1
|
Kumar D, Biswas JK, Mulla SI, Singh R, Shukla R, Ahanger MA, Shekhawat GS, Verma KK, Siddiqui MW, Seth CS. Micro and nanoplastics pollution: Sources, distribution, uptake in plants, toxicological effects, and innovative remediation strategies for environmental sustainability. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108795. [PMID: 38878390 DOI: 10.1016/j.plaphy.2024.108795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 07/07/2024]
Abstract
Microplastics and nanoplastics (MNPs), are minute particles resulting from plastic fragmentation, have raised concerns due to their widespread presence in the environment. This study investigates sources and distribution of MNPs and their impact on plants, elucidating the intricate mechanisms of toxicity. Through a comprehensive analysis, it reveals that these tiny plastic particles infiltrate plant tissues, disrupting vital physiological processes. Micro and nanoplastics impair root development, hinder water and nutrient uptake, photosynthesis, and induce oxidative stress and cyto-genotoxicity leading to stunted growth and diminished crop yields. Moreover, they interfere with plant-microbe interactions essential for nutrient cycling and soil health. The research also explores the translocation of these particles within plants, raising concerns about their potential entry into the food chain and subsequent human health risks. The study underscores the urgency of understanding MNPs toxicity on plants, emphasizing the need for innovative remediation strategies such as bioremediation by algae, fungi, bacteria, and plants and eco-friendly plastic alternatives. Addressing this issue is pivotal not only for environmental conservation but also for ensuring sustainable agriculture and global food security in the face of escalating plastic pollution.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Department of Botany, University of Delhi, New Delhi-110007, Delhi, India
| | - Jayanta Kumar Biswas
- International Centre for Ecological Engineering, Department of Ecological Studies, University of Kalyani, Kalyani, Nadia- 741235, West Bengal, India
| | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore- 560064, Karnataka, India
| | - Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida- 201308, India
| | - Ravindra Shukla
- Department of Botany, Indira Gandhi National Tribal University, Amarkantak- 484887, Madhya Pradesh, India
| | - Mohammad Abass Ahanger
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Gyan Singh Shekhawat
- Department of Botany, Jai Narain Vyas University, Jodhpur, 342005, Rajasthan, India
| | - Krishan K Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning-530007, China
| | - Mohammed Wasim Siddiqui
- Department of Food Science and Postharvest Technology, Bihar Agricultural University, Sabour-813210, Bhagalpur, Bihar, India
| | | |
Collapse
|
2
|
Saravanan A, Thamarai P, Deivayanai VC, Karishma S, Shaji A, Yaashikaa PR. Current strategies on bioremediation of personal care products and detergents: Sustainability and life cycle assessment. CHEMOSPHERE 2024; 354:141698. [PMID: 38490608 DOI: 10.1016/j.chemosphere.2024.141698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/12/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
The increased use of personal care products and detergents in modern society has raised concerns about their potential adverse effects on the environment. These products contain various chemical compounds that can persist in water bodies, leading to water pollution and ecological disturbances. Bioremediation has emerged as a promising approach to address these challenges, utilizing the natural capabilities of microorganisms to degrade or remove these contaminants. This review examines the current strategies employed in the bioremediation of personal care products and detergents, with a specific focus on their sustainability and environmental impact. This bioremediation is essential for environmental rejuvenation, as it uses living organisms to detergents and other daily used products. Its distinctiveness stems from sustainable, nature-centric ways that provide eco-friendly solutions for pollution eradication and nurturing a healthy planet, all while avoiding copying. Explores the use of microbial consortia, enzyme-based treatments, and novel biotechnological approaches in the context of environmental remediation. Additionally, the ecological implications and long-term sustainability of these strategies are assessed. Understanding the strengths and limitations of these bioremediation techniques is essential for developing effective and environmentally friendly solutions to mitigate the impact of personal care products and detergents on ecosystems.
Collapse
Affiliation(s)
- A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - P Thamarai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - V C Deivayanai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Karishma
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Alan Shaji
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
3
|
Bansal M, Santhiya D, Sharma JG. Mechanistic understanding on the uptake of micro-nano plastics by plants and its phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8354-8368. [PMID: 38170356 DOI: 10.1007/s11356-023-31680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Contaminated soil is one of today's most difficult environmental issues, posing serious hazards to human health and the environment. Contaminants, particularly micro-nano plastics, have become more prevalent around the world, eventually ending up in the soil. Numerous studies have been conducted to investigate the interactions of micro-nano plastics in plants and agroecosystems. However, viable remediation of micro-nano plastics in soil remains limited. In this review, a powerful in situ soil remediation technology known as phytoremediation is emphasized for addressing micro-nano-plastic contamination in soil and plants. It is based on the synergistic effects of plants and the microorganisms that live in their rhizosphere. As a result, the purpose of this review is to investigate the mechanism of micro-nano plastic (MNP) uptake by plants as well as the limitations of existing MNP removal methods. Different phytoremediation options for removing micro-nano plastics from soil are also described. Phytoremediation improvements (endophytic-bacteria, hyperaccumulator species, omics investigations, and CRISPR-Cas9) have been proposed to enhance MNP degradation in agroecosystems. Finally, the limitations and future prospects of phytoremediation strategies have been highlighted in order to provide a better understanding for effective MNP decontamination from soil.
