1
|
Zhang F, Chen Y, Ning L, Rushmore J, Liu Q, Du M, Hassanzadeh‐Behbahani S, Legarreta J, Yeterian E, Makris N, Rathi Y, O'Donnell L. Assessment of the Depiction of Superficial White Matter Using Ultra-High-Resolution Diffusion MRI. Hum Brain Mapp 2024; 45:e70041. [PMID: 39392220 PMCID: PMC11467805 DOI: 10.1002/hbm.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024] Open
Abstract
The superficial white matter (SWM) consists of numerous short-range association fibers connecting adjacent and nearby gyri and plays an important role in brain function, development, aging, and various neurological disorders. Diffusion MRI (dMRI) tractography is an advanced imaging technique that enables in vivo mapping of the SWM. However, detailed imaging of the small, highly-curved fibers of the SWM is a challenge for current clinical and research dMRI acquisitions. This work investigates the efficacy of mapping the SWM using in vivo ultra-high-resolution dMRI data. We compare the SWM mapping performance from two dMRI acquisitions: a high-resolution 0.76-mm isotropic acquisition using the generalized slice-dithered enhanced resolution (gSlider) protocol and a lower resolution 1.25-mm isotropic acquisition obtained from the Human Connectome Project Young Adult (HCP-YA) database. Our results demonstrate significant differences in the cortico-cortical anatomical connectivity that is depicted by these two acquisitions. We perform a detailed assessment of the anatomical plausibility of these results with respect to the nonhuman primate (macaque) tract-tracing literature. We find that the high-resolution gSlider dataset is more successful at depicting a large number of true positive anatomical connections in the SWM. An additional cortical coverage analysis demonstrates significantly higher cortical coverage in the gSlider dataset for SWM streamlines under 40 mm in length. Overall, we conclude that the spatial resolution of the dMRI data is one important factor that can significantly affect the mapping of SWM. Considering the relatively long acquisition time, the application of dMRI tractography for SWM mapping in future work should consider the balance of data acquisition efforts and the efficacy of SWM depiction.
Collapse
Affiliation(s)
- Fan Zhang
- School of Information and Communication Engineering, University of Electronic Science and Technology of ChinaChengduChina
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Yuqian Chen
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Lipeng Ning
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Jarrett Rushmore
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
| | - Qiang Liu
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Mubai Du
- School of Information and Communication Engineering, University of Electronic Science and Technology of ChinaChengduChina
| | | | - Jon Haitz Legarreta
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Edward Yeterian
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
- Department of PsychologyColby CollegeWatervilleMaineUSA
| | - Nikos Makris
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Yogesh Rathi
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Lauren J. O'Donnell
- School of Information and Communication Engineering, University of Electronic Science and Technology of ChinaChengduChina
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
2
|
Naveed K, Rashidi-Ranjbar N, Kumar S, Zomorrodi R, Blumberger DM, Fischer CE, Sanches M, Mulsant BH, Pollock BG, Voineskos AN, Rajji TK. Effect of dorsolateral prefrontal cortex structural measures on neuroplasticity and response to paired-associative stimulation in Alzheimer's dementia. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230233. [PMID: 38853564 PMCID: PMC11343312 DOI: 10.1098/rstb.2023.0233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/04/2023] [Accepted: 01/15/2024] [Indexed: 06/11/2024] Open
Abstract
Long-term potentiation (LTP)-like activity can be induced by stimulation protocols such as paired associative stimulation (PAS). We aimed to determine whether PAS-induced LTP-like activity (PAS-LTP) of the dorsolateral prefrontal cortex (DLPFC) is associated with cortical thickness and other structural measures impaired in Alzheimer's dementia (AD). We also explored longitudinal relationships between these brain structures and PAS-LTP response after a repetitive PAS (rPAS) intervention. Mediation and regression analyses were conducted using data from randomized controlled trials with AD and healthy control participants. PAS-electroencephalography assessed DLPFC PAS-LTP. DLPFC thickness and surface area were acquired from T1-weighted magnetic resonance imaging. Fractional anisotropy and mean diffusivity (MD) of the superior longitudinal fasciculus (SLF)-a tract important to induce PAS-LTP-were measured with diffusion-weighted imaging. AD participants exhibited reduced DLPFC thickness and increased SLF MD. There was also some evidence that reduction in DLPFC thickness mediates DLPFC PAS-LTP impairment. Longitudinal analyses showed preliminary evidence that SLF MD, and to a lesser extent DLPFC thickness, is associated with DLPFC PAS-LTP response to active rPAS. This study expands our understanding of the relationships between brain structural changes and neuroplasticity. It provides promising evidence for a structural predictor to improving neuroplasticity in AD with neurostimulation. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- K. Naveed
