1
|
Song Y, Chen B, Jiang L, Zhao F, Feng X. Global Trends of Treatment for NAFLD from 2012 to 2021: A Bibliometric and Mapping Analysis. Endocr Metab Immune Disord Drug Targets 2024; 24:573-584. [PMID: 37855283 DOI: 10.2174/0118715303230418230925060312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/02/2023] [Accepted: 08/06/2023] [Indexed: 10/20/2023]
Abstract
AIM The present study aimed to map publication trends and explore research hotspots of treatment for NAFLD study by bibliometric analysis. BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a multi-system metabolic disorder involving the liver. Thousands of papers have been published on the treatment of NAFLD, but no comprehensive statistical and intuitive analysis has been made. The present study aimed to map publication trends and explore research hotspots of treatment for NAFLD study by bibliometric analysis. OBJECTIVE (1) The pathogenesis of NAFLD and the possible treatment mechanism; (2) prevalence, risk factors, and traditional therapies for NAFLD; (3) frontier therapies for NAFLD. Method; This paper conducted a bibliometric analysis based on the Web of Science Core Collection (WoSCC). The knowledge map was constructed by VOS viewer v.1.6.10 to visualize the annual publication number, the distribution of countries, international collaborations, author productivity, source journals, cited references, and keywords in this field. RESULTS From 2012 to 2021, 2,437 peer-reviewed publications on the treatment of NAFLD were retrieved. China contributed the most publications, while the United States received the most citations. Journal of Hepatology was the most prolific journal in this field. Prof. Rohit Loomba. CONCLUSION Our study provides a comprehensive and objective analysis of NAFLD treatment that allows researchers to quickly locate research hotspots in a large number of relevant literatures. Meanwhile, it may also provide valuable information for researchers looking for potential partners and institutions.
Collapse
Affiliation(s)
- Yuling Song
- The Fourth Affiliated Hospital of China Medical University, Shenyang, 110000, Liaoning, China
| | - Boru Chen
- The Fourth Affiliated Hospital of China Medical University, Shenyang, 110000, Liaoning, China
| | - Lu Jiang
- The Fourth Affiliated Hospital of China Medical University, Shenyang, 110000, Liaoning, China
| | - Fangkun Zhao
- The Fourth Affiliated Hospital of China Medical University, Shenyang, 110000, Liaoning, China
| | - Xiuqin Feng
- The Fourth Affiliated Hospital of China Medical University, Shenyang, 110000, Liaoning, China
| |
Collapse
|
2
|
Narutaki A, Kahar P, Shimadzu S, Maeda S, Furuya T, Ishizaki K, Fukaki H, Ogino C, Kondo Y. Sucrose Signaling Contributes to the Maintenance of Vascular Cambium by Inhibiting Cell Differentiation. PLANT & CELL PHYSIOLOGY 2023; 64:1511-1522. [PMID: 37130085 DOI: 10.1093/pcp/pcad039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Plants produce sugars by photosynthesis and use them for growth and development. Sugars are transported from source-to-sink organs via the phloem in the vasculature. It is well known that vascular development is precisely controlled by plant hormones and peptide hormones. However, the role of sugars in the regulation of vascular development is poorly understood. In this study, we examined the effects of sugars on vascular cell differentiation using a vascular cell induction system named 'Vascular Cell Induction Culture System Using Arabidopsis Leaves' (VISUAL). We found that sucrose has the strongest inhibitory effect on xylem differentiation, among several types of sugars. Transcriptome analysis revealed that sucrose suppresses xylem and phloem differentiation in cambial cells. Physiological and genetic analyses suggested that sucrose might function through the BRI1-EMS-SUPPRESSOR1 transcription factor, which is the central regulator of vascular cell differentiation. Conditional overexpression of cytosolic invertase led to a decrease in the number of cambium layers due to an imbalance between cell division and differentiation. Taken together, our results suggest that sucrose potentially acts as a signal that integrates environmental conditions with the developmental program.
