1
|
Laila UE, An W, Xu ZX. Emerging prospects of mRNA cancer vaccines: mechanisms, formulations, and challenges in cancer immunotherapy. Front Immunol 2024; 15:1448489. [PMID: 39654897 PMCID: PMC11625737 DOI: 10.3389/fimmu.2024.1448489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/18/2024] [Indexed: 12/12/2024] Open
Abstract
Cancer continues to pose an alarming threat to global health, necessitating the need for the development of efficient therapeutic solutions despite massive advances in the treatment. mRNA cancer vaccines have emerged as a hopeful avenue, propelled by the victory of mRNA technology in COVID-19 vaccines. The article delves into the intricate mechanisms and formulations of cancer vaccines, highlighting the ongoing efforts to strengthen mRNA stability and ensure successful translation inside target cells. Moreover, it discusses the design and mechanism of action of mRNA, showcasing its potential as a useful benchmark for developing efficacious cancer vaccines. The significance of mRNA therapy and selecting appropriate tumor antigens for the personalized development of mRNA vaccines are emphasized, providing insights into the immune mechanism. Additionally, the review explores the integration of mRNA vaccines with other immunotherapies and the utilization of progressive delivery platforms, such as lipid nanoparticles, to improve immune responses and address challenges related to immune evasion and tumor heterogeneity. While underscoring the advantages of mRNA vaccines, the review also addresses the challenges associated with the susceptibility of RNA to degradation and the difficulty in identifying optimum tumor-specific antigens, along with the potential solutions. Furthermore, it provides a comprehensive overview of the ongoing research efforts aimed at addressing these hurdles and enhancing the effectiveness of mRNA-based cancer vaccines. Overall, this review is a focused and inclusive impression of the present state of mRNA cancer vaccines, outlining their possibilities, challenges, and future predictions in the fight against cancer, ultimately aiding in the development of more targeted therapies against cancer.
Collapse
Affiliation(s)
| | | | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| |
Collapse
|
2
|
El Moheb M, Shen C, Kim S, Putman K, Zhang H, Ruff SM, Witt R, Tsung A. Stage-Specific Tumoral Gene Expression Profiles of Black and White Patients with Colon Cancer. Ann Surg Oncol 2024:10.1245/s10434-024-16550-9. [PMID: 39580376 DOI: 10.1245/s10434-024-16550-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/05/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Black patients with colon cancer (CC) exhibit more aggressive tumor biology and higher treatment resistance than white patients, even after adjusting for clinical and demographic factors. We investigated stage-specific transcriptional differences in tumor profiles of Black and white patients with CC. PATIENTS AND METHODS Patients with CC from The Cancer Genome Atlas Colon Adenocarcinoma database were categorized by disease stage and propensity-score matched between Black and white patients. Differential gene expression and pathway enrichment analyses were performed for each stage. Logistic regression and quadratic discriminant analysis (QDA) models were developed using consistently differentially expressed genes. RESULTS Of 247 patients, 128 had localized (22% Black), 81 had regional (74% Black), and 38 had distant disease (29% Black). Differential expression analysis revealed differences in 312 genes for localized, 105 for regional, and 199 for distant stages between Black and white patients. Pathway enrichment analysis showed downregulation of the IL-17 pathway in Black patients with localized disease. In total, five genes exhibited race-specific transcriptional differences across all stages: RAMACL, POLR2J3, POLR2J2, MUC16, and PRSS21. Logistic regression and QDA model performance indicated that these genes represent racial differences [area under the receiver operating characteristic curve (AUC): 0.863 and 0.880]. CONCLUSIONS Significant transcriptional differences exist in CC between Black and white patients changing dynamically across disease stages, and involving genes with broad functions. Key findings include IL-17 pathway downregulation in Black patients with localized disease and a five-gene signature consistent across all stages. These findings may explain aspects of racial disparities in CC, emphasizing the need for race-specific research and treatment strategies.
Collapse
Affiliation(s)
- Mohamad El Moheb
- School of Data Science, University of Virginia, Charlottesville, VA, USA
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Chengli Shen
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Susan Kim
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Kristin Putman
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Hongji Zhang
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Samantha M Ruff
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Russell Witt
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Allan Tsung
- Department of Surgery, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
3
|
Hrudka J, Kalinová M, Fišerová H, Jelínková K, Nikov A, Waldauf P, Matěj R. Molecular genetic analysis of colorectal carcinoma with an aggressive extraintestinal immunohistochemical phenotype. Sci Rep 2024; 14:22241. [PMID: 39333321 PMCID: PMC11437151 DOI: 10.1038/s41598-024-72687-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
Colorectal cancer (CRC) is a leading global cause of illness and death. There is a need for identification of better prognostic markers beyond traditional clinical variables like grade and stage. Previous research revealed that abnormal expression of cytokeratin 7 (CK7) and loss of the intestinal-specific Special AT-rich sequence-binding protein 2 (SATB2) are linked to poor CRC prognosis. This study aimed to explore these markers' prognostic significance alongside two extraintestinal mucins (MUC5AC, MUC6), claudin 18, and MUC4 in 285 CRC cases using immunohistochemistry on tissue microarrays (TMAs). CK7 expression and SATB2-loss were associated with MUC5AC, MUC6, and claudin 18 positivity. These findings suggest a distinct "non-intestinal" immunohistochemical profile in CRC, often right-sided, SATB2-low, with atypical expression of CK7 and non-colorectal mucins (MUC5AC, MUC6). Strong MUC4 expression negatively impacted cancer-specific survival (hazard ratio = 2.7, p = 0.044). Genetic analysis via next-generation sequencing (NGS) in CK7 + CRCs and those with high MUC4 expression revealed prevalent mutations in TP53, APC, BRAF, KRAS, PIK3CA, FBXW7, and SMAD4, consistent with known CRC mutation patterns. NGS also identified druggable variants in BRAF, PIK3CA, and KRAS. CK7 + tumors showed intriguingly common (31.6%) BRAF V600E mutations corelating with poor prognosis, compared to the frequency described in the literature and databases. Further research on larger cohorts with a non-colorectal immunophenotype and high MUC4 expression is needed.
Collapse
Affiliation(s)
- Jan Hrudka
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Šrobárova 1150/50, Praha 10, 10034, Prague, Czech Republic.
| | - Markéta Kalinová
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Šrobárova 1150/50, Praha 10, 10034, Prague, Czech Republic
- Central Laboratories, University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Hana Fišerová
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Šrobárova 1150/50, Praha 10, 10034, Prague, Czech Republic
| | - Karolína Jelínková
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Šrobárova 1150/50, Praha 10, 10034, Prague, Czech Republic
| | - Andrej Nikov
- Department of General Surgery, 3rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Petr Waldauf
- Department of Anaesthesia and Intensive Care Medicine, 3rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Radoslav Matěj
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Šrobárova 1150/50, Praha 10, 10034, Prague, Czech Republic
- Department of Pathology, 1st Faculty of Medicine, Charles University, General University Hospital, Prague, Czech Republic
- Department of Pathology and Molecular Medicine, 3rd Faculty of Medicine, Charles University, Thomayer University Hospital, Prague, Czech Republic
| |
Collapse
|
4
|
Todorović S, Ćeranić MS, Tošković B, Diklić M, Mitrović Ajtić O, Subotički T, Vukotić M, Dragojević T, Živković E, Oprić S, Stojiljkovic M, Gačić J, Čolaković N, Crnokrak B, Čokić VP, Đikić D. Proinflammatory Microenvironment in Adenocarcinoma Tissue of Colorectal Carcinoma. Int J Mol Sci 2024; 25:10062. [PMID: 39337548 PMCID: PMC11432548 DOI: 10.3390/ijms251810062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer-promoting proinflammatory microenvironment influences colorectal cancer (CRC) development. We examined the biomarkers of inflammation, intestinal differentiation, and DNA activity correlated with the clinical parameters to observe progression and prognosis in the adenocarcinoma subtype of CRC. Their immunohistology, immunoblotting, and RT-PCR analyses were performed in the adenocarcinoma and neighboring healthy tissues of 64 patients with CRC after routine colorectal surgery. Proinflammatory nuclear factor kappa B (NFκB) signaling as well as interleukin 6 (IL-6) and S100 protein levels were upregulated in adenocarcinoma compared with nearby healthy colon tissue. In contrast to nitrotyrosine expression, the oxidative stress marker 8-Hydroxy-2'-deoxyguanosine (8-OHdG) was increased in adenocarcinoma tissue. Biomarkers of intestinal differentiation β-catenin and mucin 2 (MUC2) were inversely regulated, with the former upregulated in adenocarcinoma tissue and positively correlated with tumor marker CA19-9. Downregulation of MUC2 expression correlated with the increased 2-year survival rate of patients with CRC. Proliferation-related mammalian target of rapamycin (mTOR) signaling was activated, and Ki67 frequency was three-fold augmented in positive correlation with metastasis and cancer stage, respectively. Conclusion: We demonstrated a parallel induction of oxidative stress and inflammation biomarkers in adenocarcinoma tissue that was not reflected in the neighboring healthy colon tissue of CRC. The expansiveness of colorectal adenocarcinoma was confirmed by irregular intestinal differentiation and elevated proliferation biomarkers, predominantly Ki67. The origin of the linked inflammatory factors was in adenocarcinoma tissue, with an accompanying systemic immune response.
Collapse
Affiliation(s)
- Slobodan Todorović
- University Hospital Medical Center Bežanijska Kosa, Faculty of Medicine, University of Belgrade, Dr. Žorža Matea bb, 11080 Belgrade, Serbia
| | - Miljan S Ćeranić
- University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Pasterova 2, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr. Subotića starijeg 8, 11000 Belgrade, Serbia
| | - Borislav Tošković
- University Hospital Medical Center Bežanijska Kosa, Faculty of Medicine, University of Belgrade, Dr. Žorža Matea bb, 11080 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr. Subotića starijeg 8, 11000 Belgrade, Serbia
| | - Miloš Diklić
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotica 4, 11129 Belgrade, Serbia
| | - Olivera Mitrović Ajtić
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotica 4, 11129 Belgrade, Serbia
| | - Tijana Subotički
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotica 4, 11129 Belgrade, Serbia
| | - Milica Vukotić
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotica 4, 11129 Belgrade, Serbia
| | - Teodora Dragojević
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotica 4, 11129 Belgrade, Serbia
| | - Emilija Živković
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotica 4, 11129 Belgrade, Serbia
| | - Svetlana Oprić
- University Hospital Medical Center Bežanijska Kosa, Faculty of Medicine, University of Belgrade, Dr. Žorža Matea bb, 11080 Belgrade, Serbia
| | - Miodrag Stojiljkovic
- University Hospital Medical Center Bežanijska Kosa, Faculty of Medicine, University of Belgrade, Dr. Žorža Matea bb, 11080 Belgrade, Serbia
| | - Jasna Gačić
- University Hospital Medical Center Bežanijska Kosa, Faculty of Medicine, University of Belgrade, Dr. Žorža Matea bb, 11080 Belgrade, Serbia
| | - Nataša Čolaković
- University Hospital Medical Center Bežanijska Kosa, Faculty of Medicine, University of Belgrade, Dr. Žorža Matea bb, 11080 Belgrade, Serbia
| | - Bogdan Crnokrak
- University Hospital Medical Center Bežanijska Kosa, Faculty of Medicine, University of Belgrade, Dr. Žorža Matea bb, 11080 Belgrade, Serbia
| | - Vladan P Čokić
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotica 4, 11129 Belgrade, Serbia
| | - Dragoslava Đikić
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotica 4, 11129 Belgrade, Serbia
| |
Collapse
|
5
|
Malmros K, Lindholm A, Vidarsdottir H, Jirström K, Nodin B, Botling J, Mattsson JSM, Micke P, Planck M, Jönsson M, Staaf J, Brunnström H. Diagnostic gastrointestinal markers in primary lung cancer and pulmonary metastases. Virchows Arch 2024; 485:347-357. [PMID: 37349623 PMCID: PMC11329406 DOI: 10.1007/s00428-023-03583-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
Histopathological diagnosis of pulmonary tumors is essential for treatment decisions. The distinction between primary lung adenocarcinoma and pulmonary metastasis from the gastrointestinal (GI) tract may be difficult. Therefore, we compared the diagnostic value of several immunohistochemical markers in pulmonary tumors. Tissue microarrays from 629 resected primary lung cancers and 422 resected pulmonary epithelial metastases from various sites (whereof 275 colorectal cancer) were investigated for the immunohistochemical expression of CDH17, GPA33, MUC2, MUC6, SATB2, and SMAD4, for comparison with CDX2, CK20, CK7, and TTF-1. The most sensitive markers for GI origin were GPA33 (positive in 98%, 60%, and 100% of pulmonary metastases from colorectal cancer, pancreatic cancer, and other GI adenocarcinomas, respectively), CDX2 (99/40/100%), and CDH17 (99/0/100%). In comparison, SATB2 and CK20 showed higher specificity, with expression in 5% and 10% of mucinous primary lung adenocarcinomas and both in 0% of TTF-1-negative non-mucinous primary lung adenocarcinomas (25-50% and 5-16%, respectively, for GPA33/CDX2/CDH17). MUC2 was negative in all primary lung cancers, but positive only in less than half of pulmonary metastases from mucinous adenocarcinomas from other organs. Combining six GI markers did not perfectly separate primary lung cancers from pulmonary metastases including subgroups such as mucinous adenocarcinomas or CK7-positive GI tract metastases. This comprehensive comparison suggests that CDH17, GPA33, and SATB2 may be used as equivalent alternatives to CDX2 and CK20. However, no single or combination of markers can categorically distinguish primary lung cancers from metastatic GI tract cancer.