- Temerty Faculty of Medicine, University of Toronto, 1 King’s College Cir, Toronto, OntarioM5S 1A8, Canada
- Toronto Dementia Research Alliance, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
| | - N. Rashidi-Ranjbar
- Temerty Faculty of Medicine, University of Toronto, 1 King’s College Cir, Toronto, OntarioM5S 1A8, Canada
- Toronto Dementia Research Alliance, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, 209 Victoria Street, Toronto, OntarioM5B 1T8, Canada
| | - S. Kumar
- Temerty Faculty of Medicine, University of Toronto, 1 King’s College Cir, Toronto, OntarioM5S 1A8, Canada
- Toronto Dementia Research Alliance, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 479 Spadina Avenue, Toronto, OntarioM5S 2S1, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
| | - R. Zomorrodi
- Temerty Faculty of Medicine, University of Toronto, 1 King’s College Cir, Toronto, OntarioM5S 1A8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 479 Spadina Avenue, Toronto, OntarioM5S 2S1, Canada
| | - D. M. Blumberger
- Temerty Faculty of Medicine, University of Toronto, 1 King’s College Cir, Toronto, OntarioM5S 1A8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 479 Spadina Avenue, Toronto, OntarioM5S 2S1, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
| | - C. E. Fischer
- Temerty Faculty of Medicine, University of Toronto, 1 King’s College Cir, Toronto, OntarioM5S 1A8, Canada
- Toronto Dementia Research Alliance, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, 209 Victoria Street, Toronto, OntarioM5B 1T8, Canada
| | - M. Sanches
- Biostatistics Core, Centre for Addiction and Mental Health, 60 White Squirrel Way, Toronto, OntarioM6J 1H4, Canada
| | - B. H. Mulsant
- Temerty Faculty of Medicine, University of Toronto, 1 King’s College Cir, Toronto, OntarioM5S 1A8, Canada
- Toronto Dementia Research Alliance, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 479 Spadina Avenue, Toronto, OntarioM5S 2S1, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
| | - B. G. Pollock
- Temerty Faculty of Medicine, University of Toronto, 1 King’s College Cir, Toronto, OntarioM5S 1A8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 479 Spadina Avenue, Toronto, OntarioM5S 2S1, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
| | - A. N. Voineskos
- Temerty Faculty of Medicine, University of Toronto, 1 King’s College Cir, Toronto, OntarioM5S 1A8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 479 Spadina Avenue, Toronto, OntarioM5S 2S1, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
| | - T. K. Rajji
- Temerty Faculty of Medicine, University of Toronto, 1 King’s College Cir, Toronto, OntarioM5S 1A8, Canada
- Toronto Dementia Research Alliance, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 479 Spadina Avenue, Toronto, OntarioM5S 2S1, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
| |
Collapse
|
3
|
Xue T, Zhang F, Zhang C, Chen Y, Song Y, Golby AJ, Makris N, Rathi Y, Cai W, O'Donnell LJ. Superficial white matter analysis: An efficient point-cloud-based deep learning framework with supervised contrastive learning for consistent tractography parcellation across populations and dMRI acquisitions. Med Image Anal 2023; 85:102759. [PMID: 36706638 PMCID: PMC9975054 DOI: 10.1016/j.media.2023.102759] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/05/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023]
Abstract
Diffusion MRI tractography is an advanced imaging technique that enables in vivo mapping of the brain's white matter connections. White matter parcellation classifies tractography streamlines into clusters or anatomically meaningful tracts. It enables quantification and visualization of whole-brain tractography. Currently, most parcellation methods focus on the deep white matter (DWM), whereas fewer methods address the superficial white matter (SWM) due to its complexity. We propose a novel two-stage deep-learning-based framework, Superficial White Matter Analysis (SupWMA), that performs an efficient and consistent parcellation of 198 SWM clusters from whole-brain tractography. A point-cloud-based network is adapted to our SWM parcellation task, and supervised contrastive learning enables more discriminative representations between plausible streamlines and outliers for SWM. We train our model on a large-scale tractography dataset including streamline samples from labeled long- and medium-range (over 40 mm) SWM clusters and anatomically implausible streamline samples, and we perform testing on six independently acquired datasets of different ages and health conditions (including neonates and patients with space-occupying brain tumors). Compared to several state-of-the-art methods, SupWMA obtains highly consistent and accurate SWM parcellation results on all datasets, showing good generalization across the lifespan in health and disease. In addition, the computational speed of SupWMA is much faster than other methods.