Collapse
Affiliation(s)
- Aoi Narutaki
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
| | - Prihardi Kahar
- Department of Chemical and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Kobe 657-8501, Japan
| | - Shunji Shimadzu
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shota Maeda
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
| | - Tomoyuki Furuya
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
- College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu 525-8577, Japan
| | - Kimitsune Ishizaki
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
| | - Chiaki Ogino
- Department of Chemical and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Kobe 657-8501, Japan
| | - Yuki Kondo
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
| |
Collapse
|
3
|
Gao C, Marker SJV, Gundlach C, Poulsen HF, Bohr T, Schulz A. Tracing the opposing assimilate and nutrient flows in live conifer needles. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6677-6691. [PMID: 37668473 DOI: 10.1093/jxb/erad334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
The vasculature along conifer needles is fundamentally different from that in angiosperm leaves as it contains a unique transfusion tissue inside the bundle sheath. In this study, we used specific tracers to identify the pathway of photoassimilates from mesophyll to phloem, and the opposing pathway of nutrients from xylem to mesophyll. For symplasmic transport we applied esculin to the tip of attached pine needles and followed its movement down the phloem. For apoplasmic transport we let detached needles take up a membrane-impermeable contrast agent and used micro-X-ray computed tomography to map critical water exchange interfaces and domain borders. Microscopy and segmentation of the X-ray data enabled us to render and quantify the functional 3D structure of the water-filled apoplasm and the complementary symplasmic domain. The transfusion tracheid system formed a sponge-like apoplasmic domain that was blocked at the bundle sheath. Transfusion parenchyma cell chains bridged this domain as tortuous symplasmic pathways with strong local anisotropy which, as evidenced by the accumulation of esculin, pointed to the phloem flanks as the preferred phloem-loading path. Simple estimates supported a pivotal role of the bundle sheath, showing that a bidirectional movement of nutrient ions and assimilates is feasible and emphasizing the role of the bundle sheath in nutrient and assimilate exchange.
Collapse
Affiliation(s)
- Chen Gao
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Sean J V Marker
- Department of Physics, Technical University of Denmark. Fysikvej, 2800 Kgs. Lyngby, Denmark
| | - Carsten Gundlach
- Department of Physics, Technical University of Denmark. Fysikvej, 2800 Kgs. Lyngby, Denmark
| | - Henning F Poulsen
- Department of Physics, Technical University of Denmark. Fysikvej, 2800 Kgs. Lyngby, Denmark
| | - Tomas Bohr
- Department of Physics, Technical University of Denmark. Fysikvej, 2800 Kgs. Lyngby, Denmark
| | - Alexander Schulz
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
4
|
Bavnhøj L, Driller JH, Zuzic L, Stange AD, Schiøtt B, Pedersen BP. Structure and sucrose binding mechanism of the plant SUC1 sucrose transporter. NATURE PLANTS 2023; 9:938-950. [PMID: 37188854 PMCID: PMC10281868 DOI: 10.1038/s41477-023-01421-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/19/2023] [Indexed: 05/17/2023]
Abstract
Sucrose import from photosynthetic tissues into the phloem is mediated by transporters from the low-affinity sucrose transporter family (SUC/SUT family). Furthermore, sucrose redistribution to other tissues is driven by phloem sap movement, the product of high turgor pressure created by this import activity. Additionally, sink organs such as fruits, cereals and seeds that accumulate high concentrations of sugar also depend on this active transport of sucrose. Here we present the structure of the sucrose-proton symporter, Arabidopsis thaliana SUC1, in an outward open conformation at 2.7 Å resolution, together with molecular dynamics simulations and biochemical characterization. We identify the key acidic residue required for proton-driven sucrose uptake and describe how protonation and sucrose binding are strongly coupled. Sucrose binding is a two-step process, with initial recognition mediated by the glucosyl moiety binding directly to the key acidic residue in a stringent pH-dependent manner. Our results explain how low-affinity sucrose transport is achieved in plants, and pinpoint a range of SUC binders that help define selectivity. Our data demonstrate a new mode for proton-driven symport with links to cation-driven symport and provide a broad model for general low-affinity transport in highly enriched substrate environments.
