1
|
Cui Q, Jiang LJ, Wen LL, Tian XL, Yuan Q, Liu JZ. Metabolomic profiles and differential metabolites of volatile components in Citrus aurantium Changshan-huyou pericarp during different growth and development stages. Food Chem X 2024; 23:101631. [PMID: 39130723 PMCID: PMC11315122 DOI: 10.1016/j.fochx.2024.101631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Citrus fruits possess a distinctive aroma and flavor, with Citrus aurantium Changshan-huyou (CACH) standing out due to their considerable edible and medicinal value. However, the volatile components (VOCs) in the CACH pericarp (CP) remain underexplored. In this study, gas chromatography-mass spectrometry (GC-MS) was utilized to qualitatively analyze VOCs in 27 CP samples across different growth stages. A total of 544 VOCs were identified, including 91 terpenoids. The types, quantities and distributions of VOCs were conducted. Detailed discussions on the major terpenoids in CP were also presented. A metabolomics approach combining multivariate statistical analysis with univariate analysis was employed for screening the differential metabolites. The study provides comprehensive insights into the VOCs in CP and citrus plants. Moreover, it delivers the first in-depth analysis of differential metabolites in CP throughout the entire CACH growth and development process, laying a foundation for ongoing research and development of the VOCs in CP.
Collapse
Affiliation(s)
| | | | | | - Xiao-Li Tian
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| | - Qiang Yuan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| | - Ju-Zhao Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| |
Collapse
|
2
|
Kato-Noguchi H, Kato M. Defense Molecules of the Invasive Plant Species Ageratum conyzoides. Molecules 2024; 29:4673. [PMID: 39407602 PMCID: PMC11478290 DOI: 10.3390/molecules29194673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Ageratum conyzoides L. is native to Tropical America, and it has naturalized in many other tropical, subtropical, and temperate countries in South America, Central and Southern Africa, South and East Asia, Eastern Austria, and Europe. The population of the species has increased dramatically as an invasive alien species, and it causes significant problems in agriculture and natural ecosystems. The life history traits of Ageratum conyzoides, such as its short life cycle, early reproductive maturity, prolific seed production, and high adaptive ability to various environmental conditions, may contribute to its naturalization and increasing population. Possible evidence of the molecules involved in the defense of Ageratum conyzoides against its natural enemies, such as herbivore insects and fungal pathogens, and the allelochemicals involved in its competitive ability against neighboring plant species has been accumulated in the literature. The volatiles, essential oils, extracts, residues, and/or rhizosphere soil of Ageratum conyzoides show insecticidal, fungicidal, nematocidal, and allelopathic activity. The pyrrolizidine alkaloids lycopsamine and echinatine, found in the species, are highly toxic and show insecticidal activity. Benzopyran derivatives precocenes I and II show inhibitory activity against insect juvenile hormone biosynthesis and trichothecene mycotoxin biosynthesis. A mixture of volatiles emitted from Ageratum conyzoides, such as β-caryophyllene, β-bisabolene, and β-farnesene, may work as herbivore-induced plant volatiles, which are involved in the indirect defense function against herbivore insects. Flavonoids, such as nobiletin, eupalestin, 5'-methoxynobiletin, 5,6,7,3',4',5'-hexamethoxyflavone, and 5,6,8,3,4',5'-hexamethoxyflavone, show inhibitory activity against the spore germination of pathogenic fungi. The benzoic acid and cinnamic acid derivatives found in the species, such as protocatechuic acid, gallic acid, p-coumaric acid, p-hydroxybenzoic acid, and ferulic acid, may act as allelopathic agents, causing the germination and growth inhibition of competitive plant species. These molecules produced by Ageratum conyzoides may act as defense molecules against its natural enemies and as allelochemicals against neighboring plant species, and they may contribute to the naturalization of the increasing population of Ageratum conyzoides in new habitats as an invasive plant species. This article presents the first review focusing on the defense function and allelopathy of Ageratum conyzoides.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Kagawa, Japan
| | | |
Collapse
|
3
|
Song X, Liu C, Yi CQ, Tang ZY, Dhiloo KH, Zhang TT, Liu WT, Zhang YJ. Functional characterization of prenyltransferases involved in de novo synthesis of isoprenoids in the leaf beetle Monolepta hieroglyphica. Int J Biol Macromol 2024; 280:135688. [PMID: 39288853 DOI: 10.1016/j.ijbiomac.2024.135688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Prenyltransferases play a pivotal role in the isoprenoid biosynthesis and transfer in insects. In the current study, two classes of prenyltransferases (MhieFPPS1 and MhieFPPS2, MhiePFT-β and MhiePF/GGT-α) were identified in the leaf beetle, Monolepta hieroglyphica. Phylogenetic analysis revealed that MhieFPPS1, MhieFPPS2, MhiePFT-β and MhiePF/GGT-α were clustered in one clade with homologous in insects. Moreover, MhieFPPS2 lacked one aspartate-rich motif SARM. Molecular docking and kinetic analysis indicated that the (E)-GPP displayed higher affinity with MhieFPPS1 compared to DMAPP within the binding pocket containing metal binding sites (MG). The other class of prenyltransferases (MhiePFT-β and MhiePF/GGT-α) lack the aspartate-rich motif. Docking results indicated that binding site of MhiePFT-β involved divalent metal ions (Zn) and bound farnesyl or geranylgeranyl. In vitro, only recombiant MhieFPPS1 could catalyze the formation of (E)-farnesol against different combination of substrates, including IPP/DMAPP and IPP/(E)-GPP, highlighting the importance of SARM for enzyme activities. Kinetic analysis further indicated that MhiePFT-β operated via Zn2+-dependent substrate binding, while MhiePF/GGT-α stabilized the β-subunit during catalytic reaction. These findings contribute to a valuable insight in to understanding of the mechanisms involved in the biosynthesis and delivery of isoprenoid products in beetles.
Collapse
Affiliation(s)
- Xuan Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Chang Liu
- Institute of Plant Protection, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| | - Chao-Qun Yi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zi-Yi Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Khalid Hussain Dhiloo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Entomology, Faculty of Crop Protection, Sindh Agriculture University Tandojam, 70060, Pakistan
| | - Tian-Tao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wen-Tao Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Plant Protection, Agricultural University of Hebei, Baoding 071000, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China.
| |
Collapse
|
4
|
Bergman ME, Kortbeek RWJ, Gutensohn M, Dudareva N. Plant terpenoid biosynthetic network and its multiple layers of regulation. Prog Lipid Res 2024; 95:101287. [PMID: 38906423 DOI: 10.1016/j.plipres.2024.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Terpenoids constitute one of the largest and most chemically diverse classes of primary and secondary metabolites in nature with an exceptional breadth of functional roles in plants. Biosynthesis of all terpenoids begins with the universal five‑carbon building blocks, isopentenyl diphosphate (IPP) and its allylic isomer dimethylallyl diphosphate (DMAPP), which in plants are derived from two compartmentally separated but metabolically crosstalking routes, the mevalonic acid (MVA) and methylerythritol phosphate (MEP) pathways. Here, we review the current knowledge on the terpenoid precursor pathways and highlight the critical hidden constraints as well as multiple regulatory mechanisms that coordinate and homeostatically govern carbon flux through the terpenoid biosynthetic network in plants.