Collapse
Affiliation(s)
- Tengfei Xue
- Brigham and Women's Hospital, Harvard Medical School, Boston, USA; School of Computer Science, University of Sydney, Sydney, Australia
| | - Fan Zhang
- Brigham and Women's Hospital, Harvard Medical School, Boston, USA.
| | - Chaoyi Zhang
- School of Computer Science, University of Sydney, Sydney, Australia
| | - Yuqian Chen
- Brigham and Women's Hospital, Harvard Medical School, Boston, USA; School of Computer Science, University of Sydney, Sydney, Australia
| | - Yang Song
- School of Computer Science and Engineering, University of New South Wales, Sydney, Australia
| | | | - Nikos Makris
- Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Center for Morphometric Analysis, Massachusetts General Hospital, Boston, USA
| | - Yogesh Rathi
- Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Weidong Cai
- School of Computer Science, University of Sydney, Sydney, Australia
| | | |
Collapse
|
4
|
Pietrasik W, Cribben I, Olsen F, Malykhin N. Diffusion tensor imaging of superficial prefrontal white matter in healthy aging. Brain Res 2023; 1799:148152. [PMID: 36343726 DOI: 10.1016/j.brainres.2022.148152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/27/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
The prefrontal cortex (PFC) is a heterogenous structure that is highly susceptible to the effects of aging. Few studies have investigated age effects on the superficial white matter (WM) contained within the PFC using in-vivo magnetic resonance imaging (MRI). This study used diffusion tensor imaging (DTI) tractography to examine the effects of age, sex, and intracranial volume (ICV) on superficial WM within specific PFC subregions, and to model the relationships with age using higher order polynomial regression modelling. PFC WM of 140 healthy individuals, aged 18-85, was segmented into medial and lateral orbitofrontal, medial prefrontal, and dorsolateral prefrontal subregions. Differences due to age in microstructural parameters such as fractional anisotropy (FA), axial and radial diffusivities, and macrostructural measures of tract volumes, fiber counts, average fiber lengths, and average number of fibers per voxel were examined. We found that most prefrontal subregions demonstrated age effects, with decreases in FA, tract volume, and fiber counts, and increases in all diffusivity measures. Age relationships were mostly non-linear, with higher order regressions chosen in most cases. Declines in PFC FA began at the onset of adulthood while the greatest changes in diffusivity and volume did not occur until middle age. The effects of age were most prominent in medial tracts while the lateral orbitofrontal tracts were less affected. Significant effects of sex and ICV were also observed in certain parameters. The patterns mostly followed myelination order, with late-myelinating prefrontal subregions experiencing earlier and more pronounced age effects, further supporting the frontal theory of aging.