Collapse
Affiliation(s)
- Karina Malmros
- Division of Pathology, Department of Clinical Sciences Lund, Lund University, SE-221 00, Lund, Sweden
| | - Andreas Lindholm
- Department of Genetics and Pathology, Laboratory Medicine Region Skåne, SE-205 02, Malmö, Sweden
| | - Halla Vidarsdottir
- Division of Pathology, Department of Clinical Sciences Lund, Lund University, SE-221 00, Lund, Sweden
- Department of Surgery, Landspitali University Hospital, Hringbraut, 101, Reykjavik, Iceland
| | - Karin Jirström
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences Lund, Lund University, SE-221 00, Lund, Sweden
- Department of Genetics and Pathology, Laboratory Medicine Region Skåne, SE-221 85, Lund, Sweden
| | - Björn Nodin
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences Lund, Lund University, SE-221 00, Lund, Sweden
| | - Johan Botling
- Department of Immunology, Genetics and Pathology, Uppsala University and Uppsala University Hospital, SE-751 85, Uppsala, Sweden
| | - Johanna S M Mattsson
- Department of Immunology, Genetics and Pathology, Uppsala University and Uppsala University Hospital, SE-751 85, Uppsala, Sweden
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University and Uppsala University Hospital, SE-751 85, Uppsala, Sweden
| | - Maria Planck
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-223 81, Lund, Sweden
- Division of Respiratory Medicine, Allergology, and Palliative Medicine, Department of Clinical Sciences Lund, Lund University, SE-221 85, Lund, Sweden
| | - Mats Jönsson
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-223 81, Lund, Sweden
| | - Johan Staaf
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-223 81, Lund, Sweden
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, SE-223 81, Lund, Sweden
| | - Hans Brunnström
- Division of Pathology, Department of Clinical Sciences Lund, Lund University, SE-221 00, Lund, Sweden.
- Department of Genetics and Pathology, Laboratory Medicine Region Skåne, SE-221 85, Lund, Sweden.
| |
Collapse
|
6
|
Chen G, Sun H, Chen Y, Wang L, Song O, Zhang J, Li D, Liu X, Feng L. Perineural Invasion in Cervical Cancer: A Hidden Trail for Metastasis. Diagnostics (Basel) 2024; 14:1517. [PMID: 39061654 PMCID: PMC11275432 DOI: 10.3390/diagnostics14141517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Perineural invasion (PNI), the neoplastic invasion of nerves, is an often overlooked pathological phenomenon in cervical cancer that is associated with poor clinical outcomes. The occurrence of PNI in cervical cancer patients has limited the promotion of Type C1 surgery. Preoperative prediction of the PNI can help identify suitable patients for Type C1 surgery. However, there is a lack of appropriate preoperative diagnostic methods for PNI, and its pathogenesis remains largely unknown. Here, we dissect the neural innervation of the cervix, analyze the molecular mechanisms underlying the occurrence of PNI, and explore suitable preoperative diagnostic methods for PNI to advance the identification and treatment of this ominous cancer phenotype.
Collapse
Affiliation(s)
- Guoqiang Chen
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
- Department of Gynecology, The People’s Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China
| | - Hao Sun
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Yunxia Chen
- Department of Gynecology, The People’s Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China
| | - Li Wang
- Department of Gynecology, The People’s Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China
| | - Ouyi Song
- Department of Gynecology, The People’s Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China
| | - Jili Zhang
- Department of Gynecology, The People’s Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China
| | - Dazhi Li
- Department of Gynecology, The People’s Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China
| | - Xiaojun Liu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Lixia Feng
- Department of Gynecology, The People’s Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China
| |
Collapse
|
7
|
Luo XX, Li SZ, Wang L, Luo AL, Qiu H, Yuan XL. Prognostic role of MUCIN family and its relationship with immune characteristics and tumor biology in diffuse-type gastric cancer. Heliyon 2024; 10:e31403. [PMID: 38803848 PMCID: PMC11129101 DOI: 10.1016/j.heliyon.2024.e31403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
The main component of O-glycoproteins, mucin, is known to play important roles in physiological conditions and oncogenic processes, particularly correlated with poor prognosis in different carcinomas. Diffuse-type gastric cancer (DGC) has long been associated with genomic stability and unfavorable clinical outcomes. To investigate further, we obtained clinical information and the RNA-seq data of the TCGA-STAD cohort. Through the use of unsupervised clustering methods and GSEA, we identified two distinct clusters, characterized by higher and lower expression of MUC2 and MUC20, denoted as cluster 1 and cluster 2, respectively. Subsequently, employing CIBERSORT, it was determined that cluster 2 exhibited a higher tumor mutation burden (TMB) and a greater abundance of CD8+ T cells and activated CD4+ memory T cells, in addition to immune checkpoints (ICPs). On the other hand, cluster 1 showed a lower TIDE score estimation, indicating a higher probability of tumor immune escape. Furthermore, overexpression of MUC15 and MUC20 was confirmed through qPCR and Western blotting, and their specific roles in mediating the epithelial-mesenchymal transition (EMT) process of GC cells (SNU484 and Hs746t) were validated via CCK-8 assay and wound healing assay in vitro. These findings highlight the potential prognostic value of MUC20 and offer insights into the prospects of immunotherapy for DGC by targeting MUC20.
Collapse
Affiliation(s)
- Xiao-Xiao Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 30030, China
| | - Shi-Zhen Li
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 30030, China
| | - Lu Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 30030, China
| | - Ai-Lin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 30030, China
| | - Xiang-Lin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 30030, China
| |
Collapse
|
8
|
Zheng S, Wang Z, Cao X, Wang L, Gao X, Shen Y, Du J, Liu P, Zhuang Y, Guo X. Insights into the effects of chronic combined chromium-nickel exposure on colon damage in mice through transcriptomic analysis and in vitro gastrointestinal digestion assay. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116458. [PMID: 38759536 DOI: 10.1016/j.ecoenv.2024.116458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Heavy metals interact with each other in a coexisting manner to produce complex combined toxicity to organisms. At present, the toxic effects of chronic co-exposure to heavy metals hexavalent chromium [Cr(VI)] and divalent nickel [Ni(II)] on organisms are seldom studied and the related mechanisms are poorly understood. In this study, we explored the mechanism of the colon injury in mice caused by chronic exposure to Cr or/and Ni. The results showed that, compared with the control group, Cr or/and Ni chronic exposure affected the body weight of mice, and led to infiltration of inflammatory cells in the colon, decreased the number of goblet cells, fusion of intracellular mucus particles and damaged cell structure of intestinal epithelial. In the Cr or/and Ni exposure group, the activity of nitric oxide synthase (iNOS) increased, the expression levels of MUC2 were significantly down-regulated, and those of ZO-1 and Occludin were significantly up-regulated. Interestingly, factorial analysis revealed an interaction between Cr and Ni, which was manifested as antagonistic effects on iNOS activity, ZO-1 and MUC2 mRNA expression levels. Transcriptome sequencing further revealed that the expression of genes-related to inflammation, intestinal mucus and tight junctions changed obviously. Moreover, the relative contents of Cr(VI) and Ni(II) in the Cr, Ni and Cr+Ni groups all changed with in-vitro gastrointestinal (IVG)digestion, especially in the Cr+Ni group. Our results indicated that the chronic exposure to Cr or/and Ni can lead to damage to the mice colon, and the relative content changes of Cr(VI) and Ni(II) might be the main reason for the antagonistic effect of Cr+Ni exposure on the colon damage.
Collapse
Affiliation(s)
- Shuangyan Zheng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Zilong Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xianhong Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Luqi Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yufan Shen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jun Du
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
9
|
Maekawa M, Tanaka A, Ogawa M, Roehrl MH. Propensity score matching as an effective strategy for biomarker cohort design and omics data analysis. PLoS One 2024; 19:e0302109. [PMID: 38696425 PMCID: PMC11065211 DOI: 10.1371/journal.pone.0302109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/27/2024] [Indexed: 05/04/2024] Open
Abstract
BACKGROUND Analysis of omics data that contain multidimensional biological and clinical information can be complex and make it difficult to deduce significance of specific biomarker factors. METHODS We explored the utility of propensity score matching (PSM), a statistical technique for minimizing confounding factors and simplifying the examination of specific factors. We tested two datasets generated from cohorts of colorectal cancer (CRC) patients, one comprised of immunohistochemical analysis of 12 protein markers in 544 CRC tissues and another consisting of RNA-seq profiles of 163 CRC cases. We examined the efficiency of PSM by comparing pre- and post-PSM analytical results. RESULTS Unlike conventional analysis which typically compares randomized cohorts of cancer and normal tissues, PSM enabled direct comparison between patient characteristics uncovering new prognostic biomarkers. By creating optimally matched groups to minimize confounding effects, our study demonstrates that PSM enables robust extraction of significant biomarkers while requiring fewer cancer cases and smaller overall patient cohorts. CONCLUSION PSM may emerge as an efficient and cost-effective strategy for multiomic data analysis and clinical trial design for biomarker discovery.
Collapse
Affiliation(s)
- Masaki Maekawa
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
- Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Atsushi Tanaka
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
- Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Makiko Ogawa
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
- Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Michael H. Roehrl
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
- Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| |
Collapse
|
10
|
Hisano K, Mizuuchi Y, Ohuchida K, Kawata J, Torata N, Zhang J, Katayama N, Tsutsumi C, Nakamura S, Okuda S, Otsubo Y, Tamura K, Nagayoshi K, Ikenaga N, Shindo K, Nakata K, Oda Y, Nakamura M. Microenvironmental changes in familial adenomatous polyposis during colorectal cancer carcinogenesis. Cancer Lett 2024; 589:216822. [PMID: 38521200 DOI: 10.1016/j.canlet.2024.216822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Familial adenomatous polyposis (FAP) is a heritable disease that increases the risk of colorectal cancer (CRC) development because of heterozygous mutations in APC. Little is known about the microenvironment of FAP. Here, single-cell RNA sequencing was performed on matched normal tissues, adenomas, and carcinomas from four patients with FAP. We analyzed the transcriptomes of 56,225 unsorted single cells, revealing the heterogeneity of each cell type, and compared gene expression among tissues. Then we compared the gene expression with that of sporadic CRC. Furthermore, we analyzed specimens of 26 FAP patients and 40 sporadic CRC patients by immunohistochemistry. Immunosuppressiveness of myeloid cells, fibroblasts, and regulatory T cells was upregulated even in the early stages of carcinogenesis. CD8+ T cells became exhausted only in carcinoma, although the cytotoxicity of CD8+ T cells was gradually increased according to the carcinogenic step. When compared with those in the sporadic CRC microenvironment, the composition and function of each cell type in the FAP-derived CRC microenvironment had differences. Our findings indicate that an immunosuppressive microenvironment is constructed from a precancerous stage in FAP.
Collapse
Affiliation(s)
- Kyoko Hisano
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Mizuuchi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Jun Kawata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuhiro Torata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jinghui Zhang
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Katayama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chikanori Tsutsumi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shoichi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sho Okuda
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshiki Otsubo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Tamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kinuko Nagayoshi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Ikenaga
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Shindo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
11
|
Chen M, Zhang X, Ming Z, Lingyu, Feng X, Han Z, An HX. Characterizing and forecasting neoantigens-resulting from MUC mutations in COAD. J Transl Med 2024; 22:315. [PMID: 38539235 PMCID: PMC10967086 DOI: 10.1186/s12967-024-05103-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/15/2024] [Indexed: 08/09/2024] Open
Abstract
BACKGROUND The treatment for colon adenocarcinoma (COAD) faces challenges in terms of immunotherapy effectiveness due to multiple factors. Because of the high tumor specificity and immunogenicity, neoantigen has been considered a pivotal target for cancer immunotherapy. Therefore, this study aims to identify and predict the potential tumor antigens of MUC somatic mutations (MUCmut) in COAD. METHODS Three databases of TCGA, TIMER2.0, and cBioPortal were used for a detailed evaluation of the association between MUCmut and multi-factors like tumor mutation burden (TMB), microsatellite instability (MSI), prognosis, and the tumor microenvironment within the context of total 2242 COAD patients. Next, TSNAdb and the differential agretopicity index (DAI) were utilized to predict high-confidence neopeptides for MUCmut based on 531 COAD patients' genomic information. DAI was calculated by subtraction of its predicted HLA binding affinity of the MUCmut peptide from the corresponding wild-type peptide. RESULTS The top six mutation frequencies (14 to 2.9%) were from MUC16, MUC17, MUC5B, MUC2, MUC4 and MUC6. COAD patients with MUC16 and MUC4 mutations had longer DFS and PFS. However, patients with MUC13 and MUC20 mutations had shorter OS. Patients with the mutation of MUC16, MUC5B, MUC2, MUC4, and MUC6 exhibited higher TMB and MSI. Moreover, these mutations from the MUC family were associated with the infiltration of diverse lymphocyte cells and the expression of immune checkpoint genes. Through TSNAdb 1.0/NetMHCpan v2.8, 452 single nucleotide variants (SNVs) of MUCmut peptides were identified. Moreover, through TSNAdb2.0/NetMHCpan v4.0, 57 SNVs, 1 Q-frame shift (TS), and 157 short insertions/deletions (INDELs) of MUCmut were identified. Finally, 10 high-confidence neopeptides of MUCmut were predicted by DAI. CONCLUSIONS Together, our findings establish the immunogenicity and therapeutic potential of mutant MUC family-derived neoantigens. Through combining the tools of TSNAdb and DAI, a group of novel MUCmut neoantigens were identified as potential targets for immunotherapy.
Collapse
Affiliation(s)
- Min Chen
- Clinical Central Research Core, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Xin Zhang
- The Center Laboratory, Shanghai Medical College, Zhongshan Hospital (Xiamen Affiliated) of Fudan University, Fudan University, Xiamen, China
| | - Zihe Ming
- Cancer Center and Department of Breast and Thyroid Surgery, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Lingyu
- Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaorong Feng
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Chemistry and Chemical Engineering Guangdong Laboratory, Shantou University, Guangdong, China
| | - Zhenguo Han
- Department of Colorectal and Anal Surgery, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Han-Xiang An
- Clinical Central Research Core, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, Shanxi, China.
- The Cancer Center, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
12
|
Budinská E, Hrivňáková M, Ivkovic TC, Madrzyk M, Nenutil R, Bencsiková B, Al Tukmachi D, Ručková M, Zdražilová Dubská L, Slabý O, Feit J, Dragomir MP, Borilova Linhartova P, Tejpar S, Popovici V. Molecular portraits of colorectal cancer morphological regions. eLife 2023; 12:RP86655. [PMID: 37956043 PMCID: PMC10642970 DOI: 10.7554/elife.86655] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023] Open
Abstract
Heterogeneity of colorectal carcinoma (CRC) represents a major hurdle towards personalized medicine. Efforts based on whole tumor profiling demonstrated that the CRC molecular subtypes were associated with specific tumor morphological patterns representing tumor subregions. We hypothesize that whole-tumor molecular descriptors depend on the morphological heterogeneity with significant impact on current molecular predictors. We investigated intra-tumor heterogeneity by morphology-guided transcriptomics to better understand the links between gene expression and tumor morphology represented by six morphological patterns (morphotypes): complex tubular, desmoplastic, mucinous, papillary, serrated, and solid/trabecular. Whole-transcriptome profiling by microarrays of 202 tumor regions (morphotypes, tumor-adjacent normal tissue, supportive stroma, and matched whole tumors) from 111 stage II-IV CRCs identified morphotype-specific gene expression profiles and molecular programs and differences in their cellular buildup. The proportion of cell types (fibroblasts, epithelial and immune cells) and differentiation of epithelial cells were the main drivers of the observed disparities with activation of EMT and TNF-α signaling in contrast to MYC and E2F targets signaling, defining major gradients of changes at molecular level. Several gene expression-based (including single-cell) classifiers, prognostic and predictive signatures were examined to study their behavior across morphotypes. Most exhibited important morphotype-dependent variability within same tumor sections, with regional predictions often contradicting the whole-tumor classification. The results show that morphotype-based tumor sampling allows the detection of molecular features that would otherwise be distilled in whole tumor profile, while maintaining histopathology context for their interpretation. This represents a practical approach at improving the reproducibility of expression profiling and, by consequence, of gene-based classifiers.
