1
|
Godinho DP, Yanez RJR, Duque P. Pathogen-responsive alternative splicing in plant immunity. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00311-X. [PMID: 39701905 DOI: 10.1016/j.tplants.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024]
Abstract
Plant immunity involves a complex and finely tuned response to a wide variety of pathogens. Alternative splicing, a post-transcriptional mechanism that generates multiple transcripts from a single gene, enhances both the versatility and effectiveness of the plant immune system. Pathogen infection induces alternative splicing in numerous plant genes involved in the two primary layers of pathogen recognition: pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). However, the mechanisms underlying pathogen-responsive alternative splicing are just beginning to be understood. In this article, we review recent findings demonstrating that the interaction between pathogen elicitors and plant receptors modulates the phosphorylation status of splicing factors, altering their function, and that pathogen effectors target components of the host spliceosome, controlling the splicing of plant immunity-related genes.
Collapse
Affiliation(s)
- Diogo P Godinho
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal.
| | - Romana J R Yanez
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Paula Duque
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal.
| |
Collapse
|
2
|
Vela S, Wolf ESA, Rollins JA, Cuevas HE, Vermerris W. Dual-RNA-sequencing to elucidate the interactions between sorghum and Colletotrichum sublineola. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1437344. [PMID: 39220294 PMCID: PMC11362643 DOI: 10.3389/ffunb.2024.1437344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
In warm and humid regions, the productivity of sorghum is significantly limited by the fungal hemibiotrophic pathogen Colletotrichum sublineola, the causal agent of anthracnose, a problematic disease of sorghum (Sorghum bicolor (L.) Moench) that can result in grain and biomass yield losses of up to 50%. Despite available genomic resources of both the host and fungal pathogen, the molecular basis of sorghum-C. sublineola interactions are poorly understood. By employing a dual-RNA sequencing approach, the molecular crosstalk between sorghum and C. sublineola can be elucidated. In this study, we examined the transcriptomes of four resistant sorghum accessions from the sorghum association panel (SAP) at varying time points post-infection with C. sublineola. Approximately 0.3% and 93% of the reads mapped to the genomes of C. sublineola and Sorghum bicolor, respectively. Expression profiling of in vitro versus in planta C. sublineola at 1-, 3-, and 5-days post-infection (dpi) indicated that genes encoding secreted candidate effectors, carbohydrate-active enzymes (CAZymes), and membrane transporters increased in expression during the transition from the biotrophic to the necrotrophic phase (3 dpi). The hallmark of the pathogen-associated molecular pattern (PAMP)-triggered immunity in sorghum includes the production of reactive oxygen species (ROS) and phytoalexins. The majority of effector candidates secreted by C. sublineola were predicted to be localized in the host apoplast, where they could interfere with the PAMP-triggered immunity response, specifically in the host ROS signaling pathway. The genes encoding critical molecular factors influencing pathogenicity identified in this study are a useful resource for subsequent genetic experiments aimed at validating their contributions to pathogen virulence. This comprehensive study not only provides a better understanding of the biology of C. sublineola but also supports the long-term goal of developing resistant sorghum cultivars.
Collapse
Affiliation(s)
- Saddie Vela
- Plant Molecular & Cellular Biology Graduate Program, University of Florida, Gainesville, FL, United States
| | - Emily S. A. Wolf
- Plant Molecular & Cellular Biology Graduate Program, University of Florida, Gainesville, FL, United States
| | - Jeffrey A. Rollins
- Plant Molecular & Cellular Biology Graduate Program, University of Florida, Gainesville, FL, United States
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Hugo E. Cuevas
- United States Department of Agriculture, Agricultural Research Service, Tropical Agriculture Research Station, Mayagüez, PR, United States
| | - Wilfred Vermerris
- Plant Molecular & Cellular Biology Graduate Program, University of Florida, Gainesville, FL, United States
- Department of Microbiology & Cell Science, University of Florida, Gainesville, FL, United States
- University of Florida Genetics Institute, Gainesville, FL, United States
| |
Collapse
|
3
|
Simoni S, Vangelisti A, Clemente C, Usai G, Santin M, Ventimiglia M, Mascagni F, Natali L, Angelini LG, Cavallini A, Tavarini S, Giordani T. Transcriptomic Analyses Reveal Insights into the Shared Regulatory Network of Phenolic Compounds and Steviol Glycosides in Stevia rebaudiana. Int J Mol Sci 2024; 25:2136. [PMID: 38396813 PMCID: PMC10889303 DOI: 10.3390/ijms25042136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Stevia rebaudiana (Bertoni) is a highly valuable crop for the steviol glycoside content in its leaves, which are no-calorie sweeteners hundreds of times more potent than sucrose. The presence of health-promoting phenolic compounds, particularly flavonoids, in the leaf of S. rebaudiana adds further nutritional value to this crop. Although all these secondary metabolites are highly desirable in S. rebaudiana leaves, the genes regulating the biosynthesis of phenolic compounds and the shared gene network between the regulation of biosynthesis of steviol glycosides and phenolic compounds still need to be investigated in this species. To identify putative candidate genes involved in the synergistic regulation of steviol glycosides and phenolic compounds, four genotypes with different contents of these compounds were selected for a pairwise comparison RNA-seq analysis, yielding 1136 differentially expressed genes. Genes that highly correlate with both steviol glycosides and phenolic compound accumulation in the four genotypes of S. rebaudiana were identified using the weighted gene co-expression network analysis. The presence of UDP-glycosyltransferases 76G1, 76H1, 85C1, and 91A1, and several genes associated with the phenylpropanoid pathway, including peroxidase, caffeoyl-CoA O-methyltransferase, and malonyl-coenzyme A:anthocyanin 3-O-glucoside-6″-O-malonyltransferase, along with 21 transcription factors like SCL3, WRK11, and MYB111, implied an extensive and synergistic regulatory network involved in enhancing the production of such compounds in S. rebaudiana leaves. In conclusion, this work identified a variety of putative candidate genes involved in the biosynthesis and regulation of particular steviol glycosides and phenolic compounds that will be useful in gene editing strategies for increasing and steering the production of such compounds in S. rebaudiana as well as in other species.
