 bp) having an extra fragment of 53 bp in the 3'-end compared with the shorter one. In vitro Dicer assay indicated that the longer isoform pri-miR482b-x1 had higher efficiency in the post-transcriptional splicing of miRNA than the shorter isoform pri-miR482b-x2. In addition, the transcription level of mature miR482b was much higher in transgenic Arabidopsis overexpressing pri-miR482b-x1 than that in OE pri-miR482b-x2 Arabidopsis. These results confirmed that this extra 53 bp in pri-miR482b-x1 might play a key role in the miR482b biogenesis of post-transcription processing. CONCLUSIONS Extra 53 bp in pri-miR482b-x1 enhanced miR482b biogenesis, which elevated the transcription level of miR482b. This study clarified the response of miR482 to B. cinerea infection in tomato, thereby helping us further understand the molecular mechanisms that regulate the expression levels of other miRNAs.
Collapse
Affiliation(s)
- Fangli Wu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and medicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Jinfeng Xu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and medicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Tiantian Gao
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and medicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Diao Huang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and medicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Weibo Jin
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and medicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| |
Collapse
|
9
|
Yue H, Huang LP, Lu DYH, Zhang ZH, Zhang Z, Zhang DY, Zheng LM, Gao Y, Tan XQ, Zhou XG, Shi XB, Liu Y. Integrated Analysis of microRNA and mRNA Transcriptome Reveals the Molecular Mechanism of Solanum lycopersicum Response to Bemisia tabaci and Tomato chlorosis virus. Front Microbiol 2021; 12:693574. [PMID: 34239512 PMCID: PMC8258350 DOI: 10.3389/fmicb.2021.693574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Tomato chlorosis virus (ToCV), is one of the most devastating cultivated tomato viruses, seriously threatened the growth of crops worldwide. As the vector of ToCV, the whitefly Bemisia tabaci Mediterranean (MED) is mainly responsible for the rapid spread of ToCV. The current understanding of tomato plant responses to this virus and B. tabaci is very limited. To understand the molecular mechanism of the interaction between tomato, ToCV and B. tabaci, we adopted a next-generation sequencing approach to decipher miRNAs and mRNAs that are differentially expressed under the infection of B. tabaci and ToCV in tomato plants. Our data revealed that 6199 mRNAs were significantly regulated, and the differentially expressed genes were most significantly associated with the plant-pathogen interaction, the MAPK signaling pathway, the glyoxylate, and the carbon fixation in photosynthetic organisms and photosynthesis related proteins. Concomitantly, 242 differentially expressed miRNAs were detected, including novel putative miRNAs. Sly-miR159, sly-miR9471b-3p, and sly-miR162 were the most expressed miRNAs in each sample compare to control group. Moreover, we compared the similarities and differences of gene expression in tomato plant caused by infection or co-infection of B. tabaci and ToCV. Taken together, the analysis reported in this article lays a solid foundation for further research on the interaction between tomato, ToCV and B. tabaci, and provide evidence for the identification of potential key genes that influences virus transmission in tomato plants.
Collapse
Affiliation(s)
- Hao Yue
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Li-Ping Huang
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Ding-Yi-Hui Lu
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Zhan-Hong Zhang
- Institute of Vegetable, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhuo Zhang
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - De-Yong Zhang
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Li-Min Zheng
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Yang Gao
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Xin-Qiu Tan
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Xu-Guo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Xiao-Bin Shi
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Yong Liu
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| |
Collapse
|
10
|
Esposito S, Aversano R, Tripodi P, Carputo D. Whole-Genome Doubling Affects Pre-miRNA Expression in Plants. PLANTS 2021; 10:plants10051004. [PMID: 34069771 PMCID: PMC8157229 DOI: 10.3390/plants10051004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/09/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022]
Abstract
Whole-genome doubling (polyploidy) is common in angiosperms. Several studies have indicated that it is often associated with molecular, physiological, and phenotypic changes. Mounting evidence has pointed out that micro-RNAs (miRNAs) may have an important role in whole-genome doubling. However, an integrative approach that compares miRNA expression in polyploids is still lacking. Here, a re-analysis of already published RNAseq datasets was performed to identify microRNAs’ precursors (pre-miRNAs) in diploids (2x) and tetraploids (4x) of five species (Arabidopsis thaliana L., Morus alba L., Brassica rapa L., Isatis indigotica Fort., and Solanum commersonii Dun). We found 3568 pre-miRNAs, three of which (pre-miR414, pre-miR5538, and pre-miR5141) were abundant in all 2x, and were absent/low in their 4x counterparts. They are predicted to target more than one mRNA transcript, many belonging to transcription factors (TFs), DNA repair mechanisms, and related to stress. Sixteen pre-miRNAs were found in common in all 2x and 4x. Among them, pre-miRNA482, pre-miRNA2916, and pre-miRNA167 changed their expression after polyploidization, being induced or repressed in 4x plants. Based on our results, a common ploidy-dependent response was triggered in all species under investigation, which involves DNA repair, ATP-synthesis, terpenoid biosynthesis, and several stress-responsive transcripts. In addition, an ad hoc pre-miRNA expression analysis carried out solely on 2x vs. 4x samples of S. commersonii indicated that ploidy-dependent pre-miRNAs seem to actively regulate the nucleotide metabolism, probably to cope with the increased requirement for DNA building blocks caused by the augmented DNA content. Overall, the results outline the critical role of microRNA-mediated responses following autopolyploidization in plants.
Collapse
Affiliation(s)
- Salvatore Esposito
- CREA Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy;
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Pasquale Tripodi
- CREA Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano, Italy;
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
- Correspondence: ; Tel.: +39-08-1252-9225
| |
Collapse
|
11
|
Çakır Ö, Arıkan B, Karpuz B, Turgut-Kara N. Expression analysis of miRNAs and their targets related to salt stress in Solanum lycopersicum H-2274. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2020.1870871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Özgür Çakır
- Department of Molecular Biology and Genetics, Science Faculty, İstanbul University, Istanbul, Turkey
| | - Burcu Arıkan
- Department of Molecular Biology and Genetics, Science Faculty, İstanbul University, Istanbul, Turkey
| | - Burcu Karpuz
- Programme of Molecular Biology and Genetics, Institute of Science, Istanbul University, Istanbul, Turkey
| | - Neslihan Turgut-Kara
- Department of Molecular Biology and Genetics, Science Faculty, İstanbul University, Istanbul, Turkey
| |
Collapse
|
12
|
Gaafar YZA, Ziebell H. Novel targets for engineering Physostegia chlorotic mottle and tomato brown rugose fruit virus-resistant tomatoes: in silico prediction of tomato microRNA targets. PeerJ 2020; 8:e10096. [PMID: 33194382 PMCID: PMC7597636 DOI: 10.7717/peerj.10096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/14/2020] [Indexed: 11/20/2022] Open
Abstract
Background Physostegia chlorotic mottle virus (PhCMoV; genus: Alphanucleorhabdovirus, family: Rhabdoviridae) and tomato brown rugose fruit virus (ToBRFV; genus: Tobamovirus, family: Virgaviridae) are newly emerging plant viruses that have a dramatic effect on tomato production. Among various known virus-control strategies, RNAi-mediated defence has shown the potential to protect plants against various pathogens including viral infections. Micro(mi)RNAs play a major role in RNAi-mediated defence. Methods Using in silico analyses, we investigated the possibility of tomato-encoded miRNAs (TomiRNA) to target PhCMoV and ToBRFV genomes using five different algorithms, i.e., miRanda, RNAhybrid, RNA22, Tapirhybrid and psRNATarget. Results The results revealed that 14 loci on PhCMoV and 10 loci on ToBRFV can be targeted by the TomiRNAs based on the prediction of at least three algorithms. Interestingly, one TomiRNA, miR6026, can target open reading frames from both viruses, i.e., the phosphoprotein encoding gene of PhCMoV, and the two replicase components of ToBRFV. There are currently no commercially available PhCMoV- or ToBRFV-resistant tomato varieties, therefore the predicted data provide useful information for the development of PhCMoV- and ToBFRV-resistant tomato plants.