Collapse
Affiliation(s)
- Eva Budinská
- RECETOX, Faculty of Science, Masarykova UniverzitaBrnoCzech Republic
| | | | - Tina Catela Ivkovic
- Central European Institute of Technology, Masarykova UniverzitaBrnoCzech Republic
| | - Marie Madrzyk
- Central European Institute of Technology, Masarykova UniverzitaBrnoCzech Republic
| | | | | | - Dagmar Al Tukmachi
- Central European Institute of Technology, Masarykova UniverzitaBrnoCzech Republic
| | - Michaela Ručková
- Central European Institute of Technology, Masarykova UniverzitaBrnoCzech Republic
| | | | - Ondřej Slabý
- Central European Institute of Technology, Department of Biology, Faculty of Medicine, Masarykova UniverzitaBrnoCzech Republic
| | - Josef Feit
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masarykova UniverzitaBrnoCzech Republic
| | - Mihnea-Paul Dragomir
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of HealthBerlinGermany
- Berlin Institute of HealthBerlinGermany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK)HeidelbergGermany
| | | | - Sabine Tejpar
- Faculty of Medicine, Digestive Oncology Unit, Katholieke Universiteit LeuvenLeuvenBelgium
| | - Vlad Popovici
- RECETOX, Faculty of Science, Masarykova UniverzitaBrnoCzech Republic
| |
Collapse
|
13
|
Ramsay RG, Whitehall V, Flood MP. Technological advances define shifting pathway signaling from normal to primary and metastatic colorectal cancer. Growth Factors 2023; 41:179-191. [PMID: 37351905 DOI: 10.1080/08977194.2023.2227274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/08/2023] [Indexed: 06/24/2023]
Abstract
Adoption of organoid/tumoroid propagation of normal and malignant intestinal epithelia has provided unparalleled opportunities to compare cell growth factor and signaling dependencies. These 3D structures recapitulate tumours in terms of gene expression regarding the tumor cells but also allow deeper insights into the contribution of the tumour microenvironment (TME). Elements of the TME can be manipulated or added back in the form of infiltrating cytotoxic lymphocytes and/or cancer associated fibroblasts. The effectiveness of chemo-, radio- and immunotherapies can be explored within weeks of deriving these patient-derived tumour avatars informing treatment of these exact patients in a timely manner. Entrenched paths to colorectal cancer (CRC) from the earliest steps of conventional adenoma or serrated lesion formation, and the recognition of further sub-categorisations embodied by consensus-molecular-subtypes (CMS), provide genetic maps allowing a molecular form of pathologic taxonomy. Recent advances in organoid propagation and scRNAseq are reshaping our understanding of CMS and CRC.
Collapse
Affiliation(s)
- Robert G Ramsay
- Sir Peter MacCallum Department of Oncology and Peter MacCallum Cancer Centre, The University of Melbourne, Parkville, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, Australia
| | - Vicki Whitehall
- QIMR Berghofer Medical Research Institute, Queensland, Australia
- Conjoint Internal Medicine Laboratory, Pathology Queensland, Queensland, Australia
| | - Michael P Flood
- Sir Peter MacCallum Department of Oncology and Peter MacCallum Cancer Centre, The University of Melbourne, Parkville, Australia
| |
Collapse
|
14
|
Saha A, Gavert N, Brabletz T, Ben-Ze’ev A. An Increase in Mucin2 Expression Is Required for Colon Cancer Progression Mediated by L1. Int J Mol Sci 2023; 24:13418. [PMID: 37686224 PMCID: PMC10488000 DOI: 10.3390/ijms241713418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
An induction in the expression of the cell adhesion receptor L1, a Wnt target gene, is a characteristic feature of Wnt/β-catenin activation in colon cancer cells at later stages of the disease. We investigated the proteins secreted following L1 expression in colon cancer cells and identified Mucin2 among the most abundant secreted proteins. We found that suppressing Mucin2 expression in L1-expressing colon cancer cells inhibits cell proliferation, motility, tumorigenesis, and liver metastasis. We detected several signaling pathways involved in Mucin2 induction in L1-expressing cells. In human colon cancer tissue, Mucin2 expression was significantly reduced or lost in the adenocarcinoma tissue, while in the mucinous subtype of colon cancer tissue, Mucin2 expression was increased. An increased signature of L1/Mucin2 expression reduced the survival rate of human colon cancer patients. Thus, induction of Mucin2 expression by L1 is required during mucinous colon cancer progression and can serve as a marker for diagnosis and a target for therapy.
Collapse
Affiliation(s)
- Arka Saha
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.S.); (N.G.)
| | - Nancy Gavert
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.S.); (N.G.)
| | - Thomas Brabletz
- Department of Experimental Medicine I, Nikolaus-Feibiger-Center for Molecular Medicine, University of Erlangen-Nuernberg, 91054 Erlangen, Germany;
| | - Avri Ben-Ze’ev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.S.); (N.G.)
| |
Collapse
|
15
|
Dwertmann Rico S, Schliesser SJA, Gorbokon N, Dum D, Menz A, Büscheck F, Hinsch A, Lennartz M, von Bargen C, Bawahab AA, Luebke AM, Hube‐Magg C, Fraune C, Lebok P, Clauditz TS, Jacobsen F, Sauter G, Uhlig R, Steurer S, Minner S, Marx AH, Simon R, Burandt E, Hoeflmayer D, Krech T, Bernreuther C. Pattern of MUC6 expression across 119 different tumor types: A tissue microarray study on 15 412 tumors. Pathol Int 2023; 73:281-296. [PMID: 37057870 PMCID: PMC11551819 DOI: 10.1111/pin.13322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/24/2023] [Indexed: 04/15/2023]
Abstract
Mucin 6 (MUC6) is a secreted gel-forming mucin covering the surfaces of gastrointestinal and other tissues. Published work demonstrates that MUC6 can also be expressed in several cancer types and can aid in the distinction of different tumor entities. To systematically analyze MUC6 expression in normal and cancerous tissues, a tissue microarray containing 15 412 samples from 119 different tumor types and subtypes as well as 608 samples of 76 different normal tissue types was analyzed by immunohistochemistry. At least a weak MUC6 positivity was seen in 50 of 119 (42%) tumor entities. Thirty-three tumor entities included tumors with strong positivity. MUC6 immunostaining was most frequent in mucinous carcinomas of the breast (44%), adenocarcinomas of the stomach (30%-40%) and esophagus (35%), and neuroendocrine carcinomas of the colon. Strong MUC6 staining was linked to advanced pT stage (p = 0.0464), defective mismatch repair status and right-sided tumor location (p < 0.0001 each) in colorectal cancer, as well as to high tumor grade (p = 0.0291), nodal metastasis (p = 0.0485), erb-b2 receptor tyrosine kinase 2 positivity (p < 0.0001) and negative estrogen receptor (p = 0.0332)/progesterone receptor (p = 0.0257) status in breast carcinomas of no special type. The broad range of tumor types with MUC6 expression limits the utility of MUC6 immunohistochemistry for the distinction of different tumor types.
Collapse
Affiliation(s)
| | | | - Natalia Gorbokon
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - David Dum
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Anne Menz
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Franziska Büscheck
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Andrea Hinsch
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Maximilian Lennartz
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Clara von Bargen
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Ahmed A. Bawahab
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Department of Pathology, Faculty of MedicineUniversity of JeddahJeddahSaudi Arabia
| | - Andreas M. Luebke
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Claudia Hube‐Magg
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Christoph Fraune
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Patrick Lebok
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Till S. Clauditz
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Frank Jacobsen
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Guido Sauter
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Ria Uhlig
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Stefan Steurer
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Sarah Minner
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Andreas H. Marx
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Department of PathologyAcademic Hospital FuerthFuerthGermany
| | - Ronald Simon
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Eike Burandt
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Doris Hoeflmayer
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Till Krech
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Institute of Pathology, Clinical Center OsnabrueckOsnabrueckGermany
| | | |
Collapse
|
16
|
Gu M, Yin W, Zhang J, Yin J, Tang X, Ling J, Tang Z, Yin W, Wang X, Ni Q, Zhu Y, Chen T. Role of gut microbiota and bacterial metabolites in mucins of colorectal cancer. Front Cell Infect Microbiol 2023; 13:1119992. [PMID: 37265504 PMCID: PMC10229905 DOI: 10.3389/fcimb.2023.1119992] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
Colorectal cancer (CRC) is a major health burden, accounting for approximately 10% of all new cancer cases worldwide. Accumulating evidence suggests that the crosstalk between the host mucins and gut microbiota is associated with the occurrence and development of CRC. Mucins secreted by goblet cells not only protect the intestinal epithelium from microorganisms and invading pathogens but also provide a habitat for commensal bacteria. Conversely, gut dysbiosis results in the dysfunction of mucins, allowing other commensals and their metabolites to pass through the intestinal epithelium, potentially triggering host responses and the subsequent progression of CRC. In this review, we summarize how gut microbiota and bacterial metabolites regulate the function and expression of mucin in CRC and novel treatment strategies for CRC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiangjun Wang
- *Correspondence: Xiangjun Wang, ; Qing Ni, ; Yunxiang Zhu, ; Tuo Chen,
| | - Qing Ni
- *Correspondence: Xiangjun Wang, ; Qing Ni, ; Yunxiang Zhu, ; Tuo Chen,
| | - Yunxiang Zhu
- *Correspondence: Xiangjun Wang, ; Qing Ni, ; Yunxiang Zhu, ; Tuo Chen,
| | - Tuo Chen
- *Correspondence: Xiangjun Wang, ; Qing Ni, ; Yunxiang Zhu, ; Tuo Chen,
| |
Collapse
|
17
|
CAR-T cells for cancer immunotherapy. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
18
|
Pérez-Montiel MD, Cerrato-Izaguirre D, Sánchez-Pérez Y, Diaz-Chavez J, Cortés-González CC, Rubio JA, Jiménez-Ríos MA, Herrera LA, Scavuzzo A, Meneses-García A, Hernández-Martínez R, Vaca-Paniagua F, Ramírez A, Orozco A, Cantú-de-León D, Prada D. Mutational Landscape of Bladder Cancer in Mexican Patients: KMT2D Mutations and chr11q15.5 Amplifications Are Associated with Muscle Invasion. Int J Mol Sci 2023; 24:ijms24021092. [PMID: 36674608 PMCID: PMC9866210 DOI: 10.3390/ijms24021092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 01/09/2023] Open
Abstract
Bladder cancer (BC) is the most common neoplasm of the urinary tract, which originates in the epithelium that covers the inner surface of the bladder. The molecular BC profile has led to the development of different classifications of non-muscle invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC). However, the genomic BC landscape profile of the Mexican population, including NMIBC and MIBC, is unknown. In this study, we aimed to identify somatic single nucleotide variants (SNVs) and copy number variations (CNVs) in Mexican patients with BC and their associations with clinical and pathological characteristics. We retrospectively evaluated 37 patients treated between 2012 and 2021 at the National Cancer Institute-Mexico (INCan). DNA samples were obtained from paraffin-embedded tumor tissues and exome sequenced. Strelka2 and Lancet packages were used to identify SNVs and insertions or deletions. FACETS was used to determine CNVs. We found a high frequency of mutations in TP53 and KMT2D, gains in 11q15.5 and 19p13.11-q12, and losses in 7q11.23. STAG2 mutations and 1q11.23 deletions were also associated with NMIBC and low histologic grade.
Collapse
Affiliation(s)
- María D. Pérez-Montiel
- Departamento de Patología, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico
| | - Dennis Cerrato-Izaguirre
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del I.P.N. (CINVESTAV), Avenida Instituto Politécnico Nacional No. 2508, Mexico City 07360, Mexico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), San Fernando No. 22, Tlalpan, Mexico City 14080, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), San Fernando No. 22, Tlalpan, Mexico City 14080, Mexico
| | - Jose Diaz-Chavez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), San Fernando No. 22, Tlalpan, Mexico City 14080, Mexico
| | - Carlo César Cortés-González
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), San Fernando No. 22, Tlalpan, Mexico City 14080, Mexico
| | - Jairo A. Rubio
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), San Fernando No. 22, Tlalpan, Mexico City 14080, Mexico
| | - Miguel A. Jiménez-Ríos
- Departamento de Urología, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico
| | - Luis A. Herrera
- Dirección General, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico
| | - Anna Scavuzzo
- Departamento de Urología, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico
| | | | - Ricardo Hernández-Martínez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), San Fernando No. 22, Tlalpan, Mexico City 14080, Mexico
| | - Felipe Vaca-Paniagua
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico
| | - Andrea Ramírez
- Unidad de Apoyo Molecular a la Investigación Clínica, Instituto Nacional de Cancerología (INCan), San Fernando No. 22, Tlalpan, Mexico City 14080, Mexico
| | - Alicia Orozco
- Unidad de Apoyo Molecular a la Investigación Clínica, Instituto Nacional de Cancerología (INCan), San Fernando No. 22, Tlalpan, Mexico City 14080, Mexico
| | - David Cantú-de-León
- Dirección de Investigación, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico
- Correspondence: (D.C.-d.-L.); (D.P.); Tel.: +52-553693-5200 (ext. 241) (D.P.)
| | - Diddier Prada
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), San Fernando No. 22, Tlalpan, Mexico City 14080, Mexico
- Department of Environmental Health Sciences, Mailman School of Public Health, New York, NY 10032, USA
- Correspondence: (D.C.-d.-L.); (D.P.); Tel.: +52-553693-5200 (ext. 241) (D.P.)
| |
Collapse
|
19
|
Riley NM, Wen RM, Bertozzi CR, Brooks JD, Pitteri SJ. Measuring the multifaceted roles of mucin-domain glycoproteins in cancer. Adv Cancer Res 2022; 157:83-121. [PMID: 36725114 PMCID: PMC10582998 DOI: 10.1016/bs.acr.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mucin-domain glycoproteins are highly O-glycosylated cell surface and secreted proteins that serve as both biochemical and biophysical modulators. Aberrant expression and glycosylation of mucins are known hallmarks in numerous malignancies, yet mucin-domain glycoproteins remain enigmatic in the broad landscape of cancer glycobiology. Here we review the multifaceted roles of mucins in cancer through the lens of the analytical and biochemical methods used to study them. We also describe a collection of emerging tools that are specifically equipped to characterize mucin-domain glycoproteins in complex biological backgrounds. These approaches are poised to further elucidate how mucin biology can be understood and subsequently targeted for the next generation of cancer therapeutics.