Collapse
Affiliation(s)
- Matthew E Bergman
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Ruy W J Kortbeek
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Michael Gutensohn
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, United States
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
5
|
Escobar-Bravo R, Schimmel BCJ, Zhang Y, Wang L, Robert CAM, Glauser G, Ballaré CL, Erb M. Far-red light increases maize volatile emissions in response to volatile cues from neighbouring plants. PLANT, CELL & ENVIRONMENT 2024. [PMID: 38872585 DOI: 10.1111/pce.14995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/13/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024]
Abstract
Plants perceive the presence and defence status of their neighbours through light and volatile cues, but how plants integrate both stimuli is poorly understood. We investigated if and how low Red to Far red light (R:FR) ratios, indicative of shading or canopy closure, affect maize (Zea mays) responses to herbivore-induced plant volatiles (HIPVs), including the green leaf volatile (Z)-3-hexenyl acetate. We modulated light signalling and perception by using FR supplementation and a phyB1phyB2 mutant, and we determined volatile release as a response readout. To gain mechanistic insights, we examined expression of volatile biosynthesis genes, hormone accumulation, and photosynthesis. Exposure to a full blend of HIPVs or (Z)-3-hexenyl acetate induced maize volatile release. Short-term FR supplementation increased this response. In contrast, prolonged FR supplementation or constitutive phytochrome B inactivation in phyB1phyB2 plants showed the opposite response. Short-term FR supplementation enhanced photosynthesis and stomatal conductance and (Z)-3-hexenyl acetate-induced JA-Ile levels. We conclude that a FR-enriched light environment can prompt maize plants to respond more strongly to HIPVs emitted by neighbours, which might be explained by changes in photosynthetic processes and phytochrome B signalling. Our findings reveal interactive responses to light and volatile cues with potentially important consequences for plant-plant and plant-herbivore interactions.
Collapse
Affiliation(s)
| | | | - Yaqin Zhang
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Lei Wang
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Carlos L Ballaré
- Facultad de Agronomía, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
- 2IIBio, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Zhang ZY, Xia HX, Yuan MJ, Gao F, Bao WH, Jin L, Li M, Li Y. Multi-omics analyses provide insights into the evolutionary history and the synthesis of medicinal components of the Chinese wingnut. PLANT DIVERSITY 2024; 46:309-320. [PMID: 38798724 PMCID: PMC11119516 DOI: 10.1016/j.pld.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/22/2024] [Accepted: 03/31/2024] [Indexed: 05/29/2024]
Abstract
Chinese wingnut (Pterocarya stenoptera) is a medicinally and economically important tree species within the family Juglandaceae. However, the lack of high-quality reference genome has hindered its in-depth research. In this study, we successfully assembled its chromosome-level genome and performed multi-omics analyses to address its evolutionary history and synthesis of medicinal components. A thorough examination of genomes has uncovered a significant expansion in the Lateral Organ Boundaries Domain gene family among the winged group in Juglandaceae. This notable increase may be attributed to their frequent exposure to flood-prone environments. After further differentiation between Chinese wingnut and Cyclocarya paliurus, significant positive selection occurred on the genes of NADH dehydrogenase related to mitochondrial aerobic respiration in Chinese wingnut, enhancing its ability to cope with waterlogging stress. Comparative genomic analysis revealed Chinese wingnut evolved more unique genes related to arginine synthesis, potentially endowing it with a higher capacity to purify nutrient-rich water bodies. Expansion of terpene synthase families enables the production of increased quantities of terpenoid volatiles, potentially serving as an evolved defense mechanism against herbivorous insects. Through combined transcriptomic and metabolomic analysis, we identified the candidate genes involved in the synthesis of terpenoid volatiles. Our study offers essential genetic resources for Chinese wingnut, unveiling its evolutionary history and identifying key genes linked to the production of terpenoid volatiles.
Collapse
Affiliation(s)
- Zi-Yan Zhang
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010020, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
| | - He-Xiao Xia
- College of Landscape and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Meng-Jie Yuan
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010020, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
| | - Feng Gao
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010020, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
| | - Wen-Hua Bao
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010020, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
| | - Lan Jin
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010020, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
| | - Min Li
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010020, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
| | - Yong Li
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010020, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
7
|
Waterman JM, Cofer TM, Wang L, Glauser G, Erb M. High-resolution kinetics of herbivore-induced plant volatile transfer reveal clocked response patterns in neighboring plants. eLife 2024; 12:RP89855. [PMID: 38385996 PMCID: PMC10942584 DOI: 10.7554/elife.89855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
Volatiles emitted by herbivore-attacked plants (senders) can enhance defenses in neighboring plants (receivers), however, the temporal dynamics of this phenomenon remain poorly studied. Using a custom-built, high-throughput proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) system, we explored temporal patterns of volatile transfer and responses between herbivore-attacked and undamaged maize plants. We found that continuous exposure to natural blends of herbivore-induced volatiles results in clocked temporal response patterns in neighboring plants, characterized by an induced terpene burst at the onset of the second day of exposure. This delayed burst is not explained by terpene accumulation during the night, but coincides with delayed jasmonate accumulation in receiver plants. The delayed burst occurs independent of day:night light transitions and cannot be fully explained by sender volatile dynamics. Instead, it is the result of a stress memory from volatile exposure during the first day and secondary exposure to bioactive volatiles on the second day. Our study reveals that prolonged exposure to natural blends of stress-induced volatiles results in a response that integrates priming and direct induction into a distinct and predictable temporal response pattern. This provides an answer to the long-standing question of whether stress volatiles predominantly induce or prime plant defenses in neighboring plants, by revealing that they can do both in sequence.