Collapse
Affiliation(s)
- Megha Bansal
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Deenan Santhiya
- Department of Applied Chemistry, Delhi Technological University, Main Bawana Road, Delhi, 110042, India.
| | - Jai Gopal Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| |
Collapse
|
4
|
Haque MK, Uddin M, Kormoker T, Ahmed T, Zaman MRU, Rahman MS, Rahman MA, Hossain MY, Rana MM, Tsang YF. Occurrences, sources, fate and impacts of plastic on aquatic organisms and human health in global perspectives: What Bangladesh can do in future? ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5531-5556. [PMID: 37382719 DOI: 10.1007/s10653-023-01646-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/02/2023] [Indexed: 06/30/2023]
Abstract
Bangladesh is not an exception to the growing global environmental problem of plastic pollution. Plastics have been deemed a blessing for today's world thanks to their inexpensive production costs, low weight, toughness, and flexibility, but poor biodegradability and massive misuse of plastics are to blame for widespread contamination of the environmental components. Plastic as well as microplastic pollution and its adverse consequences have attracted significant investigative attention all over the world. Plastic pollution is a rising concern in Bangladesh, but scientific studies, data, and related information are very scarce in numerous areas of the plastic pollution problem. The current study examined the effects of plastic and microplastic pollution on the environment and human health, and it examined Bangladesh's existing knowledge of plastic pollution in aquatic ecosystems in light of the rapidly expanding international research in this field. We also made an effort to investigate the current shortcomings in Bangladesh's assessment of plastic pollution. This study proposed several management approaches to the persistent plastic pollution problem by analyzing studies from industrialized and emerging countries. Finally, this work pushed investigators to investigate Bangladesh's plastic contamination thoroughly and develop guidelines and policies to address the issue.
Collapse
Affiliation(s)
- Md Kamrul Haque
- Institute of Bangabandhu War of Liberation Bangladesh Studies, National University, Dhaka, 1209, Bangladesh
| | - Minhaz Uddin
- Department of Environmental Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Tapos Kormoker
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, 999077, Hong Kong.
| | - Tareq Ahmed
- Institute of Structural and Molecular Biology, Department of Biological Science, University of London, Birkbeck, UK
| | - Md Rahat Uz Zaman
- Department of Genetics and Plant Breeding, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - M Safiur Rahman
- Chemistry Division, Atomic Energy Centre, Bangladesh Atomic Energy Commission, Shahbag, Dhaka, 1000, Bangladesh
| | - Md Ashekur Rahman
- Department of Fisheries, Faculty of Agriculture, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Yeamin Hossain
- Department of Fisheries, Faculty of Agriculture, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Md Masud Rana
- Department of Horticulture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, 999077, Hong Kong
| |
Collapse
|
5
|
Zhao S, Zhang J. Microplastics in soils during the COVID-19 pandemic: Sources, migration and transformations, and remediation technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163700. [PMID: 37105487 PMCID: PMC10125914 DOI: 10.1016/j.scitotenv.2023.163700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/26/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
The COVID-19 pandemic has led to a notable upsurge of 5-10 % in global plastic production, which could have potential implications on the soil quality through increased microplastics (MPs) content. The elevated levels of MPs in the soil poses a significant threat to both the environment and human health, hence necessitating the remediation of MPs in the environment. Despite the significant attention given to MPs remediation in aqueous environments, less consideration has been given to MPs remediation in the soil. Consequently, this review highlights the major sources of MPs in the soil, their migration and transformation behaviors during the COVID-19 pandemic, and emphasizes the importance of utilizing remediation technologies such as phytoremediation, thermal treatment, microbial degradation, and photodegradation for MPs in the soil. Furthermore, this review provides a prospective outlook on potential future remediation methods for MPs in the soil. Although the COVID-19 pandemic is nearing its end, the long-term impact of MPs on the soil remains, making this review a valuable reference for the remediation of MPs in the post-pandemic soil.