Collapse
Affiliation(s)
- Nicholas M Riley
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, United States.
| | - Ru M Wen
- Department of Urology, Stanford University School of Medicine, Stanford, CA, United States
| | - Carolyn R Bertozzi
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, United States; Howard Hughes Medical Institute, Stanford, CA, United States
| | - James D Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, CA, United States; Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, United States.
| |
Collapse
|
20
|
Chen TJ, Hsu BH, Lee SW, Yang CC, Tian YF, Kuo YH, Li WS, Tsai HH, Wu LC, Yeh CF, Chou CL, Lai HY. Overexpression of Dehydrogenase/Reductase 9 Predicts Poor Response to Concurrent Chemoradiotherapy and Poor Prognosis in Rectal Cancer Patients. Pathol Oncol Res 2022; 28:1610537. [PMID: 36277959 PMCID: PMC9582124 DOI: 10.3389/pore.2022.1610537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022]
Abstract
Objective: To reduce the risk of locoregional recurrence, the addition of neoadjuvant concurrent chemoradiotherapy (CCRT) is recommended before surgical management for rectal cancer patients. However, despite identical tumor histology, individual patient response to neoadjuvant CCRT varies greatly. Accordingly, a comprehensive molecular characterization that is used to predict CCRT efficacy is instantly needed. Methods: Pearson’s chi-squared test was utilized to correlate dehydrogenase/reductase 9 (DHRS9) expression with clinicopathological features. Survival curves were created applying the Kaplan-Meier method, and the log-rank test was conducted to compare prognostic utility between high and low DHRS9 expression groups. Multivariate Cox proportional hazards regression analysis was applied to identify independent prognostic biomarkers based on variables with prognostic utility at the univariate level. Results: Utilizing a public transcriptome dataset, we identified that the DHRS9 gene is the most considerably upregulated gene related to epithelial cell differentiation (GO: 0030855) among rectal cancer patients with CCRT resistance. Employing immunohistochemical staining, we also demonstrated that high DHRS9 immunoexpression is considerably associated with an aggressive clinical course and CCRT resistance in our rectal cancer cohort. Among all variables with prognostic utility at the univariate level, only high DHRS9 immunoexpression was independently unfavorably prognostic of all three endpoints (all p ≤ 0.048) in the multivariate analysis. In addition, applying bioinformatic analysis, we also linked DHRS9 with unrevealed functions, such as keratan sulfate and mucin synthesis which may be implicated in CCRT resistance. Conclusion: Altogether, DHRS9 expression may serve as a helpful predictive and prognostic biomarker and assist decision-making for rectal cancer patients who underwent neoadjuvant CCRT.
Collapse
Affiliation(s)
- Tzu-Ju Chen
- Department of Clinical Pathology, Chi Mei Medical Center, Tainan, Taiwan
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Bei-Hao Hsu
- Department of General Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Sung-Wei Lee
- Department of Radiation Oncology, Chi Mei Medical Center, Liouying, Taiwan
| | - Ching-Chieh Yang
- Department of Radiation Oncology, Chi Mei Medical Center, Tainan, Taiwan
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Yu-Feng Tian
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Yu-Hsuan Kuo
- Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
- College of Pharmacy and Science, Chia Nan University, Tainan, Taiwan
| | - Wan-Shan Li
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan, Taiwan
- Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hsin-Hwa Tsai
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
- Trans-Omic Laboratory for Precision Medicine, Precision Medicine Center, Chi Mei Medical Center, Tainan, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Li-Ching Wu
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Trans-Omic Laboratory for Precision Medicine, Precision Medicine Center, Chi Mei Medical Center, Tainan, Taiwan
| | - Cheng-Fa Yeh
- Division of General Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Department of Environment Engineering and Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Chia-Lin Chou
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan, Taiwan
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
- *Correspondence: Chia-Lin Chou, ; Hong-Yue Lai,
| | - Hong-Yue Lai
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
- Trans-Omic Laboratory for Precision Medicine, Precision Medicine Center, Chi Mei Medical Center, Tainan, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- *Correspondence: Chia-Lin Chou, ; Hong-Yue Lai,
| |
Collapse
|
21
|
Khandakar H, Agarwal S, Sharma MC, Kandasamy D, Bal C, Rathode Y, Aphale R. Amphicrine Medullary Thyroid Carcinoma - a Case-Based Review Expanding on Its MUC Expression Profile. Endocr Pathol 2022; 33:378-387. [PMID: 35733030 DOI: 10.1007/s12022-022-09725-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 11/03/2022]
Abstract
Amphicrine phenotype in medullary thyroid carcinoma (MTC) is a rare phenomenon characterized by tumor cells that show both endocrine differentiation (calcitonin secretion) and exocrine differentiation (mucin production and secretion). Not much is known about the pathobiology of amphicrine MTCs. This report undertook a case-based review approach by discussing the cytological, histopathological, and ultrastructural features of this rare enigmatic entity, expanding on the radiological and novel MUC immunohistochemistry findings from a 28-year-old MEN2B syndrome patient with C cell hyperplasia and multifocal MTC with amphicrine features. The patient had widespread hematogenous metastases at presentation. MUC immunoexpression analysis revealed evidence of micro-lumina formation, and unique to-date unreported expression patterns of MUC1, MUC5AC, and MUC6 in an amphicrine subtype of MTC. Review of the literature identified five other MTC cases with well-documented amphicrine features. Of these six cases, two were associated with MEN2B syndrome, and four had metastatic disease. Follow-up was available in three patients, and two died of disease. Recognition of this rare subtype of MTC may be of clinical interest given their frequent link to MEN2B syndrome and biological aggressiveness.
Collapse
Affiliation(s)
- Hena Khandakar
- Department of Pathology, First Floor, Teaching Block, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Shipra Agarwal
- Department of Pathology, First Floor, Teaching Block, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Mehar Chand Sharma
- Department of Pathology, First Floor, Teaching Block, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | | - Chandrasekhar Bal
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Yashvant Rathode
- Department of Surgical Disciplines, All India Institute of Medical Sciences, New Delhi, India
| | - Rijuta Aphale
- Department of Surgical Disciplines, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
22
|
Loktionov A. Colon mucus in colorectal neoplasia and beyond. World J Gastroenterol 2022; 28:4475-4492. [PMID: 36157924 PMCID: PMC9476883 DOI: 10.3748/wjg.v28.i32.4475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/23/2022] [Accepted: 08/06/2022] [Indexed: 02/06/2023] Open
Abstract
Little was known about mammalian colon mucus (CM) until the beginning of the 21st century. Since that time considerable progress has been made in basic research addressing CM structure and functions. Human CM is formed by two distinct layers composed of gel-forming glycosylated mucins that are permanently secreted by goblet cells of the colonic epithelium. The inner layer is dense and impenetrable for bacteria, whereas the loose outer layer provides a habitat for abundant commensal microbiota. Mucus barrier integrity is essential for preventing bacterial contact with the mucosal epithelium and maintaining homeostasis in the gut, but it can be impaired by a variety of factors, including CM-damaging switch of commensal bacteria to mucin glycan consumption due to dietary fiber deficiency. It is proven that impairments in CM structure and function can lead to colonic barrier deterioration that opens direct bacterial access to the epithelium. Bacteria-induced damage dysregulates epithelial proliferation and causes mucosal inflammatory responses that may expand to the loosened CM and eventually result in severe disorders, including colitis and neoplastic growth. Recently described formation of bacterial biofilms within the inner CM layer was shown to be associated with both inflammation and cancer. Although obvious gaps in our knowledge of human CM remain, its importance for the pathogenesis of major colorectal diseases, comprising inflammatory bowel disease and colorectal cancer, is already recognized. Continuing progress in CM exploration is likely to result in the development of a range of new useful clinical applications addressing colorectal disease diagnosis, prevention and therapy.
Collapse
|
23
|
Silva TC, Young JI, Martin ER, Chen XS, Wang L. MethReg: estimating the regulatory potential of DNA methylation in gene transcription. Nucleic Acids Res 2022; 50:e51. [PMID: 35100398 PMCID: PMC9122535 DOI: 10.1093/nar/gkac030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/17/2021] [Accepted: 01/11/2022] [Indexed: 01/02/2023] Open
Abstract
Epigenome-wide association studies often detect many differentially methylated sites, and many are located in distal regulatory regions. To further prioritize these significant sites, there is a critical need to better understand the functional impact of CpG methylation. Recent studies demonstrated that CpG methylation-dependent transcriptional regulation is a widespread phenomenon. Here, we present MethReg, an R/Bioconductor package that analyzes matched DNA methylation and gene expression data, along with external transcription factor (TF) binding information, to evaluate, prioritize and annotate CpG sites with high regulatory potential. At these CpG sites, TF-target gene associations are often only present in a subset of samples with high (or low) methylation levels, so they can be missed by analyses that use all samples. Using colorectal cancer and Alzheimer's disease datasets, we show MethReg significantly enhances our understanding of the regulatory roles of DNA methylation in complex diseases.
Collapse
Affiliation(s)
- Tiago C Silva
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Juan I Young
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Eden R Martin
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - X Steven Chen
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lily Wang
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
24
|
Liu BH, Liu GB, Zhang BB, Shen J, Xie LL, Liu XQ, Yao W, Dong R, Bi YL, Dong KR. Tumor Suppressive Role of MUC6 in Wilms Tumor via Autophagy-Dependent β-Catenin Degradation. Front Oncol 2022; 12:756117. [PMID: 35574418 PMCID: PMC9097904 DOI: 10.3389/fonc.2022.756117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Wilms tumor is the most common renal malignancy in children. Known gene mutations account for about 40% of all wilms tumor cases, but the full map of genetic mutations in wilms tumor is far from clear. Whole genome sequencing and RNA sequencing were performed in 5 pairs of wilms tumor tissues and adjacent normal tissues to figure out important genetic mutations. Gene knock-down, CRISPR-induced mutations were used to investigate their potential effects in cell lines and in-vivo xenografted model. Mutations in seven novel genes (MUC6, GOLGA6L2, GPRIN2, MDN1, MUC4, OR4L1 and PDE4DIP) occurred in more than one patient. The most prevalent mutation was found in MUC6, which had 7 somatic exonic variants in 4 patients. In addition, TaqMan assay and immunoblot confirmed that MUC6 expression was reduced in WT tissues when compared with control tissues. Moreover, the results of MUC6 knock-down assay and CRISPR-induced MUC6 mutations showed that MUC6 inhibited tumor aggression via autophagy-dependent β-catenin degradation while its mutations attenuated tumor-suppressive effects of MUC6. Seven novel mutated genes (MUC6, GOLGA6L2, GPRIN2, MDN1, MUC4, OR4L1 and PDE4DIP) were found in WT, among which MUC6 was the most prevalent one. MUC6 acted as a tumor suppressive gene through autophagy dependent β-catenin pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yun-Li Bi
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
| | - Kui-Ran Dong
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
| |
Collapse
|
25
|
Iranmanesh H, Entezari M, Rejali L, Nazemalhosseini-Mojarad E, Maghsoudloo M, Aghdaei HA, Zali MR, Hushmandi K, Rabiee N, Makvandi P, Ashrafizadeh M, Hashemi M. The Association of Clinicopathological Characterizations of Colorectal Cancer with Membrane-Bound Mucins genes and LncRNAs. Pathol Res Pract 2022; 233:153883. [DOI: 10.1016/j.prp.2022.153883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 11/09/2022]
|
26
|
Ionica E, Gaina G, Tica M, Chifiriuc MC, Gradisteanu-Pircalabioru G. Contribution of Epithelial and Gut Microbiome Inflammatory Biomarkers to the Improvement of Colorectal Cancer Patients' Stratification. Front Oncol 2022; 11:811486. [PMID: 35198435 PMCID: PMC8859258 DOI: 10.3389/fonc.2021.811486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022] Open
Abstract
In order to ensure that primary endpoints of clinical studies are attained, the patients' stratification is an important aspect. Selection criteria include age, gender, and also specific biomarkers, such as inflammation scores. These criteria are not sufficient to achieve a straightforward selection, however, in case of multifactorial diseases, with unknown or partially identified mechanisms, occasionally including host factors, and the microbiome. In these cases, the efficacy of interventions is difficult to predict, and as a result, the selection of subjects is often random. Colorectal cancer (CRC) is a highly heterogeneous disease, with variable clinical features, outcomes, and response to therapy; the CRC onset and progress involves multiple sequential steps with accumulation of genetic alterations, namely, mutations, gene amplification, and epigenetic changes. The gut microbes, either eubiotic or dysbiotic, could influence the CRC evolution through a complex and versatile crosstalk with the intestinal and immune cells, permanently changing the tumor microenvironment. There have been significant advances in the development of personalized approaches for CRC screening, treatment, and potential prevention. Advances in molecular techniques bring new criteria for patients' stratification-mutational analysis at the time of diagnosis to guide treatment, for example. Gut microbiome has emerged as the main trigger of gut mucosal homeostasis. This may impact cancer susceptibility through maintenance of the epithelial/mucus barrier and production of protective metabolites, such as short-chain fatty acids (SCFAs) via interactions with the hosts' diet and metabolism. Microbiome dysbiosis leads to the enrichment of cancer-promoting bacterial populations, loss of protective populations or maintaining an inflammatory chronic state, all of which contribute to the development and progression of CRC. Meanwhile, variations in patient responses to anti-cancer immuno- and chemotherapies were also linked to inter-individual differences in intestine microbiomes. The authors aim to highlight the contribution of epithelial and gut microbiome inflammatory biomarkers in the improvement of CRC patients' stratification towards a personalized approach of early diagnosis and treatment.