Collapse
Affiliation(s)
- Samuel Simoni
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
| | - Clarissa Clemente
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
| | - Gabriele Usai
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
| | - Marco Santin
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
| | - Maria Ventimiglia
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
| | - Flavia Mascagni
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
| | - Lucia Natali
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
| | - Luciana G. Angelini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
- Interdepartmental Research Centre “Nutraceuticals and Food for Health—NUTRAFOOD”, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
| | - Andrea Cavallini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
| | - Silvia Tavarini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
- Interdepartmental Research Centre “Nutraceuticals and Food for Health—NUTRAFOOD”, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
| | - Tommaso Giordani
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
| |
Collapse
|
4
|
Wolf ESA, Vela S, Cuevas HE, Vermerris W. A Sorghum F-Box Protein Induces an Oxidative Burst in the Defense Against Colletotrichum sublineola. PHYTOPATHOLOGY 2024; 114:405-417. [PMID: 37717251 DOI: 10.1094/phyto-06-23-0184-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The hemibiotrophic fungal pathogen Colletotrichum sublineola is the causal agent of anthracnose in sorghum (Sorghum bicolor), resulting in leaf blight, stalk rot, and head blight in susceptible genotypes, with yield losses of up to 50%. The development of anthracnose-resistant cultivars can reduce reliance on fungicides and provide a more sustainable and economical means for disease management. A previous genome-wide association study of the sorghum association panel identified the candidate resistance gene Sobic.005G172300 encoding an F-box protein. To better understand the role of this gene in the defense against C. sublineola, gene expression following infection with C. sublineola was monitored by RNA sequencing in seedlings of sorghum accession SC110, which harbored the resistance allele, and three accessions that harbored a susceptible allele. Only in SC110 did the expression of Sobic.005G172300 increase during the biotrophic phase of infection. Subsequent transcriptome analysis, gene co-expression networks, and gene regulatory networks of inoculated and mock-inoculated seedlings of resistant and susceptible accessions suggest that the increase in expression of Sobic.005G172300 induces an oxidative burst by lowering the concentration of ascorbic acid during the biotrophic phase of infection. Based on gene regulatory network analysis, the protein encoded by Sobic.005G172300 is proposed to target proteins involved in the biosynthesis of ascorbic acid for polyubiquitination through the SCF E3 ubiquitin ligase, causing their degradation via the proteasome.