Collapse
Affiliation(s)
- Wojciech Pietrasik
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada; Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ivor Cribben
- Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada; Department of Accounting & Business Analytics, Alberta School of Business, University of Alberta, Edmonton, Alberta, Canada
| | - Fraser Olsen
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nikolai Malykhin
- Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada; Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
5
|
Schilling KG, Archer D, Yeh FC, Rheault F, Cai LY, Shafer A, Resnick SM, Hohman T, Jefferson A, Anderson AW, Kang H, Landman BA. Short superficial white matter and aging: a longitudinal multi-site study of 1293 subjects and 2711 sessions. AGING BRAIN 2023; 3:100067. [PMID: 36817413 PMCID: PMC9937516 DOI: 10.1016/j.nbas.2023.100067] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
It is estimated that short association fibers running immediately beneath the cortex may make up as much as 60% of the total white matter volume. However, these have been understudied relative to the long-range association, projection, and commissural fibers of the brain. This is largely because of limitations of diffusion MRI fiber tractography, which is the primary methodology used to non-invasively study the white matter connections. Inspired by recent anatomical considerations and methodological improvements in superficial white matter (SWM) tractography, we aim to characterize changes in these fiber systems in cognitively normal aging, which provide insight into the biological foundation of age-related cognitive changes, and a better understanding of how age-related pathology differs from healthy aging. To do this, we used three large, longitudinal and cross-sectional datasets (N = 1293 subjects, 2711 sessions) to quantify microstructural features and length/volume features of several SWM systems. We find that axial, radial, and mean diffusivities show positive associations with age, while fractional anisotropy has negative associations with age in SWM throughout the entire brain. These associations were most pronounced in the frontal, temporal, and temporoparietal regions. Moreover, measures of SWM volume and length decrease with age in a heterogenous manner across the brain, with different rates of change in inter-gyri and intra-gyri SWM, and at slower rates than well-studied long-range white matter pathways. These features, and their variations with age, provide the background for characterizing normal aging, and, in combination with larger association pathways and gray matter microstructural features, may provide insight into fundamental mechanisms associated with aging and cognition.
Collapse
Affiliation(s)
- Kurt G Schilling
- Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Derek Archer
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA,Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Francois Rheault
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
| | - Leon Y Cai
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
| | - Andrea Shafer
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
| | - Timothy Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA,Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN
| | - Angela Jefferson
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam W Anderson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University, Nashville, TN, United States
| | - Bennett A Landman
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
6
|
Xu S, Yao X, Han L, Lv Y, Bu X, Huang G, Fan Y, Yu T, Huang G. Brain network analyses of diffusion tensor imaging for brain aging. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:6066-6078. [PMID: 34517523 DOI: 10.3934/mbe.2021303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The approach of graph-based diffusion tensor imaging (DTI) networks has been used to explore the complicated structural connectivity of brain aging. In this study, the changes of DTI networks of brain aging were quantitatively and qualitatively investigated by comparing the characteristics of brain network. A cohort of 60 volunteers was enrolled and equally divided into young adults (YA) and older adults (OA) groups. The network characteristics of critical nodes, path length (Lp), clustering coefficient (Cp), global efficiency (Eglobal), local efficiency (Elocal), strength (Sp), and small world attribute (σ) were employed to evaluate the DTI networks at the levels of whole brain, bilateral hemispheres and critical brain regions. The correlations between each network characteristic and age were predicted, respectively. Our findings suggested that the DTI networks produced significant changes in network configurations at the critical nodes and node edges for the YA and OA groups. The analysis of whole brains network revealed that Lp, Cp increased (p < 0.05, positive correlation), Eglobal, Elocal, Sp decreased (p < 0.05, negative correlation), and σ unchanged (p ≥ 0.05, non-correlation) between the YA and OA groups. The analyses of bilateral hemispheres and brain regions showed similar results as that of the whole-brain analysis. Therefore the proposed scheme of DTI networks could be used to evaluate the WM changes of brain aging, and the network characteristics of critical nodes exhibited valuable indications for WM degeneration.
Collapse
Affiliation(s)
- Song Xu
- College of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xufeng Yao
- College of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Liting Han
- College of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuting Lv
- College of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xixi Bu
- College of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Gan Huang
- College of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yifeng Fan
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310053, China
| | - Tonggang Yu
- Shanghai Gamma Knife Hospital, Fudan University, Shanghai 200235, China
| | - Gang Huang
- College of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
7
|
Merenstein JL, Corrada MM, Kawas CH, Bennett IJ. Age affects white matter microstructure and episodic memory across the older adult lifespan. Neurobiol Aging 2021; 106:282-291. [PMID: 34332220 DOI: 10.1016/j.neurobiolaging.2021.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
Diffusion imaging studies have observed age-related degradation of white matter that contributes to cognitive deficits separately in younger-old (ages 65-89) and oldest-old (ages 90+) adults. But it remains unclear whether these age effects are magnified in advanced age groups, which may reflect disease-related pathology. Here, we tested whether age-related differences in white matter microstructure followed linear or nonlinear patterns across the entire older adult lifespan (65-98 years), these patterns were influenced by oldest-old adults at increased risk of dementia (cognitive impairment no dementia, CIND), and they explained age effects on episodic memory. Results revealed nonlinear microstructure declines across fiber classes (medial temporal, callosal, association, projection and/or thalamic) that were largest for medial temporal fibers. These patterns remained after excluding oldest-old participants with CIND, indicating that aging of white matter microstructure cannot solely be explained by pathology associated with early cognitive impairment. Moreover, finding that the effect of age on episodic memory was mediated by medial temporal fiber microstructure suggests it is essential for facilitating memory-related neural signals across the older adult lifespan.