Collapse
Affiliation(s)
- Elena Ionica
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Gisela Gaina
- Laboratory of Cell Biology, Neuroscience and Experimental Miology, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Mihaela Tica
- Bucharest Emergency University Hospital, Bucharest, Romania
| | - Mariana-Carmen Chifiriuc
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Biological Science Division, Romanian Academy of Sciences, Bucharest, Romania
| | | |
Collapse
|
27
|
Zhu L, Miao B, Dymerska D, Kuswik M, Bueno-Martínez E, Sanoguera-Miralles L, Velasco EA, Paramasivam N, Schlesner M, Kumar A, Yuan Y, Lubinski J, Bandapalli OR, Hemminki K, Försti A. Germline Variants of CYBA and TRPM4 Predispose to Familial Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14030670. [PMID: 35158942 PMCID: PMC8833488 DOI: 10.3390/cancers14030670] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Whole-genome sequencing and bioinformatics analysis on unique colorectal cancer families revealed two attractive candidate predisposition genes, CYBA and TRPM4, each with a loss-of-function variant. Supported by our functional studies, we suggest that the two gene defects mechanistically involve intestinal barrier integrity through reactive oxygen species and mucus biology, which converges in chronic bowel inflammation, a known risk factor for colorectal cancer. Abstract Familial colorectal cancer (CRC) is only partially explained by known germline predisposing genes. We performed whole-genome sequencing in 15 Polish families of many affected individuals, without mutations in known CRC predisposing genes. We focused on loss-of-function variants and functionally characterized them. We identified a frameshift variant in the CYBA gene (c.246delC) in one family and a splice site variant in the TRPM4 gene (c.25–1 G > T) in another family. While both variants were absent or extremely rare in gene variant databases, we identified four additional Polish familial CRC cases and two healthy elderly individuals with the CYBA variant (odds ratio 2.46, 95% confidence interval 0.48–12.69). Both variants led to a premature stop codon and to a truncated protein. Functional characterization of the variants showed that knockdown of CYBA or TRPM4 depressed generation of reactive oxygen species (ROS) in LS174T and HT-29 cell lines. Knockdown of TRPM4 resulted in decreased MUC2 protein production. CYBA encodes a component in the NADPH oxidase system which generates ROS and controls, e.g., bacterial colonization in the gut. Germline CYBA variants are associated with early onset inflammatory bowel disease, supported with experimental evidence on loss of intestinal mucus barrier function due to ROS deficiency. TRPM4 encodes a calcium-activated ion channel, which, in a human colonic cancer cell line, controls calcium-mediated secretion of MUC2, a major component of intestinal mucus barrier. We suggest that the gene defects in CYBA and TRPM4 mechanistically involve intestinal barrier integrity through ROS and mucus biology, which converges in chronic bowel inflammation.
Collapse
Affiliation(s)
- Lizhen Zhu
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany; (L.Z.); (B.M.); (A.K.); (A.F.)
- Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Beiping Miao
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany; (L.Z.); (B.M.); (A.K.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), D-69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany
| | - Dagmara Dymerska
- Department of Genetics and Pathology, Hereditary Cancer Center, Pomeranian Medical University, Unii Lubelskiej 1, 71-252 Szczecin, Poland; (D.D.); (M.K.); (J.L.)
| | - Magdalena Kuswik
- Department of Genetics and Pathology, Hereditary Cancer Center, Pomeranian Medical University, Unii Lubelskiej 1, 71-252 Szczecin, Poland; (D.D.); (M.K.); (J.L.)
| | - Elena Bueno-Martínez
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (E.A.V.)
| | - Lara Sanoguera-Miralles
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (E.A.V.)
| | - Eladio A. Velasco
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (E.A.V.)
| | - Nagarajan Paramasivam
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT), D-69120 Heidelberg, Germany;
| | - Matthias Schlesner
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany;
| | - Abhishek Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany; (L.Z.); (B.M.); (A.K.); (A.F.)
- Institute of Bioinformatics, International Technology Park, Bengaluru 560066, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Ying Yuan
- Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Jan Lubinski
- Department of Genetics and Pathology, Hereditary Cancer Center, Pomeranian Medical University, Unii Lubelskiej 1, 71-252 Szczecin, Poland; (D.D.); (M.K.); (J.L.)
| | - Obul Reddy Bandapalli
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany; (L.Z.); (B.M.); (A.K.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), D-69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, D-69120 Heidelberg, Germany
- Correspondence: (O.R.B.); (K.H.)
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany; (L.Z.); (B.M.); (A.K.); (A.F.)
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
- Correspondence: (O.R.B.); (K.H.)
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany; (L.Z.); (B.M.); (A.K.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), D-69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany
| |
Collapse
|
28
|
Solís-Fernández G, Montero-Calle A, Martínez-Useros J, López-Janeiro Á, de los Ríos V, Sanz R, Dziakova J, Milagrosa E, Fernández-Aceñero MJ, Peláez-García A, Casal JI, Hofkens J, Rocha S, Barderas R. Spatial Proteomic Analysis of Isogenic Metastatic Colorectal Cancer Cells Reveals Key Dysregulated Proteins Associated with Lymph Node, Liver, and Lung Metastasis. Cells 2022; 11:cells11030447. [PMID: 35159257 PMCID: PMC8834500 DOI: 10.3390/cells11030447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/18/2022] Open
Abstract
Metastasis is the primary cause of colorectal cancer (CRC) death. The liver and lung, besides adjacent lymph nodes, are the most common sites of metastasis. Here, we aimed to study the lymph nodes, liver, and lung CRC metastasis by quantitative spatial proteomics analysis using CRC cell-based models that recapitulate these metastases. The isogenic KM12 cell system composed of the non-metastatic KM12C cells, liver metastatic KM12SM cells, and liver and lung metastatic KM12L4a cells, and the isogenic non-metastatic SW480 and lymph nodes metastatic SW620 cells, were used. Cells were fractionated to study by proteomics five subcellular fractions corresponding to cytoplasm, membrane, nucleus, chromatin-bound proteins, and cytoskeletal proteins, and the secretome. Trypsin digested extracts were labeled with TMT 11-plex and fractionated prior to proteomics analysis on a Q Exactive. We provide data on protein abundance and localization of 4710 proteins in their different subcellular fractions, depicting dysregulation of proteins in abundance and/or localization in the most common sites of CRC metastasis. After bioinformatics, alterations in abundance and localization for selected proteins from diverse subcellular localizations were validated via WB, IF, IHC, and ELISA using CRC cells, patient tissues, and plasma samples. Results supported the relevance of the proteomics results in an actual CRC scenario. It was particularly relevant that the measurement of GLG1 in plasma showed diagnostic ability of advanced stages of the disease, and that the mislocalization of MUC5AC and BAIAP2 in the nucleus and membrane, respectively, was significantly associated with poor prognosis of CRC patients. Our results demonstrate that the analysis of cell extracts dilutes protein alterations in abundance in specific localizations that might only be observed studying specific subcellular fractions, as here observed for BAIAP2, GLG1, PHYHIPL, TNFRSF10A, or CDKN2AIP, which are interesting proteins that should be further analyzed in CRC metastasis.
Collapse
Affiliation(s)
- Guillermo Solís-Fernández
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium; (G.S.-F.); (J.H.); (S.R.)
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220 Madrid, Spain;
| | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220 Madrid, Spain;
| | - Javier Martínez-Useros
- Translational Oncology Division, OncoHealth Institute, Health Research Institute—Fundacion Jimenez Diaz University Hospital, 28040 Madrid, Spain;
| | - Álvaro López-Janeiro
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046 Madrid, Spain; (Á.L.-J.); (A.P.-G.)
| | - Vivian de los Ríos
- Proteomics Facility, Centro de Investigaciones Biológicas (CIB-CSIC), 28039 Madrid, Spain;
| | - Rodrigo Sanz
- Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (R.S.); (J.D.); (E.M.); (M.J.F.-A.)
| | - Jana Dziakova
- Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (R.S.); (J.D.); (E.M.); (M.J.F.-A.)
| | - Elena Milagrosa
- Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (R.S.); (J.D.); (E.M.); (M.J.F.-A.)
| | | | - Alberto Peláez-García
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046 Madrid, Spain; (Á.L.-J.); (A.P.-G.)
| | - José Ignacio Casal
- Centro de Investigaciones Biológicas (CIB-CSIC), Department of Molecular Biomedicine, 28039 Madrid, Spain;
| | - Johan Hofkens
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium; (G.S.-F.); (J.H.); (S.R.)
| | - Susana Rocha
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium; (G.S.-F.); (J.H.); (S.R.)
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220 Madrid, Spain;
- Correspondence: ; Tel.: +34-918223231
| |
Collapse
|
29
|
Li R, Guo C, Lin X, Chan TF, Su M, Zhang Z, Lai KP. Integrative omics analysis reveals the protective role of vitamin C on perfluorooctanoic acid-induced hepatoxicity. J Adv Res 2022; 35:279-294. [PMID: 35024202 PMCID: PMC8721266 DOI: 10.1016/j.jare.2021.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 01/09/2023] Open
Abstract
Introduction Perfluorooctanoic acid (PFOA) is a compound used as an industrial surfactant in chemical processes worldwide. Population and cross-sectional studies have demonstrated positive correlations between PFOA levels and human health problems. Objectives Many studies have focused on the hepatotoxicity and liver problems caused by PFOA, with little attention to remediation of these problems. As an antioxidant, vitamin C is frequently utilized as a supplement for hepatic detoxification. Methods In this study, we use a mouse model to study the possible role of vitamin C in reducing PFOA-induced liver damage. Based on comparative transcriptomic and metabolomic analysis, we elucidate the mechanisms underlying the protective effect of vitamin C. Results Our results show that vitamin C supplementation reduces signs of PFOA-induced liver damage including total cholesterol and triglyceride levels increase, liver damage markers aspartate, transaminase, and alanine aminotransferase elevation, and liver enlargement. Further, we show that the protective role of vitamin C is associated with signaling networks control, suppressing linoleic acid metabolism, reducing thiodiglycolic acid, and elevating glutathione in the liver. Conclusion The findings in this study demonstrate, for the first time, the utility of vitamin C for preventing PFOA-induced hepatotoxicity.
Collapse
Affiliation(s)
- Rong Li
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China
| | - Chao Guo
- Department of Pharmacy, Guigang City People's Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi, PR China
| | - Xiao Lin
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Ting Fung Chan
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Min Su
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China
| | | | - Keng Po Lai
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China
| |
Collapse
|
30
|
Degirmenci B, Dincer C, Demirel HC, Berkova L, Moor AE, Kahraman A, Hausmann G, Aguet M, Tuncbag N, Valenta T, Basler K. Epithelial Wnt secretion drives the progression of inflammation-induced colon carcinoma in murine model. iScience 2021; 24:103369. [PMID: 34849464 PMCID: PMC8607204 DOI: 10.1016/j.isci.2021.103369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/13/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022] Open
Abstract
Colon cancer is initiated by stem cells that escape the strict control. This process is often driven through aberrant activation of Wnt signaling by mutations in components acting downstream of the receptor complex that unfetter tumor cells from the need for Wnts. Here we describe a class of colon cancer that does not depend on mutated core components of the Wnt pathway. Genetically blocking Wnt secretion from epithelial cells of such tumors results in apoptosis, reduced expression of colon cancer markers, followed by enhanced tumor differentiation. In contrast to the normal colonic epithelium, such tumor cells autosecrete Wnts to maintain their uncontrolled proliferative behavior. In humans, we determined certain cases of colon cancers in which the Wnt pathway is hyperactive, but not through mutations in its core components. Our findings illuminate the path in therapy to find further subtypes of Wnt-dependent colon cancer that might be responsive to Wnt secretion inhibitors. Acquired expression of epithelial Wnts can drive colon cancer in murine AOM/DSS model Blocking epithelial Wnt-secretion induces apoptosis of AOM/DSS cancer cells The loss of epithelial Wnts promotes differentiation of Wnt-dependent colon tumors Organoids derived from AOM/DSS cancer depend on self-autonomously secreted Wnts
Collapse
Affiliation(s)
- Bahar Degirmenci
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse. 190, CH-8057 Zurich, Switzerland.,Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Cansu Dincer
- Graduate School of Informatics, Department of Health Informatics, METU, Ankara, Turkey
| | - Habibe Cansu Demirel
- Graduate School of Informatics, Department of Health Informatics, METU, Ankara, Turkey
| | - Linda Berkova
- Institute of Molecular Genetics of the ASCR, v. v. i., Vídeňská 1083142 20, Prague 4, Czech Republic
| | - Andreas E Moor
- Swiss Institute for Experimental Cancer Research (ISREC), Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, 1015 Lausanne, Switzerland.,Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Abdullah Kahraman
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - George Hausmann
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse. 190, CH-8057 Zurich, Switzerland
| | - Michel Aguet
- Swiss Institute for Experimental Cancer Research (ISREC), Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, 1015 Lausanne, Switzerland
| | - Nurcan Tuncbag
- Graduate School of Informatics, Department of Health Informatics, METU, Ankara, Turkey
| | - Tomas Valenta
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse. 190, CH-8057 Zurich, Switzerland.,Institute of Molecular Genetics of the ASCR, v. v. i., Vídeňská 1083142 20, Prague 4, Czech Republic
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse. 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
31
|
Iranmanesh H, Majd A, Mojarad EN, Zali MR, Hashemi M. Investigating the Relationship Between the Expression Level of Mucin Gene Cluster (MUC2, MUC5A, and MUC5B) and Clinicopathological Characterization of Colorectal Cancer. Galen Med J 2021; 10:e2030. [PMID: 35572847 PMCID: PMC9086863 DOI: 10.31661/gmj.v10i0.2030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/23/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common cancers in the world and has a high mortality rate. It is accepted that dysfunction in the expression of mucins are associated with the occurrence and development of CRC. Therefore, the present study aimed to investigate the expression of MUC2, MUC5A, and MUC5B genes in CRC and their relationship with clinicopathological variables. Materials and Methods The population included 28 patients after a colonoscopy and confirmation of the results. Tumors and parallel adjacent normal tissues from CRC patients were collected. RNA extraction and cDNA synthesis were performed using the corresponding kits. The gene primer was designed and RT-PCR was used to evaluate gene expression. The t-test and ANOVA were used to examine the differences between the different groups. Data analysis was performed using Prism8 software. Tumors from CRC patients were retrospectively collected from Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Results The results showed that the expression of MUC2, MUC5A, and MUC5B genes was lower in patients with CRC aged 50 years or younger than was in older patients (P<0.05). Only the MUC5B gene expression was associated with tumor grades, which was higher in poorly differentiated tumors. The expression of MUC5A and MUC2 genes was higher in stage IV of the tumor than in other stages (P<0.05). Conclusion: Among the changes in the expression of MUC secretory genes, including MUC2, MUC5A, and MUC5B and clinicopathological variables, there was a relationship that could have prognostic and diagnostic value in CRC. Conclusion None.