Collapse
Affiliation(s)
- Laust Bavnhøj
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jan Heiner Driller
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Lorena Zuzic
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | | | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
5
|
Aidlin Harari O, Dekel A, Wintraube D, Vainer Y, Mozes-Koch R, Yakir E, Malka O, Morin S, Bohbot JD. A sucrose-specific receptor in Bemisia tabaci and its putative role in phloem feeding. iScience 2023; 26:106752. [PMID: 37234092 PMCID: PMC10206433 DOI: 10.1016/j.isci.2023.106752] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/22/2022] [Accepted: 04/22/2023] [Indexed: 05/27/2023] Open
Abstract
In insects, specialized feeding on the phloem sap (containing mainly the sugar sucrose) has evolved only in some hemipteran lineages. This feeding behavior requires an ability to locate feeding sites buried deeply within the plant tissue. To determine the molecular mechanism involved, we hypothesized that the phloem-feeding whitefly Bemisia tabaci relies on gustatory receptor (GR)-mediated sugar sensing. We first conducted choice assays, which indicated that B. tabaci adults consistently choose diets containing higher sucrose concentrations. Next, we identified four GR genes in the B. tabaci genome. One of them, BtabGR1, displayed significant sucrose specificity when expressed in Xenopus oocytes. Silencing of BtabGR1 significantly interfered with the ability of B. tabaci adults to discriminate between non-phloem and phloem concentrations of sucrose. These findings suggest that in phloem feeders, sugar sensing by sugar receptors might allow tracking an increasing gradient of sucrose concentrations in the leaf, leading eventually to the location of the feeding site.
Collapse
Affiliation(s)
- Ofer Aidlin Harari
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Amir Dekel
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Dor Wintraube
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Yuri Vainer
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Rita Mozes-Koch
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Esther Yakir
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Osnat Malka
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Shai Morin
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Jonathan D. Bohbot
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| |
Collapse
|
6
|
Miehe W, Czempik L, Klebl F, Lohaus G. Sugar concentrations and expression of SUTs suggest active phloem loading in tall trees of Fagus sylvatica and Quercus robur. TREE PHYSIOLOGY 2023; 43:805-816. [PMID: 36579830 DOI: 10.1093/treephys/tpac152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 05/13/2023]
Abstract
Phloem loading and sugar distribution are key steps for carbon partitioning in herbaceous and woody species. Although the phloem loading mechanisms in herbs are well studied, less is known for trees. It was shown for saplings of Fagus sylvatica L. and Quercus robur L. that the sucrose concentration in the phloem sap was higher than in the mesophyll cells, which suggests that phloem loading of sucrose involves active steps. However, the question remains whether this also applies for tall trees. To approach this question, tissue-specific sugar and starch contents of small and tall trees of F. sylvatica and Q. robur as well as the sugar concentration in the subcellular compartments of mesophyll cells were examined. Moreover, sucrose uptake transporters (SUTs) were analyzed by heterology expression in yeast and the tissue-specific expressions of SUTs were investigated. Sugar content in leaves of the canopy (11 and 26 m height) was up to 25% higher compared with that of leaves of small trees of F. sylvatica and Q. robur (2 m height). The sucrose concentration in the cytosol of mesophyll cells from tall trees was between 120 and 240 mM and about 4- to 8-fold lower than the sucrose concentration in the phloem sap of saplings. The analyzed SUT sequences of both tree species cluster into three types, similar to SUTs from other plant species. Heterologous expression in yeast confirmed that all analyzed SUTs are functional sucrose transporters. Moreover, all SUTs were expressed in leaves, bark and wood of the canopy and the expression levels in small and tall trees were similar. The results show that the phloem loading in leaves of tall trees of F. sylvatica and Q. robur probably involves active steps, because there is an uphill concentration gradient for sucrose. SUTs may be involved in phloem loading.