Collapse
Affiliation(s)
- Yahya Zakaria Abdou Gaafar
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) -Federal Research Centre for Cultivated Plants, Braunschweig, Lower Saxony, Germany
| | - Heiko Ziebell
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) -Federal Research Centre for Cultivated Plants, Braunschweig, Lower Saxony, Germany
| |
Collapse
|
13
|
Du J, Wu R, Liu Z, Sun M, Ghanem H, Li M, Wu G, Qing L. Suppression of nbe-miR1919c-5p Expression in Nicotiana benthamiana Enhances Tobacco Curly Shoot Virus and Its Betasatellite Co-Infection. Viruses 2020; 12:E392. [PMID: 32244650 PMCID: PMC7232422 DOI: 10.3390/v12040392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding but functional RNA molecules of 21-25 nucleotides in length. MiRNAs play significant regulatory roles in diverse plant biological processes. In order to decipher the relationship between nbe-miR1919c-5p and the accumulations of tobacco curly shoot virus (TbCSV) and its betasatellite (TbCSB) DNAs, as well as viral symptom development, we investigated the function of nbe-miR1919c-5p during TbCSV and TbCSB co-infection in plants using a PVX-and a TRV-based short tandem target mimic (STTM) technology. Suppression of nbe-miR1919c-5p expression using these two technologies enhanced TbCSV and TbCSB co-infection-induced leaf curling symptoms in Nicotiana benthamiana plants. Furthermore, suppression of nbe-miR1919c-5p expression enhanced TbCSV and TbCSB DNA accumulations in the infected plants. Our results can advance our knowledge on the nbe-miR1919c-5p function during TbCSV and TbCSB co-infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gentu Wu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400716, China; (J.D.); (R.W.); (Z.L.); (M.S.); (H.G.); (M.L.)
| | - Ling Qing
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400716, China; (J.D.); (R.W.); (Z.L.); (M.S.); (H.G.); (M.L.)
| |
Collapse
|
14
|
Prigigallo MI, Križnik M, De Paola D, Catalano D, Gruden K, Finetti-Sialer MM, Cillo F. Potato Virus Y Infection Alters Small RNA Metabolism and Immune Response in Tomato. Viruses 2019; 11:v11121100. [PMID: 31783643 PMCID: PMC6950276 DOI: 10.3390/v11121100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/19/2019] [Accepted: 11/24/2019] [Indexed: 12/17/2022] Open
Abstract
Potato virus Y (PVY) isolate PVYC-to induces growth reduction and foliar symptoms in tomato, but new vegetation displays symptom recovery at a later stage. In order to investigate the role of micro(mi)RNA and secondary small(s)RNA-regulated mechanisms in tomato defenses against PVY, we performed sRNA sequencing from healthy and PVYC-to infected tomato plants at 21 and 30 days post-inoculation (dpi). A total of 792 miRNA sequences were obtained, among which were 123 canonical miRNA sequences, many isomiR variants, and 30 novel miRNAs. MiRNAs were mostly overexpressed in infected vs. healthy plants, whereas only a few miRNAs were underexpressed. Increased accumulation of isomiRs was correlated with viral infection. Among miRNA targets, enriched functional categories included resistance (R) gene families, transcription and hormone factors, and RNA silencing genes. Several 22-nt miRNAs were shown to target R genes and trigger the production of 21-nt phased sRNAs (phasiRNAs). Next, 500 phasiRNA-generating loci were identified, and were shown to be mostly active in PVY-infected tissues and at 21 dpi. These data demonstrate that sRNA-regulated host responses, encompassing miRNA alteration, diversification within miRNA families, and phasiRNA accumulation, regulate R and disease-responsive genes. The dynamic regulation of miRNAs and secondary sRNAs over time suggests a functional role of sRNA-mediated defenses in the recovery phenotype.
Collapse
Affiliation(s)
- Maria I. Prigigallo
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, G. Via Amendola 122/D, 70126 Bari, Italy;
| | - Maja Križnik
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (M.K.); (K.G.)
| | - Domenico De Paola
- Consiglio Nazionale delle Ricerche, Istituto di Bioscienze e BioRisorse, Via G. Amendola 165/A, 70126 Bari, Italy;
| | - Domenico Catalano
- Consiglio Nazionale delle Ricerche, Istituto di Tecnologie Biomediche, Via G. Amendola 122/D, 70126 Bari, Italy;
| | - Kristina Gruden
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (M.K.); (K.G.)
| | - Mariella M. Finetti-Sialer
- Consiglio Nazionale delle Ricerche, Istituto di Bioscienze e BioRisorse, Via G. Amendola 165/A, 70126 Bari, Italy;
- Correspondence: (M.M.F.-S.); (F.C.); Tel.: +39-080-55583400 (ext. 213) (M.M.F.-S.); +39-080-5443109 (F.C.)
| | - Fabrizio Cillo
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, G. Via Amendola 122/D, 70126 Bari, Italy;
- Correspondence: (M.M.F.-S.); (F.C.); Tel.: +39-080-55583400 (ext. 213) (M.M.F.-S.); +39-080-5443109 (F.C.)
| |
Collapse
|
15
|
Du J, Wu G, Zhou Z, Zhang J, Li M, Sun M, Jiang K, Qing L. Identification of microRNAs regulated by tobacco curly shoot virus co-infection with its betasatellite in Nicotiana benthamiana. Virol J 2019; 16:130. [PMID: 31699111 PMCID: PMC6836351 DOI: 10.1186/s12985-019-1234-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/02/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are a class of 21-24 nucleotide endogenous non-coding small RNAs that play important roles in plant development and defense responses to biotic and abiotic stresses. Tobacco curly shoot virus (TbCSV) is a monopartite begomovirus, cause leaf curling and plant stunting symptoms in many Solanaceae plants. The betasatellite of TbCSV (TbCSB) induces more severe symptoms and enhances virus accumulation when co-infect the plants with TbCSV. METHODS In this study, miRNAs regulated by TbCSV and TbCSB co-infection in Nicotiana benthamiana were characterized using high-throughput sequencing technology. RESULTS Small RNA sequencing analysis revealed that a total of 13 known miRNAs and 42 novel miRNAs were differentially expressed in TbCSV and TbCSB co-infected N. benthamiana plants. Several potential miRNA-targeted genes were identified through data mining and were involved in both catalytic and metabolic processes, in addition to plant defense mechanisms against virus infections according to Gene Ontology (GO) analyses. In addition, the expressions of several differentially expressed miRNAs and their miRNA-targeted gene were validated through quantitative real time polymerase chain reaction (qRT-PCR) approach. CONCLUSIONS A large number of miRNAs are identified, and their target genes, functional annotations also have been explored. Our results provide the information on N. benthamiana miRNAs and would be useful to further understand miRNA regulatory mechanisms after TbCSV and TbCSB co-infection.