Collapse
Affiliation(s)
| | | | - Lei Wang
- Institute of Plant Sciences, University of BernBernSwitzerland
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry, Faculty of Science, University of NeuchâtelNeuchâtelSwitzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of BernBernSwitzerland
| |
Collapse
|
8
|
Liu H, An X, Liu X, Yang S, Liu Y, Wei X, Li X, Chen Q, Wang J. Molecular mechanism of salinity and waterlogging tolerance in mangrove Kandelia obovata. FRONTIERS IN PLANT SCIENCE 2024; 15:1354249. [PMID: 38384752 PMCID: PMC10879410 DOI: 10.3389/fpls.2024.1354249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024]
Abstract
Mangrove forests are colloquially referred to as "Earth's kidneys" and serve many important ecological and commercial functions. Salinity and waterlogging stress are the most important abiotic stressors restricting the growth and development of mangroves. Kandelia obovata (K. obovata) is the greatest latitudinally-distributed salt mangrove species in China.Here, morphology and transcriptomics were used to study the response of K. obovata to salt and waterlogging stress. In addition, weighted gene co-expression network analysis of the combined gene expression and phenotypic datasets was used to identify core salinity- and waterlogging-responsive modules. In this study, we observed that both high salinity and waterlogging significantly inhibited growth and development in K. obovata. Notably, growth was negatively correlated with salt concentration and positively correlated with waterlogging duration, and high salinity was significantly more inhibitive than waterlogging. A total of 7, 591 salt-responsive and 228 waterlogging-responsive differentially expressed genes were identified by RNA sequencing. Long-term salt stress was highly correlated with the measured physiological parameters while long-term waterlogging was poorly correlated with these traits. At the same time, 45 salinity-responsive and 16 waterlogging-responsive core genes were identified. All 61 core genes were mainly involved in metabolic and biosynthesis of secondary metabolites pathways. This study provides valuable insight into the molecular mechanisms of salinity and waterlogging tolerance in K. obovata, as well as a useful genetic resource for the improvement of mangrove stress tolerance using molecular breeding techniques.
Collapse
Affiliation(s)
- Huizi Liu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Xia An
- Zhejiang Xiaoshan Institute of Cotton and Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xing Liu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Sheng Yang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Yu Liu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Xin Wei
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Xiaowen Li
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Qiuxia Chen
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Jinwang Wang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| |
Collapse
|
9
|
Jones AC, Lin PA, Peiffer M, Felton G. Caterpillar Salivary Glucose Oxidase Decreases Green Leaf Volatile Emission and Increases Terpene Emission from Maize. J Chem Ecol 2023; 49:518-527. [PMID: 37432514 DOI: 10.1007/s10886-023-01440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 07/12/2023]
Abstract
Caterpillar salivary glucose oxidase (GOX) can function as both an elicitor or as an effector of plant defense responses depending upon the system. Treatment with GOX reduces the stomatal aperture of tomato and soybean leaves, thereby reducing the emission of volatile organic compounds (VOCs), that are important indirect defense responses of plants by attracting natural enemies of the caterpillars. Here we examined the effect of fungal GOX (fungal glucose oxidases have been used to determine specificity in defense response elicitation) on stomatal closure of maize leaves and on the volatile emission pattern whole maize plants. We also used salivary gland homogenate from wild-type and CRISPR-Cas9 Helicoverpa zea mutants deficient in GOX activity to determine the effect caterpillar saliva with and without GOX had on maize volatile emission. Collecting volatiles at 2-hour intervals allowed us to examine the changes in emission over time. Fungal GOX reduced the stomatal aperture in maize leaves, which may have influenced the observed significant reduction in total green leaf volatile (GLV) emission. Furthermore, fungal GOX significantly increased the emission of several key terpenes: linalool, DMNT, and Z-β-farnesene from maize, while salivary gland homogenate from wild type (WT; GOX+) H. zea increased the emission of α-pinene, β-pinene, and ocimene compared to H. zea unable to synthesize GOX. This study addressed a significant knowledge gap about the effect of GOX on maize volatiles and provides a baseline for further research on the effect of GOX on the regulation of terpene synthase genes and their relation to terpene volatile emission.
Collapse
Affiliation(s)
- Anne C Jones
- (Entomology), Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| | - Po-An Lin
- (Entomology), National Taiwan University, New Taipei, Taiwan
| | - Michelle Peiffer
- (Entomology), Pennsylvania State University, State College, Pennsylvania, PA, USA
| | - Gary Felton
- (Entomology), Pennsylvania State University, State College, Pennsylvania, PA, USA
| |
Collapse
|
10
|
Xia C, Zuo Y, Xue T, Kang M, Zhang H, Zhang X, Wang B, Zhang J, Deng H. The genetic structure and demographic history revealed by whole-genome resequencing provide insights into conservation of critically endangered Artocarpus nanchuanensis. FRONTIERS IN PLANT SCIENCE 2023; 14:1224308. [PMID: 37575939 PMCID: PMC10415164 DOI: 10.3389/fpls.2023.1224308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023]
Abstract
Introduction Whole-genome resequencing technology covers almost all nucleotide variations in the genome, which makes it possible to carry out conservation genomics research on endangered species at the whole-genome level. Methods In this study, based on the whole-genome resequencing data of 101 critically endangered Artocarpus nanchuanensis individuals, we evaluated the genetic diversity and population structure, inferred the demographic history and genetic load, predicted the potential distributions in the past, present and future, and classified conservation units to propose targeted suggestions for the conservation of this critically endangered species. Results Whole-genome resequencing for A. nanchuanensis generated approximately 2 Tb of data. Based on abundant mutation sites (25,312,571 single nucleotide polymorphisms sites), we revealed that the average genetic diversity (nucleotide diversity, π) of different populations of A. nanchuanensis was relatively low compared with other trees that have been studied. And we also revealed that the NHZ and QJT populations harboured unique genetic backgrounds and were significantly separated from the other five populations. In addition, positive genetic selective signals, significantly enriched in biological processes related to terpene synthesis, were identified in the NHZ population. The analysis of demographic history of A. nanchuanensis revealed the existence of three genetic bottleneck events. Moreover, abundant genetic loads (48.56% protein-coding genes) were identified in Artocarpus nanchuanensis, especially in genes related to early development and immune function of plants. The predication analysis of suitable habitat areas indicated that the past suitable habitat areas shifted from the north to the south due to global temperature decline. However, in the future, the actual distribution area of A. nanchuanensis will still maintain high suitability. Discussion Based on total analyses, we divided the populations of A. nanchuanensis into four conservation units and proposed a number of practical management suggestions for each conservation unit. Overall, our study provides meaningful guidance for the protection of A. nanchuanensis and important insight into conservation genomics research.
Collapse
Affiliation(s)
- Changying Xia
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Youwei Zuo
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Tiantian Xue
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Huan Zhang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiaoxia Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Binru Wang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Jiabin Zhang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Hongping Deng
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Low Carbon and Ecological Environment Protection Research Center, Chongqing Academy of Science and Technology, Chongqing, China
| |
Collapse
|
11
|
Tumlinson JH. Complex and Beautiful: Unraveling the Intricate Communication Systems Among Plants and Insects. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:1-12. [PMID: 35834769 DOI: 10.1146/annurev-ento-021622-111028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
My research focuses on elucidating the chemical communication systems linking plants, herbivores, and natural enemies. My interests in integrating chemistry and agriculture led to my graduate studies in the emerging field of chemical ecology. My thesis research resulted in the identification, synthesis, and application of boll weevil sex pheromones. My research group subsequently developed chemical lures for more than 20 species of pest insects. I then shifted my focus to some of the first studies of the chemical signals produced by plants being attacked by herbivores. When insects feed, elicitors in the insects' oral secretions, such as volicitin, a fatty acid-amino acid conjugate elicitor, stimulate plants to release volatile organic compounds. Parasitoid wasps learn to associate these species-specific volatiles with their herbivore hosts. These volatiles also prime nearby plants to activate a faster and higher defense response upon attack. Throughout my career, I have collaborated with scientists from diverse disciplines to tackle fundamental questions in chemical ecology and create innovative solutions for insect management. Our collaborative research has fundamentally changed and improved our understanding of the ongoing coevolution of plants, their herbivores, and the natural enemies that attack those herbivores.