Collapse
Affiliation(s)
| | - María M Corrada
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA; Department of Neurology, University of California, Irvine, CA, USA; Department of Epidemiology, University of California, Irvine, CA, USA
| | - Claudia H Kawas
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA; Department of Neurology, University of California, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Ilana J Bennett
- Department of Psychology, University of California, Riverside, CA, USA
| |
Collapse
|
8
|
Relationship between the disrupted topological efficiency of the structural brain connectome and glucose hypometabolism in normal aging. Neuroimage 2020; 226:117591. [PMID: 33248254 DOI: 10.1016/j.neuroimage.2020.117591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/02/2020] [Accepted: 11/19/2020] [Indexed: 12/18/2022] Open
Abstract
Normal aging is accompanied by structural degeneration and glucose hypometabolism in the human brain. However, the relationship between structural network disconnections and hypometabolism in normal aging remains largely unknown. In the present study, by combining MRI and PET techniques, we investigated the metabolic mechanism of the structural brain connectome and its relationship with normal aging in a cross-sectional, community-based cohort of 42 cognitively normal elderly individuals aged 57-84 years. The structural connectome was constructed based on diffusion MRI tractography, and the network efficiency metrics were quantified using graph theory analyses. FDG-PET scanning was performed to evaluate the glucose metabolic level in the cortical regions of the individuals. The results of this study demonstrated that both network efficiency and cortical metabolism decrease with age (both p < 0.05). In the subregions of the bilateral thalamus, significant correlations between nodal efficiency and cortical metabolism could be observed across subjects. Individual-level analyses indicated that brain regions with higher nodal efficiency tend to exhibit higher metabolic levels, implying a tight coupling between nodal efficiency and glucose metabolism (r = 0.56, p = 1.15 × 10-21). Moreover, efficiency-metabolism coupling coefficient significantly increased with age (r = 0.44, p = 0.0046). Finally, the main findings were also reproducible in the ADNI dataset. Together, our results demonstrate a close coupling between structural brain connectivity and cortical metabolism in normal elderly individuals and provide new insight that improve the present understanding of the metabolic mechanisms of structural brain disconnections in normal aging.
Collapse
|
9
|
Liu X, Bautista J, Liu E, Zikopoulos B. Imbalance of laminar-specific excitatory and inhibitory circuits of the orbitofrontal cortex in autism. Mol Autism 2020; 11:83. [PMID: 33081829 PMCID: PMC7574354 DOI: 10.1186/s13229-020-00390-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The human orbitofrontal cortex (OFC) is involved in assessing the emotional significance of events and stimuli, emotion-based learning, allocation of attentional resources, and social cognition. Little is known about the structure, connectivity and excitatory/inhibitory circuit interactions underlying these diverse functions in human OFC, as well as how the circuit is disrupted in individuals with autism spectrum disorder (ASD). METHODS We used post-mortem brain tissue from neurotypical adults and individuals with ASD. We examined the morphology and distribution of myelinated axons across cortical layers in OFC, at the single axon level, as a proxy of excitatory pathways. In the same regions, we also examined the laminar distribution of all neurons and neurochemically- and functionally-distinct inhibitory neurons that express the calcium-binding proteins parvalbumin (PV), calbindin (CB), and calretinin (CR). RESULTS We found that the density of myelinated axons increased consistently towards layer 6, while the average axon diameter did not change significantly across layers in both groups. However, both the density and diameter of myelinated axons were significantly lower in the ASD group compared with the Control group. The distribution pattern and density of the three major types of inhibitory neurons was comparable between groups, but there was a significant reduction in the density of excitatory neurons across OFC layers in ASD. LIMITATIONS This study is limited by the availability of human post-mortem tissue optimally processed for high-resolution microscopy and immunolabeling, especially from individuals with ASD. CONCLUSIONS The balance between excitation and inhibition in OFC is at the core of its function, assessing and integrating emotional and social cues with internal states and external inputs. Our preliminary results provide evidence for laminar-specific changes in the ratio of excitation/inhibition in OFC of adults with ASD, with an overall weakening and likely disorganization of excitatory signals and a relative strengthening of local inhibition. These changes likely underlie pathology of major OFC communications with limbic or other cortices and the amygdala in individuals with ASD, and may provide the anatomic basis for disrupted transmission of signals for social interactions and emotions in autism.
