1
|
Song P, Li Y, Wang X, Wang X, Zhou F, Zhang A, Zhao W, Zhang H, Zhang Z, Li H, Zhao H, Song K, Xing Y, Sun D. Linkage and association analysis to identify wheat pre-harvest sprouting resistance genetic regions and develop KASP markers. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:11. [PMID: 39790292 PMCID: PMC11707105 DOI: 10.1007/s11032-024-01526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/01/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025]
Abstract
Pre-harvest sprouting (PHS) of wheat (Triticum aestivum L.) is one of the complex traits that result in rainfall-dependent reductions in grain production and quality worldwide. Breeding new varieties and germplasm with PHS resistance is of great importance to reduce this problem. However, research on markers and genes related to PHS resistance is limited, especially in marker-assisted selection (MAS) wheat breeding. To this end, we studied PHS resistance in recombinant inbred line (RIL) population and in 171 wheat germplasm accessions in different environments and genotyped using the wheat Infinium 50 K/660 K SNP array. Quantitative trait loci (QTL) mapping and genome-wide association studies (GWAS) identified 59 loci controlling PHS. Upon comparison with previously reported QTL affecting PHS, 16 were found to be new QTL, and the remaining 43 loci were co-localized with QTL from previous studies. We also pinpointed 12 candidate genes within these QTL intervals that share functional similarities with genes previously known to influence PHS resistance. In addition, we developed and validated two kompetitive allele-specific PCR (KASP) markers within the chromosome 7B region identified by linkage analysis. These QTL, candidate genes, and the KASP marker identified in this study have the potential to improve PHS resistance of wheat, and they may enhance our understanding of the genetic basis of PHS resistance, thus being useful for MAS breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01526-0.
Collapse
Affiliation(s)
- Pengbo Song
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yueyue Li
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xiaoxiao Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xin Wang
- Xiangyang Academy of Agricultural Sciences, Xiangyang, 441000 Hubei China
| | - Feng Zhou
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Aoyan Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Wensha Zhao
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Hailong Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Zeyuan Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Haoyang Li
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Huiling Zhao
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Kefeng Song
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yuanhang Xing
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Daojie Sun
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
2
|
Gao W, Jiang Y, Yang X, Li T, Zhang L, Yan S, Cao J, Lu J, Ma C, Chang C, Zhang H. Functional analysis of a wheat class III peroxidase gene, TaPer12-3A, in seed dormancy and germination. BMC PLANT BIOLOGY 2024; 24:318. [PMID: 38654190 PMCID: PMC11040755 DOI: 10.1186/s12870-024-05041-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/28/2023] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Class III peroxidases (PODs) perform crucial functions in various developmental processes and responses to biotic and abiotic stresses. However, their roles in wheat seed dormancy (SD) and germination remain elusive. RESULTS Here, we identified a wheat class III POD gene, named TaPer12-3A, based on transcriptome data and expression analysis. TaPer12-3A showed decreasing and increasing expression trends with SD acquisition and release, respectively. It was highly expressed in wheat seeds and localized in the endoplasmic reticulum and cytoplasm. Germination tests were performed using the transgenic Arabidopsis and rice lines as well as wheat mutant mutagenized with ethyl methane sulfonate (EMS) in Jing 411 (J411) background. These results indicated that TaPer12-3A negatively regulated SD and positively mediated germination. Further studies showed that TaPer12-3A maintained H2O2 homeostasis by scavenging excess H2O2 and participated in the biosynthesis and catabolism pathways of gibberellic acid and abscisic acid to regulate SD and germination. CONCLUSION These findings not only provide new insights for future functional analysis of TaPer12-3A in regulating wheat SD and germination but also provide a target gene for breeding wheat varieties with high pre-harvest sprouting resistance by gene editing technology.