Collapse
Affiliation(s)
- James H Tumlinson
- Department of Entomology, Center for Chemical Ecology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
12
|
Tang HV, Berryman DL, Mendoza J, Yactayo-Chang JP, Li QB, Christensen SA, Hunter CT, Best N, Soubeyrand E, Akhtar TA, Basset GJ, Block AK. Dedicated farnesyl diphosphate synthases circumvent isoprenoid-derived growth-defense tradeoffs in Zea mays. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:207-220. [PMID: 35960639 DOI: 10.1111/tpj.15941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Zea mays (maize) makes phytoalexins such as sesquiterpenoid zealexins, to combat invading pathogens. Zealexins are produced from farnesyl diphosphate in microgram per gram fresh weight quantities. As farnesyl diphosphate is also a precursor for many compounds essential for plant growth, the question arises as to how Z. mays produces high levels of zealexins without negatively affecting vital plant systems. To examine if specific pools of farnesyl diphosphate are made for zealexin synthesis we made CRISPR/Cas9 knockouts of each of the three farnesyl diphosphate synthases (FPS) in Z. mays and examined the resultant impacts on different farnesyl diphosphate-derived metabolites. We found that FPS3 (GRMZM2G098569) produced most of the farnesyl diphosphate for zealexins, while FPS1 (GRMZM2G168681) made most of the farnesyl diphosphate for the vital respiratory co-factor ubiquinone. Indeed, fps1 mutants had strong developmental phenotypes such as reduced stature and development of chlorosis. The replication and evolution of the fps gene family in Z. mays enabled it to produce dedicated FPSs for developmentally related ubiquinone production (FPS1) or defense-related zealexin production (FPS3). This partitioning of farnesyl diphosphate production between growth and defense could contribute to the ability of Z. mays to produce high levels of phytoalexins without negatively impacting its growth.
Collapse
Affiliation(s)
- Hoang V Tang
- Chemistry Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| | - David L Berryman
- Chemistry Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, USA
| | - Jorrel Mendoza
- Chemistry Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| | - Jessica P Yactayo-Chang
- Chemistry Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| | - Qin-Bao Li
- Chemistry Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| | - Shawn A Christensen
- Chemistry Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| | - Charles T Hunter
- Chemistry Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| | - Norman Best
- Plant Genetics Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Columbia, MO, USA
| | - Eric Soubeyrand
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON, Canada
| | - Tariq A Akhtar
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON, Canada
| | - Gilles J Basset
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, USA
| | - Anna K Block
- Chemistry Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| |
Collapse
|
13
|
Welling MT, Deseo MA, Bacic A, Doblin MS. Biosynthetic origins of unusual cannabimimetic phytocannabinoids in Cannabis sativa L: A review. PHYTOCHEMISTRY 2022; 201:113282. [PMID: 35718133 DOI: 10.1016/j.phytochem.2022.113282] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/02/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Plants of Cannabis sativa L. (Cannabaceae) produce an array of more than 160 isoprenylated resorcinyl polyketides, commonly referred to as phytocannabinoids. These compounds represent molecules of therapeutic importance due to their modulation of the human endocannabinoid system (ECS). While understanding of the biosynthesis of the major phytocannabinoids Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) has grown rapidly in recent years, the biosynthetic origin and genetic regulation of many potentially therapeutically relevant minor phytocannabinoids remain unknown, which limits the development of chemotypically elite varieties of C. sativa. This review provides an up-to-date inventory of unusual phytocannabinoids which exhibit cannabimimetic-like activities and proposes putative metabolic origins. Metabolic branch points exploitable for combinatorial biosynthesis and engineering of phytocannabinoids with augmented therapeutic activities are also described, as is the role of phytocannabinoid remodelling to accelerate the therapeutic portfolio expansion in C. sativa.
Collapse
Affiliation(s)
- Matthew T Welling
- La Trobe Institute for Agriculture & Food, AgriBio Building, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
| | - Myrna A Deseo
- La Trobe Institute for Agriculture & Food, AgriBio Building, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Antony Bacic
- La Trobe Institute for Agriculture & Food, AgriBio Building, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Monika S Doblin
- La Trobe Institute for Agriculture & Food, AgriBio Building, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
14
|
Noushahi HA, Khan AH, Noushahi UF, Hussain M, Javed T, Zafar M, Batool M, Ahmed U, Liu K, Harrison MT, Saud S, Fahad S, Shu S. Biosynthetic pathways of triterpenoids and strategies to improve their Biosynthetic Efficiency. PLANT GROWTH REGULATION 2022; 97:439-454. [PMID: 35382096 PMCID: PMC8969394 DOI: 10.1007/s10725-022-00818-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/18/2022] [Indexed: 05/13/2023]
Abstract
"Triterpenoids" can be considered natural products derived from the cyclization of squalene, yielding 3-deoxytriterpenes (hydrocarbons) or 3-hydroxytriterpenes. Triterpenoids are metabolites of these two classes of triterpenes, produced by the functionalization of their carbon skeleton. They can be categorized into different groups based on their structural formula/design. Triterpenoids are an important group of compounds that are widely used in the fields of pharmacology, food, and industrial biotechnology. However, inadequate synthetic methods and insufficient knowledge of the biosynthesis of triterpenoids, such as their structure, enzymatic activity, and the methods used to produce pure and active triterpenoids, are key problems that limit the production of these active metabolites. Here, we summarize the derivatives, pharmaceutical properties, and biosynthetic pathways of triterpenoids and review the enzymes involved in their biosynthetic pathway. Furthermore, we concluded the screening methods, identified the genes involved in the pathways, and highlighted the appropriate strategies used to enhance their biosynthetic production to facilitate the commercial process of triterpenoids through the synthetic biology method.