Collapse
Affiliation(s)
- Jiang Du
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, the, People's Republic of China
| | - Gentu Wu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, the, People's Republic of China
| | - Zhongpiao Zhou
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, the, People's Republic of China
| | - Jiayuan Zhang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, the, People's Republic of China
| | - Mingjun Li
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, the, People's Republic of China
| | - Miao Sun
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, the, People's Republic of China
| | - Kairong Jiang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, the, People's Republic of China
| | - Ling Qing
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, the, People's Republic of China.
| |
Collapse
|
16
|
Chen L, Meng J, He XL, Zhang M, Luan YS. Solanum lycopersicum microRNA1916 targets multiple target genes and negatively regulates the immune response in tomato. PLANT, CELL & ENVIRONMENT 2019; 42:1393-1407. [PMID: 30362126 DOI: 10.1111/pce.13468] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 06/08/2023]
Abstract
MicroRNA1916 (miR1916) is one of the nonconserved miRNAs that respond to various stresses in plants, but little has been known at present about its mechanisms in biotic stresses. In this study, the expression of Solanum lycopersicum (sly)-miR1916 in tomato was found to be down-regulated after infection with Phytophthora infestans or Botrytis cinerea. Tomato plants that overexpressed sly-miR1916 displayed significant enhancement in susceptibility to P. infestans and B. cinerea infection, as well as increased tendency to produce reactive oxygen species. Silencing of sly-miR1916 by short tandem target mimic and artificial microRNA strategies caused the tomato plants to become more tolerant to adverse conditions. In addition, lower sly-miR1916 expression could up-regulate the expression of strictosidine synthase (STR-2), UDP-glycosyltransferases (UGTs), late blight resistance protein homolog R1B-16, disease resistance protein RPP13-like, and MYB transcription factor (MYB12), which ultimately resulted in the accumulation of α-tomatine and anthocyanins via STR-2, UGT, and MYB12. Furthermore, ectopic expression of sly-miR1916/STR-2 significantly changed the tolerance of tobacco to B. cinerea. Taken together, the results demonstrated that sly-miR1916 might regulate the expression of STR-2, UGT, and MYB12 in tomato plant, conferring sensitivity to biotic stress via modulating α-tomatine and anthocyanins.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xiao Li He
- School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Min Zhang
- School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Yu Shi Luan
- School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
17
|
Jiang N, Cui J, Shi Y, Yang G, Zhou X, Hou X, Meng J, Luan Y. Tomato lncRNA23468 functions as a competing endogenous RNA to modulate NBS-LRR genes by decoying miR482b in the tomato -Phytophthora infestans interaction. HORTICULTURE RESEARCH 2019; 6:28. [PMID: 30729018 PMCID: PMC6355781 DOI: 10.1038/s41438-018-0096-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 05/05/2023]
Abstract
Our previous studies indicated that tomato miR482b could negatively regulate the resistance of tomato to Phytophthora infestans and the expression of miR482b was decreased after inoculation with P. infestans. However, the mechanism by which the accumulation of miR482b is suppressed remains unclear. In this study, we wrote a program to identify 89 long noncoding RNA (lncRNA)-originated endogenous target mimics (eTMs) for 46 miRNAs from our RNA-Seq data. Three tomato lncRNAs, lncRNA23468, lncRNA01308 and lncRNA13262, contained conserved eTM sites for miR482b. When lncRNA23468 was overexpressed in tomato, miR482b expression was significantly decreased, and the expression of the target genes, NBS-LRRs, was significantly increased, resulting in enhanced resistance to P. infestans. Silencing lncRNA23468 in tomato led to the increased accumulation of miR482b and decreased accumulation of NBS-LRRs, as well as reduced resistance to P. infestans. In addition, the accumulation of both miR482b and NBS-LRRs was not significantly changed in tomato plants that overexpressed lncRNA23468 with a mutated eTM site. Based on the VIGS system, a target gene of miR482b, Solyc02g036270.2, was silenced. The disease symptoms of the VIGS-Solyc02g036270.2 tomato plants were in accordance with those of tomato plants in which lncRNA23468 was silenced after inoculation with P. infestans. More severe disease symptoms were found in the modified plants than in the control plants. Our results demonstrate that lncRNAs functioning as eTMs may modulate the effects of miRNAs in tomato and provide insight into how the lncRNA23468-miR482b-NBS-LRR module regulates tomato resistance to P. infestans.
Collapse
Affiliation(s)
- Ning Jiang
- School of Life Science and Biotechnology, Dalian University of Technology, 116024 Dalian, China
| | - Jun Cui
- School of Life Science and Biotechnology, Dalian University of Technology, 116024 Dalian, China
| | - Yunsheng Shi
- School of Computer Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Guanglei Yang
- School of Life Science and Biotechnology, Dalian University of Technology, 116024 Dalian, China
| | - Xiaoxu Zhou
- School of Life Science and Biotechnology, Dalian University of Technology, 116024 Dalian, China
| | - Xinxin Hou
- School of Life Science and Biotechnology, Dalian University of Technology, 116024 Dalian, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Yushi Luan
- School of Life Science and Biotechnology, Dalian University of Technology, 116024 Dalian, China
| |
Collapse
|
18
|
Jiang N, Cui J, Yang G, He X, Meng J, Luan Y. Comparative transcriptome analysis shows the defense response networks regulated by miR482b. PLANT CELL REPORTS 2019; 38:1-13. [PMID: 30191311 DOI: 10.1007/s00299-018-2344-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
The transcriptomic profile in the leaves of miR482b-overexpressing tomato plants revealed that miR482b may suppress alpha-linolenic acid metabolism, cysteine and methionine metabolism, plant-pathogen interaction, and the MAPK pathway to reduce resistance to Phytophthora infestans. Our previous study showed that tomato miR482b acted as a negative regulator during tomato resistance to Phytophthora infestans by silencing NBS-LRR genes. To investigate pathways related to miR482b, the transcriptomic profile of tomato plants that overexpressed miR482b was constructed. A total of 47,124,670 raw sequence reads from the leaves of miR482b-overexpressing tomato plants were generated by Illumina sequencing. A total of 746 genes in miR482b-overexpressing tomato plants were found to show significantly differential expression relative to those in wild-type tomato plants, including 132 up-regulated genes and 614 down-regulated genes. GO and KEGG enrichment analyses showed that plant-pathogen interaction, the MAPK pathway, and the pathways related to JA and ET biosynthesis were affected by miR482b in tomato. qRT-PCR results showed that all the enriched genes in these pathways were down-regulated in tomato plants that overexpressed miR482b and up-regulated in tomato plants that overexpressed an NBS-LRR gene (Soly02g036270.2, the target gene of miR482b). After P. infestans infection, the expression of the enriched genes showed a time-dependent response, and the genes played different roles between resistant tomato (Solanum pimpinellifolium L3708) and tomato susceptible to P. infestans (S. lycopersicum Zaofen No. 2). Our results have, therefore, demonstrated that miR482b is an important component of defense response network. This will also help to identify candidate genes involved in plant-pathogen interaction.
Collapse
Affiliation(s)
- Ning Jiang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Jun Cui
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Guanglei Yang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Xiaoli He
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yushi Luan
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
19
|
Wang S, Cui W, Wu X, Yuan Q, Zhao J, Zheng H, Lu Y, Peng J, Lin L, Chen J, Yan F. Suppression of nbe-miR166h-p5 attenuates leaf yellowing symptoms of potato virus X on Nicotiana benthamiana and reduces virus accumulation. MOLECULAR PLANT PATHOLOGY 2018; 19:2384-2396. [PMID: 30011130 PMCID: PMC6638021 DOI: 10.1111/mpp.12717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/22/2018] [Accepted: 05/20/2018] [Indexed: 05/14/2023]
Abstract
MicroRNAs (miRNAs) play essential roles in plant development. There is increasing evidence that changed expression of miRNAs in virus-infected plants contributes to the development of viral symptoms. Here, we analysed the altered expression of miRNAs of Nicotiana benthamiana in response to Potato virus X (PVX) by Illumina Solexa sequencing. One of the 21 miRNAs significantly affected, nbe-miR166h-p5, was closely associated with viral symptoms. Using the Tobacco rattle virus-based miRNA suppression (VbMS) system, we found that the suppression of nbe-miR166h-p5 in plants caused leaves to turn dark green with increased chlorophyll. When PVX was inoculated on nbe-miR166h-p5-suppressed plants, the leaf yellowing symptom of PVX was largely attenuated with less reduction in chlorophyll content, and the accumulation of PVX was decreased. nbe-miR166h-p5 was also up-regulated in plants infected by Turnip mosaic virus (TuMV), and its suppression attenuated the leaf yellowing symptom of TuMV and decreased viral accumulation. Three potential targets of nbe-miR166h-p5 were identified. The results indicate the association of nbe-miR166h-p5 with symptoms of PVX and also with those of TuMV, providing useful information on the relationship between miRNA and viral infection.