Collapse
Affiliation(s)
- Wiebke Miehe
- School of Mathematics and Natural Sciences, Molecular Plant Science/Plant Biochemistry, University of Wuppertal, Wuppertal 42119, Germany
| | - Laura Czempik
- School of Mathematics and Natural Sciences, Molecular Plant Science/Plant Biochemistry, University of Wuppertal, Wuppertal 42119, Germany
| | - Franz Klebl
- Department of Biology, Molecular Plant Physiology, University of Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Gertrud Lohaus
- School of Mathematics and Natural Sciences, Molecular Plant Science/Plant Biochemistry, University of Wuppertal, Wuppertal 42119, Germany
| |
Collapse
|
7
|
Weller CA, Andreev I, Chambers MJ, Park M, Bloom JS, Sadhu MJ. Highly complete long-read genomes reveal pangenomic variation underlying yeast phenotypic diversity. Genome Res 2023; 33:729-740. [PMID: 37127330 PMCID: PMC10317115 DOI: 10.1101/gr.277515.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
Understanding the genetic causes of trait variation is a primary goal of genetic research. One way that individuals can vary genetically is through variable pangenomic genes: genes that are only present in some individuals in a population. The presence or absence of entire genes could have large effects on trait variation. However, variable pangenomic genes can be missed in standard genotyping workflows, owing to reliance on aligning short-read sequencing to reference genomes. A popular method for studying the genetic basis of trait variation is linkage mapping, which identifies quantitative trait loci (QTLs), regions of the genome that harbor causative genetic variants. Large-scale linkage mapping in the budding yeast Saccharomyces cerevisiae has found thousands of QTLs affecting myriad yeast phenotypes. To enable the resolution of QTLs caused by variable pangenomic genes, we used long-read sequencing to generate highly complete de novo genome assemblies of 16 diverse yeast isolates. With these assemblies, we resolved QTLs for growth on maltose, sucrose, raffinose, and oxidative stress to specific genes that are absent from the reference genome but present in the broader yeast population at appreciable frequency. Copies of genes also duplicate onto chromosomes where they are absent in the reference genome, and we found that these copies generate additional QTLs whose resolution requires pangenome characterization. Our findings show the need for highly complete genome assemblies to identify the genetic basis of trait variation.
Collapse
Affiliation(s)
- Cory A Weller
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ilya Andreev
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michael J Chambers
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Morgan Park
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Joshua S Bloom
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Institute for Quantitative and Computational Biology, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Meru J Sadhu
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
8
|
Broussard L, Abadie C, Lalande J, Limami AM, Lothier J, Tcherkez G. Phloem Sap Composition: What Have We Learnt from Metabolomics? Int J Mol Sci 2023; 24:ijms24086917. [PMID: 37108078 PMCID: PMC10139104 DOI: 10.3390/ijms24086917] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Phloem sap transport is essential for plant nutrition and development since it mediates redistribution of nutrients, metabolites and signaling molecules. However, its biochemical composition is not so well-known because phloem sap sampling is difficult and does not always allow extensive chemical analysis. In the past years, efforts have been devoted to metabolomics analyses of phloem sap using either liquid chromatography or gas chromatography coupled with mass spectrometry. Phloem sap metabolomics is of importance to understand how metabolites can be exchanged between plant organs and how metabolite allocation may impact plant growth and development. Here, we provide an overview of our current knowledge of phloem sap metabolome and physiological information obtained therefrom. Although metabolomics analyses of phloem sap are still not numerous, they show that metabolites present in sap are not just sugars and amino acids but that many more metabolic pathways are represented. They further suggest that metabolite exchange between source and sink organs is a general phenomenon, offering opportunities for metabolic cycles at the whole-plant scale. Such cycles reflect metabolic interdependence of plant organs and shoot-root coordination of plant growth and development.