Collapse
Affiliation(s)
- Wei Gao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, 230036, China
| | - Yating Jiang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, 230036, China
| | - Xiaohu Yang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, 230036, China
| | - Ting Li
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, 230036, China
| | - Litian Zhang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, 230036, China
| | - Shengnan Yan
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, 230036, China
| | - Jiajia Cao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, 230036, China
| | - Jie Lu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, 230036, China
| | - Chuanxi Ma
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, 230036, China
| | - Cheng Chang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, 230036, China.
| | - Haiping Zhang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, Anhui, 230036, China.
| |
Collapse
|
3
|
Yang J, Wang J. Genome-Wide Association Study of Preharvest Sprouting in Wheat. Methods Mol Biol 2024; 2830:121-129. [PMID: 38977573 DOI: 10.1007/978-1-0716-3965-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 07/10/2024]
Abstract
Genome-wide association study (GWAS) is widely used to characterize genes or quantitative trait loci (QTLs) associated with preharvest sprouting and seed dormancy. GWAS can identify both previously discovered and novel QTLs across diverse genetic panels. The high-throughput SNP arrays or next-generation sequencing technologies have facilitated the identification of numerous genetic markers, thereby significantly enhancing the resolution of GWAS. Although various methods have been developed, the fundamental principles underlying these techniques remain constant. Here, we provide a basic technological flow to perform seed dormancy assay, followed by GWAS using population structure control, and compared it with previous identified QTLs and genes.
Collapse
Affiliation(s)
- Jian Yang
- Institute of Wheat, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Chang C, Zhang H, Lu J, Si H, Ma C. Genetic Improvement of Wheat with Pre-Harvest Sprouting Resistance in China. Genes (Basel) 2023; 14:genes14040837. [PMID: 37107595 PMCID: PMC10137347 DOI: 10.3390/genes14040837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/23/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Wheat pre-harvest sprouting (PHS) refers to the germination of seeds directly on the spike due to rainy weather before harvest, which often results in yield reduction, quality deterioration, and seed value loss. In this study, we reviewed the research progress in the quantitative trait loci (QTL) detection and gene excavation related to PHS resistance in wheat. Simultaneously, the identification and creation of germplasm resources and the breeding of wheat with PHS resistance were expounded in this study. Furthermore, we also discussed the prospect of molecular breeding during genetic improvement of PHS-resistant wheat.
Collapse
|
5
|
Kumar M, Kumar S, Sandhu KS, Kumar N, Saripalli G, Prakash R, Nambardar A, Sharma H, Gautam T, Balyan HS, Gupta PK. GWAS and genomic prediction for pre-harvest sprouting tolerance involving sprouting score and two other related traits in spring wheat. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:14. [PMID: 37313293 PMCID: PMC10248620 DOI: 10.1007/s11032-023-01357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/15/2022] [Accepted: 01/26/2023] [Indexed: 06/15/2023]
Abstract
In wheat, a genome-wide association study (GWAS) and genomic prediction (GP) analysis were conducted for pre-harvest sprouting (PHS) tolerance and two of its related traits. For this purpose, an association panel of 190 accessions was phenotyped for PHS (using sprouting score), falling number, and grain color over two years and genotyped with 9904 DArTseq based SNP markers. GWAS for main-effect quantitative trait nucleotides (M-QTNs) using three different models (CMLM, SUPER, and FarmCPU) and epistatic QTNs (E-QTNs) using PLINK were performed. A total of 171 M-QTNs (CMLM, 47; SUPER, 70; FarmCPU, 54) for all three traits, and 15 E-QTNs involved in 20 first-order epistatic interactions were identified. Some of the above QTNs overlapped the previously reported QTLs, MTAs, and cloned genes, allowing delineating 26 PHS-responsive genomic regions that spread over 16 wheat chromosomes. As many as 20 definitive and stable QTNs were considered important for use in marker-assisted recurrent selection (MARS). The gene, TaPHS1, for PHS tolerance (PHST) associated with one of the QTNs was also validated using the KASP assay. Some of the M-QTNs were shown to have a key role in the abscisic acid pathway involved in PHST. Genomic prediction accuracies (based on the cross-validation approach) using three different models ranged from 0.41 to 0.55, which are comparable to the results of previous studies. In summary, the results of the present study improved our understanding of the genetic architecture of PHST and its related traits in wheat and provided novel genomic resources for wheat breeding based on MARS and GP. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01357-5.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, UP India