Collapse
Affiliation(s)
- Shu Wang
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Weijun Cui
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Xinyang Wu
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Quan Yuan
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
- College of Plant ProtectionNorthwest A & F UniversityYangling712100China
| | - Jinping Zhao
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Hongying Zheng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Yuwen Lu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Jiejun Peng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Lin Lin
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Jianping Chen
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
- Institute of Plant VirologyNingbo UniversityNingbo315211China
| | - Fei Yan
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
- Institute of Plant VirologyNingbo UniversityNingbo315211China
| |
Collapse
|
20
|
Cardoso TCDS, Alves TC, Caneschi CM, Santana DDRG, Fernandes-Brum CN, Reis GLD, Daude MM, Ribeiro THC, Gómez MMD, Lima AA, Gomes LAA, Gomes MDS, Gandolfi PE, Amaral LRD, Chalfun-Júnior A, Maluf WR, de Souza Gomes M. New insights into tomato microRNAs. Sci Rep 2018; 8:16069. [PMID: 30375421 PMCID: PMC6207730 DOI: 10.1038/s41598-018-34202-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Cultivated tomato, Solanum lycopersicum, is one of the most common fruits in the global food industry. Together with the wild tomato Solanum pennellii, it is widely used for developing better cultivars. MicroRNAs affect mRNA regulation, inhibiting its translation and/or promoting its degradation. Important proteins involved in these processes are ARGONAUTE and DICER. This study aimed to identify and characterize the genes involved in the miRNA processing pathway, miRNA molecules and target genes in both species. We validated the presence of pathway genes and miRNA in different NGS libraries and 6 miRNA families using quantitative RT-PCR. We identified 71 putative proteins in S. lycopersicum and 108 in S. pennellii likely involved in small RNAs processing. Of these, 29 and 32 participate in miRNA processing pathways, respectively. We identified 343 mature miRNAs, 226 pre-miRNAs in 87 families, including 192 miRNAs, which were not previously identified, belonging to 38 new families in S. lycopersicum. In S. pennellii, we found 388 mature miRNAs and 234 pre-miRNAs contained in 85 families. All miRNAs found in S. pennellii were unpublished, being identified for the first time in our study. Furthermore, we identified 2471 and 3462 different miRNA target in S. lycopersicum and S. pennellii, respectively.
Collapse
Affiliation(s)
- Thaís Cunha de Sousa Cardoso
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | - Tamires Caixeta Alves
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | - Carolina Milagres Caneschi
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | - Douglas Dos Reis Gomes Santana
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | | | - Gabriel Lasmar Dos Reis
- Department of Agriculture, Federal University of Lavras (UFLA), Lavras, 37 - 37200-000, Brazil
| | - Matheus Martins Daude
- Laboratory of Molecular Analysis, Federal University of Tocantins (UFT), Gurupi, 77402-970, Brazil
| | | | - Miguel Maurício Díaz Gómez
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | - André Almeida Lima
- Laboratory of Plant Molecular Physiology, Federal University of Lavras (UFLA), Lavras, 3037 - 37200-000, Brazil
| | | | - Marcos de Souza Gomes
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | - Peterson Elizandro Gandolfi
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | - Laurence Rodrigues do Amaral
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | - Antonio Chalfun-Júnior
- Laboratory of Plant Molecular Physiology, Federal University of Lavras (UFLA), Lavras, 3037 - 37200-000, Brazil
| | - Wilson Roberto Maluf
- Department of Agriculture, Federal University of Lavras (UFLA), Lavras, 37 - 37200-000, Brazil
| | - Matheus de Souza Gomes
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil.
| |
Collapse
|
21
|
Bao D, Ganbaatar O, Cui X, Yu R, Bao W, Falk BW, Wuriyanghan H. Down-regulation of genes coding for core RNAi components and disease resistance proteins via corresponding microRNAs might be correlated with successful Soybean mosaic virus infection in soybean. MOLECULAR PLANT PATHOLOGY 2018; 19:948-960. [PMID: 28695996 PMCID: PMC6638018 DOI: 10.1111/mpp.12581] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/30/2017] [Accepted: 07/06/2017] [Indexed: 05/20/2023]
Abstract
Plants protect themselves from virus infections by several different defence mechanisms. RNA interference (RNAi) is one prominent antiviral mechanism, which requires the participation of AGO (Argonaute) and Dicer/DCL (Dicer-like) proteins. Effector-triggered immunity (ETI) is an antiviral mechanism mediated by resistance (R) genes, most of which encode nucleotide-binding site-leucine-rich repeat (NBS-LRR) family proteins. MicroRNAs (miRNAs) play important regulatory roles in plants, including the regulation of host defences. Soybean mosaic virus (SMV) is the most common virus in soybean and, in this work, we identified dozens of SMV-responsive miRNAs by microarray analysis in an SMV-susceptible soybean line. Amongst the up-regulated miRNAs, miR168a, miR403a, miR162b and miR1515a predictively regulate the expression of AGO1, AGO2, DCL1 and DCL2, respectively, and miR1507a, miR1507c and miR482a putatively regulate the expression of several NBS-LRR family disease resistance genes. The regulation of target gene expression by these seven miRNAs was validated by both transient expression assays and RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE) experiments. Transcript levels for AGO1, DCL1, DCL2 and five NBS-LRR family genes were repressed at different time points after SMV infection, whereas the corresponding miRNA levels were up-regulated at these same time points. Furthermore, inhibition of miR1507a, miR1507c, miR482a, miR168a and miR1515a by short tandem target mimic (STTM) technology compromised SMV infection efficiency in soybean. Our results imply that SMV can counteract soybean defence responses by the down-regulation of several RNAi pathway genes and NBS-LRR family resistance genes via the induction of the accumulation of their corresponding miRNA levels.
Collapse
Affiliation(s)
- Duran Bao
- School of Life Sciences, University of Inner MongoliaHohhotInner Mongolia 010021, China
| | - Oyunchuluun Ganbaatar
- School of Life Sciences, University of Inner MongoliaHohhotInner Mongolia 010021, China
| | - Xiuqi Cui
- School of Life Sciences, University of Inner MongoliaHohhotInner Mongolia 010021, China
| | - Ruonan Yu
- School of Life Sciences, University of Inner MongoliaHohhotInner Mongolia 010021, China
| | - Wenhua Bao
- School of Life Sciences, University of Inner MongoliaHohhotInner Mongolia 010021, China
| | - Bryce W. Falk
- Department of Plant PathologyUniversity of California DavisDavisCA 95616USA
| | - Hada Wuriyanghan
- School of Life Sciences, University of Inner MongoliaHohhotInner Mongolia 010021, China
| |
Collapse
|
22
|
Jiang N, Meng J, Cui J, Sun G, Luan Y. Function identification of miR482b, a negative regulator during tomato resistance to Phytophthora infestans. HORTICULTURE RESEARCH 2018; 5:9. [PMID: 29507733 PMCID: PMC5830410 DOI: 10.1038/s41438-018-0017-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/29/2017] [Accepted: 01/11/2018] [Indexed: 05/20/2023]
Abstract
Tomato is an important horticultural and economic crop cultivated worldwide. As Phytophthora infestans becomes a huge threat to tomato production, it is necessary to study the resistance mechanisms of tomato against P. infestans. Our previous research has found that miR482 might be involved in tomato-P. infestans interaction. In this study, miR482b precursor was cloned from Solanum pimpinellifolium "L3708" and miR482b was shown to decrease in abundance in tomato following P. infestans infection. Compared to wild-type tomato plants, tomato plants that overexpressed miR482b displayed more serious disease symptoms after P. infestans infection, with more necrotic cells, longer lesion diameters, and increased P. infestans abundance. Meanwhile, silencing of miR482b was performed by short tandem target mimic (STTM), resulting in enhancement of tomato resistance to P. infestans. Using miRNA and degradome data sets, NBS-LRR disease-resistance genes targeted by miR482b were validated. Negative correlation between the expression of miR482b and its target genes was found in all miR482b-overexpressing and -silencing tomato plants. Our results provide insight into tomato miR482b involved in the response to P. infestans infection, and demonstrate that miR482b-NBS-LRR is an important component in the network of tomato-P. infestans interaction.