Collapse
Affiliation(s)
- Emily S A Wolf
- Plant Molecular & Cellular Biology graduate program, University of Florida, Gainesville, FL 32611
| | - Saddie Vela
- Plant Molecular & Cellular Biology graduate program, University of Florida, Gainesville, FL 32611
| | - Hugo E Cuevas
- U.S. Department of Agriculture-Agricultural Research Service, Tropical Agriculture Research Station, Mayagüez, PR 00680
| | - Wilfred Vermerris
- Department of Microbiology & Cell Science, University of Florida, Gainesville, FL 32611
- University of Florida Genetics Institute, University of Florida, Gainesville, FL 32611
| |
Collapse
|
5
|
Jia M, Ni Y, Zhao H, Liu X, Yan W, Zhao X, Wang J, He B, Liu H. Full-length transcriptome and RNA-Seq analyses reveal the resistance mechanism of sesame in response to Corynespora cassiicola. BMC PLANT BIOLOGY 2024; 24:64. [PMID: 38262910 PMCID: PMC10804834 DOI: 10.1186/s12870-024-04728-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Corynespora leaf spot is a common leaf disease occurring in sesame, and the disease causes leaf yellowing and even shedding, which affects the growth quality of sesame. At present, the mechanism of sesame resistance to this disease is still unclear. Understanding the resistance mechanism of sesame to Corynespora leaf spot is highly important for the control of infection. In this study, the leaves of the sesame resistant variety (R) and the sesame susceptible variety (S) were collected at 0-48 hpi for transcriptome sequencing, and used a combined third-generation long-read and next-generation short-read technology approach to identify some key genes and main pathways related to resistance. RESULTS The gene expression levels of the two sesame varieties were significantly different at 0, 6, 12, 24, 36 and 48 hpi, indicating that the up-regulation of differentially expressed genes in the R might enhanced the resistance. Moreover, combined with the phenotypic observations of sesame leaves inoculated at different time points, we found that 12 hpi was the key time point leading to the resistance difference between the two sesame varieties at the molecular level. The WGCNA identified two modules significantly associated with disease resistance, and screened out 10 key genes that were highly expressed in R but low expressed in S, which belonged to transcription factors (WRKY, AP2/ERF-ERF, and NAC types) and protein kinases (RLK-Pelle_DLSV, RLK-Pelle_SD-2b, and RLK-Pelle_WAK types). These genes could be the key response factors in the response of sesame to infection by Corynespora cassiicola. GO and KEGG enrichment analysis showed that specific modules could be enriched, which manifested as enrichment in biologically important pathways, such as plant signalling hormone transduction, plant-pathogen interaction, carbon metabolism, phenylpropanoid biosynthesis, glutathione metabolism, MAPK and other stress-related pathways. CONCLUSIONS This study provides an important resource of genes contributing to disease resistance and will deepen our understanding of the regulation of disease resistance, paving the way for further molecular breeding of sesame.
Collapse
Affiliation(s)
- Min Jia
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Yunxia Ni
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China.
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China.
| | - Hui Zhao
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Xintao Liu
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Wenqing Yan
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Xinbei Zhao
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Jing Wang
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Bipo He
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Hongyan Liu
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China.
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China.
| |
Collapse
|
6
|
Wang H, Guo Y, Hao X, Zhang W, Xu Y, He W, Li Y, Cai S, Zhao X, Song X. Alternative Splicing for Leucanthemella linearis NST1 Contributes to Variable Abiotic Stress Resistance in Transgenic Tobacco. Genes (Basel) 2023; 14:1549. [PMID: 37628601 PMCID: PMC10454811 DOI: 10.3390/genes14081549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Leucanthemella linearis is a marsh plant in the family Compositae. It has good water and moisture resistance and ornamental properties, which makes it one of the important materials for chrysanthemum breeding and genetic improvement. The NST1 (NAC secondary wall enhancement factor 1) gene is associated with the thickening of the secondary walls of fiber cells in the plant ducts and the secondary xylem and plays an important role in plant stress resistance. In this study, two variable spliceosomes of the NST1 gene were identified from a chrysanthemum plant by using bioinformatics, qRT-PCR, transgene, and paraffin section methods to explore the molecular mechanism of the variable splicing of NST1 under abiotic stress. The results show that only three amino acids were found to be different between the two LlNST1 variants. After being treated with salt, drought, and low temperatures, analysis of the expression levels of the LlNST1 and LlNST1.1 genes in Ll showed that LlNST1.1 could respond to low temperatures and salt stress and had a weak response to drought stress. However, the expression level of LlNST1 under the three treatments was lower than that of LlNST1.1. LlNST1 transgenic tobacco showed increased saline-alkali resistance and low-temperature resistance at the seedling stage. LlNST1.1 transgenic tobacco also showed enhanced saline-alkali resistance and drought resistance at the seedling stage. In conclusion, the functions of the two variable spliceosomes of the NST1 gene are very different under abiotic stress. Therefore, this study verified the function of the variable spliceosome of NST1 and improved the stress resistance of the chrysanthemum plant under examination by regulating the expression of the NST protein, which lays a material foundation for the improvement of plant stress resistance materials and has important significance for the study of the resistance of chrysanthemum plants to abiotic stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xuebin Song
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China; (H.W.); (Y.G.); (X.H.); (W.Z.); (Y.X.); (W.H.); (Y.L.); (S.C.); (X.Z.)