| | - Sachin Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, UP India
| | | | - Neeraj Kumar
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC USA
| | - Gautam Saripalli
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, UP India
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD USA
| | - Ram Prakash
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, UP India
| | - Akash Nambardar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, UP India
| | - Hemant Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, UP India
| | - Tinku Gautam
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, UP India
| | - Harindra Singh Balyan
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, UP India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, UP India
| |
Collapse
|
6
|
Ge N, Jia JS, Yang L, Huang RM, Wang QY, Chen C, Meng ZG, Li LG, Chen JW. Exogenous gibberellic acid shortening after-ripening process and promoting seed germination in a medicinal plant Panax notoginseng. BMC PLANT BIOLOGY 2023; 23:67. [PMID: 36721119 PMCID: PMC9890714 DOI: 10.1186/s12870-023-04084-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 09/28/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Panax notoginseng (Burk) F.H. Chen is an essential plant in the family of Araliaceae. Its seeds are classified as a type of morphophysiological dormancy (MPD), and are characterized by recalcitrance during the after-ripening process. However, it is not clear about the molecular mechanism on the after-ripening in recalcitrant seeds. RESULTS In this study, exogenous supply of gibberellic acid (GA3) with different concentrations shortened after-ripening process and promoted the germination of P. notoginseng seeds. Among the identified plant hormone metabolites, exogenous GA3 results in an increased level of endogenous hormone GA3 through permeation. A total of 2971 and 9827 differentially expressed genes (DEGs) were identified in response to 50 mg L-1 GA3 (LG) and 500 mg L-1 GA3 (HG) treatment, respectively, and the plant hormone signal and related metabolic pathways regulated by GA3 was significantly enriched. Weighted gene co-expression network analysis (WGCNA) revealed that GA3 treatment enhances GA biosynthesis and accumulation, while inhibiting the gene expression related to ABA signal transduction. This effect was associated with higher expression of crucial seed embryo development and cell wall loosening genes, Leafy Contyledon1 (LEC1), Late Embryogenesis Abundant (LEA), expansins (EXP) and Pectinesterase (PME). CONCLUSIONS Exogenous GA3 application promotes germination and shorts the after-ripening process of P. notoginseng seeds by increasing GA3 contents through permeation. Furthermore, the altered ratio of GA and ABA contributes to the development of the embryo, breaks the mechanical constraints of the seed coat and promotes the protrusion of the radicle in recalcitrant P. notoginseng seeds. These findings improve our knowledge of the contribution of GA to regulating the dormancy of MPD seeds during the after-ripening process, and provide new theoretical guidance for the application of recalcitrant seeds in agricultural production and storage.
Collapse
Affiliation(s)
- Na Ge
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China
| | - Jin-Shan Jia
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China
| | - Ling Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China
| | - Rong-Mei Huang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China
| | - Qing-Yan Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China
| | - Cui Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China
| | - Zhen-Gui Meng
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China
| | - Long-Geng Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China
| | - Jun-Wen Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China.
| |
Collapse
|
7
|