Collapse
Affiliation(s)
- Hossein Iranmanesh
- Department of Medical laboratory, Ali Asghar Hospital, Iran University of Medical Sciences , Tehran, Iran
| | - Ahmad Majd
- Department of Biology, Faculty of Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ehsan Nazemalhosseini Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
32
|
Azcue P, Guerrero Setas D, Encío I, Ibáñez-Beroiz B, Mercado M, Vera R, Gómez-Dorronsoro ML. A Novel Prognostic Biomarker Panel for Early-Stage Colon Carcinoma. Cancers (Basel) 2021; 13:5909. [PMID: 34885019 PMCID: PMC8656725 DOI: 10.3390/cancers13235909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/09/2022] Open
Abstract
Molecular characterization of colorectal cancer has helped us understand better the biology of the disease. However, previous efforts have yet to provide significant clinical value in order to be integrated into clinical practice for patients with early-stage colon cancer (CC). The purpose of this study was to assess PD-L1, GLUT-1, e-cadherin, MUC2, CDX2, and microsatellite instability (dMMR) and to propose a risk-panel with prognostic capabilities. Biomarkers were immunohistochemically assessed through tissue microarrays in a cohort of 144 patients with stage II/III colon cancer. A biomarker panel consisting of PD-L1, GLUT-1, dMMR, and potentially CDX2 was constructed that divided patients into low, medium, and high risk of overall survival or disease-free survival (DFS) in equally sized groups. Compared with low-risk patients, medium-risk patients have almost twice the risk of death (HR = 2.10 (0.99-4.46), p = 0.054), while high-risk patients have almost four times the risk (HR = 3.79 (1.77-8.11), p = 0.001). The multivariate goodness of fit was 0.756 and was correlated with Kaplan-Meier curves (p = 0.002). Consistent results were found for DFS. This study provides a critical basis for the future development of an immunohistochemical assessment capable of discerning early-stage CC patients as a function of their prognosis. This tool may aid with treatment personalization in daily clinical practice and improve survival outcomes.
Collapse
Affiliation(s)
- Pablo Azcue
- Department of Health Science, Public University of Navarra, 31008 Pamplona, Spain; (I.E.); (B.I.-B.)
| | - David Guerrero Setas
- Department of Pathology, University Hospital of Navarra, 31008 Pamplona, Spain; (D.G.S.); (M.M.)
- Campus Arrosadia, Public University of Navarra, 31006 Pamplona, Spain
- Molecular Pathology of Cancer Group–Navarrabiomed, 31008 Pamplona, Spain
- Department of Medical Oncology, University Hospital of Navarra, 31008 Pamplona, Spain;
| | - Ignacio Encío
- Department of Health Science, Public University of Navarra, 31008 Pamplona, Spain; (I.E.); (B.I.-B.)
- Institute for Health Research Navarra (IdISNA), 31008 Pamplona, Spain
| | - Berta Ibáñez-Beroiz
- Department of Health Science, Public University of Navarra, 31008 Pamplona, Spain; (I.E.); (B.I.-B.)
- Institute for Health Research Navarra (IdISNA), 31008 Pamplona, Spain
- Unit of Methodology-Navarrabiomed-University Hospital of Navarra, 31008 Pamplona, Spain
- Research Network on Health Services Research and Chronic Diseases (REDISSEC), 31008 Pamplona, Spain
| | - María Mercado
- Department of Pathology, University Hospital of Navarra, 31008 Pamplona, Spain; (D.G.S.); (M.M.)
| | - Ruth Vera
- Department of Medical Oncology, University Hospital of Navarra, 31008 Pamplona, Spain;
- Institute for Health Research Navarra (IdISNA), 31008 Pamplona, Spain
| | - María Luisa Gómez-Dorronsoro
- Department of Pathology, University Hospital of Navarra, 31008 Pamplona, Spain; (D.G.S.); (M.M.)
- Institute for Health Research Navarra (IdISNA), 31008 Pamplona, Spain
| |
Collapse
|
33
|
Yuki A, Fujii C, Yamanoi K, Matoba H, Harumiya S, Kawakubo M, Nakayama J. Glycosylation of MUC6 by α1,4-linked N-acetylglucosamine enhances suppression of pancreatic cancer malignancy. Cancer Sci 2021; 113:576-586. [PMID: 34808019 PMCID: PMC8819301 DOI: 10.1111/cas.15209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/27/2022] Open
Abstract
Biomarkers for early diagnosis of pancreatic cancer are greatly needed, as the high fatality of this cancer is in part due to delayed detection. α1,4‐linked N‐acetylglucosamine (αGlcNAc), a unique O‐glycan specific to gastric gland mucus, is biosynthesized by α1,4‐N‐acetylglucosaminyltransferase (α4GnT) and primarily bound at the terminal glycosylated residue to scaffold protein MUC6. We previously reported that αGlcNAc expression decreases at early stages of neoplastic pancreatic lesions, followed by decreased MUC6 expression, although functional effects of these outcomes were unknown. Here, we ectopically expressed α4GnT, the αGlcNAc biosynthetic enzyme, together with MUC6 in the human pancreatic cancer cell lines MIA PaCa‐2 and PANC‐1, neither of which expresses α4GnT and MUC6. We observed significantly suppressed proliferation in both lines following coexpression of α4GnT and MUC6. Moreover, cellular motility decreased following MUC6 ectopic expression, an effect enhanced by cotransduction with α4GnT. MUC6 expression also attenuated invasiveness of both lines relative to controls, and this effect was also enhanced by additional α4GnT expression. We found αGlcNAc‐bound MUC6 formed a complex with trefoil factor 2. Furthermore, analysis of survival curves of patients with pancreatic ductal adenocarcinoma using a gene expression database showed that samples marked by higher A4GNT or MUC6 mRNA levels were associated with relatively favorable prognosis. These results strongly suggest that αGlcNAc and MUC6 function as tumor suppressors in pancreatic cancer and that decreased expression of both may serve as a biomarker of tumor progression to pancreatic cancer.
Collapse
Affiliation(s)
- Atsuko Yuki
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Chifumi Fujii
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Biotechnology, Interdisciplinary Cluster for Cutting Edge Research, Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan
| | - Kazuhiro Yamanoi
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Hisanori Matoba
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Satoru Harumiya
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masatomo Kawakubo
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
34
|
Peterson C, Plunkard J, Johanson A, Izzi J, Gabrielson K. Immunohistochemical Characterization of a Duodenal Adenocarcinoma with Pulmonary, Hepatic and Parapatellar Metastases in a Common Marmoset (Callithrixjacchus). J Comp Pathol 2021; 189:1-7. [PMID: 34886977 PMCID: PMC8669625 DOI: 10.1016/j.jcpa.2021.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/09/2021] [Accepted: 09/20/2021] [Indexed: 11/30/2022]
Abstract
An 11-year-old male common marmoset (Callithrix jacchus) presented with chronic, progressive weight loss and diarrhoea. Response to treatment with nutritional supplementation, antibiotics and immunosuppressants was modest and transient, and the animal was humanely euthanized. At necropsy, the proximal 8 cm of small intestine was diffusely pale with transmural thickening. The lungs contained coalescing tan, firm nodules measuring up to 4 mm in diameter. Histological examination revealed infiltrative mucinous adenocarcinoma of the duodenum with extensive metastases to the lungs, liver and left parapatellar adipose tissue. The mucinous matrix secreted by the primary and metastatic lesions was strongly periodic acid-Schiff positive. Warthin Starry staining for spirochaetes was negative. Pancytokeratin expression was attenuated in the primary tumour as well as in the metastases, which correlated to a poorly differentiated phenotype. To the authors' knowledge, this is the first report of a proximal duodenal adenocarcinoma with extensive metastatic disease in a common marmoset.
Collapse
Affiliation(s)
- Cornelia Peterson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, Maryland, USA.
| | - Jessica Plunkard
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Andrew Johanson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jessica Izzi
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
35
|
Higashimura Y, Hirabayashi M, Nishikawa H, Inoue R, Nagai E, Matsumoto K, Enomoto T, Mizushima K, Takagi T, Naito Y. Dietary intake of yacon roots ( Smallanthus sonchifolius) affects gut microbiota and fecal mucin and prevents intestinal inflammation in mice. J Clin Biochem Nutr 2021; 69:272-279. [PMID: 34857989 PMCID: PMC8611369 DOI: 10.3164/jcbn.20-203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/28/2021] [Indexed: 12/23/2022] Open
Abstract
Consumption of yacon (Smallanthus sonchifolius) is associated with beneficial effects such as prevention of metabolic diseases. Yacon root is known to contain various bioactive components including indigestible carbohydrates, but the alteration of intestinal environment after treatment with yacon has not been fully investigated. This study investigated yacon-containing diet effects on the intestinal environment in mice, including microbial composition, short-chain fatty acid levels, and mucus content. After mice were administered yacon-containing diet for 4 weeks, 16S rRNA gene sequencing analyses revealed their fecal microbiota profiles. Organic acid concentrations in cecal contents were measured using an HPLC system. Compared to the control group, yacon-containing diet-received mice had significantly higher the concentrations of succinic acid, lactic acid, acetic acid, and propionic acid. The fecal mucin content was also higher in yacon-containing diet-received mice. Results of 16S rRNA gene sequencing analyses showed that the relative abundances of 27 taxa differed significantly in yacon-containing diet-received mice. Furthermore, results show effects of yacon administration on intestinal inflammation using 2,4,6-trinitrobenzene sulfonic acid induced colitis model in mice. Increased colonic damage and myeloperoxidase activity after 2,4,6-trinitrobenzene sulfonic acid treatment were suppressed in yacon-containing diet-received mice. Results suggest that oral intake of yacon root modulates the intestinal environment, thereby inhibiting intestinal inflammation.
Collapse
Affiliation(s)
- Yasuki Higashimura
- Department of Food Science, Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Misaki Hirabayashi
- Department of Food Science, Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | - Hitomi Nishikawa
- Department of Food Science, Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | - Ryo Inoue
- Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Emiko Nagai
- Department of Food Science, Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | - Kenji Matsumoto
- Department of Food Science, Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | - Toshiki Enomoto
- Department of Food Science, Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | - Katsura Mizushima
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tomohisa Takagi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yuji Naito
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
36
|
Juhari WKW, Ahmad Amin Noordin KB, Zakaria AD, Rahman WFWA, Mokhter WMMWM, Hassan MRA, Sidek ASM, Zilfalil BA. Whole-Genome Profiles of Malay Colorectal Cancer Patients with Intact MMR Proteins. Genes (Basel) 2021; 12:genes12091448. [PMID: 34573430 PMCID: PMC8471947 DOI: 10.3390/genes12091448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/12/2022] Open
Abstract
Background: This study aimed to identify new genes associated with CRC in patients with normal mismatch repair (MMR) protein expression. Method: Whole-genome sequencing (WGS) was performed in seven early-age-onset Malay CRC patients. Potential germline genetic variants, including single-nucleotide variations and insertions and deletions (indels), were prioritized using functional and predictive algorithms. Results: An average of 3.2 million single-nucleotide variations (SNVs) and over 800 indels were identified. Three potential candidate variants in three genes—IFNE, PTCH2 and SEMA3D—which were predicted to affect protein function, were identified in three Malay CRC patients. In addition, 19 candidate genes—ANKDD1B, CENPM, CLDN5, MAGEB16, MAP3K14, MOB3C, MS4A12, MUC19, OR2L8, OR51Q1, OR51AR1, PDE4DIP, PKD1L3, PRIM2, PRM3, SEC22B, TPTE, USP29 and ZNF117—harbouring nonsense variants were prioritised. These genes are suggested to play a role in cancer predisposition and to be associated with cancer risk. Pathway enrichment analysis indicated significant enrichment in the olfactory signalling pathway. Conclusion: This study provides a new spectrum of insights into the potential genes, variants and pathways associated with CRC in Malay patients.
Collapse
Affiliation(s)
- Wan Khairunnisa Wan Juhari
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
- Malaysian Node of the Human Variome Project, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | | | - Andee Dzulkarnaen Zakaria
- Department of Surgery, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (A.D.Z.); (W.M.M.W.M.M.)
| | - Wan Faiziah Wan Abdul Rahman
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | | | | | | | - Bin Alwi Zilfalil
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
- Malaysian Node of the Human Variome Project, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Correspondence: ; Tel.: +60-9-7676531
| |
Collapse
|
37
|
Abstract
Mucins are high molecular-weight epithelial glycoproteins and are implicated in many physiological processes, including epithelial cell protection, signaling transduction, and tissue homeostasis. Abnormality of mucus expression and structure contributes to biological properties related to human cancer progression. Tumor growth sites induce inhospitable conditions. Many kinds of research suggest that mucins provide a microenvironment to avoid hypoxia, acidic, and other biological conditions that promote cancer progression. Given that the mucus layer captures growth factors or cytokines, we propose that mucin helps to ameliorate inhospitable conditions in tumor-growing sites. Additionally, the composition and structure of mucins enable them to mimic the surface of normal epithelial cells, allowing tumor cells to escape from immune surveillance. Indeed, human cancers such as mucinous carcinoma, show a higher incidence of invasion to adjacent organs and lymph node metastasis than do non-mucinous carcinoma. In this mini-review, we discuss how mucin provides a tumor-friendly environment and contributes to increased cancer malignancy in mucinous carcinoma.