| |
Collapse
|
7
|
Lui ACW, Pow KC, Lin N, Lam LPY, Liu G, Godwin ID, Fan Z, Khoo CJ, Tobimatsu Y, Wang L, Hao Q, Lo C. Regioselective stilbene O-methylations in Saccharinae grasses. Nat Commun 2023; 14:3462. [PMID: 37308495 DOI: 10.1038/s41467-023-38908-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 05/18/2023] [Indexed: 06/14/2023] Open
Abstract
O-Methylated stilbenes are prominent nutraceuticals but rarely produced by crops. Here, the inherent ability of two Saccharinae grasses to produce regioselectively O-methylated stilbenes is reported. A stilbene O-methyltransferase, SbSOMT, is first shown to be indispensable for pathogen-inducible pterostilbene (3,5-bis-O-methylated) biosynthesis in sorghum (Sorghum bicolor). Phylogenetic analysis indicates the recruitment of genus-specific SOMTs from canonical caffeic acid O-methyltransferases (COMTs) after the divergence of Sorghum spp. from Saccharum spp. In recombinant enzyme assays, SbSOMT and COMTs regioselectively catalyze O-methylation of stilbene A-ring and B-ring respectively. Subsequently, SOMT-stilbene crystal structures are presented. Whilst SbSOMT shows global structural resemblance to SbCOMT, molecular characterizations illustrate two hydrophobic residues (Ile144/Phe337) crucial for substrate binding orientation leading to 3,5-bis-O-methylations in the A-ring. In contrast, the equivalent residues (Asn128/Asn323) in SbCOMT facilitate an opposite orientation that favors 3'-O-methylation in the B-ring. Consistently, a highly-conserved COMT is likely involved in isorhapontigenin (3'-O-methylated) formation in wounded wild sugarcane (Saccharum spontaneum). Altogether, our work reveals the potential of Saccharinae grasses as a source of O-methylated stilbenes, and rationalize the regioselectivity of SOMT activities for bioengineering of O-methylated stilbenes.
Collapse
Affiliation(s)
- Andy C W Lui
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Kah Chee Pow
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Nan Lin
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Lydia Pui Ying Lam
- Center for Crossover Education, Graduate School of Engineering Science, Akita University, Tegata Gakuen-machi 1-1, Akita City, Akita, 010-8502, Japan
| | - Guoquan Liu
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ian D Godwin
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhuming Fan
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chen Jing Khoo
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Lanxiang Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Quan Hao
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
- China Spallation Neutron Source, Dongguan, Guangdong, 523000, China.
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
8
|
Kumar K, Sinha SK, Maity U, Kirti PB, Kumar KRR. Insights into established and emerging roles of SR protein family in plants and animals. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1763. [PMID: 36131558 DOI: 10.1002/wrna.1763] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 05/13/2023]
Abstract
Splicing of pre-mRNA is an essential part of eukaryotic gene expression. Serine-/arginine-rich (SR) proteins are highly conserved RNA-binding proteins present in all metazoans and plants. SR proteins are involved in constitutive and alternative splicing, thereby regulating the transcriptome and proteome diversity in the organism. In addition to their role in splicing, SR proteins are also involved in mRNA export, nonsense-mediated mRNA decay, mRNA stability, and translation. Due to their pivotal roles in mRNA metabolism, SR proteins play essential roles in normal growth and development. Hence, any misregulation of this set of proteins causes developmental defects in both plants and animals. SR proteins from the animal kingdom are extensively studied for their canonical and noncanonical functions. Compared with the animal kingdom, plant genomes harbor more SR protein-encoding genes and greater diversity of SR proteins, which are probably evolved for plant-specific functions. Evidence from both plants and animals confirms the essential role of SR proteins as regulators of gene expression influencing cellular processes, developmental stages, and disease conditions. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Kundan Kumar
- Department of Biotechnology, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Shubham Kumar Sinha
- Department of Biotechnology, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Upasana Maity
- Department of Biotechnology, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | | | | |
Collapse
|
9
|
Bredow M, Natukunda MI, Beernink BM, Chicowski AS, Salas‐Fernandez MG, Whitham SA. Characterization of a foxtail mosaic virus vector for gene silencing and analysis of innate immune responses in Sorghum bicolor. MOLECULAR PLANT PATHOLOGY 2023; 24:71-79. [PMID: 36088637 PMCID: PMC9742499 DOI: 10.1111/mpp.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 05/08/2023]
Abstract
Sorghum is vulnerable to many biotic and abiotic stresses, which cause considerable yield losses globally. Efforts to genetically characterize beneficial sorghum traits, including disease resistance, plant architecture, and tolerance to abiotic stresses, are ongoing. One challenge faced by sorghum researchers is its recalcitrance to transformation, which has slowed gene validation efforts and utilization for cultivar development. Here, we characterize the use of a foxtail mosaic virus (FoMV) vector for virus-induced gene silencing (VIGS) by targeting two previously tested marker genes: phytoene desaturase (PDS) and ubiquitin (Ub). We additionally demonstrate VIGS of a subgroup of receptor-like cytoplasmic kinases (RLCKs) and report the role of these genes as positive regulators of early defence signalling. Silencing of subgroup 8 RLCKs also resulted in higher susceptibility to the bacterial pathogens Pseudomonas syringae pv. syringae (B728a) and Xanthomonas vasicola pv. holcicola, demonstrating the role of these genes in host defence against bacterial pathogens. Together, this work highlights the utility of FoMV-induced gene silencing in the characterization of genes mediating defence responses in sorghum. Moreover, FoMV was able to systemically infect six diverse sorghum genotypes with high efficiency at optimal temperatures for sorghum growth and therefore could be extrapolated to study additional traits of economic importance.