Collapse
Affiliation(s)
- Hamza Armghan Noushahi
- College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
- Plant Breeding and Phenomic Centre, Faculty of Agricultural Sciences, University of Talca, 3460000 Talca, Chile
| | - Aamir Hamid Khan
- National Key Lab of Crop Genetics Improvement, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Usama Farhan Noushahi
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, 54000 Lahore, Pakistan
| | - Mubashar Hussain
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Maimoona Zafar
- College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Maria Batool
- College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Umair Ahmed
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Ke Liu
- Tasmanian Institute of Agriculture, University of Tasmania, 7250 Burnie, Tasmania Australia
| | - Matthew Tom Harrison
- Tasmanian Institute of Agriculture, University of Tasmania, 7250 Burnie, Tasmania Australia
| | - Shah Saud
- College of Life Science, Linyi University, 276000 Linyi, Shandong China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, 570228 Haikou, China
- Department of Agronomy, The University of Haripur, 22620 Haripur, Pakistan
| | - Shaohua Shu
- College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| |
Collapse
|
15
|
Zhan Y, Zhao L, Zhao X, Liu J, Francis F, Liu Y. Terpene Synthase Gene OtLIS Confers Wheat Resistance to Sitobion avenae by Regulating Linalool Emission. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13734-13743. [PMID: 34779195 DOI: 10.1021/acs.jafc.1c05978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sitobion avenae (Fabricius) is a major insect pest of wheat worldwide that reduces crop yield and quality annually. Few germplasm resources with resistant genes to aphids have been identified and characterized. Here, octoploid Trititrigia, a species used in wheat distant hybridization breeding, was found to be repellent to S. avenae after 2 year field investigations and associated with physiological and behavioral assays. Linalool monoterpene was identified to accumulate dominantly in plants in response to S. avenae infestation. We cloned the resistance gene OtLIS by assembling the transcriptome of aphid-infested or healthy octoploid Trititrigia. Functional characterization analysis indicated that OtLIS encoded a terpene synthase and conferred resistance to S. avenae by linalool emission before and after aphid feeding. Our study suggests that the octoploid Trititrigia with the aphid-resistant gene OtLIS may have potential as a target resource for further breeding aphid-resistant wheat cultivars.
Collapse
Affiliation(s)
- Yidi Zhan
- College of Plant Protection, Shandong Agricultural University, No. 61, Daizong Road, Taian, Shandong 271018, China
| | - Lei Zhao
- College of Plant Protection, Shandong Agricultural University, No. 61, Daizong Road, Taian, Shandong 271018, China
| | - Xiaojing Zhao
- College of Plant Protection, Shandong Agricultural University, No. 61, Daizong Road, Taian, Shandong 271018, China
| | - Jiahui Liu
- College of Plant Protection, Shandong Agricultural University, No. 61, Daizong Road, Taian, Shandong 271018, China
- Functional and Evolutionary Entomology, Terra, Gembloux Agro-Bio Tech, Liege University, Passage des Deportes 2, 5030 Gembloux, Belgium
| | - Frederic Francis
- College of Plant Protection, Shandong Agricultural University, No. 61, Daizong Road, Taian, Shandong 271018, China
- Functional and Evolutionary Entomology, Terra, Gembloux Agro-Bio Tech, Liege University, Passage des Deportes 2, 5030 Gembloux, Belgium
| | - Yong Liu
- College of Plant Protection, Shandong Agricultural University, No. 61, Daizong Road, Taian, Shandong 271018, China
| |
Collapse
|
16
|
Richter A, Powell AF, Mirzaei M, Wang LJ, Movahed N, Miller JK, Piñeros MA, Jander G. Indole-3-glycerolphosphate synthase, a branchpoint for the biosynthesis of tryptophan, indole, and benzoxazinoids in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:245-257. [PMID: 33458870 DOI: 10.1111/tpj.15163] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/22/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
The maize (Zea mays) genome encodes three indole-3-glycerolphosphate synthase enzymes (IGPS1, 2, and 3) catalyzing the conversion of 1-(2-carboxyphenylamino)-l-deoxyribulose-5-phosphate to indole-3-glycerolphosphate. Three further maize enzymes (BX1, benzoxazinoneless 1; TSA, tryptophan synthase alpha subunit; and IGL, indole glycerolphosphate lyase) convert indole-3-glycerolphosphate to indole, which is released as a volatile defense signaling compound and also serves as a precursor for the biosynthesis of tryptophan and defense-related benzoxazinoids. Phylogenetic analyses showed that IGPS2 is similar to enzymes found in both monocots and dicots, whereas maize IGPS1 and IGPS3 are in monocot-specific clades. Fusions of yellow fluorescent protein with maize IGPS enzymes and indole-3-glycerolphosphate lyases were all localized in chloroplasts. In bimolecular fluorescence complementation assays, IGPS1 interacted strongly with BX1 and IGL, IGPS2 interacted primarily with TSA, and IGPS3 interacted equally with all three indole-3-glycerolphosphate lyases. Whereas IGPS1 and IGPS3 expression was induced by insect feeding, IGPS2 expression was not. Transposon insertions in IGPS1 and IGPS3 reduced the abundance of both benzoxazinoids and free indole. Spodoptera exigua (beet armyworm) larvae show improved growth on igps1 mutant maize plants. Together, these results suggest that IGPS1 and IGPS3 function mainly in the biosynthesis of defensive metabolites, whereas IGPS2 may be involved in the biosynthesis of tryptophan. This metabolic channeling is similar to, though less exclusive than, that proposed for the three maize indole-3-glycerolphosphate lyases.
Collapse
Affiliation(s)
| | | | | | | | | | - Julia K Miller
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Miguel A Piñeros
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY, USA
| | | |
Collapse
|
17
|
Gyan NM, Yaakov B, Weinblum N, Singh A, Cna’ani A, Ben-Zeev S, Saranga Y, Tzin V. Variation Between Three Eragrostis tef Accessions in Defense Responses to Rhopalosiphum padi Aphid Infestation. FRONTIERS IN PLANT SCIENCE 2020; 11:598483. [PMID: 33363559 PMCID: PMC7752923 DOI: 10.3389/fpls.2020.598483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/09/2020] [Indexed: 05/12/2023]
Abstract
Tef (Eragrostis tef), a staple crop that originated in the Horn of Africa, has been introduced to multiple countries over the last several decades. Crop cultivation in new geographic regions raises questions regarding the molecular basis for biotic stress responses. In this study, we aimed to classify the insect abundance on tef crop in Israel, and to elucidate its chemical and physical defense mechanisms in response to insect feeding. To discover the main pests of tef in the Mediterranean climate, we conducted an insect field survey on three selected accessions named RTC-144, RTC-405, and RTC-406, and discovered that the most abundant insect order is Hemiptera. We compared the differences in Rhopalosiphum padi (Hemiptera; Aphididae) aphid performance, preference, and feeding behavior between the three accessions. While the number of aphid progeny was lower on RTC-406 than on the other two, the aphid olfactory assay indicated that the aphids tended to be repelled from the RTC-144 accession. To highlight the variation in defense responses, we investigated the physical and chemical mechanisms. As a physical barrier, the density of non-granular trichomes was evaluated, in which a higher number of trichomes on the RTC-406 than on the other accessions was observed. This was negatively correlated with aphid performance. To determine chemical responses, the volatile and central metabolite profiles were measured upon aphid attack for 4 days. The volatile analysis exposed a rich and dynamic metabolic profile, and the central metabolism profile indicated that tef plants adjust their sugars and organic and amino acid levels. Overall, we found that the tef plants possess similar defense responses as other Poaceae family species, while the non-volatile deterrent compounds are yet to be characterized. A transcriptomic time-series analysis of a selected accession RTC-144 infested with aphids revealed a massive alteration of genes related to specialized metabolism that potentially synthesize non-volatile toxic compounds. This is the first report to reveal the variation in the defense mechanisms of tef plants. These findings can facilitate the discovery of insect-resistance genes leading to enhanced yield in tef and other cereal crops.