Collapse
Affiliation(s)
- Ning Jiang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024 China
| | - Jun Cui
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Guangxin Sun
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Yushi Luan
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| |
Collapse
|
23
|
microRNA-mediated R gene regulation: molecular scabbards for double-edged swords. SCIENCE CHINA-LIFE SCIENCES 2018; 61:138-147. [DOI: 10.1007/s11427-017-9237-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 12/04/2017] [Indexed: 11/27/2022]
|
24
|
Nejat N, Ramalingam A, Mantri N. Advances in Transcriptomics of Plants. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 164:161-185. [PMID: 29392354 DOI: 10.1007/10_2017_52] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The current global population of 7.3 billion is estimated to reach 9.7 billion in the year 2050. Rapid population growth is driving up global food demand. Additionally, global climate change, environmental degradation, drought, emerging diseases, and salty soils are the current threats to global food security. In order to mitigate the adverse effects of these diverse agricultural productivity constraints and enhance crop yield and stress-tolerance in plants, we need to go beyond traditional and molecular plant breeding. The powerful new tools for genome editing, Transcription Activator-Like Effector Nucleases (TALENs) and Clustered Regulatory Interspaced Short Palindromic Repeats (CRISPR)/Cas systems (CRISPR-Cas9), have been hailed as a quantum leap forward in the development of stress-resistant plants. Plant breeding techniques, however, have several drawbacks. Hence, identification of transcriptional regulatory elements and deciphering mechanisms underlying transcriptional regulation are crucial to avoiding unintended consequences in modified crop plants, which could ultimately have negative impacts on human health. RNA splicing as an essential regulated post-transcriptional process, alternative polyadenylation as an RNA-processing mechanism, along with non-coding RNAs (microRNAs, small interfering RNAs and long non-coding RNAs) have been identified as major players in gene regulation. In this chapter, we highlight new findings on the essential roles of alternative splicing and alternative polyadenylation in plant development and response to biotic and abiotic stresses. We also discuss biogenesis and the functions of microRNAs (miRNAs) and small interfering RNAs (siRNAs) in plants and recent advances in our knowledge of the roles of miRNAs and siRNAs in plant stress response. Graphical Abstract.
Collapse
Affiliation(s)
- Naghmeh Nejat
- The Pangenomics Group, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Abirami Ramalingam
- The Pangenomics Group, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Nitin Mantri
- The Pangenomics Group, School of Science, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
25
|
Ma X, Zhang X, Zhao K, Li F, Li K, Ning L, He J, Xin Z, Yin D. Small RNA and Degradome Deep Sequencing Reveals the Roles of microRNAs in Seed Expansion in Peanut ( Arachis hypogaea L.). FRONTIERS IN PLANT SCIENCE 2018; 9:349. [PMID: 29662498 PMCID: PMC5890158 DOI: 10.3389/fpls.2018.00349] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/02/2018] [Indexed: 05/22/2023]
Abstract
Seed expansion in peanut is a complex biological process involving many gene regulatory pathways. MicroRNAs (miRNAs) play important regulatory roles in plant growth and development, but little is known about their functions during seed expansion, or how they contribute to seed expansion in different peanut lines. We examined seed miRNA expression patterns at 15 and 35 days after flowering (DAF) in two peanut eighth-generation recombinant inbred lines (RIL8); 8106, a medium-pod variety, and 8107, a super-pod variety. Using high-throughput sequencing, we identified 1,082 miRNAs in developing peanut seeds including 434 novel miRNAs. We identified 316 differentially expressed miRNAs by comparing expression levels between the two peanut lines. Interestingly, 24 miRNAs showed contrasting patterns of expression in the two RILs, and 149 miRNAs were expressed predominantly in only one RIL at 35 DAF. Also, potential target genes for some conserved and novel miRNAs were identified by degradome sequencing; target genes were predicted to be involved in auxin mediated signaling pathways and cell division. We validated the expression patterns of some representative miRNAs and 12 target genes by qPCR, and found negative correlations between the expression level of miRNAs and their targets. miR156e, miR159b, miR160a, miR164a, miR166b, miR168a, miR171n, miR172c-5p, and miR319d and their corresponding target genes may play key roles in seed expansion in peanut. The results of our study also provide novel insights into the dynamic changes in miRNAs that occur during peanut seed development, and increase our understanding of miRNA function in seed expansion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zeyu Xin
- *Correspondence: Dongmei Yin, Zeyu Xin,
| | | |
Collapse
|
26
|
Bai JF, Wang YK, Wang P, Duan WJ, Yuan SH, Sun H, Yuan GL, Ma JX, Wang N, Zhang FT, Zhang LP, Zhao CP. Uncovering Male Fertility Transition Responsive miRNA in a Wheat Photo-Thermosensitive Genic Male Sterile Line by Deep Sequencing and Degradome Analysis. FRONTIERS IN PLANT SCIENCE 2017; 8:1370. [PMID: 28848574 PMCID: PMC5550412 DOI: 10.3389/fpls.2017.01370] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/24/2017] [Indexed: 05/30/2023]
Abstract
MicroRNAs (miRNAs) are endogenous small RNAs which play important negative regulatory roles at both the transcriptional and post-transcriptional levels in plants. Wheat is the most commonly cultivated plant species worldwide. In this study, RNA-seq analysis was used to examine the expression profiles of miRNA in the spikelets of photo-thermosenisitive genic male sterile (PTGMS) wheat line BS366 during male fertility transition. Through mapping on their corresponding precursors, 917-7,762 novel miRNAs were found in six libraries. Six novel miRNAs were selected for examination of their secondary structures and confirmation by stem-loop RT-PCR. In a differential expression analysis, 20, 22, and 58 known miRNAs exhibited significant differential expression between developmental stages 1 (secondary sporogenous cells had formed), 2 (all cells layers were present and mitosis had ceased), and 3 (meiotic division stage), respectively, of fertile and sterile plants. Some of these differential expressed miRNAs, such as tae-miR156, tae-miR164, tae-miR171, and tae-miR172, were shown to be associated with their targets. These targets were previously reported to be related to pollen development and/or male sterility, indicating that these miRNAs and their targets may be involved in the regulation of male fertility transition in the PTGMS wheat line BS366. Furthermore, target genes of miRNA cleavage sites were validated by degradome sequencing. In this study, a possible signal model for the miRNA-mediated signaling pathway during the process of male fertility transition in the PTGMS wheat line BS366 was developed. This study provides a new perspective for understanding the roles of miRNAs in male fertility in PTGMS lines of wheat.