Collapse
Affiliation(s)
- Louis Broussard
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, 42 rue Georges Morel, 49070 Beaucouzé, France
| | - Cyril Abadie
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, 42 rue Georges Morel, 49070 Beaucouzé, France
| | - Julie Lalande
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, 42 rue Georges Morel, 49070 Beaucouzé, France
| | - Anis M Limami
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, 42 rue Georges Morel, 49070 Beaucouzé, France
| | - Jérémy Lothier
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, 42 rue Georges Morel, 49070 Beaucouzé, France
| | - Guillaume Tcherkez
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, 42 rue Georges Morel, 49070 Beaucouzé, France
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
9
|
Cramer JF, Miller ET, Ko MC, Liang Q, Cockburn G, Nakagita T, Cardinale M, Fusani L, Toda Y, Baldwin MW. A single residue confers selective loss of sugar sensing in wrynecks. Curr Biol 2022; 32:4270-4278.e5. [PMID: 35985327 DOI: 10.1016/j.cub.2022.07.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/01/2022] [Accepted: 07/21/2022] [Indexed: 12/14/2022]
Abstract
Sensory receptors evolve, and changes to their response profiles can directly impact sensory perception and affect diverse behaviors, from mate choice to foraging decisions.1-3 Although receptor sensitivities can be highly contingent on changes occurring early in a lineage's evolutionary history,4 subsequent shifts in a species' behavior and ecology may exert selective pressure to modify and even reverse sensory receptor capabilities.5-7 Neither the extent to which sensory reversion occurs nor the mechanisms underlying such shifts is well understood. Using receptor profiling and behavioral tests, we uncover both an early gain and an unexpected subsequent loss of sugar sensing in woodpeckers, a primarily insectivorous family of landbirds.8,9 Our analyses show that, similar to hummingbirds10 and songbirds,4 the ancestors of woodpeckers repurposed their T1R1-T1R3 savory receptor to detect sugars. Importantly, whereas woodpeckers seem to have broadly retained this ability, our experiments demonstrate that wrynecks (an enigmatic ant-eating group sister to all other woodpeckers) selectively lost sugar sensing through a novel mechanism involving a single amino acid change in the T1R3 transmembrane domain. The identification of this molecular microswitch responsible for a sensory shift in taste receptors provides an example of the molecular basis of a sensory reversion in vertebrates and offers novel insights into structure-function relationships during sensory receptor evolution.
Collapse
Affiliation(s)
- Julia F Cramer
- Evolution of Sensory Systems Research Group, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| | - Eliot T Miller
- Macaulay Library, Cornell Lab of Ornithology, Ithaca, NY 14850, USA
| | - Meng-Ching Ko
- Evolution of Sensory Systems Research Group, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| | - Qiaoyi Liang
- Evolution of Sensory Systems Research Group, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| | - Glenn Cockburn
- Evolution of Sensory Systems Research Group, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| | - Tomoya Nakagita
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan; Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Massimiliano Cardinale
- Department of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural Sciences, 453 30 Lysekil, Sweden
| | - Leonida Fusani
- Austrian Ornithological Centre, Konrad-Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, 1160 Wien, Austria; Department of Behavioural and Cognitive Biology, University of Vienna, 1160 Wien, Austria
| | - Yasuka Toda
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Maude W Baldwin
- Evolution of Sensory Systems Research Group, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany.
| |
Collapse
|
10
|
Harding SA, Tuma TT, Aulakh K, Ortega MA, Ci D, Ou Y, Tsai CJ. Tonoplast Sucrose Trafficking Modulates Starch Utilization and Water Deficit Behavior in Poplar Leaves. PLANT & CELL PHYSIOLOGY 2022; 63:1117-1129. [PMID: 35727111 PMCID: PMC9381566 DOI: 10.1093/pcp/pcac087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 06/08/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Leaf osmotic adjustment by the active accrual of compatible organic solutes (e.g. sucrose) contributes to drought tolerance throughout the plant kingdom. In Populus tremula x alba, PtaSUT4 encodes a tonoplast sucrose-proton symporter, whose downregulation by chronic mild drought or transgenic manipulation is known to increase leaf sucrose and turgor. While this may constitute a single drought tolerance mechanism, we now report that other adjustments which can occur during a worsening water deficit are damped when PtaSUT4 is constitutively downregulated. Specifically, we report that starch use and leaf relative water content (RWC) dynamics were compromised when plants with constitutively downregulated PtaSUT4 were subjected to a water deficit. Leaf RWC decreased more in wild-type and vector control lines than in transgenic PtaSUT4-RNAi (RNA-interference) or CRISPR (clustered regularly interspersed short palindromic repeats) knockout (KO) lines. The control line RWC decrease was accompanied by increased PtaSUT4 transcript levels and a mobilization of sucrose from the mesophyll-enriched leaf lamina into the midvein. The findings suggest that changes in SUT4 expression can increase turgor or decrease RWC as different tolerance mechanisms to reduced water availability. Evidence is presented that PtaSUT4-mediated sucrose partitioning between the vacuole and the cytosol is important not only for overall sucrose abundance and turgor, but also for reactive oxygen species (ROS) and antioxidant dynamics. Interestingly, the reduced capacity for accelerated starch breakdown under worsening water-deficit conditions was correlated with reduced ROS in the RNAi and KO lines. A role for PtaSUT4 in the orchestration of ROS, antioxidant, starch utilization and RWC dynamics during water stress and its importance in trees especially, with their high hydraulic resistances, is considered.