Collapse
Affiliation(s)
- Shan Zhao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; College of Civil Engineering, Tongji University, Shanghai 200092, China.
| | - Jian Zhang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| |
Collapse
|
6
|
Ahmed ASS, Billah MM, Ali MM, Bhuiyan MKA, Guo L, Mohinuzzaman M, Hossain MB, Rahman MS, Islam MS, Yan M, Cai W. Microplastics in aquatic environments: A comprehensive review of toxicity, removal, and remediation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162414. [PMID: 36868275 DOI: 10.1016/j.scitotenv.2023.162414] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
The occurrence of microplastics (MPs) in aquatic environments has been a global concern because they are toxic and persistent and may serve as a vector for many legacies and emerging pollutants. MPs are discharged to aquatic environments from different sources, especially from wastewater plants (WWPs), causing severe impacts on aquatic organisms. This study mainly aims to review the Toxicity of MPs along with plastic additives in aquatic organisms at various trophic compartments and available remediation methods/strategies for MPs in aquatic environments. Occurrences of oxidative stress, neurotoxicity, and alterations in enzyme activity, growth, and feeding performance were identical in fish due to MPs toxicity. On the other hand, growth inhibition and ROS formation were observed in most of the microalgae species. In zooplankton, potential impacts were acceleration of premature molting, growth retardation, mortality increase, feeding behaviour, lipid accumulation, and decreased reproduction activity. MPs togather with additive contaminants could also exert some toxicological impacts on polychaete, including neurotoxicity, destabilization of the cytoskeleton, reduced feeding rate, growth, survivability and burrowing ability, weight loss, and high rate of mRNA transcription. Among different chemical and biological treatments for MPs, high removal rates have been reported for coagulation and filtration (>86.5 %), electrocoagulation (>90 %), advanced oxidation process (AOPs) (30 % to 95 %), primary sedimentation/Grit chamber (16.5 % to 58.84 %), adsorption removal technique (>95 %), magnetic filtration (78 % to 93 %), oil film extraction (>95 %), and density separation (95 % to 100 %). However, desirable extraction methods are required for large-scale research in MPs removal from aquatic environments.
Collapse
Affiliation(s)
- A S Shafiuddin Ahmed
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong; Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong.
| | - Md Masum Billah
- Inter-Departmental Research Centre for Environmental Science-CIRSA, University of Bologna, Ravenna Campus, Italy
| | - Mir Mohammad Ali
- Department of Aquaculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Md Khurshid Alam Bhuiyan
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, Cadiz, Spain
| | - Laodong Guo
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, USA
| | - Mohammad Mohinuzzaman
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Sonapur, Bangladesh
| | - M Belal Hossain
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Sonapur, Bangladesh; School of Engineering and Built Environment, Griffith University, Brisbane, Australia
| | - M Safiur Rahman
- Water Quality Research Laboratory, Chemistry Division, Atomic Energy Center, Atomic Energy Commission, Dhaka, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Meng Yan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong
| | - Wenlong Cai
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong; Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong
| |
Collapse
|
7
|
Masud A, Gül M, Küçükuysal C, Buluş E, Şahin YM. Effect of lithological properties of beach sediments on plastic pollution in Bodrum Peninsula (SW Türkiye). MARINE POLLUTION BULLETIN 2023; 190:114895. [PMID: 37011539 DOI: 10.1016/j.marpolbul.2023.114895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
The effects grain size on transport and retention of plastics in sediments are controversial issue. Four beaches were selected on the Bodrum Peninsula (SW Türkiye) for this study. Twenty-four samples with poorly to well sorted, sandy gravel, gravel, or gravelly sand were collected from the top five cm of the sampling quadrant's four corners and center of 1 m2 area, from shoreline and backshore. The highest plastic content (38 mesoplastics/600 g - 455 microplastics (MPs)/1200 g) was determined on the Bodrum Coast having the highest population. Polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS), polyethylene terephthalate (PET) and polyurethane (PU) were predominantly detected with Fourier Transform Infrared Spectroscopy (FTIR) analysis as MPs as a fragment and fiber. This study indicates the negative correlation between grain size and the number of MPs in coastal sediments. Anthropogenic activities are evaluated as a possible primary source of plastic pollution in the study area.
Collapse
Affiliation(s)
- Ahmed Masud
- Department of Geological Engineering, Muğla Sıtkı Koçman University, Kötekli-Menteşe, 48100 Muğla, Türkiye
| | - Murat Gül
- Department of Geological Engineering, Muğla Sıtkı Koçman University, Kötekli-Menteşe, 48100 Muğla, Türkiye; Department of Civil Engineering, Muğla Sıtkı Koçman University, Kötekli-Menteşe, 48100 Muğla, Türkiye.
| | - Ceren Küçükuysal
- Department of Geological Engineering, Muğla Sıtkı Koçman University, Kötekli-Menteşe, 48100 Muğla, Türkiye.
| | - Erdi Buluş
- ArelPOTKAM (Polymer Technologies and Composite Application and Research Center), Istanbul Arel University, Istanbul 34537, Türkiye; Department of Transportation Services Civil Aviation Cabin Services Program, Vocational School, Istanbul Arel University, Istanbul 34295, Türkiye.
| | - Yeşim Müge Şahin
- ArelPOTKAM (Polymer Technologies and Composite Application and Research Center), Istanbul Arel University, Istanbul 34537, Türkiye; Department of Biomedical Engineering, Faculty of Engineering and Architecture, Istanbul Arel University, Istanbul 34537, Türkiye.
| |
Collapse
|