Collapse
Affiliation(s)
- Jian-Fang Bai
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Yu-Kun Wang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Peng Wang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- College of Plant Science and Technology, Beijing University of AgricultureBeijing, China
| | - Wen-Jing Duan
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- College of Life Science, Capital Normal UniversityBeijing, China
| | - Shao-Hua Yuan
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Hui Sun
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Guo-Liang Yuan
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Jing-Xiu Ma
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Na Wang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Feng-Ting Zhang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Li-Ping Zhang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Chang-Ping Zhao
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| |
Collapse
|
27
|
Sarkar D, Maji RK, Dey S, Sarkar A, Ghosh Z, Kundu P. Integrated miRNA and mRNA expression profiling reveals the response regulators of a susceptible tomato cultivar to early blight disease. DNA Res 2017; 24:235-250. [PMID: 28338918 PMCID: PMC5499734 DOI: 10.1093/dnares/dsx003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/24/2017] [Indexed: 12/16/2022] Open
Abstract
Early blight, caused by the fungus Alternaria solani, is a devastating foliar disease of tomatoes, causes massive yield loss each year worldwide. Molecular basis of the compatible host–pathogen interaction was elusive. We adopted next generation sequencing approach to decipher miRNAs and mRNAs that are differentially expressed during Alternaria-stress in tomato. Some of the interesting findings were also validated by alternative techniques. Our analysis revealed 181 known-miRNAs, belonging to 121 miRNA families, of which 67 miRNAs showed at least 2-fold change in expression level with the majority being downregulated. Concomitantly, 5,450 mRNAs were significantly regulated in the same diseased tissues. Differentially expressed genes were most significantly associated with response to stimulus process, photosynthesis, biosynthesis of secondary metabolites, plant–pathogen interaction and plant hormone signal transduction pathways. GO term enrichment-based categorization of gene-functions further supported this observation, as terms related to pathogen perception, disease signal transduction, cellular metabolic processes including oxidoreductase and kinase activity were over represented. In addition, we have discovered 102 miRNA–mRNA pairs which were regulated antagonistically, and careful study of the targeted mRNAs depicted that multiple transcription factors, nucleotide-binding site leucine-rich repeats, receptor-like proteins and enzymes related to cellular ROS management were profoundly affected. These studies have identified key regulators of Alternaria-stress response in tomato and the subset of genes that are likely to be post-transcriptionally silenced during the infection.
Collapse
Affiliation(s)
- Deepti Sarkar
- Division of Plant Biology, Bose Institute, Kolkata 700054, India
| | - Ranjan Kumar Maji
- Centre of Excellence in Bioinformatics, Bose Institute, Kolkata, India
| | - Sayani Dey
- Division of Plant Biology, Bose Institute, Kolkata 700054, India
| | - Arijita Sarkar
- Centre of Excellence in Bioinformatics, Bose Institute, Kolkata, India
| | - Zhumur Ghosh
- Centre of Excellence in Bioinformatics, Bose Institute, Kolkata, India
| | - Pallob Kundu
- Division of Plant Biology, Bose Institute, Kolkata 700054, India
| |
Collapse
|
28
|
Tong A, Yuan Q, Wang S, Peng J, Lu Y, Zheng H, Lin L, Chen H, Gong Y, Chen J, Yan F. Altered accumulation of osa-miR171b contributes to rice stripe virus infection by regulating disease symptoms. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4357-4367. [PMID: 28922766 PMCID: PMC5853540 DOI: 10.1093/jxb/erx230] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/09/2017] [Indexed: 05/03/2023]
Abstract
Viral infection affects the pattern of plant miRNA expression. It has been presumed that reduction of miR171 and several other miRNAs influences viral symptoms in plants. We here experimentally demonstrate the association of osa-miR171b with rice stripe virus (RSV) symptoms in rice. Inhibition of osa-miR171b caused stunting with reduced chlorophyll content in leaves similar to viral symptoms. Overexpression of osa-miR171b by an artificial miRNA extended vegetative growth and enhanced chlorophyll accumulation in leaves. Tillers were thicker, and panicles were longer with more spikelets in plants overexpressing osa-miR171b than in controls, but there were no differences in tiller numbers. Targets of osa-miR171b, OsSCL6-IIa, OsSCL6-IIb, and OsSCL6-IIc, were respectively up- and down-regulated in plants where osa-miR171b was inhibited or overexpressed. In plants overexpressing osa-miR171b, five positive regulators for heading development, Ehd1, Ehd2, Ehd3, Ehd4, and Hd3a were up-regulated, while the negative regulator Ghd7 was down-regulated. Plants overexpressing osa-miR171b were less susceptible to RSV and virus symptoms were attenuated. Taken together, the results reveal that a reduction of osa-miR171b in RSV-infected rice contributes to RSV symptoms, and provide more insight into the roles of osa-miR171b in rice.
Collapse
Affiliation(s)
- Aizi Tong
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Quan Yuan
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- School of Marine Sciences, Ningbo University, Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo, China
| | - Shu Wang
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiejun Peng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuwen Lu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongying Zheng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lin Lin
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hairu Chen
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Yifu Gong
- School of Marine Sciences, Ningbo University, Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo, China
| | - Jianping Chen
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fei Yan
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
29
|
Genome-wide identification of cucumber green mottle mosaic virus-responsive microRNAs in watermelon. Arch Virol 2017; 162:2591-2602. [DOI: 10.1007/s00705-017-3401-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/02/2017] [Indexed: 01/01/2023]
|
30
|
Święcicka M, Skowron W, Cieszyński P, Dąbrowska-Bronk J, Matuszkiewicz M, Filipecki M, Koter MD. The suppression of tomato defence response genes upon potato cyst nematode infection indicates a key regulatory role of miRNAs. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 113:51-55. [PMID: 28182967 DOI: 10.1016/j.plaphy.2017.01.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 05/20/2023]
Abstract
Potato cyst nematode Globodera rostochiensis is an obligate parasite of solanaceous plants, triggering metabolic and morphological changes in roots which may result in substantial crop yield losses. Previously, we used the cDNA-AFLP to study the transcriptional dynamics in nematode infected tomato roots. Now, we present the rescreening of already published, upregulated transcript-derived fragment dataset using the most current tomato transcriptome sequences. Our reanalysis allowed to add 54 novel genes to 135, already found as upregulated in tomato roots upon G. rostochiensis infection (in total - 189). We also created completely new catalogue of downregulated sequences leading to the discovery of 76 novel genes. Functional classification of candidates showed that the 'wound, stress and defence response' category was enriched in the downregulated genes. We confirmed the transcriptional dynamics of six genes by qRT-PCR. To place our results in a broader context, we compared the tomato data with Arabidopsis thaliana, revealing similar proportions of upregulated and downregulated genes as well as similar enrichment of defence related transcripts in the downregulated group. Since transcript suppression is quite common in plant-nematode interactions, we assessed the possibility of miRNA-mediated inverse correlation on several tomato sequences belonging to NB-LRR and receptor-like kinase families. The qRT-PCR of miRNAs and putative target transcripts showed an opposite expression pattern in 9 cases. These results together with in silico analyses of potential miRNA targeting to the full repertoire of tomato R-genes show that miRNA mediated gene suppression may be a key regulatory mechanism during nematode parasitism.
Collapse
Affiliation(s)
- Magdalena Święcicka
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-787, Warsaw, Poland
| | - Waldemar Skowron
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-787, Warsaw, Poland
| | - Piotr Cieszyński
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-787, Warsaw, Poland
| | - Joanna Dąbrowska-Bronk
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-787, Warsaw, Poland
| | - Mateusz Matuszkiewicz
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-787, Warsaw, Poland
| | - Marcin Filipecki
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-787, Warsaw, Poland
| | - Marek Daniel Koter
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-787, Warsaw, Poland.
| |
Collapse
|
31
|
Candar-Cakir B, Arican E, Zhang B. Small RNA and degradome deep sequencing reveals drought-and tissue-specific micrornas and their important roles in drought-sensitive and drought-tolerant tomato genotypes. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1727-46. [PMID: 26857916 PMCID: PMC5067666 DOI: 10.1111/pbi.12533] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 12/15/2015] [Accepted: 12/26/2015] [Indexed: 05/03/2023]
Abstract
Drought stress has adverse impacts on plant production and productivity. MicroRNAs (miRNAs) are one class of noncoding RNAs regulating gene expression post-transcriptionally. In this study, we employed small RNA and degradome sequencing to systematically investigate the tissue-specific miRNAs responsible to drought stress, which are understudied in tomato. For this purpose, root and upground tissues of two different drought-responsive tomato genotypes (Lycopersicon esculentum as sensitive and L. esculentum var. cerasiforme as tolerant) were subjected to stress with 5% polyethylene glycol for 7 days. A total of 699 conserved miRNAs belonging to 578 families were determined and 688 miRNAs were significantly differentially expressed between different treatments, tissues and genotypes. Using degradome sequencing, 44 target genes were identified associated with 36 miRNA families. Drought-related miRNAs and their targets were enriched functionally by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Totally, 53 miRNAs targeted 23 key drought stress- and tissue development-related genes, including DRP (dehydration-responsive protein), GTs (glycosyltransferases), ERF (ethylene responsive factor), PSII (photosystem II) protein, HD-ZIP (homeodomain-leucine zipper), MYB and NAC-domain transcription factors. miR160, miR165, miR166, miR171, miR398, miR408, miR827, miR9472, miR9476 and miR9552 were the key miRNAs functioning in regulation of these genes and involving in tomato response to drought stress. Additionally, plant hormone signal transduction pathway genes were differentially regulated by miR169, miR172, miR393, miR5641, miR5658 and miR7997 in both tissues of both sensitive and tolerant genotypes. These results provide new insight into the regulatory role of miRNAs in drought response with plant hormone signal transduction and drought-tolerant tomato breeding.