Collapse
Affiliation(s)
| | - Trevor T Tuma
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, Athens, GA 30602, USA
| | - Kavita Aulakh
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Maria A Ortega
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, Athens, GA 30602, USA
| | - Dong Ci
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Bioscience and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yongbin Ou
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Biotechnology, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Chung-Jui Tsai
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, Athens, GA 30602, USA
| |
Collapse
|
11
|
Lohaus G. Review primary and secondary metabolites in phloem sap collected with aphid stylectomy. JOURNAL OF PLANT PHYSIOLOGY 2022; 271:153645. [PMID: 35217406 DOI: 10.1016/j.jplph.2022.153645] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Phloem plays a central role in assimilate transport as well as in the transport of several secondary compounds. In order to study the chemical composition of phloem sap, different methods have been used for its collection, including stem incisions, EDTA-facilitated exudation or aphid stylectomy. Each collection method has several advantages and disadvantages and, unfortunately, the reported metabolite profiles and concentrations depend on the method used for exudate collection. This review therefore primarily focusses on sugars, amino acids, inorganic ions and further transported compounds like organic acids, nucleotides, phytohormons, defense signals, and lipophilic substances in the phloem sap obtained by aphid stylectomy to facilitate comparability of the data.
Collapse
Affiliation(s)
- Gertrud Lohaus
- Molecular Plant Science/Plant Biochemistry, University of Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany.
| |
Collapse
|
12
|
Biotechnology for propagation and secondary metabolite production in Bacopa monnieri. Appl Microbiol Biotechnol 2022; 106:1837-1854. [PMID: 35218388 DOI: 10.1007/s00253-022-11820-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/01/2023]
Abstract
Bacopa monnieri (L.) Wettst. or water hyssop commonly known as "Brahmi" is a small, creeping, succulent herb from the Plantaginaceae family. It is popularly employed in Ayurvedic medicine as a nerve tonic to improve memory and cognition. Of late, this plant has been reported extensively for its pharmacologically active phyto-constituents. The main phytochemicals are brahmine, alkaloids, herpestine, and saponins. The saponins include bacoside A, bacoside B, and betulic acid. Investigation into the pharmacological effect of this plant has thrived lately, encouraging its neuroprotective and memory supporting capacity among others. Besides, it possesses many other therapeutic activities like antimicrobial, antioxidant, anti-inflammatory, gastroprotective properties, etc. Because of its multipurpose therapeutic potential, it is overexploited owing to the prioritization of natural remedies over conventional ones, which compels us to conserve them. B. monnieri is confronting the danger of extinction from its natural habitat as it is a major cultivated medico-botanical and seed propagation is restricted due to less seed availability and viability. The ever-increasing demand for the plant can be dealt with mass propagation through plant tissue culture strategy. Micropropagation utilizing axillary meristems as well as de novo organogenesis have been widely investigated in this plant which has also been explored for its conservation and production of different types of secondary metabolites. Diverse in vitro methods such as organogenesis, cell suspension, and callus cultures have been accounted for with the aim of production and/or enhancement of bacosides. Direct shoot-organogenesis was initiated in excised leaf and internodal explants without any exogenous plant growth regulator(s) (PGRs), and the induction rate was improved when exogenous cytokinins and other supplements were used. Moreover, biotechnological toolkits like Agrobacterium-mediated transformation and the use of mutagens have been reported. Besides, the molecular marker-based studies demonstrated the clonal fidelity among the natural and in vitro generated plantlets also elucidating the inherent diversity among the natural populations. Agrobacterium-mediated transformation system was mostly employed to optimize bacoside biosynthesis and heterologous expression of other genes. The present review aims at depicting the recent research outcomes of in vitro studies performed on B. monnieri which include root and shoot organogenesis, callus induction, somatic embryogenesis, production of secondary metabolites by in vitro propagation, acclimatization of the in vitro raised plantlets, genetic transformation, and molecular marker-based studies of clonal fidelity. KEY POINTS: • Critical and up to date records on in vitro propagation of Bacopa monnieri • In vitro propagation and elicitation of secondary metabolites from B. monnieri • Molecular markers and transgenic studies in B. monnieri.