Collapse
Affiliation(s)
- Dong-Han Wi
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| | - Jong-Ho Cha
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Graduate school, Inha University, Incheon 22212, Korea
| | - Youn-Sang Jung
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| |
Collapse
|
38
|
Chou CL, Chen TJ, Tian YF, Chan TC, Yeh CF, Li WS, Tsai HH, Li CF, Lai HY. Upregulated MUC2 Is an Unfavorable Prognostic Indicator for Rectal Cancer Patients Undergoing Preoperative CCRT. J Clin Med 2021; 10:jcm10143030. [PMID: 34300195 PMCID: PMC8304358 DOI: 10.3390/jcm10143030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
For locally advanced rectal cancer patients, introducing neoadjuvant concurrent chemoradiotherapy (CCRT) before radical resection allows tumor downstaging and increases the rate of anus retention. Since accurate staging before surgery and sensitivity prediction to CCRT remain challenging, a more precise genetic biomarker is urgently needed to enhance the management of such situations. The epithelial mucous barrier can protect the gut lumen, but aberrant mucin synthesis may defend against drug penetration. In this study, we focused on genes related to maintenance of gastrointestinal epithelium (GO: 0030277) and identified mucin 2 (MUC2) as the most significantly upregulated gene correlated with CCRT resistance through a public rectal cancer transcriptome dataset (GSE35452). We retrieved 172 records of rectal cancer patients undergoing CCRT accompanied by radical resection from our biobank. We also assessed the expression level of MUC2 using immunohistochemistry. The results showed that upregulated MUC2 immunoexpression was considerably correlated with the pre-CCRT and post-CCRT positive nodal status (p = 0.001 and p < 0.001), advanced pre-CCRT and post-CCRT tumor status (p = 0.022 and p < 0.001), vascular invasion (p = 0.015), and no or little response to CCRT (p = 0.006). Upregulated MUC2 immunoexpression was adversely prognostic for all three endpoints, disease-specific survival (DSS), local recurrence-free survival (LRFS), and metastasis-free survival (MeFS) (all p < 0.0001), at the univariate level. Moreover, upregulated MUC2 immunoexpression was an independent prognostic factor for worse DSS (p < 0.001), LRFS (p = 0.008), and MeFS (p = 0.003) at the multivariate level. Collectively, these results imply that upregulated MUC2 expression is characterized by a more advanced clinical course and treatment resistance in rectal cancer patients undergoing CCRT, revealing the potential prognostic utility of MUC2 expression.
Collapse
Affiliation(s)
- Chia-Lin Chou
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan 710, Taiwan; (C.-L.C.); (Y.-F.T.)
| | - Tzu-Ju Chen
- Department of Clinical Pathology, Chi Mei Medical Center, Tainan 710, Taiwan; (T.-J.C.); (H.-H.T.)
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan 717, Taiwan;
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yu-Feng Tian
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan 710, Taiwan; (C.-L.C.); (Y.-F.T.)
| | - Ti-Chun Chan
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan;
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Cheng-Fa Yeh
- Department of Internal Medicine, Chi Mei Medical Center, Tainan 710, Taiwan;
| | - Wan-Shan Li
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan 717, Taiwan;
- Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Hsin-Hwa Tsai
- Department of Clinical Pathology, Chi Mei Medical Center, Tainan 710, Taiwan; (T.-J.C.); (H.-H.T.)
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan;
| | - Chien-Feng Li
- Department of Clinical Pathology, Chi Mei Medical Center, Tainan 710, Taiwan; (T.-J.C.); (H.-H.T.)
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan;
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
- Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (C.-F.L.); (H.-Y.L.)
| | - Hong-Yue Lai
- Department of Clinical Pathology, Chi Mei Medical Center, Tainan 710, Taiwan; (T.-J.C.); (H.-H.T.)
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan;
- Correspondence: (C.-F.L.); (H.-Y.L.)
| |
Collapse
|
39
|
Ramezani S, Parkhideh A, Bhattacharya PK, Farach-Carson MC, Harrington DA. Beyond Colonoscopy: Exploring New Cell Surface Biomarkers for Detection of Early, Heterogenous Colorectal Lesions. Front Oncol 2021; 11:657701. [PMID: 34290978 PMCID: PMC8287259 DOI: 10.3389/fonc.2021.657701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/09/2021] [Indexed: 01/10/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths among both men and women in the United States. Early detection and surgical removal of high-risk lesions in the colon can prevent disease from developing and spreading. Despite implementation of programs aimed at early detection, screening colonoscopies fail to detect a fraction of potentially aggressive colorectal lesions because of their location or nonobvious morphology. Optical colonoscopies, while highly effective, rely on direct visualization to detect changes on the surface mucosa that are consistent with dysplasia. Recent advances in endoscopy techniques and molecular imaging permit microscale visualization of the colonic mucosa. These technologies can be combined with various molecular probes that recognize and target heterogenous lesion surfaces to achieve early, real-time, and potentially non-invasive, detection of pre-cancerous lesions. The primary goal of this review is to contextualize existing and emergent CRC surface biomarkers and assess each’s potential as a candidate marker for early marker-based detection of CRC lesions. CRC markers that we include were stratified by the level of support gleaned from peer-reviewed publications, abstracts, and databases of both CRC and other cancers. The selected biomarkers, accessible on the cell surface and preferably on the luminal surface of the colon tissue, are organized into three categories: (1) established biomarkers (those with considerable data and high confidence), (2) emerging biomarkers (those with increasing research interest but with less supporting data), and (3) novel candidates (those with very recent data, and/or supportive evidence from other tissue systems). We also present an overview of recent advances in imaging techniques useful for visual detection of surface biomarkers, and discuss the ease with which these methods can be combined with microscopic visualization.
Collapse
Affiliation(s)
- Saleh Ramezani
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, United States.,Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Arianna Parkhideh
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States.,Department of Anthropology, Washington University in St. Louis, St. Louis, MO, United States
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Mary C Farach-Carson
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States.,Departments of BioSciences and Bioengineering, Rice University, Houston, TX, United States
| | - Daniel A Harrington
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States.,Departments of BioSciences and Bioengineering, Rice University, Houston, TX, United States
| |
Collapse
|
40
|
Illescas O, Rodríguez-Sosa M, Gariboldi M. Mediterranean Diet to Prevent the Development of Colon Diseases: A Meta-Analysis of Gut Microbiota Studies. Nutrients 2021; 13:nu13072234. [PMID: 34209683 PMCID: PMC8308215 DOI: 10.3390/nu13072234] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota dysbiosis is a common feature in colorectal cancer (CRC) and inflammatory bowel diseases (IBD). Adoption of the Mediterranean diet (MD) has been proposed as a therapeutic approach for the prevention of multiple diseases, and one of its mechanisms of action is the modulation of the microbiota. We aimed to determine whether MD can be used as a preventive measure against cancer and inflammation-related diseases of the gut, based on its capacity to modulate the local microbiota. A joint meta-analysis of publicly available 16S data derived from subjects following MD or other diets and from patients with CRC, IBD, or other gut-related diseases was conducted. We observed that the microbiota associated with MD was enriched in bacteria that promote an anti-inflammatory environment but low in taxa with pro-inflammatory properties capable of altering intestinal barrier functions. We found an opposite trend in patients with intestinal diseases, including cancer. Some of these differences were maintained even when MD was compared to healthy controls without a defined diet. Our findings highlight the unique effects of MD on the gut microbiota and suggest that integrating MD principles into a person’s lifestyle may serve as a preventive method against cancer and other gut-related diseases.
Collapse
Affiliation(s)
- Oscar Illescas
- Genetic Epidemiology and Pharmacogenomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), 20133 Milan, Italy;
| | - Miriam Rodríguez-Sosa
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla C.P. 54090, MEX, Mexico;
| | - Manuela Gariboldi
- Genetic Epidemiology and Pharmacogenomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), 20133 Milan, Italy;
- Correspondence: ; Tel.: +39-2-23902042
| |
Collapse
|
41
|
Gundamaraju R, Chong WC. Consequence of distinctive expression of MUC2 in colorectal cancers: How much is actually bad? Biochim Biophys Acta Rev Cancer 2021; 1876:188579. [PMID: 34139275 DOI: 10.1016/j.bbcan.2021.188579] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022]
Abstract
Colorectal cancer (CRC) exhibits complex pathogenesis via compromised intestinal mucosal barrier. It is accepted that goblet cells secrete mucin which line the intestinal mucosal barrier and offer wide range protection and maintain the gut integrity. The principal mucin in the small and large intestine which is Mucin2 (MUC2) is predominantly expressed in the goblet cells which play a pivotal role in intestinal homeostasis. Its disruption is associated with diverse diseases and carcinomas. MUC2 has lately been identified as a principal marker in various mechanisms and secretory cell lineage. While MUC2 expression is regulated by various modulators, alterations in its expression are associated with immunomodulation, differences in tumor immunity and also regulation of microbiota. In the light of current literature, the present review explicates the regulation, functional mechanisms and essential role of MUC2 in colorectal cancer and aids in providing deep understanding of pathogenesis of the disease and also specifies the importance of the MUC2 in gaining more insights about the subtypes of colorectal cancer and how it can succour in approximating the prognosis and survival of the patients.
Collapse
Affiliation(s)
- Rohit Gundamaraju
- ER Stress and Gut Mucosal Immunology Laboratory, School of Health Sciences, University of Tasmania, Launceston, Tasmania 7248, Australia.
| | - Wai Chin Chong
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia; Department of Molecular and Translational Science, School of Medicine, Nursing, and Health Science, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
42
|
Mucin expression, epigenetic regulation and patient survival: A toolkit of prognostic biomarkers in epithelial cancers. Biochim Biophys Acta Rev Cancer 2021; 1876:188538. [PMID: 33862149 DOI: 10.1016/j.bbcan.2021.188538] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
Twenty mucin genes have been identified and classified in two groups (encoding secreted and membrane-bound proteins). Secreted mucins participate in mucus formation by assembling a 3-dimensional network via oligomerization, whereas membrane-bound mucins are anchored to the outer membrane mediating extracellular interactions and cell signaling. Both groups have been associated with carcinogenesis progression in epithelial cancers, and are therefore considered as potential therapeutic targets. In the present review, we discuss the link between mucin expression patterns and patient survival and propose mucins as prognosis biomarkers of epithelial cancers (esophagus, gastric, pancreatic, colorectal, lung, breast or ovarian cancers). We also investigate the relationship between mucin expression and overall survival in the TCGA dataset. In particular, epigenetic mechanisms regulating mucin gene expression, such as aberrant DNA methylation and histone modification, are interesting as they are also associated with diagnosis or prognosis significance. Indeed, mucin hypomethylation has been shown to be associated with carcinogenesis progression and was linked to prognosis in colon cancer or pancreatic cancer patients. Finally we describe the relationship between mucin expression and non-coding RNAs that also may serve as biomarkers. Altogether the concomitant knowledge of specific mucin-pattern expression and epigenetic regulation could be translated as biomarkers with a better specificity/sensitivity performance in several epithelial cancers.
Collapse
|
43
|
Almasmoum H. The Roles of Transmembrane Mucins Located on Chromosome 7q22.1 in Colorectal Cancer. Cancer Manag Res 2021; 13:3271-3280. [PMID: 33883940 PMCID: PMC8053700 DOI: 10.2147/cmar.s299089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of cancers. It is associated with a poor prognosis and high mortality. The role of mucins (MUCs) in colon tumorigenesis is unclear, but it might be significant in the progression of malignancy. Some mucins, such as MUC1 and MUC13, act as oncogenes, whereas others, such as MUC2 and MUC6, are tumor suppressors. However, there are still mucins with unidentified roles in CRC. In this review, we discuss the reported roles of mucins in CRC. Moreover, we review the capability of the mucin family to serve as a sensitive and specific histopathological marker for the early diagnosis of CRC. Lastly, the role of mucin genes clustered on chromosome 7q22 in CRC and other cancers is also discussed.
Collapse
Affiliation(s)
- Hussain Almasmoum
- Laboratory Medicine Department, Faculty of Applied Medical Science, Umm Al-Qura University, Makkah, 7607, Saudi Arabia
| |
Collapse
|
44
|
Ribeirinho-Soares S, Pádua D, Amaral AL, Valentini E, Azevedo D, Marques C, Barros R, Macedo F, Mesquita P, Almeida R. Prognostic significance of MUC2, CDX2 and SOX2 in stage II colorectal cancer patients. BMC Cancer 2021; 21:359. [PMID: 33823840 PMCID: PMC8025574 DOI: 10.1186/s12885-021-08070-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/19/2021] [Indexed: 01/09/2023] Open
Abstract
Background Colorectal cancer (CRC) remains a serious health concern worldwide. Despite advances in diagnosis and treatment, about 15 to 30% of stage II CRC patients subjected to tumor resection with curative intent, develop disease relapse. Moreover, the therapeutic strategy adopted after surgery is not consensual for these patients. This supports the imperative need to find new prognostic and predictive biomarkers for stage II CRC. Methods For this purpose, we used a one-hospital series of 227 stage II CRC patient samples to assess the biomarker potential of the immunohistochemical expression of MUC2 mucin and CDX2 and SOX2 transcription factors. The Kaplan-Meier method was used to generate disease-free survival curves that were compared using the log-rank test, in order to determine prognosis of cases with different expression of these proteins, different mismatch repair (MMR) status and administration or not of adjuvant chemotherapy. Results In this stage II CRC series, none of the studied biomarkers showed prognostic value for patient outcome. However low expression of MUC2, in cases with high expression of CDX2, absence of SOX2 or MMR-proficiency, conferred a significantly worst prognosis. Moreover, cases with low expression of MUC2 showed a significantly clear benefit from treatment with adjuvant chemotherapy. Conclusion In conclusion, we observe that patients with stage II CRC with low expression of MUC2 in the tumor respond better when treated with adjuvant chemotherapy. This observation supports that MUC2 is involved in resistance to fluorouracil-based adjuvant chemotherapy and might be a promising future predictive biomarker in stage II CRC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08070-6.