Jiang H, Gao W, Jiang BL, Liu X, Jiang YT, Zhang LT, Zhang Y, Yan SN, Cao JJ, Lu J, Ma CX, Chang C, Zhang HP. Identification and validation of coding and non-coding RNAs involved in high-temperature-mediated seed dormancy in common wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1107277. [PMID: 36818881 PMCID: PMC9929302 DOI: 10.3389/fpls.2023.1107277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Seed dormancy (SD) significantly decreases under high temperature (HT) environment during seed maturation, resulting in pre-harvest sprouting (PHS) damage under prolonged rainfall and wet weather during wheat harvest. However, the molecular mechanism underlying HT-mediated SD remains elusiveSeed dormancy (SD) significantly decreases under high temperature (HT) environment during seed maturation, resulting in pre-harvest sprouting (PHS) damage under prolonged rainfall and wet weather during wheat harvest. However, the molecular mechanism underlying HT-mediated SD remains elusive. METHODS Here, the wheat landrace 'Waitoubai' with strong SD and PHS resistance was treated with HT from 21 to 35 days post anthesis (DPA). Then, the seeds under HT and normal temperature (NT) environments were collected at 21 DPA, 28 DPA, and 35 DPA and subjected to whole-transcriptome sequencing. RESULTS The phenotypic data showed that the seed germination percentage significantly increased, whereas SD decreased after HT treatment compared with NT, consistent with the results of previous studies. In total, 5128 mRNAs, 136 microRNAs (miRNAs), 273 long non-coding RNAs (lncRNAs), and 21 circularRNAs were found to be responsive to HT, and some of them were further verified through qRT-PCR. In particular, the known gibberellin (GA) biosynthesis gene TaGA20ox1 (TraesCS3D02G393900) was proved to be involved in HT-mediated dormancy by using the EMS-mutagenized wheat cultivar Jimai 22. Similarly, a novel gene TaCDPK21 (TraesCS7A02G267000) involved in the calcium signaling pathway was validated to be associated with HT-mediated dormancy by using the EMS mutant. Moreover, TaCDPK21 overexpression in Arabidopsis and functional complementarity tests supported the negative role of TaCDPK21 in SD. We also constructed a co-expression regulatory network based on differentially expressed mRNAs, miRNAs, and lncRNAs and found that a novel miR27319 was located at a key node of this regulatory network. Subsequently, using Arabidopsis and rice lines overexpressing miR27319 precursor or lacking miR27319 expression, we validated the positive role of miR27319 in SD and further preliminarily dissected the molecular mechanism of miR27319 underlying SD regulation through phytohormone abscisic acid and GA biosynthesis, catabolism, and signaling pathways. DISCUSSION These findings not only broaden our understanding of the complex regulatory network of HT-mediated dormancy but also provide new gene resources for improving wheat PHS resistance to minimize PHS damage by using the molecular pyramiding approach.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Cheng Chang
- *Correspondence: Cheng Chang, ; Hai-ping Zhang,
| | | |
Collapse
|
8
|
Jiang H, Fang Y, Yan D, Liu ST, Wei J, Guo FL, Wu XT, Cao H, Yin CB, Lu F, Gao LF, Liu YX. Genome-wide association study reveals a NAC transcription factor TaNAC074 linked to pre-harvest sprouting tolerance in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3265-3276. [PMID: 35882642 DOI: 10.1007/s00122-022-04184-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/21/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Twelve QTL associated with pre-harvest sprouting tolerance were identified using association analysis in wheat. Two markers were validated and a candidate gene TaNAC074 for Qgpf.cas-3B.2 was verified using Agrobacterium-mediated transformation. Pre-harvest sprouting (PHS) is a considerable global threat to wheat yield and quality. Due to this threat, breeders must identify quantitative trait loci (QTL) and genes conferring PHS-tolerance (PHST) to reduce the negative effects of PHS caused by low seed dormancy. In this study, we evaluated a panel of 302 diverse wheat genotypes for PHST in four environments and genotyped the panel with a high-density wheat 660 K SNP array. By using a genome-wide association study (GWAS), we identified 12 stable loci significantly associated with PHST (P < 0.0001), explaining 3.34 - 9.88% of the phenotypic variances. Seven of these loci co-located with QTL and genes reported previously. Five loci (Qgpf.cas-3B.2, Qgpf.cas-3B.3, Qgpf.cas-3B.4, Qgpf.cas-7B.2, and Qgpf.cas-7B.3), located in genomic regions with no known PHST QTL or genes, are likely to be new QTL conferring PHST. Additionally, two molecular markers were developed for Qgpf.cas-3A and Qgpf.cas-7B.3, and validated using a different set of 233 wheat accessions. Finally, the PHST-related function of candidate gene TaNAC074 for Qgpf.cas-3B.2 was confirmed by CAPS (cleaved amplified polymorphic sequences) marker association analysis in 233 wheat accessions and by expression and phenotypic analysis of transgenic wheat. Overexpression of TaNAC074 significantly reduced seed dormancy in wheat. This study contributes to broaden the genetic basis and molecular marker-assisted breeding of PHST.