Collapse
Affiliation(s)
- Xuefeng Liu
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave., Room 401D, Boston, MA, 02215, USA
| | - Julied Bautista
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave., Room 401D, Boston, MA, 02215, USA
| | - Edward Liu
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave., Room 401D, Boston, MA, 02215, USA
| | - Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave., Room 401D, Boston, MA, 02215, USA. .,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA. .,Graduate Program in Neuroscience, Boston University, Boston, MA, USA.
| |
Collapse
|
10
|
Delwel S, Maier AB, Parvaneh D, Meijers J, Scherder EJA, Lobbezoo F. Chewing Efficiency, Global Cognitive Functioning, and Dentition: A Cross-sectional Observational Study in Older People With Mild Cognitive Impairment or Mild to Moderate Dementia. Front Aging Neurosci 2020; 12:225. [PMID: 33033478 PMCID: PMC7510165 DOI: 10.3389/fnagi.2020.00225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/25/2020] [Indexed: 12/29/2022] Open
Abstract
Introduction: Previous studies suggest an association between poor mastication and cognitive impairment. The role of chewing efficiency and dentition in this relation is unclear. The aim was to examine global cognitive functioning and dentition as predictors for chewing efficiency, in older people with mild cognitive impairment (MCI) or dementia. Methods: In this observational cross-sectional study, 136 people with MCI or dementia were included. The chewing efficiency was assessed with a two-colored chewing gum and analyzed with the Chewing Efficiency Analysis software. The level of global cognitive functioning was measured with the Mini Mental State Examination (MMSE) by trained clinical staff. An oral examination was performed by a dentist and included the number of present teeth, the number of occluding pairs, and the presence of prostheses. Age, gender, and educational years were derived from the medical records. Univariate and multivariate backward stepwise linear regression analyses were used to evaluate global cognitive functioning and dentition as predictors for chewing efficiency. Results: The mean age of the participants was 82.1 (SD 5.8) years, and 74 (54.4%) were female. The participants had a median MMSE score of 22.4 (IQR 18.0–26.0) and a median Chewing Efficiency Analysis score of 0.46 (IQR 0.14–0.59). The median number of teeth was 13.0 (IQR 0.0–23.0), and the median number of occluding pairs was 0.0 (IQR 0.0–7.0). Sixty-four (47.4%) of the participants wore full prosthesis in the upper jaw. In univariate linear regression analyses, predictive factors for the Chewing Efficiency Analysis score were age, MMSE score, full prosthesis in the upper jaw, number of present teeth, and number of occluding pairs. In the multivariate model, full prosthesis in the upper jaw and number of occluding pairs were significant predictors for the Chewing Efficiency Analysis score. Participants with full prosthesis in the upper jaw had a lower Chewing Efficiency Analysis score than participants with natural dentition in the upper jaw. Conclusion: Better mastication is associated with a higher number of occluding pairs. Full prosthesis in the upper jaw is related to a lower chewing efficiency. Global cognitive functioning is not associated with mastication in older people with MCI or mild-to-moderate dementia. This might be explained by sufficient capacity for compensation of reduced mastication in this group.