Collapse
|
13
|
Gersony JT, McClelland A, Holbrook NM. Raman spectroscopy reveals high phloem sugar content in leaves of canopy red oak trees. THE NEW PHYTOLOGIST 2021; 232:418-424. [PMID: 33991343 DOI: 10.1111/nph.17465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
A robust understanding of phloem functioning in tall trees evades us because current methods for collecting phloem sap do not lend themselves to measuring actively photosynthesizing canopy leaves. We show that Raman spectroscopy can be used as a quantitative tool to assess sucrose concentration in leaf samples. Specifically, we found that Raman spectroscopy can predict physiologically relevant sucrose concentrations (adjusted R2 of 0.9) in frozen leaf extract spiked with sucrose. We then apply this method to estimate sieve element sucrose concentration in rapidly frozen petioles of canopy red oak (Quercus rubra) trees and found that sucrose concentrations are > 1100 mM at midday and midnight. This concentration is predicted to generate a sieve element turgor pressure high enough to generate bulk flow through the phloem, but is potentially too high to allow for sucrose diffusion from photosynthetic cells. Our findings support the Münch hypothesis for phloem transport once the carbon is in the phloem and challenge the passive-loading hypothesis for carbon movement into the phloem for red oak. This study provides the first ˜in-situ (frozen in the functioning state) source sieve element sucrose concentration characterization in any plant, opening a new avenue for investigation of phloem functioning.
Collapse
Affiliation(s)
- Jess T Gersony
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Arthur McClelland
- Center for Nanoscale Systems, Harvard University, Cambridge, MA, 02138, USA
| | - N Michele Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
14
|
Shaaban B, Seeburger V, Schroeder A, Lohaus G. Sugar, amino acid and inorganic ion profiling of the honeydew from different hemipteran species feeding on Abies alba and Picea abies. PLoS One 2020; 15:e0228171. [PMID: 31978201 PMCID: PMC6980476 DOI: 10.1371/journal.pone.0228171] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/08/2020] [Indexed: 11/18/2022] Open
Abstract
Several hemipteran species feed on the phloem sap of plants and produce large amounts of honeydew that is collected by bees to produce honeydew honey. Therefore, it is important to know whether it is predominantly the hemipteran species or the host plant to influence the honeydew composition. This is particularly relevant for those botanical and zoological species from which the majority of honeydew honey originates. To investigate this issue, honeydew from two Cinara species located on Abies alba as well as from two Cinara and two Physokermes species located on Picea abies were collected. Phloem exudates of the host plants were also analyzed. Honeydew of all species contained different proportions of hexoses, sucrose, melezitose, erlose, and further di- and trisaccharides, whereas the phloem exudates of the host trees contained no trisaccharides. Moreover, the proportions of sugars differed significantly between hemipteran species feeding on the same tree species. Sucrose hydrolysis and oligosaccharide formation was shown in whole-body homogenates of aphids. The type of the produced oligosaccharides in the aphid-extracts correlated with the oligosaccharide composition in the honeydew of the different aphid species. The total contents of amino acids and inorganic ions in the honeydew were much lower than the sugar content. Glutamine and glutamate were predominant amino acids in the honeydew of all six hemipteran species and also in the phloem exudates of both tree species. Potassium was the dominant inorganic ion in all honeydew samples and also in the phloem exudate. Statistical analyses reveal that the sugar composition of honeydew is determined more by the hemipteran species than by the host plant. Consequently, it can be assumed that the sugar composition of honeydew honey is also more influenced by the hemipteran species than by the host tree.