Collapse
Affiliation(s)
- Hao Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yu Fang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Yan
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Si-Tong Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Wei
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei-Long Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xing-Ting Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Cao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Chang-Bin Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fei Lu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li-Feng Gao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Yong-Xiu Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Wei J, Fang Y, Jiang H, Wu XT, Zuo JH, Xia XC, Li JQ, Stich B, Cao H, Liu YX. Combining QTL mapping and gene co-expression network analysis for prediction of candidate genes and molecular network related to yield in wheat. BMC PLANT BIOLOGY 2022; 22:288. [PMID: 35698038 PMCID: PMC9190149 DOI: 10.1186/s12870-022-03677-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/27/2022] [Accepted: 05/27/2022] [Indexed: 05/21/2023]
Abstract
BACKGROUND Wheat (Triticum aestivum L.) is an important cereal crop. Increasing grain yield for wheat is always a priority. Due to the complex genome of hexaploid wheat with 21 chromosomes, it is difficult to identify underlying genes by traditional genetic approach. The combination of genetics and omics analysis has displayed the powerful capability to identify candidate genes for major quantitative trait loci (QTLs), but such studies have rarely been carried out in wheat. In this study, candidate genes related to yield were predicted by a combined use of linkage mapping and weighted gene co-expression network analysis (WGCNA) in a recombinant inbred line population. RESULTS QTL mapping was performed for plant height (PH), spike length (SL) and seed traits. A total of 68 QTLs were identified for them, among which, 12 QTLs were stably identified across different environments. Using RNA sequencing, we scanned the 99,168 genes expression patterns of the whole spike for the recombinant inbred line population. By the combined use of QTL mapping and WGCNA, 29, 47, 20, 26, 54, 46 and 22 candidate genes were predicted for PH, SL, kernel length (KL), kernel width, thousand kernel weight, seed dormancy, and seed vigor, respectively. Candidate genes for different traits had distinct preferences. The known PH regulation genes Rht-B and Rht-D, and the known seed dormancy regulation genes TaMFT can be selected as candidate gene. Moreover, further experiment revealed that there was a SL regulatory QTL located in an interval of about 7 Mbp on chromosome 7A, named TaSL1, which also involved in the regulation of KL. CONCLUSIONS A combination of QTL mapping and WGCNA was applied to predicted wheat candidate genes for PH, SL and seed traits. This strategy will facilitate the identification of candidate genes for related QTLs in wheat. In addition, the QTL TaSL1 that had multi-effect regulation of KL and SL was identified, which can be used for wheat improvement. These results provided valuable molecular marker and gene information for fine mapping and cloning of the yield-related trait loci in the future.
Collapse
Affiliation(s)
- Jun Wei
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Fang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xing-Ting Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing-Hong Zuo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xian-Chun Xia
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jin-Quan Li
- Strube Research GmbH & Co., KG, 38387, S ̈ollingen, Germany
| | - Benjamin Stich
- Institute of Quantitative Genetics and Genomics of Plants, Heinrich Heine University, D ̈usseldorf, Germany
| | - Hong Cao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yong-Xiu Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Wang P, Tian T, Ma J, Liu Y, Zhang P, Chen T, Shahinnia F, Yang D. Genome-Wide Association Study of Kernel Traits Using a 35K SNP Array in Bread Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:905660. [PMID: 35734257 PMCID: PMC9207461 DOI: 10.3389/fpls.2022.905660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/27/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Kernel size and weight are crucial components of grain yield in wheat. Deciphering their genetic basis is essential for improving yield potential in wheat breeding. In this study, five kernel traits, including kernel length (KL), kernel width (KW), kernel diameter ratio (KDR), kernel perimeter (KP), and thousand-kernel weight (TKW), were evaluated in a panel consisting of 198 wheat accessions under six environments. Wheat accessions were genotyped using the 35K SNP iSelect chip array, resulting in a set of 13,228 polymorphic SNP markers that were used for genome-wide association study (GWAS). A total of 146 significant marker-trait associations (MTAs) were identified for five kernel traits on 21 chromosomes [-log10(P) ≥ 3], which explained 5.91-15.02% of the phenotypic variation. Of these, 12 stable MTAs were identified in multiple environments, and six superior alleles showed positive effects on KL, KP, and KDR. Four potential candidate genes underlying the associated SNP markers were predicted for encoding ML protein, F-box protein, ethylene-responsive transcription factor, and 1,4-α-glucan branching enzyme. These genes were strongly expressed in grain development at different growth stages. The results will provide new insights into the genetic basis of kernel traits in wheat. The associated SNP markers and predicted candidate genes will facilitate marker-assisted selection in wheat breeding.