Collapse
Affiliation(s)
- Melissa Bredow
- Department of Plant Pathology, Entomology, and MicrobiologyIowa State UniversityAmesIowaUSA
| | - Martha Ibore Natukunda
- Department of AgronomyIowa State UniversityAmesIowaUSA
- Present address:
Department of BiologyAugustana UniversitySioux FallsSouth DakotaUSA.
| | - Bliss M. Beernink
- Department of Plant Pathology, Entomology, and MicrobiologyIowa State UniversityAmesIowaUSA
- Present address:
Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada.
| | - Aline Sartor Chicowski
- Department of Plant Pathology, Entomology, and MicrobiologyIowa State UniversityAmesIowaUSA
| | | | - Steven A. Whitham
- Department of Plant Pathology, Entomology, and MicrobiologyIowa State UniversityAmesIowaUSA
| |
Collapse
|
10
|
Zhou T, He Y, Zeng X, Cai B, Qu S, Wang S. Comparative Analysis of Alternative Splicing in Two Contrasting Apple Cultivars Defense against Alternaria alternata Apple Pathotype Infection. Int J Mol Sci 2022; 23:ijms232214202. [PMID: 36430679 PMCID: PMC9693243 DOI: 10.3390/ijms232214202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Alternaria blotch disease, caused by the Alternaria alternata apple pathotype (A. alternata AP), is one of the most serious fungal diseases in apples. Alternative splicing (AS), one of the pivotal post-transcriptional regulatory mechanisms, plays essential roles in various disease resistance responses. Here, we performed RNA-Seq for two apple cultivars (resistant cultivar 'Jonathan' (J) and susceptible cultivar 'Starking Delicious' (SD)) infected by A. alternata AP to further investigate their AS divergence. In total, 1454, 1780, 1367 and 1698 specifically regulated differential alternative splicing (DAS) events were detected in J36, J72, SD36 and SD72 groups, respectively. Retained intron (RI) was the dominant AS pattern. Conformably, 642, 764, 585 and 742 uniquely regulated differentially spliced genes (DSGs) were found during A. alternata AP infection. Comparative analysis of AS genes in differential splicing and expression levels suggested that only a small proportion of DSGs overlapped with differentially expressed genes (DEGs). Gene ontology (GO) enrichment analysis demonstrated that the DSGs were significantly enriched at multiple levels of gene expression regulation. Briefly, the specific AS was triggered in apple defense against A. alternata AP. Therefore, this study facilitates our understanding on the roles of AS regulation in response to A. alternata AP infection in apples.
Collapse
|
11
|
Gao C, Lu S, Zhou R, Ding J, Fan J, Han B, Chen M, Wang B, Cao Y. Phylogenetic analysis and stress response of the plant U2 small nuclear ribonucleoprotein B″ gene family. BMC Genomics 2022; 23:744. [DOI: 10.1186/s12864-022-08956-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Alternative splicing (AS) is an important channel for gene expression regulation and protein diversification, in addition to a major reason for the considerable differences in the number of genes and proteins in eukaryotes. In plants, U2 small nuclear ribonucleoprotein B″ (U2B″), a component of splicing complex U2 snRNP, plays an important role in AS. Currently, few studies have investigated plant U2B″, and its mechanism remains unclear.
Result
Phylogenetic analysis, including gene and protein structures, revealed that U2B″ is highly conserved in plants and typically contains two RNA recognition motifs. Subcellular localisation showed that OsU2B″ is located in the nucleus and cytoplasm, indicating that it has broad functions throughout the cell. Elemental analysis of the promoter region showed that it responded to numerous external stimuli, including hormones, stress, and light. Subsequent qPCR experiments examining response to stress (cold, salt, drought, and heavy metal cadmium) corroborated the findings. The prediction results of protein–protein interactions showed that its function is largely through a single pathway, mainly through interaction with snRNP proteins.
Conclusion
U2B″ is highly conserved in the plant kingdom, functions in the nucleus and cytoplasm, and participates in a wide range of processes in plant growth and development.