Collapse
Affiliation(s)
- Bilgin Candar-Cakir
- Programme of Molecular Biology and Genetics, Institute of Science, Istanbul University, Vezneciler, Istanbul, Turkey
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Ercan Arican
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Vezneciler, Istanbul, Turkey
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, USA
| |
Collapse
|
32
|
Li D, Mou W, Luo Z, Li L, Limwachiranon J, Mao L, Ying T. Developmental and stress regulation on expression of a novel miRNA, Fan-miR73, and its target ABI5 in strawberry. Sci Rep 2016; 6:28385. [PMID: 27325048 PMCID: PMC4914977 DOI: 10.1038/srep28385] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/03/2016] [Indexed: 01/21/2023] Open
Abstract
Abscisic acid (ABA) is a critical plant hormone for fruit ripening and adaptive stress responses in strawberry. Previous high-throughput sequencing results indicated that ABA-insensitive (ABI)5, an important transcription factor in the ABA signaling pathway, was a target for a novel microRNA (miRNA), Fan-miR73. In the present study, exogenous ABA treatment was found to accelerate fruit ripening through differentially regulating the transcripts of ABA metabolism and signal transduction related genes, including NCED1, PYR1, ABI1, and SnRK2.2. Expression of Fan-miR73 was down-regulated in response to exogenous ABA treatment in a dosage-dependent manner, which resulted in an accumulation of ABI5 transcripts in the ripening-accelerated fruits. In addition, both UV-B radiation and salinity stress reduced the transcript levels of Fan-miR73, whereas promoted ABI5 expression. Furthermore, high negative correlations between the transcriptional abundance of Fan-miR73 and ABI5 were observed during ripening and in response to stress stimuli. These results enriched the possible regulatory role of miRNA involved in the post-transcriptional modification of ABI5 during strawberry ripening, as well as responses to environmental stresses.
Collapse
Affiliation(s)
- Dongdong Li
- Zhejiang University, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, 310058, People’s Republic of China
| | - Wangshu Mou
- Zhejiang University, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, 310058, People’s Republic of China
| | - Zisheng Luo
- Zhejiang University, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, 310058, People’s Republic of China
| | - Li Li
- Zhejiang University, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, 310058, People’s Republic of China
| | - Jarukitt Limwachiranon
- Zhejiang University, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, 310058, People’s Republic of China
| | - Linchun Mao
- Zhejiang University, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, 310058, People’s Republic of China
| | - Tiejin Ying
- Zhejiang University, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, 310058, People’s Republic of China
| |
Collapse
|
33
|
Liu J, Zhang X, Zhang F, Hong N, Wang G, Wang A, Wang L. Identification and characterization of microRNAs from in vitro-grown pear shoots infected with Apple stem grooving virus in response to high temperature using small RNA sequencing. BMC Genomics 2015; 16:945. [PMID: 26573813 PMCID: PMC4647338 DOI: 10.1186/s12864-015-2126-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/22/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) have functions in diverse biological processes such as growth, signal transduction, disease resistance, and stress responses in plants. Thermotherapy is an effective approach for elimination of viruses from fruit trees. However, the role of miRNAs in this process remains elusive. Previously, we showed that high temperature treatment reduces the titers of Apple stem grooving virus (ASGV) from the tips of in vitro-grown Pyrus pyrifolia plants. In this study, we identified high temperature-altered pear miRNAs using the next generation sequencing technology, and futher molecularly characterized miRNA-mediated regulaton of target gene expression in the meristem tip and base tissues of in vitro-grown, ASGV-infected pear shoots under different temperatures. RESULTS Using in vitro-grown P. pyrifolia shoot meristem tips infected with ASGV, a total of 22,592,997 and 20,411,254 clean reads were obtained from Illumina high-throughput sequencing of small RNA libraries at 24 °C and 37 °C, respectively. We identified 149 conserved and 141 novel miRNAs. Seven conserved miRNAs and 77 novel miRNAs were differentially expressed at different temperatures. Target genes for differentially expressed known and novel miRNAs were predicted and functionally annotated. Gene Ontology (GO) analysis showed that high-ranking miRNA target genes were involved in metabolic processes, responses to stress, and signaling, indicating that these high temperature-responsive miRNAs have functions in diverse gene regulatory networks. Spatial expression patterns of the miRNAs and their target genes were found to be expressed in shoot tip and base tissues by qRT-PCR. In addition, high temperature reduced viral titers in the shoot meristem tip, while negatively regulated miRNA-mediated target genes related to resistance disease defense and hormone signal transduction pathway were up-regulated in the P. pyrifolia shoot tip in response to high temperature. These results suggested that miRNAs may have important functions in the high temperature-dependent decrease of ASGV titer in in vitro-grown pear shoots. CONCLUSIONS This is the first report of miRNAs differentially expressed at 24 °C and 37 °C in the meristem tip of pear shoots infected with ASGV. The results of this study provide valuable information for further exploration of the function of high temperature-altered miRNAs in suppressing viral infections in pear and other fruit trees.
Collapse
Affiliation(s)
- Juan Liu
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, P. R. China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China.,National Indoor Conservation Center of Virus-Free Germplasms of Fruit Crops, Wuhan, Hubei, 430070, P. R. China.,Lab of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, P. R. China
| | - XueJiao Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China.,Shihezi University, Shihezi City, Xinjiang Uyghur Autonomous Region, 832003, P. R. China
| | - FangPeng Zhang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, P. R. China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China.,National Indoor Conservation Center of Virus-Free Germplasms of Fruit Crops, Wuhan, Hubei, 430070, P. R. China.,Lab of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, P. R. China
| | - Ni Hong
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, P. R. China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China.,National Indoor Conservation Center of Virus-Free Germplasms of Fruit Crops, Wuhan, Hubei, 430070, P. R. China.,Lab of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, P. R. China
| | - GuoPing Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, P. R. China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China.,National Indoor Conservation Center of Virus-Free Germplasms of Fruit Crops, Wuhan, Hubei, 430070, P. R. China.,Lab of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, P. R. China
| | - Aiming Wang
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, N5V 4T3, ON, Canada
| | - LiPing Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, P. R. China. .,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China. .,National Indoor Conservation Center of Virus-Free Germplasms of Fruit Crops, Wuhan, Hubei, 430070, P. R. China. .,Lab of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, P. R. China.
| |
Collapse
|
34
|
Xu T, Wang Y, Liu X, Lv S, Feng C, Qi M, Li T. Small RNA and degradome sequencing reveals microRNAs and their targets involved in tomato pedicel abscission. PLANTA 2015; 242:963-984. [PMID: 26021606 DOI: 10.1007/s00425-015-2318-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/01/2015] [Indexed: 06/04/2023]
Abstract
We constructed small RNA and degradome sequencing libraries to identify miRNAs and targets involved in tomato pedicel abscission, and confirmed their roles via quantitative real-time PCR. MicroRNAs (miRNAs) are endogenous small RNAs which play crucial negatively regulatory roles at both the transcriptional and post-transcriptional levels in plants; however, limited knowledge is available on the expression profiles of miRNAs and their target genes during tomato pedicel abscission. Taking advantage of small RNA (sRNA) and degradome sequencing technology, a total of 56 known and 11 novel candidate miRNAs targeting 223 mRNA genes were confirmed during pedicel abscission. Gene ontology annotation and KEGG pathway analysis showed that these target genes were significantly enriched in intracellular, membrane-bounded organelle-related biological processes as well as in metabolic, plant-pathogen interaction and hormone signaling pathways. We screened 17 miRNA/target pairs for further analysis and performed quantitative real-time PCR to identify the roles. Cluster analysis of selected miRNAs revealed that the expression profiles of miRNAs varied in different stages of abscission and could be impacted by ethylene treatment. In the present study, the correlations between miRNAs and targets suggested a complex regulatory network of miRNA-mediated target interaction during pedicel abscission. Additionally, the expression profiles of miRNAs and their targets changed by ethylene might be a considerable reason why ethylene promotes pedicel abscission. Our study provides new insights into the expression and regulatory profiles of miRNAs during tomato pedicel abscission.