Collapse
Affiliation(s)
- Peng Wang
- State Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Tian Tian
- State Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jingfu Ma
- State Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yuan Liu
- State Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Peipei Zhang
- State Key Laboratory of Aridland Crop Science, Lanzhou, China
| | - Tao Chen
- State Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fahimeh Shahinnia
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Freising, Germany
| | - Delong Yang
- State Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
11
|
Saini DK, Chopra Y, Singh J, Sandhu KS, Kumar A, Bazzer S, Srivastava P. Comprehensive evaluation of mapping complex traits in wheat using genome-wide association studies. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:1. [PMID: 37309486 PMCID: PMC10248672 DOI: 10.1007/s11032-021-01272-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/30/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Genome-wide association studies (GWAS) are effectively applied to detect the marker trait associations (MTAs) using whole genome-wide variants for complex quantitative traits in different crop species. GWAS has been applied in wheat for different quality, biotic and abiotic stresses, and agronomic and yield-related traits. Predictions for marker-trait associations are controlled with the development of better statistical models taking population structure and familial relatedness into account. In this review, we have provided a detailed overview of the importance of association mapping, population design, high-throughput genotyping and phenotyping platforms, advancements in statistical models and multiple threshold comparisons, and recent GWA studies conducted in wheat. The information about MTAs utilized for gene characterization and adopted in breeding programs is also provided. In the literature that we surveyed, as many as 86,122 wheat lines have been studied under various GWA studies reporting 46,940 loci. However, further utilization of these is largely limited. The future breakthroughs in area of genomic selection, multi-omics-based approaches, machine, and deep learning models in wheat breeding after exploring the complex genetic structure with the GWAS are also discussed. This is a most comprehensive study of a large number of reports on wheat GWAS and gives a comparison and timeline of technological developments in this area. This will be useful to new researchers or groups who wish to invest in GWAS.
Collapse
Affiliation(s)
- Dinesh K. Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| | - Yuvraj Chopra
- College of Agriculture, Punjab Agricultural University, Ludhiana, 141004 India
| | - Jagmohan Singh
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Karansher S. Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163 USA
| | - Anand Kumar
- Department of Genetics and Plant Breeding, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur, 202002 India
| | - Sumandeep Bazzer
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211 USA
| | - Puja Srivastava
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| |
Collapse
|
12
|
Francki MG, Stainer GS, Walker E, Rebetzke GJ, Stefanova KT, French RJ. Phenotypic Evaluation and Genetic Analysis of Seedling Emergence in a Global Collection of Wheat Genotypes ( Triticum aestivum L.) Under Limited Water Availability. FRONTIERS IN PLANT SCIENCE 2021; 12:796176. [PMID: 35003185 PMCID: PMC8739788 DOI: 10.3389/fpls.2021.796176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 10/16/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
The challenge in establishing an early-sown wheat crop in southern Australia is the need for consistently high seedling emergence when sowing deep in subsoil moisture (>10 cm) or into dry top-soil (4 cm). However, the latter is strongly reliant on a minimum soil water availability to ensure successful seedling emergence. This study aimed to: (1) evaluate 233 Australian and selected international wheat genotypes for consistently high seedling emergence under limited soil water availability when sown in 4 cm of top-soil in field and glasshouse (GH) studies; (2) ascertain genetic loci associated with phenotypic variation using a genome-wide association study (GWAS); and (3) compare across loci for traits controlling coleoptile characteristics, germination, dormancy, and pre-harvest sprouting. Despite significant (P < 0.001) environment and genotype-by-environment interactions within and between field and GH experiments, eight genotypes that included five cultivars, two landraces, and one inbred line had consistently high seedling emergence (mean value > 85%) across nine environments. Moreover, 21 environment-specific quantitative trait loci (QTL) were detected in GWAS analysis on chromosomes 1B, 1D, 2B, 3A, 3B, 4A, 4B, 5B, 5D, and 7D, indicating complex genetic inheritance controlling seedling emergence. We aligned QTL for known traits and individual genes onto the reference genome of wheat and identified 16 QTL for seedling emergence in linkage disequilibrium with coleoptile length, width, and cross-sectional area, pre-harvest sprouting and dormancy, germination, seed longevity, and anthocyanin development. Therefore, it appears that seedling emergence is controlled by multifaceted networks of interrelated genes and traits regulated by different environmental cues.