Collapse
|
12
|
Alternative Splicing and Its Roles in Plant Metabolism. Int J Mol Sci 2022; 23:ijms23137355. [PMID: 35806361 PMCID: PMC9266299 DOI: 10.3390/ijms23137355] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/02/2023] Open
Abstract
Plant metabolism, including primary metabolism such as tricarboxylic acid cycle, glycolysis, shikimate and amino acid pathways as well as specialized metabolism such as biosynthesis of phenolics, alkaloids and saponins, contributes to plant survival, growth, development and interactions with the environment. To this end, these metabolic processes are tightly and finely regulated transcriptionally, post-transcriptionally, translationally and post-translationally in response to different growth and developmental stages as well as the constantly changing environment. In this review, we summarize and describe the current knowledge of the regulation of plant metabolism by alternative splicing, a post-transcriptional regulatory mechanism that generates multiple protein isoforms from a single gene by using alternative splice sites during splicing. Numerous genes in plant metabolism have been shown to be alternatively spliced under different developmental stages and stress conditions. In particular, alternative splicing serves as a regulatory mechanism to fine-tune plant metabolism by altering biochemical activities, interaction and subcellular localization of proteins encoded by splice isoforms of various genes.
Collapse
|
13
|
Wang L, Zhang C, Yin W, Wei W, Wang Y, Sa W, Liang J. Single-molecule real-time sequencing of the full-length transcriptome of purple garlic (Allium sativum L. cv. Leduzipi) and identification of serine O-acetyltransferase family proteins involved in cysteine biosynthesis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2864-2873. [PMID: 34741310 DOI: 10.1002/jsfa.11627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Garlic (Allium sativum L.), whose bioactive components are mainly organosulfur compounds (OSCs), is a herbaceous perennial widely consumed as a green vegetable and a condiment. Yet, the metabolic enzymes involved in the biosynthesis of OSCs are not identified in garlic. RESULTS Here, a full-length transcriptome of purple garlic was generated via PacBio and Illumina sequencing, to characterize the garlic transcriptome and identify key proteins mediating the biosynthesis of OSCs. Overall, 22.56 Gb of clean data were generated, resulting in 454 698 circular consensus sequence (CCS) reads, of which 83.4% (379 206) were identified as being full-length non-chimeric reads - their further transcript clustering facilitated identification of 36 571 high-quality consensus reads. Once corrected, their genome-wide mapping revealed that 6140 reads were novel isoforms of known genes, and 2186 reads were novel isoforms from novel genes. We detected 1677 alternative splicing events, finding 2902 genes possessing either two or more poly(A) sites. Given the importance of serine O-acetyltransferase (SERAT) in cysteine biosynthesis, we investigated the five SERAT homologs in garlic. Phylogenetic analysis revealed a three-tier classification of SERAT proteins, each featuring a serine acetyltransferase domain (N-terminal) and one or two hexapeptide transferase motifs. Template-based modeling showed that garlic SERATs shared a common homo-trimeric structure with homologs from bacteria and other plants. The residues responsible for substrate recognition and catalysis were highly conserved, implying a similar reaction mechanism. In profiling the five SERAT genes' transcript levels, their expression pattern varied significantly among different tissues. CONCLUSION This study's findings deepen our knowledge of SERAT proteins, and provide timely genetic resources that could advance future exploration into garlic's genetic improvement and breeding. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Le Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, Xining, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, College of Agriculture and Forestry Sciences, Qinghai University, Xining, China
| | - Chao Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, Xining, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, College of Agriculture and Forestry Sciences, Qinghai University, Xining, China
| | - Wei Yin
- Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, Xining, China
| | - Wei Wei
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, Xining, China
| | - Yonghong Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Wei Sa
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Jian Liang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, Xining, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, College of Agriculture and Forestry Sciences, Qinghai University, Xining, China
| |
Collapse
|
14
|
Han FX, Dun BQ, Zhang J, Wang Z, Sui Y, Zhu L, Li GY. Cloning and functional analysis of soluble acid invertase 2 gene (SbSAI-2) in sorghum. PLANTA 2021; 255:13. [PMID: 34862923 DOI: 10.1007/s00425-021-03772-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
The sorghum soluble acid invertase gene SbSAI-2 was cloned and the function verified in Pichia pastoris and rice, showing the SbSAI-2 affects composition and content of sugar in stem juice. Sugar metabolism is one of the most important metabolic processes in plants, in which soluble acid invertase plays a key role. However, the structure and function of the soluble acid transferase gene in sorghum are still fully unclear. In this study, SbSAI-2 was cloned from the sorghum variety BTx623, and two transcripts were found through sequence analysis, with only one transcript translated into an active protein. There is 72% homology between SbSAI-2 and OsVIN2. The construction of Osvin2 mutant lines and SbSAI-2-1 overexpression lines in Oryza sativa L. japonica. cv. Nipponbare were produced to clarify the invertase functionality. While the invertase activity in the stem of the Osvin2 mutant line was reduced, with no significant difference (P > 0.05), and the contents of fructose and glucose in stem tissue did not change significantly (P > 0.05), and the content of sucrose increased by 38.89% (P < 0.01). In SbSAI-2-1 overexpression lines, the invertase activity in stem was increased by more than 20 times (P < 0.01). The contents of glucose and fructose in stem tissues were increased by two and three times, respectively (P < 0.01), while the content of sucrose was significantly decreased, which was below the detection limit (P < 0.01). This study indicated that SbSAI-2 is a key enzyme related to sucrose metabolism and affects the composition and content of sugar in stems. The result provided further the gene function verification and laid a foundation for the development of molecular markers.