Collapse
Affiliation(s)
- Nathan M. Gyan
- The Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| | - Beery Yaakov
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| | - Nati Weinblum
- The Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| | - Anuradha Singh
- Jacob Blaustein Center for Scientific Cooperation, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| | - Alon Cna’ani
- Jacob Blaustein Center for Scientific Cooperation, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| | - Shiran Ben-Zeev
- The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yehoshua Saranga
- The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| |
Collapse
|
18
|
Adal AM, Mahmoud SS. Short-chain isoprenyl diphosphate synthases of lavender (Lavandula). PLANT MOLECULAR BIOLOGY 2020; 102:517-535. [PMID: 31927660 DOI: 10.1007/s11103-020-00962-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/03/2020] [Indexed: 05/07/2023]
Abstract
KEY MESSAGE We reported the functional characterization of cDNAs encoding short-chain isoprenyl diphosphate synthases that control the partitioning of precursors for lavender terpenoids. Lavender essential oil is composed of regular and irregular monoterpenes, which are derived from linear precursors geranyl diphosphate (GPP) and lavandulyl diphosphate (LPP), respectively. Although this plant strongly expresses genes responsible for the biosynthesis of both monoterpene classes, it is unclear why regular monoterpenes dominate the oil. Here, we cloned and characterized Lavandula x intermedia cDNAs encoding geranyl diphosphate synthase (LiGPPS), geranylgeranyl diphosphate synthase (LiGGPPS) and farnesyl diphosphate synthase (LiFPPS). LiGPPS was heteromeric protein, consisting of a large subunit (LiGPPS.LSU) and a small subunit for which two different cDNAs (LiGPPS.SSU1 and LiGPPS.SSU2) were detected. Neither recombinant LiGPPS subunits was active by itself. However, when co-expressed in E. coli LiGPPS.LSU and LiGPPS.SSU1 formed an active heteromeric GPPS, while LiGPPS.LSU and LiGPPS.SSU2 did not form an active protein. Recombinant LiGGPPS, LiFPPS and LPP synthase (LPPS) proteins were active individually. Further, LiGPPS.SSU1 modified the activity of LiGGPPS (to produce GPP) in bacterial cells co-expressing both proteins. Given this, and previous evidence indicating that GPPS.SSU can modify the activity of GGPPS to GPPS in vitro and in plants, we hypothesized that LiGPPS.SSU1 modifies the activity of L. x intermedia LPP synthase (LiLPPS), thus accounting for the relatively low abundance of LPP-derived irregular monoterpenes in this plant. However, LiGPPS.SSU1 did not affect the activity of LiLPPS. These results, coupled to the observation that LiLPPS transcripts are more abundant than those of GPPS subunits in L. x intermedia flowers, suggest that regulatory mechanisms other than transcriptional control of LPPS regulate precursor partitioning in lavender flowers.
Collapse
Affiliation(s)
- Ayelign M Adal
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Soheil S Mahmoud
- Department of Biology, University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
19
|
Identification and Characterization of trans-Isopentenyl Diphosphate Synthases Involved in Herbivory-Induced Volatile Terpene Formation in Populus trichocarpa. Molecules 2019; 24:molecules24132408. [PMID: 31261889 PMCID: PMC6651613 DOI: 10.3390/molecules24132408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/17/2019] [Accepted: 06/26/2019] [Indexed: 11/17/2022] Open
Abstract
In response to insect herbivory, poplar releases a blend of volatiles that plays important roles in plant defense. Although the volatile bouquet is highly complex and comprises several classes of compounds, it is dominated by mono- and sesquiterpenes. The most common precursors for mono- and sesquiterpenes, geranyl diphosphate (GPP) and (E,E)-farnesyl diphosphate (FPP), respectively, are in general produced by homodimeric or heterodimeric trans-isopentenyl diphosphate synthases (trans-IDSs) that belong to the family of prenyltransferases. To understand the molecular basis of herbivory-induced terpene formation in poplar, we investigated the trans-IDS gene family in the western balsam poplar Populus trichocarpa. Sequence comparisons suggested that this species possesses a single FPP synthase gene (PtFPPS1) and four genes encoding two large subunits (PtGPPS1.LSU and PtGPPS2.LSU) and two small subunits (PtGPPS.SSU1 and PtGPPS.SSU2) of GPP synthases. Transcript accumulation of PtGPPS1.LSU and PtGPPS.SSU1 was significantly upregulated upon leaf herbivory, while the expression of PtFPPS1, PtGPPS2.LSU, and PtGPPS.SSU2 was not influenced by the herbivore treatment. Heterologous expression and biochemical characterization of recombinant PtFPPS1, PtGPPS1.LSU, and PtGPPS2.LSU confirmed their respective IDS activities. Recombinant PtGPPS.SSU1 and PtGPPS.SSU2, however, had no enzymatic activity on their own, but PtGPPS.SSU1 enhanced the GPP synthase activities of PtGPPS1.LSU and PtGPPS2.LSU in vitro. Altogether, our data suggest that PtGPPS1.LSU and PtGPPS2.LSU in combination with PtGPPS.SSU1 may provide the substrate for herbivory-induced monoterpene formation in P. trichocarpa. The sole FPP synthase PtFPPS1 likely produces FPP for both primary and specialized metabolism in this plant species.
Collapse
|
20
|
Nagel R, Schmidt A, Peters RJ. Isoprenyl diphosphate synthases: the chain length determining step in terpene biosynthesis. PLANTA 2019; 249:9-20. [PMID: 30467632 DOI: 10.1007/s00425-018-3052-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/14/2018] [Indexed: 05/07/2023]
Abstract
This review summarizes the recent developments in the study of isoprenyl diphosphate synthases with an emphasis on analytical techniques, product length determination, and the physiological consequences of manipulating expression in planta. The highly diverse structures of all terpenes are synthesized from the five carbon precursors dimethylallyl diphosphate and a varying number of isopentenyl diphosphate units through 1'-4 alkylation reactions. These elongation reactions are catalyzed by isoprenyl diphosphate synthases (IDS). IDS are classified depending on the configuration of the ensuing double bond as trans- and cis-IDS. In addition, IDS are further stratified by the length of their prenyl diphosphate product. This review discusses analytical techniques for the determination of product length and the factors that control product length, with an emphasis on alternative mechanisms. With recent advances in analytics, multiple IDS of Arabidopsis thaliana have been recently reinvestigated and demonstrated to yield products of different lengths than originally reported, which is summarized here. As IDS dictate prenyl diphosphate length and thereby which class of terpenes is ultimately produced, another focus of this review is the impact that altering IDS expression has on terpenoid natural product accumulation. Finally, recent findings regarding the ability of a few IDS to not catalyze 1'-4 alkylation reactions, but instead produce irregular products, with unusual connectivity, or act as terpene synthases, are also discussed.