Collapse
Affiliation(s)
- Michael G. Francki
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
- State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, Australia
| | - Grantley S. Stainer
- Department of Primary Industries and Regional Development, Merredin, WA, Australia
| | - Esther Walker
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
- State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, Australia
| | - Gregory J. Rebetzke
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia
| | - Katia T. Stefanova
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Robert J. French
- Department of Primary Industries and Regional Development, Merredin, WA, Australia
| |
Collapse
|
13
|
Li L, Zhang Y, Zhang Y, Li M, Xu D, Tian X, Song J, Luo X, Xie L, Wang D, He Z, Xia X, Zhang Y, Cao S. Genome-Wide Linkage Mapping for Preharvest Sprouting Resistance in Wheat Using 15K Single-Nucleotide Polymorphism Arrays. FRONTIERS IN PLANT SCIENCE 2021; 12:749206. [PMID: 34721477 PMCID: PMC8551680 DOI: 10.3389/fpls.2021.749206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/29/2021] [Accepted: 09/13/2021] [Indexed: 05/13/2023]
Abstract
Preharvest sprouting (PHS) significantly reduces grain yield and quality. Identification of genetic loci for PHS resistance will facilitate breeding sprouting-resistant wheat cultivars. In this study, we constructed a genetic map comprising 1,702 non-redundant markers in a recombinant inbred line (RIL) population derived from cross Yangxiaomai/Zhongyou9507 using the wheat 15K single-nucleotide polymorphism (SNP) assay. Four quantitative trait loci (QTL) for germination index (GI), a major indicator of PHS, were identified, explaining 4.6-18.5% of the phenotypic variances. Resistance alleles of Qphs.caas-3AL, Qphs.caas-3DL, and Qphs.caas-7BL were from Yangxiaomai, and Zhongyou9507 contributed a resistance allele in Qphs.caas-4AL. No epistatic effects were detected among the QTL, and combined resistance alleles significantly increased PHS resistance. Sequencing and linkage mapping showed that Qphs.caas-3AL and Qphs.caas-3DL corresponded to grain color genes Tamyb10-A and Tamyb10-D, respectively, whereas Qphs.caas-4AL and Qphs.caas-7BL were probably new QTL for PHS. We further developed cost-effective, high-throughput kompetitive allele-specific PCR (KASP) markers tightly linked to Qphs.caas-4AL and Qphs.caas-7BL and validated their association with GI in a test panel of cultivars. The resistance alleles at the Qphs.caas-4AL and Qphs.caas-7BL loci were present in 72.2 and 16.5% cultivars, respectively, suggesting that the former might be subjected to positive selection in wheat breeding. The findings provide not only genetic resources for PHS resistance but also breeding tools for marker-assisted selection.
Collapse
Affiliation(s)
- Lingli Li
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingjun Zhang
- Hebei Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Yong Zhang
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ming Li
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dengan Xu
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xiuling Tian
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Song
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xumei Luo
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lina Xie
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Desen Wang
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, Beijing, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Zhang
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuanghe Cao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Mapping QTLs for yield component traits using overwintering cultivated rice. J Genet 2021. [DOI: 10.1007/s12041-021-01279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/21/2022]
|
15
|
Mares DJ, Mrva K, Cheong J, Fox R, Mather DE. Dormancy and dormancy release in white-grained wheat (Triticum aestivum L.). PLANTA 2021; 253:5. [PMID: 33387045 DOI: 10.1007/s00425-020-03518-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/24/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Dormancy in white-grained wheat is conditioned by the cumulative effects of several QTL that delay the onset of the capacity to germinate during ripening and after-ripening. Grain dormancy at harvest-ripeness is a major component of resistance to preharvest sprouting in wheat (Triticum aestivum L.) and an important trait in regions where rain is common during the harvest period. Breeding lines developed in Australia maintained their dormancy phenotype over multiple seasons and during grain ripening, the time between anthesis and the acquisition of the capacity to germinate, dormancy release, increased in line with the strength of dormancy. Genetic dissection of two dormant lines indicated that dormancy was due to the cumulative action of between one and three major genetic loci and several minor loci. This presents a significant challenge for breeders targeting environments with a high risk of sprouting where strong dormancy is desirable. Only around half of the difference in dormancy between the dormant lines and a non-dormant variety could be attributed to the major genetic loci on chromosomes 4A and 3A. A QTL that was mapped on chromosome 5A may be an orthologue of a minor QTL for dormancy in barley. At each locus, the dormancy allele increased the time to dormancy release during ripening. In combination, these alleles had cumulative effects. Embryo sensitivity to abscisic acid was related to the dormancy phenotype of the whole caryopsis, however, changes in concentrations of abscisic acid and gibberellins in embryo sections and de-embryonated grains during ripening and after-ripening could not be linked to the timing of dormancy release.