Collapse
Affiliation(s)
- Fen-Xia Han
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bao-Qing Dun
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ji Zhang
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhi Wang
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yi Sui
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Li Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Gui-Ying Li
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
15
|
The THO/TREX Complex Active in Alternative Splicing Mediates Plant Responses to Salicylic Acid and Jasmonic Acid. Int J Mol Sci 2021; 22:ijms222212197. [PMID: 34830079 PMCID: PMC8619553 DOI: 10.3390/ijms222212197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Salicylic acid (SA) and jasmonic acid (JA) are essential plant immune hormones, which could induce plant resistance to multiple pathogens. However, whether common components are employed by both SA and JA to induce defense is largely unknown. In this study, we found that the enhanced disease susceptibility 8 (EDS8) mutant was compromised in plant defenses to hemibiotrophic pathogen Pseudomonas syringae pv. maculicola ES4326 and necrotrophic pathogen Botrytis cinerea, and was deficient in plant responses to both SA and JA. The EDS8 was identified to be THO1, which encodes a subunit of the THO/TREX complex, by using mapping-by-sequencing. To check whether the EDS8 itself or the THO/TREX complex mediates SA and JA signaling, the mutant of another subunit of the THO/TREX complex, THO3, was tested. THO3 mutation reduced both SA and JA induced defenses, indicating that the THO/TREX complex is critical for plant responses to these two hormones. We further proved that the THO/TREX interacting protein SERRATE, a factor regulating alternative splicing (AS), was involved in plant responses to SA and JA. Thus, the AS events in the eds8 mutant after SA or JA treatment were determined, and we found that the SA and JA induced different alternative splicing events were majorly modulated by EDS8. In summary, our study proves that the THO/TREX complex active in AS is involved in both SA and JA induced plant defenses.
Collapse
|
16
|
Variation in Gene Expression between Two Sorghum bicolor Lines Differing in Innate Immunity Response. PLANTS 2021; 10:plants10081536. [PMID: 34451580 PMCID: PMC8399927 DOI: 10.3390/plants10081536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 11/24/2022]
Abstract
Microbe associated molecular pattern (MAMPs) triggered immunity (MTI) is a key component of the plant innate immunity response to microbial recognition. However, most of our current knowledge of MTI comes from model plants (i.e., Arabidopsis thaliana) with comparatively less work done using crop plants. In this work, we studied the MAMP triggered oxidative burst (ROS) and the transcriptional response in two Sorghum bicolor genotypes, BTx623 and SC155-14E. SC155-14E is a line that shows high anthracnose resistance and the line BTx623 is susceptible to anthracnose. Our results revealed a clear variation in gene expression and ROS in response to either flagellin (flg22) or chitin elicitation between the two lines. While the transcriptional response to each MAMP and in each line was unique there was a considerable degree of overlap, and we were able to define a core set of genes associated with the sorghum MAMP transcriptional response. The GO term and KEGG pathway enrichment analysis discovered more immunity and pathogen resistance related DEGs in MAMP treated SC155-14E samples than in BTx623 with the same treatment. The results provide a baseline for future studies to investigate innate immunity pathways in sorghum, including efforts to enhance disease resistance.
Collapse
|
17
|
Mejias J, Bazin J, Truong NM, Chen Y, Marteu N, Bouteiller N, Sawa S, Crespi MD, Vaucheret H, Abad P, Favery B, Quentin M. The root-knot nematode effector MiEFF18 interacts with the plant core spliceosomal protein SmD1 required for giant cell formation. THE NEW PHYTOLOGIST 2021; 229:3408-3423. [PMID: 33206370 DOI: 10.1111/nph.17089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/12/2020] [Indexed: 05/11/2023]
Abstract
The root-knot nematode Meloidogyne incognita secretes specific effectors (MiEFF) and induces the redifferentiation of plant root cells into enlarged multinucleate feeding 'giant cells' essential for nematode development. Immunolocalizations revealed the presence of the MiEFF18 protein in the salivary glands of M. incognita juveniles. In planta, MiEFF18 localizes to the nuclei of giant cells demonstrating its secretion during plant-nematode interactions. A yeast two-hybrid approach identified the nuclear ribonucleoprotein SmD1 as a MiEFF18 partner in tomato and Arabidopsis. SmD1 is an essential component of the spliceosome, a complex involved in pre-mRNA splicing and alternative splicing. RNA-seq analyses of Arabidopsis roots ectopically expressing MiEFF18 or partially impaired in SmD1 function (smd1b mutant) revealed the contribution of the effector and its target to alternative splicing and proteome diversity. The comparison with Arabidopsis galls data showed that MiEFF18 modifies the expression of genes important for giant cell ontogenesis, indicating that MiEFF18 modulates SmD1 functions to facilitate giant cell formation. Finally, Arabidopsis smd1b mutants exhibited less susceptibility to M. incognita infection, and the giant cells formed on these mutants displayed developmental defects, suggesting that SmD1 plays an important role in the formation of giant cells and is required for successful nematode infection.