Collapse
Affiliation(s)
- Sara Ribeirinho-Soares
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Diana Pádua
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Ana Luísa Amaral
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Elvia Valentini
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | | | | | - Rita Barros
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Filipa Macedo
- IPO-C - Instituto Português de Oncologia de Coimbra Francisco Gentil, E. P. E, Coimbra, Portugal
| | - Patrícia Mesquita
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Raquel Almeida
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal. .,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal. .,Faculty of Medicine, University of Porto, Porto, Portugal. .,Biology Department, Faculty of Sciences of the University of Porto, Porto, Portugal.
| |
Collapse
|
45
|
Kumar S, Agnihotri N. Piperlongumine targets NF-κB and its downstream signaling pathways to suppress tumor growth and metastatic potential in experimental colon cancer. Mol Cell Biochem 2021; 476:1765-1781. [PMID: 33433833 DOI: 10.1007/s11010-020-04044-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022]
Abstract
NF-κB is the principle transcription factor and plays the central role in orchestrating chronic inflammation by regulating levels of cytokines, chemokines and growth factors. Piperlongumine (PL), a major alkaloid in the fruit of Piper longum Linn. has gained worldwide attention for its anticancer properties, however, its mechanism of action in the chemoprevention of colon cancer has not been investigated yet. Therefore, the present study was designed to elucidate the underlying molecular mechanism of PL in preventing DMH/DSS induced experimental colon cancer in mice. In the current study well established DMH/DSS induced experimental colon cancer mouse model was used to demonstrate the chemopreventive potential of PL. The expression of NF-κB and its downstream target proteins was evaluated mainly through western blotting. In addition, CAM assay, immunohistochemical staining and gelatin zymography was used to show anti-angiogenic and anti-invasive potential of PL. Additionally, important tumor biomarkers such as TSA, LASA, LDH and IL-6 levels were also estimated. The results of current study showed that PL was capable to inhibit NF-κB activation as well as its nuclear translocation. PL administration to DMH/DSS treated mice also inhibited the NF-κB downstream signaling cascades such as including COX-2 pathway, JAK/STAT pathway, β-catenin, Notch signaling pathway, angiogenesis and epithelial to mesenchymal transition pathway. The findings of the present study have claimed PL as promising chemopreventive agent for colon cancer with pleiotropic action. The current study emphasizes that regular consumption of PL can be an effective approach in the prevention of colon cancer in humans.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Biochemistry, Basic Medical Science, Block-II, Sector-25, South Campus, Panjab University, Chandigarh, 160014, India
- Pharmacology and Toxicology Lab, Block J, CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India
| | - Navneet Agnihotri
- Department of Biochemistry, Basic Medical Science, Block-II, Sector-25, South Campus, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
46
|
Brockhausen I, Melamed J. Mucins as anti-cancer targets: perspectives of the glycobiologist. Glycoconj J 2021; 38:459-474. [PMID: 33704667 DOI: 10.1007/s10719-021-09986-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Mucins are highly O-glycosylated glycoproteins that carry a heterogenous variety of O-glycan structures. Tumor cells tend to overexpress specific mucins, such as the cell surface mucins MUC1 and MUC4 that are engaged in signaling and cell growth, and exhibit abnormal glycosylation. In particular, the Tn and T antigens and their sialylated forms are common in cancer mucins. We review herein methods chosen to use cancer-associated glycans and mucins as targets for the design of anti-cancer immunotherapies. Mucin peptides from the glycosylated and transmembrane domains have been combined with immune-stimulating adjuvants in a wide variety of approaches to produce anti-tumor antibodies and vaccines. These mucin conjugates have been tested on cancer cells in vitro and in mice with significant successes in stimulating anti-tumor responses. The clinical trials in humans, however, have shown limited success in extending survival. It seems critical that the individual-specific epitope expression of cancer mucins is considered in future therapies to result in lasting anti-tumor responses.
Collapse
Affiliation(s)
- Inka Brockhausen
- Biomedical and Molecular Sciences, Queen's University, 18 Stuart St, Kingston, ON, K7L 3N6, Canada.
| | - Jacob Melamed
- Biomedical and Molecular Sciences, Queen's University, 18 Stuart St, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
47
|
HAZGUI M, WESLATI M, BOUGHRIBA R, OUNISSI D, BACHA D, BOURAOUI S. MUC1 and MUC5AC implication in Tunisian colorectal cancer patients. Turk J Med Sci 2021; 51:309-318. [PMID: 32967412 PMCID: PMC7991860 DOI: 10.3906/sag-2003-29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Background/aim Mucins, such as MUC1 and MUC5AC, are known for their protective and moisturizing role in intestinal epithelium. Their expression is tightly controlled given their essential role in normal tissue homeostasis, whereas their deregulation leads to chronic inflammation, and even cancer. This study aimed to assess the expression profiles of MUC1 and MUC5AC and their implications in colorectal carcinogenesis. Materials and methods A retrospective study of 202 patients who underwent colorectal cancer (CRC) surgery was conducted. The expression of MUC1 and MUC5AC was investigated by immunohistochemistry and reverse-transcription polymerase chain reaction (RT-PCR). Statistical analysis of mucin expression pattern, as well as the clinicopathological criteria of the patients, was performed using the chi-square test, survival curves were plotted using the Kaplan—Meier product-limit method, and differences between the survival curves were tested using the log-rank test. Results The expression of both mucins was abnormally high in the tumor tissues for both mRNA and protein. MUC1 expression was correlated with advanced cancer stages and lymph node metastases for both the mRNA (P < 0.016 and P < 0.002, respectively) and protein level (P < 0.006 and P < 0.001, respectively). However, MUC5AC expression did not pinpoint any significant association between the clinicopathological criteria, but patients who expressed MUC5AC showed an increase in overall survival (P < 0.009). Conclusion The expression of MUC1 might be a poor prognostic biomarker in CRC and could play a role in tumor transformation and metastasis. However, MUC5AC expression might be a good prognostic in the Tunisian cohort.
Collapse
Affiliation(s)
- Meriam HAZGUI
- Laboratory of Colorectal Cancer Research UR12SP14, Mongi Slim Hospital, La MarsaTunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, TunisTunisia
| | - Marwa WESLATI
- Laboratory of Colorectal Cancer Research UR12SP14, Mongi Slim Hospital, La MarsaTunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, TunisTunisia
| | - Rahma BOUGHRIBA
- Laboratory of Colorectal Cancer Research UR12SP14, Mongi Slim Hospital, La MarsaTunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, TunisTunisia
| | - Donia OUNISSI
- Laboratory of Colorectal Cancer Research UR12SP14, Mongi Slim Hospital, La MarsaTunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, TunisTunisia
| | - Dhouha BACHA
- Department of Pathology and Cytology, Mongi Slim Hospital, La MarsaTunisia
| | - Saadia BOURAOUI
- Laboratory of Colorectal Cancer Research UR12SP14, Mongi Slim Hospital, La MarsaTunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, TunisTunisia
| |
Collapse
|
48
|
Dong N, Guo R, Gong Y, Yuan Y. Phenotype characteristics of gastric epithelial mucus in patients with different gastric diseases: from superficial gastritis to gastric cancer. PeerJ 2021; 9:e10822. [PMID: 33665018 PMCID: PMC7916529 DOI: 10.7717/peerj.10822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/02/2021] [Indexed: 11/20/2022] Open
Abstract
Background Gastric gland mucin is important for maintaining the basic function of the gastric mucosa, protecting it from foreign substances and reducing the occurrence of gastric diseases. Exploring the phenotype of gastric gland mucus changes during the progression of gastric disease is of great clinical significance. Methods A total of 483 patients with different gastric diseases were collected in this study, including 82 superficial gastritis (SG), 81 atrophic gastritis (AG), 168 dysplasia (GD), and 152 gastric cancer (GC). Mucin staining was performed using HID-ABpH2.5-PAS method and was further grouped according to the mucin coloration. Results The phenotypic characteristics of mucin during disease progression were divided into neutral, acidic, and mucus-free types. Furthermore, acidic mucus can be divided into type I, type II, and type III. The SG group was dominated by neutral mucus (100%), and the AG was dominated by acid mucus (81.48%), which gradually increased with the severity of atrophy (P < 0.05). The GD and GC groups were dominated by mucus-free (43.45%, 78.29%), and as the degree of GD worsened, neutral and acidic mucus gradually decreased and mucus-free increased (P < 0.001). From the SG, AG, GD, and GC progression, neutral and acidic mucus gradually decreased, and mucus- free gradually increased. Acidic mucin revealed that type III (red-brown black) mucin was predominant in AG, GD, and GC, and increased with the degree of AG, GD, as well as the biological behavior of GC. In the lesion adjacent to high-grade GD or GC, type III acid mucin is predominant. Conclusion There were three mucin phenotypes in the process of gastric diseases. With the disease progression, the trend of phenotypic change was that neutral and acidic mucus gradually decreased and mucus-free increased. The appearance of type III mucin suggested a relatively serious phase of gastric diseases and may be a more suitable candidate for follow-up monitoring of patients with GC risk.
Collapse
Affiliation(s)
- Nannan Dong
- The First Hospital of China Medical University, Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, Shenyang, LiaoNing, China.,The First Hospital of China Medical University, Tumor Etiology and Screening Department of Cancer Institute and General Surgery, Shenyang, LiaoNing, China.,The First Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, Shenyang, LiaoNing, China
| | - Rui Guo
- The First Hospital of China Medical University, Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, Shenyang, LiaoNing, China.,The First Hospital of China Medical University, Tumor Etiology and Screening Department of Cancer Institute and General Surgery, Shenyang, LiaoNing, China.,The First Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, Shenyang, LiaoNing, China
| | - Yuehua Gong
- The First Hospital of China Medical University, Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, Shenyang, LiaoNing, China.,The First Hospital of China Medical University, Tumor Etiology and Screening Department of Cancer Institute and General Surgery, Shenyang, LiaoNing, China.,The First Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, Shenyang, LiaoNing, China
| | - Yuan Yuan
- The First Hospital of China Medical University, Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, Shenyang, LiaoNing, China.,The First Hospital of China Medical University, Tumor Etiology and Screening Department of Cancer Institute and General Surgery, Shenyang, LiaoNing, China.,The First Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, Shenyang, LiaoNing, China
| |
Collapse
|
49
|
Dong SW, Li R, Cheng Z, Liu DC, Xia J, Xu J, Li S, Wang J, Yue Y, Fan Y, Cao Y, Dai L, Wang J, Zhao P, Wang X, Xiao Z, Qiu C, Wang GS, Zou C. Mutational Pattern in Multiple Pulmonary Nodules Are Associated With Early Stage Lung Adenocarcinoma. Front Oncol 2021; 10:571521. [PMID: 33680914 PMCID: PMC7934775 DOI: 10.3389/fonc.2020.571521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/08/2020] [Indexed: 01/07/2023] Open
Abstract
The clinical significance of mutation in multiple pulmonary nodules is largely limited by single gene mutation-directed analysis and lack of validation of gene expression profiles. New analytic strategy is urgently needed for comprehensive understanding of genomic data in multiple pulmonary nodules. In this study, we performed whole exome sequencing in 16 multiple lung nodules and 5 adjacent normal tissues from 4 patients with multiple pulmonary nodules and decoded the mutation information from a perspective of cellular functions and signaling pathways. Mutated genes as well as mutation patterns shared in more than two lesions were identified and characterized. We found that the number of mutations or mutated genes and the extent of protein structural changes caused by different mutations is positively correlated with the degree of malignancy. Moreover, the mutated genes in the nodules are associated with the molecular functions or signaling pathways related to cell proliferation and survival. We showed a developing pattern of quantity (the number of mutations/mutated genes) and quality (the extent of protein structural changes) in multiple pulmonary nodules. The mutation and mutated genes in multiple pulmonary nodules are associated with cell proliferation and survival related signaling pathways. This study provides a new perspective for comprehension of genomic mutational data and might shed new light on deciphering molecular evolution of early stage lung adenocarcinoma.
Collapse
Affiliation(s)
- Shao-Wei Dong
- Clinical Medical Research Centre, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China.,Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen, China
| | - Rong Li
- Department of Oncology, Taikang Xianlin Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhiqiang Cheng
- Department of Pathology, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Dong-Cheng Liu
- Clinical Medical Research Centre, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Jinquan Xia
- Clinical Medical Research Centre, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Jing Xu
- Department of Pathology, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Shixuan Li
- Department of Thoracic Surgery, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Jian Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Yongjian Yue
- Department of Respiratory and Critical Medicine, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Yingrui Fan
- Department of Oncology, Taikang Xianlin Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yundi Cao
- Department of Oncology, Taikang Xianlin Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Lingyun Dai
- Department of Geriatrics, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Jigang Wang
- Department of Geriatrics, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Pan Zhao
- Clinical Medical Research Centre, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong
| | - Zhangang Xiao
- Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwestern Medical University, Luzhou, China
| | - Chen Qiu
- Department of Respiratory and Critical Medicine, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Guang-Suo Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Chang Zou
- Clinical Medical Research Centre, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China.,Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen, China
| |
Collapse
|
50
|
Wang S, You L, Dai M, Zhao Y. Quantitative assessment of the diagnostic role of mucin family members in pancreatic cancer: a meta-analysis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:192. [PMID: 33708819 PMCID: PMC7940915 DOI: 10.21037/atm-20-5606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background The use of mucins (MUC) as specific biomarkers for various malignancies has recently emerged. MUC1, MUC4, MUC5AC, and MUC16 can be detected at different stages of pancreatic cancer (PC), and can be valuable for indicating the initiation and progression of this disease. However, the diagnostic significance of the mucin family in patients with PC remains disputed. Herein, we assessed the diagnostic accuracy of mucins in PC using a meta-analysis. Methods We searched the PubMed, Cochrane Library, Institute for Scientific Information (ISI) Web of Science, Embase, and Chinese databases from their date of inception to June 1, 2020 to identify studies assessing the diagnostic performance of mucins in PC. The estimations of diagnostic indicators in selected studies were extracted for further analysis by Meta-DiSc software. Publication bias was assessed using Deeks’ funnel plot asymmetry test. Results Our meta-analysis included 34 studies. The pooled accuracy indicators of MUC1 in PC including the sensitivity, specificity, diagnostic odds ratio (DOR), positive likelihood ratio (PLR), and negative likelihood ratio (NLR) (with 95% confidence intervals) were 0.84 (0.82–0.86), 0.60 (0.56–0.64), 18.37 (9.18–36.78), 2.62 (1.79–3.86), and 0.22 (0.15–0.33), respectively. The area under the summary receiver operating characteristic (SROC) curve was 0.8875 and the Q index was 0.8181. Quantitative random-effects meta-analysis of MUC4 in PC using the summary (ROC) curve model revealed a pooled sensitivity of 0.86 (95% confidence interval, 0.82–0.89) and specificity of 0.88 (95% confidence interval, 0.85–0.91). In addition, the meta-analysis of MUC5AC in PC diagnosis also showed a high sensitivity and specificity of 0.71 (95% confidence interval, 0.65–0.76) and 0.60 (95% confidence interval, 0.53–0.66), respectively. Regarding MUC16, the area under the summary ROC curve and Q index were 0.9185 and 0.8516, respectively. Conclusions In summary, our results suggested a good diagnostic accuracy of several crucial mucins in PC. Mucins may serve as optional indicators in PC examination, and further research is warranted to investigate the role of mucins as potential clinical biomarkers.
Collapse
Affiliation(s)
- Shunda Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Menghua Dai
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|