Collapse
Affiliation(s)
- Basel Shaaban
- Molecular Plant Science / Plant Biochemistry, University of Wuppertal, Wuppertal, Germany
| | - Victoria Seeburger
- Apicultural State Institute, University of Hohenheim, Stuttgart, Germany
| | - Annette Schroeder
- Apicultural State Institute, University of Hohenheim, Stuttgart, Germany
| | - Gertrud Lohaus
- Molecular Plant Science / Plant Biochemistry, University of Wuppertal, Wuppertal, Germany
- * E-mail:
| |
Collapse
|
15
|
Dobbelstein E, Fink D, Öner-Sieben S, Czempik L, Lohaus G. Seasonal changes of sucrose transporter expression and sugar partitioning in common European tree species. TREE PHYSIOLOGY 2019; 39:284-299. [PMID: 30388274 DOI: 10.1093/treephys/tpy120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/17/2018] [Accepted: 10/04/2018] [Indexed: 05/13/2023]
Abstract
In temperate woody species, carbon transport from source to sink tissues is a striking physiological process, particularly considering seasonal changes. The functions of different tissues can also alternate across the seasons. In this regard, phloem loading and sugar distribution are important aspects of carbon partitioning, and sucrose uptake transporters (SUTs) play a key role in these processes. Therefore, the influence of seasons and different light-dark conditions on the expression of SUTs from 3-year-old Fagus sylvatica L., Quercus robur L. and Picea abies (L.) Karst. trees were analyzed. In addition, tissue-specific sugar and starch contents under these different environmental conditions were determined. Putative SUTs were identified in the gymnosperms (Picea abies, Ginkgo biloba L.), here for the first time, and also in the angiosperms (Q. robur, F. sylvatica). The identified SUT sequences of the different tree species cluster into three types, similar to other SUTs from herbaceous and tree species. Furthermore, the sequences from angiosperm and those from gymnosperm species form distinct clusters within the three types of SUTs. In F. sylvatica, Q. robur and P. abies, the expression levels of the different SUTs during seasons showed marked variations. Because of the high expression levels of type I SUTs in bark, wood and leaves during active growing phases in spring and summer, it can be assumed that they are involved in phloem loading, sucrose retrieval and possibly in further physiological processes. The expression patterns also indicate a flexible expression in all tissues depending on physiological requirements and environmental conditions. Compared with type I SUTs, the seasonal variations of type II SUT expression were less pronounced, whereas the seasonal variations of the type III SUT expression patterns were partly reverse. In addition to the seasonal regulation, the expressions of the different SUTs were also regulated by light in a diurnal manner.
Collapse
Affiliation(s)
- Elena Dobbelstein
- Molecular Plant Science/Plant Biochemistry, University of Wuppertal, Gaußstr. 20, Wuppertal, Germany
| | - Daniel Fink
- Molecular Plant Science/Plant Biochemistry, University of Wuppertal, Gaußstr. 20, Wuppertal, Germany
| | - Soner Öner-Sieben
- Clinic for General Pediatrics, Neonatology and Paediatric Cardiology, University Clinic Düsseldorf, Moorenstr. 5, Düsseldorf, Germany
| | - Laura Czempik
- Molecular Plant Science/Plant Biochemistry, University of Wuppertal, Gaußstr. 20, Wuppertal, Germany
| | - Gertrud Lohaus
- Molecular Plant Science/Plant Biochemistry, University of Wuppertal, Gaußstr. 20, Wuppertal, Germany
| |
Collapse
|