Collapse
Affiliation(s)
- Joffrey Mejias
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, F-06903, France
| | - Jérémie Bazin
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Universités Paris Saclay - Evry, Université de Paris, Gif sur Yvette, 91192, France
| | - Nhat-My Truong
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, F-06903, France
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-11 8555, Japan
| | - Yongpan Chen
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, F-06903, France
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
| | - Nathalie Marteu
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, F-06903, France
| | - Nathalie Bouteiller
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-11 8555, Japan
| | - Martin D Crespi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Universités Paris Saclay - Evry, Université de Paris, Gif sur Yvette, 91192, France
| | - Hervé Vaucheret
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Pierre Abad
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, F-06903, France
| | - Bruno Favery
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, F-06903, France
| | - Michaël Quentin
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, F-06903, France
| |
Collapse
|
18
|
Abreha KB, Ortiz R, Carlsson AS, Geleta M. Understanding the Sorghum- Colletotrichum sublineola Interactions for Enhanced Host Resistance. FRONTIERS IN PLANT SCIENCE 2021; 12:641969. [PMID: 33959139 PMCID: PMC8093437 DOI: 10.3389/fpls.2021.641969] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/22/2021] [Indexed: 05/09/2023]
Abstract
Improving sorghum resistance is a sustainable method to reduce yield losses due to anthracnose, a devastating disease caused by Colletotrichum sublineola. Elucidating the molecular mechanisms of sorghum-C. sublineola interactions would help identify biomarkers for rapid and efficient identification of novel sources for host-plant resistance improvement, understanding the pathogen virulence, and facilitating resistance breeding. Despite concerted efforts to identify resistance sources, the knowledge about sorghum-anthracnose interactions remains scanty. Hence, in this review, we presented an overview of the current knowledge on the mechanisms of sorghum-C. sublineola molecular interactions, sources of resistance for sorghum breeding, quantitative trait loci (QTL), and major (R-) resistance gene sequences as well as defense-related genes associated with anthracnose resistance. We summarized current knowledge about C. sublineola populations and its virulence. Illustration of the sorghum-C. sublineola interaction model based on the current understanding is also provided. We highlighted the importance of genomic resources of both organisms for integrated omics research to unravel the key molecular components underpinning compatible and incompatible sorghum-anthracnose interactions. Furthermore, sorghum-breeding strategy employing rapid sorghum germplasm screening, systems biology, and molecular tools is presented.
Collapse
|
19
|
Stutts LR, Vermerris W. Elucidating Anthracnose Resistance Mechanisms in Sorghum-A Review. PHYTOPATHOLOGY 2020; 110:1863-1876. [PMID: 33100146 DOI: 10.1094/phyto-04-20-0132-rvw] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sorghum (Sorghum bicolor) is the fifth most cultivated cereal crop in the world, traditionally providing food, feed, and fodder, but more recently also fermentable sugars for the production of renewable fuels and chemicals. The hemibiotrophic fungal pathogen Colletotrichum sublineola, the causal agent of anthracnose disease in sorghum, is prevalent in the warm and humid climates where much of the sorghum is cultivated and poses a serious threat to sorghum production. The use of anthracnose-resistant sorghum germplasm is the most environmentally and economically sustainable way to protect sorghum against this pathogen. Even though multiple anthracnose resistance loci have been mapped in diverse sorghum germplasm in recent years, the diversity in C. sublineola pathotypes at the local and regional levels means that these resistance genes are not equally effective in different areas of cultivation. This review summarizes the genetic and cytological data underlying sorghum's defense response and describes recent developments that will enable a better understanding of the interactions between sorghum and C. sublineola at the molecular level. This includes releases of the sorghum genome and the draft genome of C. sublineola, the use of next-generation sequencing technologies to identify gene expression networks activated in response to infection, and improvements in methodologies to validate resistance genes, notably virus-induced and transgenic gene silencing approaches.
Collapse
Affiliation(s)
- Lauren R Stutts
- Graduate Program in Plant Molecular & Cellular Biology, University of Florida, Gainesville, FL 32610
| | - Wilfred Vermerris
- Department of Microbiology & Cell Science, UF Genetics Institute, and Florida Center for Renewable Fuels and Chemicals, University of Florida, Gainesville, FL 32610
| |
Collapse
|