Collapse
Affiliation(s)
- Raimund Nagel
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.
| | - Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
21
|
Zu Y, Li Z, Mei X, Wu J, Cheng S, Jiang Y, Li Y. Transcriptome analysis of main roots of Panax notoginseng identifies genes involved in saponin biosynthesis under arsenic stress. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.plgene.2018.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Chen C, Zheng Y, Zhong Y, Wu Y, Li Z, Xu LA, Xu M. Transcriptome analysis and identification of genes related to terpenoid biosynthesis in Cinnamomum camphora. BMC Genomics 2018; 19:550. [PMID: 30041601 PMCID: PMC6057064 DOI: 10.1186/s12864-018-4941-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/16/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Cinnamomum camphora has been cultivated as an economically important tree for its medicinal and aromatic properties. Selective breeding has produced Cinnamomum plants for special uses, including spice strains with characteristic flavors and aromas and high-potency medicinal cultivars. The molecular biology underlying terpenoid biosynthesis is still unexplored. RESULTS Gas chromatography-mass spectrometry was used to analyze the differences in contents and compositions of essential oil terpenoids in linalool- and borneol-type chemotypes of C. camphora. The data revealed that the essential oils consist primarily of monoterpenes with only very minor quantities of sesquiterpenes and diterpenes and that the essential oil differs in different chemotypes of C. camphora, with higher yields of (-)-borneol from the borneol-type than from the linalool-type. To study the terpenoid biosynthesis of signature compounds of the major monoterpenes, we performed RNA sequencing to profile the leaf transcriptomes of the two chemotypes of C. camphora. A total of 23.76 Gb clean data was generated from two chemotypes and assembled into 156,184 unigenes. The total length, average length, N50 and GC content of unigenes were 155,645,929 bp, 997 bp, 1430 bp, and 46.5%, respectively. Among them, 76,421 unigenes were annotated by publicly available databases, of which 67 candidate unigenes were identified to be involved in terpenoid biosynthesis in C. camphora. A total of 2863 unigenes were identified to be differentially expression between borneol-type and linalool-type, including 1714 up-regulated and 1149 down-regulated unigenes. Most genes encoding proteins involved in terpenoid precursor MVA and MEP pathways were expressed in similar levels in both chemotypes of C. camphora. In addition, 10 and 17 DEGs were significantly enriched in the terpene synthase activity and oxidoreductase activity terms of their directed acyclic graphs (DAG), respectively. Three monoterpene synthase genes, TPS14-like1, TPS14-like2 and TPS14-like3 were up-regulated in the borneol-type compared to the linalool-type, and their expression levels were further verified using quantitative real-time PCR. CONCLUSIONS This study provides a global overview of gene expression patterns related to terpenoid biosynthesis in C. camphora, and could contribute to a better understanding of the differential accumulation of terpenoids in different C. camphora chemotypes.
Collapse
Affiliation(s)
- Caihui Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yongjie Zheng
- Camphor Engineering Technology Research Center for State Forestry Administration, Jiangxi Academy of Forestry, Nanchang, 330032, China
| | - Yongda Zhong
- Institute of Biological Resources, Jiangxi Academy of Science, Nanchang, Jiangxi, China
| | - Yangfang Wu
- Camphor Engineering Technology Research Center for State Forestry Administration, Jiangxi Academy of Forestry, Nanchang, 330032, China
| | - Zhiting Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Li-An Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
23
|
Castano-Duque L, Helms A, Ali JG, Luthe DS. Plant Bio-Wars: Maize Protein Networks Reveal Tissue-Specific Defense Strategies in Response to a Root Herbivore. J Chem Ecol 2018; 44:727-745. [PMID: 29926336 DOI: 10.1007/s10886-018-0972-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/17/2018] [Accepted: 05/15/2018] [Indexed: 02/08/2023]
Abstract
In this study we examined global changes in protein expression in both roots and leaves of maize plants attacked by the root herbivore, Western corn rootworm (WCR, Diabrotica virgifera virgifera). The changes in protein expression Are indicative of metabolic changes during WCR feeding that enable the plant to defend itself. This is one of the first studies to look above- and below-ground at global protein expression patterns of maize plants grown in soil and infested with a root herbivore. We used advanced proteomic and network analyses to identify metabolic pathways that contribute to global defenses deployed by the insect resistant maize genotype, Mp708, infested with WCR. Using proteomic analysis, 4878 proteins in roots and leaves were detected and of these 863 showed significant changes of abundance during WCR infestation. Protein abundance patterns were analyzed using hierarchical clustering, protein correlation and protein-protein interaction networks. All three data analysis pipelines showed that proteins such as jasmonic acid biosynthetic enzymes, serine proteases, protease inhibitors, proteins involved in biosynthesis and signaling of ethylene, and enzymes producing reactive oxygen species and isopentenyl pyrophosphate, a precursor for volatile production, were upregulated in roots during WCR infestation. In leaves, highly abundant proteins were involved in signal perception suggesting activation of systemic signaling. We conclude that these protein networks contribute to the overall herbivore defense mechanisms in Mp708. Because the plants were grown in potting mix and not sterilized sand, we found that both microbial and insect defense-related proteins were present in the roots. The presence of the high constitutive levels of reduced ascorbate in roots and benzothiazole in the root volatile profiles suggest a tight tri-trophic interaction among the plant, soil microbiomes and WCR-infested roots suggesting that defenses against insects coexist with defenses against bacteria and fungi due to the interaction between roots and soil microbiota. In this study, which is one of the most complete descriptions of plant responses to root-feeding herbivore, we established an analysis pipeline for proteomics data that includes network biology that can be used with different types of "omics" data from a variety of organisms.
Collapse
Affiliation(s)
- Lina Castano-Duque
- Department of Biology, Duke University, 124 Science Drive, French Science Building, Durham, NC, 27708, USA.
| | - Anjel Helms
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jared Gregory Ali
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Dawn S Luthe
- Department of Plant Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
24
|
A Maize Inbred Exhibits Resistance Against Western Corn Rootwoorm, Diabrotica virgifera virgifera. J Chem Ecol 2017; 43:1109-1123. [PMID: 29151152 DOI: 10.1007/s10886-017-0904-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/26/2017] [Accepted: 11/06/2017] [Indexed: 01/04/2023]
Abstract
Insect resistance against root herbivores like the western corn rootworm (WCR, Diabrotica virgifera virgifera) is not well understood in non-transgenic maize. We studied the responses of two American maize inbreds, Mp708 and Tx601, to WCR infestation using biomechanical, molecular, biochemical analyses, and laser ablation tomography. Previous studies performed on several inbreds indicated that these two maize genotypes differed in resistance to pests including fall armyworm (Spodoptera frugiperda) and WCR. Our data confirmed that Mp708 shows resistance against WCR, and demonstrates that the resistance mechanism is based in a multi-trait phenotype that includes increased resistance to cutting in nodal roots, stable root growth during insect infestation, constitutive and induced expression of known herbivore-defense genes, including ribosomal inhibitor protein 2 (rip2), terpene synthase 23 (tps23) and maize insect resistance cysteine protease-1 (mir1), as well high constitutive levels of jasmonic acid and production of (E)-β-caryophyllene. In contrast, Tx601 is susceptible to WCR. These findings will facilitate the use of Mp708 as a model to explore the wide variety of mechanisms and traits involved in plant defense responses and resistance to herbivory by insects with several different feeding habits.