Collapse
Affiliation(s)
- Daryl J Mares
- School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, Glen Osmond, SA, 5064, Australia.
| | - Kolumbina Mrva
- School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, Glen Osmond, SA, 5064, Australia
| | - Judy Cheong
- SARDI, Waite Precinct, Urrbrae, SA, Australia
| | - Rebecca Fox
- School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, Glen Osmond, SA, 5064, Australia
| | - Diane E Mather
- School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
16
|
Martinez SA, Shorinola O, Conselman S, See D, Skinner DZ, Uauy C, Steber CM. Exome sequencing of bulked segregants identified a novel TaMKK3-A allele linked to the wheat ERA8 ABA-hypersensitive germination phenotype. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:719-736. [PMID: 31993676 PMCID: PMC7021667 DOI: 10.1007/s00122-019-03503-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/26/2019] [Accepted: 12/06/2019] [Indexed: 05/09/2023]
Abstract
Using bulked segregant analysis of exome sequence, we fine-mapped the ABA-hypersensitive mutant ERA8 in a wheat backcross population to the TaMKK3-A locus of chromosome 4A. Preharvest sprouting (PHS) is the germination of mature grain on the mother plant when it rains before harvest. The ENHANCED RESPONSE TO ABA8 (ERA8) mutant increases seed dormancy and, consequently, PHS tolerance in soft white wheat 'Zak.' ERA8 was mapped to chromosome 4A in a Zak/'ZakERA8' backcross population using bulked segregant analysis of exome sequenced DNA (BSA-exome-seq). ERA8 was fine-mapped relative to mutagen-induced SNPs to a 4.6 Mb region containing 70 genes. In the backcross population, the ERA8 ABA-hypersensitive phenotype was strongly linked to a missense mutation in TaMKK3-A-G1093A (LOD 16.5), a gene associated with natural PHS tolerance in barley and wheat. The map position of ERA8 was confirmed in an 'Otis'/ZakERA8 but not in a 'Louise'/ZakERA8 mapping population. This is likely because Otis carries the same natural PHS susceptible MKK3-A-A660S allele as Zak, whereas Louise carries the PHS-tolerant MKK3-A-C660R allele. Thus, the variation for grain dormancy and PHS tolerance in the Louise/ZakERA8 population likely resulted from segregation of other loci rather than segregation for PHS tolerance at the MKK3 locus. This inadvertent complementation test suggests that the MKK3-A-G1093A mutation causes the ERA8 phenotype. Moreover, MKK3 was a known ABA signaling gene in the 70-gene 4.6 Mb ERA8 interval. None of these 70 genes showed the differential regulation in wild-type Zak versus ERA8 expected of a promoter mutation. Thus, the working model is that the ERA8 phenotype results from the MKK3-A-G1093A mutation.
Collapse
Affiliation(s)
- Shantel A Martinez
- Molecular Plant Sciences, Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
| | | | - Samantha Conselman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
| | - Deven See
- Molecular Plant Sciences, Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
- USDA-ARS Wheat Genetics, Quality, Physiology and Disease Research Unit, Washington State University, Pullman, WA, 99164-6420, USA
| | - Daniel Z Skinner
- Molecular Plant Sciences, Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
- USDA-ARS Wheat Genetics, Quality, Physiology and Disease Research Unit, Washington State University, Pullman, WA, 99164-6420, USA
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Camille M Steber
- Molecular Plant Sciences, Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA.
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA.
- USDA-ARS Wheat Genetics, Quality, Physiology and Disease Research Unit, Washington State University, Pullman, WA, 99164-6420, USA.
| |
Collapse
|