Collapse
Affiliation(s)
- Tao Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China,
| | | | | | | | | | | | | |
Collapse
|
35
|
Zhao W, Li Z, Fan J, Hu C, Yang R, Qi X, Chen H, Zhao F, Wang S. Identification of jasmonic acid-associated microRNAs and characterization of the regulatory roles of the miR319/TCP4 module under root-knot nematode stress in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4653-67. [PMID: 26002970 PMCID: PMC4507771 DOI: 10.1093/jxb/erv238] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
MicroRNAs (miRNAs) are important transcriptional and post-transcriptional modulators of gene expression that play crucial roles in the responses to diverse stresses. To explore jasmonic acid (JA)-dependent miRNA-mediated regulatory networks that are responsive to root-knot nematode (RKN), two small RNA libraries were constructed from wild-type (WT) and JA mutant (spr2) plants. A total of 263 known miRNAs and 441 novel miRNAs were significantly regulated under RKN stress in the two libraries. The spatio-temporal expression of candidate miRNAs and their corresponding targets were analysed by qRT-PCR under RKN stress. A clear negative correlation was observed between miR319 and its target TEOSINTE BRANCHED1/CYCLOIDEA/PRO-LIFERATING CELL FACTOR 4 (TCP4) in leaf, stem, and root under RKN stress, implying that the miR319/TCP4 module is involved in the systemic defensive response. Reverse genetics demonstrated that the miR319/TCP4 module affected JA synthetic genes and the endogenous JA level in leaves, thereby mediating RKN resistance. These results suggested that the action of miR319 in serving as a systemic signal responder and regulator that modulated the RKN systemic defensive response was mediated via JA. The potential cross-talk between miR319/TCP4 and miR396/GRF (GROWTH RESPONDING FACTOR) in roots under RKN invasion is discussed, and a predictive model regarding miR319/TCP4-mediated RKN resistance is proposed.
Collapse
Affiliation(s)
- Wenchao Zhao
- Beijing Key Laboratory for Agricultural Application and New Technique, Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Zilong Li
- Beijing Key Laboratory for Agricultural Application and New Technique, Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Jingwei Fan
- Beijing Key Laboratory for Agricultural Application and New Technique, Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Canli Hu
- Beijing Key Laboratory for Agricultural Application and New Technique, Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Rui Yang
- Beijing Key Laboratory for Agricultural Application and New Technique, Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xin Qi
- Beijing Key Laboratory for Agricultural Application and New Technique, Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Hua Chen
- Beijing Key Laboratory for Agricultural Application and New Technique, Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Fukuan Zhao
- Biological Science and Engineering College, Beijing University of Agriculture, Beijing, 102206, China
| | - Shaohui Wang
- Beijing Key Laboratory for Agricultural Application and New Technique, Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| |
Collapse
|
36
|
Genome-wide identification of turnip mosaic virus-responsive microRNAs in non-heading Chinese cabbage by high-throughput sequencing. Gene 2015; 571:178-87. [PMID: 26115771 DOI: 10.1016/j.gene.2015.06.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/25/2015] [Accepted: 06/15/2015] [Indexed: 11/23/2022]
Abstract
Turnip mosaic virus (TuMV) is the most prevalent viral pathogen infecting most cruciferous plants. MicroRNAs (miRNAs) are around 22 nucleotides long non-protein-coding RNAs that play key regulatory roles in plants. Recent research findings show that miRNAs are involved in plant-virus interaction. However we know little about plant defense and viral offense system networks throughout microRNA regulation pathway. In this study, two small RNA libraries were constructed based on non-heading Chinese cabbage (Brassica campestris ssp. chinensis L. Makino, NHCC) leaves infected by TuMV and healthy leaves, and sequenced using the Illumina-Solexa high-throughput sequencing technology. A total of 86 conserved miRNAs belonging to 25 known miRNA families and 45 novel ones were identified. Among them, twelve conserved and ten new miRNAs were validated by real-time fluorescence quantitative PCR (qPCR). Differential expression analysis showed that 42 miRNAs were down-regulated and 27 miRNAs were up-regulated in response to TuMV stress. A total of 271 target genes were predicted using a bioinformatics approach, these genes are mainly involved in growth and resistance to various stresses. We further selected 13 miRNAs and their corresponding target genes to explore their expression pattern under TuMV and/or cold (4°C) stresses, and the results indicated that some of the identified miRNAs could link TuMV response with cold response of NHCC. The characterization of these miRNAs could contribute to a better understanding of plant-virus interaction throughout microRNA regulation pathway. This can lead to finding new approach to defend virus infection using miRNA in Chinese cabbage.
Collapse
|
37
|
Luan Y, Cui J, Zhai J, Li J, Han L, Meng J. High-throughput sequencing reveals differential expression of miRNAs in tomato inoculated with Phytophthora infestans. PLANTA 2015; 241:1405-16. [PMID: 25697288 DOI: 10.1007/s00425-015-2267-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/10/2015] [Indexed: 05/21/2023]
Abstract
The characterization and compare expression profiling of the miRNA transcriptome lay a solid foundation for unraveling the complex miRNA-mediated regulatory network in tomato resistance mechanisms against LB. MicroRNAs (miRNAs) are a class of small endogenous non-coding RNAs with 20-24 nt. They have been identified in many plants with their diverse regulatory roles in biotic stresses. The knowledge, that miRNAs regulate late blight (LB), caused by Phytophthora infestans, is rather limited. In this study, we used miRNA-Seq to investigate the miRNA expression difference between the tomatoes treated with and without P. infestans. A total of 42,714,516 raw reads were generated from two small RNA libraries by high-throughput sequencing. Finally, 207 known miRNAs and 67 new miRNAs were obtained. The differential expression profile of miRNAs in tomato was further analyzed with twofold change (P value ≤0.01). A total of 70 miRNAs were manifested to change significantly in samples treated with P. infestans, including 50 down-regulated miRNAs and 20 up-regulated miRNAs. Moreover, a total of 73 target genes were acquired for 28 differentially expressed miRNAs by psRNATarget analysis. By enrichment pathway analysis of target genes, plant-pathogen interaction was the most highly relevant pathway which played an important role in disease defense. In addition, 30 miRNAs were selected for qRT-PCR to validate their expression patterns. The expression patterns for targets of miR6027, miR5300, miR476b, miR159a, miR164a and miRn13 were selectively examined, and the results showed that there was a negative correlation on the expression patterns between miRNAs and their targets. The targets have previously been reported to be related with plant immune and involved in plant-pathogen interaction pathway in this study, suggesting these miRNAs might act as regulators in process of tomato resistance against P. infestans. These discoveries will provide us useful information to explain tomato resistance mechanisms against LB.
Collapse
Affiliation(s)
- Yushi Luan
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | | | | | | | | | | |
Collapse
|