Collapse
|
25
|
Tamiru A, Bruce TJA, Richter A, Woodcock CM, Midega CAO, Degenhardt J, Kelemu S, Pickett JA, Khan ZR. A maize landrace that emits defense volatiles in response to herbivore eggs possesses a strongly inducible terpene synthase gene. Ecol Evol 2017; 7:2835-2845. [PMID: 28428873 PMCID: PMC5395458 DOI: 10.1002/ece3.2893] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/21/2017] [Accepted: 01/28/2017] [Indexed: 12/29/2022] Open
Abstract
Maize (Zea mays) emits volatile terpenes in response to insect feeding and egg deposition to defend itself against harmful pests. However, maize cultivars differ strongly in their ability to produce the defense signal. To further understand the agroecological role and underlying genetic mechanisms for variation in terpene emission among maize cultivars, we studied the production of an important signaling component (E)-caryophyllene in a South American maize landrace Braz1006 possessing stemborer Chilo partellus egg inducible defense trait, in comparison with the European maize line Delprim and North American inbred line B73. The (E)-caryophyllene production level and transcript abundance of TPS23, terpene synthase responsible for (E)-caryophyllene formation, were compared between Braz1006, Delprim, and B73 after mimicked herbivory. Braz1006-TPS23 was heterologously expressed in E. coli, and amino acid sequences were determined. Furthermore, electrophysiological and behavioral responses of a key parasitic wasp Cotesia sesamiae to C. partellus egg-induced Braz1006 volatiles were determined using coupled gas chromatography electroantennography and olfactometer bioassay studies. After elicitor treatment, Braz1006 released eightfold higher (E)-caryophyllene than Delprim, whereas no (E)-caryophyllene was detected in B73. The superior (E)-caryophyllene production by Braz1006 was positively correlated with high transcript levels of TPS23 in the landrace compared to Delprim. TPS23 alleles from Braz1006 showed dissimilarities at different sequence positions with Delprim and B73 and encodes an active enzyme. Cotesia sesamiae was attracted to egg-induced volatiles from Braz1006 and synthetic (E)-caryophyllene. The variation in (E)-caryophyllene emission between Braz1006 and Delprim is positively correlated with induced levels of TPS23 transcripts. The enhanced TPS23 activity and corresponding (E)-caryophyllene production by the maize landrace could be attributed to the differences in amino acid sequence with the other maize lines. This study suggested that the same analogous genes could have contrasting expression patterns in different maize genetic backgrounds. The current findings provide valuable insight not only into genetic mechanisms underlying variation in defense signal production but also the prospect of introgressing the novel defense traits into elite maize varieties for effective and ecologically sound protection of crops against damaging insect pests.
Collapse
Affiliation(s)
- Amanuel Tamiru
- International Centre of Insect Physiology and Ecology (ICIPE)NairobiKenya
| | - Toby J. A. Bruce
- Department of Biological Chemistry and Crop ProtectionRothamsted ResearchHarpendenUK
| | - Annett Richter
- Institute of PharmacyMartin Luther University HalleHalle (Saale)Germany
- Boyce Thompson InstituteIthacaNYUSA
| | - Christine M. Woodcock
- Department of Biological Chemistry and Crop ProtectionRothamsted ResearchHarpendenUK
| | | | - Jörg Degenhardt
- Institute of PharmacyMartin Luther University HalleHalle (Saale)Germany
| | - Segenet Kelemu
- International Centre of Insect Physiology and Ecology (ICIPE)NairobiKenya
| | - John A. Pickett
- Department of Biological Chemistry and Crop ProtectionRothamsted ResearchHarpendenUK
| | - Zeyaur R. Khan
- International Centre of Insect Physiology and Ecology (ICIPE)NairobiKenya
| |
Collapse
|
26
|
Liu Y, Wang L, Liu H, Zhao R, Liu B, Fu Q, Zhang Y. The antioxidative defense system is involved in the premature senescence in transgenic tobacco (Nicotiana tabacum NC89). Biol Res 2016; 49:30. [PMID: 27370650 PMCID: PMC4930573 DOI: 10.1186/s40659-016-0088-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/24/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND α-Farnesene is a volatile sesquiterpene synthesized by the plant mevalonate (MVA) pathway through the action of α-farnesene synthase. The α-farnesene synthase 1 (MdAFS1) gene was isolated from apple peel (var. white winter pearmain), and transformed into tobacco (Nicotiana tabacum NC89). The transgenic plants had faster stem elongation during vegetative growth and earlier flowering than wild type (WT). Our studies focused on the transgenic tobacco phenotype. RESULTS The levels of chlorophyll and soluble protein decreased and a lower seed biomass and reduced net photosynthetic rate (Pn) in transgenic plants. Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) and superoxide radicals (O 2 (·-) ) had higher levels in transgenics compared to controls. Transgenic plants also had enhanced sensitivity to oxidative stress. The transcriptome of 8-week-old plants was studied to detect molecular changes. Differentially expressed unigene analysis showed that ubiquitin-mediated proteolysis, cell growth, and death unigenes were upregulated. Unigenes related to photosynthesis, antioxidant activity, and nitrogen metabolism were downregulated. Combined with the expression analysis of senescence marker genes, these results indicate that senescence started in the leaves of the transgenic plants at the vegetative growth stage. CONCLUSIONS The antioxidative defense system was compromised and the accumulation of reactive oxygen species (ROS) played an important role in the premature aging of transgenic plants.
Collapse
Affiliation(s)
- Yu Liu
- />State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Dai Zong Street, Tai’an, 271018 Shandong People’s Republic of China
| | - Lu Wang
- />State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Dai Zong Street, Tai’an, 271018 Shandong People’s Republic of China
| | - Heng Liu
- />State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Dai Zong Street, Tai’an, 271018 Shandong People’s Republic of China
| | - Rongrong Zhao
- />State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Dai Zong Street, Tai’an, 271018 Shandong People’s Republic of China
| | - Bin Liu
- />State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Dai Zong Street, Tai’an, 271018 Shandong People’s Republic of China
| | - Quanjuan Fu
- />Shandong Institute of Pomology, 66 Long Tan Road, Tai’an, 271018 Shandong People’s Republic of China
| | - Yuanhu Zhang
- />State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Dai Zong Street, Tai’an, 271018 Shandong People’s Republic of China
| |
Collapse
|
27
|
Calling in the Dark: The Role of Volatiles for Communication in the Rhizosphere. SIGNALING AND COMMUNICATION IN PLANTS 2016. [DOI: 10.1007/978-3-319-33498-1_8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|