Collapse
Affiliation(s)
- Suzanne Delwel
- Department of Clinical Neuropsychology, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Andrea B Maier
- Department of Medicine and Aged Care, The Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia.,Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Donya Parvaneh
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Erik J A Scherder
- Department of Clinical Neuropsychology, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Frank Lobbezoo
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
11
|
Guevara M, Guevara P, Román C, Mangin JF. Superficial white matter: A review on the dMRI analysis methods and applications. Neuroimage 2020; 212:116673. [DOI: 10.1016/j.neuroimage.2020.116673] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
|
12
|
Diffusion tensor imaging of the corpus callosum in healthy aging: Investigating higher order polynomial regression modelling. Neuroimage 2020; 213:116675. [PMID: 32112960 DOI: 10.1016/j.neuroimage.2020.116675] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/21/2022] Open
Abstract
Previous diffusion tensor imaging (DTI) studies confirmed the vulnerability of corpus callosum (CC) fibers to aging. However, most studies employed lower order regressions to study the relationship between age and white matter microstructure. The present study investigated whether higher order polynomial regression modelling can better describe the relationship between age and CC DTI metrics compared to lower order models in 140 healthy participants (ages 18-85). The CC was found to be non-uniformly affected by aging, with accelerated and earlier degradation occurring in anterior portion; callosal volume, fiber count, fiber length, mean fibers per voxel, and FA decreased with age while mean, axial, and radial diffusivities increased. Half of the parameters studied also displayed significant age-sex interaction or intracranial volume effects. Higher order models were chosen as the best fit, based on Bayesian Information Criterion minimization, in 16 out of 23 significant cases when describing the relationship between DTI measurements and age. Higher order model fits provided different estimations of aging trajectory peaks and decline onsets than lower order models; however, a likelihood ratio test found that higher order regressions generally did not fit the data significantly better than lower order polynomial or linear models. The results contrast the modelling approaches and highlight the importance of using higher order polynomial regression modelling when investigating associations between age and CC white matter microstructure.
Collapse
|
13
|
McPhee GM, Downey LA, Stough C. Effects of sustained cognitive activity on white matter microstructure and cognitive outcomes in healthy middle-aged adults: A systematic review. Ageing Res Rev 2019; 51:35-47. [PMID: 30802543 DOI: 10.1016/j.arr.2019.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 01/27/2023]
Abstract
Adults who remain cognitively active may be protected from age-associated changes in white matter (WM) and cognitive decline. To determine if cognitive activity is a precursor for WM plasticity, the available literature was systematically searched for Region of Interest (ROI) and whole-brain studies assessing the efficacy of cognitive training (CT) on WM microstructure using Diffusion Tensor Imaging (DTI) in healthy adults (> 40 years). Seven studies were identified and included in this review. Results suggest there are beneficial effects to WM microstructure after CT in frontal and medial brain regions, with some studies showing improved performance in cognitive outcomes. Benefits of CT were shown to be protective against age-related WM microstructure decline by either maintaining or improving WM after training. These results have implications for determining the capacity for training-dependent WM plasticity in older adults and whether CT can be utilised to prevent age-associated cognitive decline. Additional studies with standardised training and imaging protocols are needed to confirm these outcomes.
Collapse
|
14
|
Bender AR, Prindle JJ, Brandmaier AM, Raz N. White matter and memory in healthy adults: Coupled changes over two years. Neuroimage 2016; 131:193-204. [PMID: 26545457 PMCID: PMC4848116 DOI: 10.1016/j.neuroimage.2015.10.085] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/06/2015] [Accepted: 10/29/2015] [Indexed: 11/16/2022] Open
Abstract
Numerous cross-sectional studies have used diffusion tensor imaging (DTI) to link age-related differences in white matter (WM) anisotropy and concomitant decrements in cognitive ability. Due to a dearth of longitudinal evidence, the relationship between changes in diffusion properties of WM and cognitive performance remains unclear. Here we examine the relationship between two-year changes in WM organization and cognitive performance in healthy adults (N=96, age range at baseline=18-79 years). We used latent change score models (LCSM) to evaluate changes in age-sensitive cognitive abilities - fluid intelligence and associative memory. WM changes were assessed by fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) in WM regions that are considered part of established memory networks and exhibited individual differences in change. In modeling change, we postulated reciprocal paths between baseline measures and change factors, within and between WM and cognition domains, and accounted for individual differences in baseline age. Although baseline cross-sectional memory performance was positively associated with FA and negatively with RD, longitudinal effects told an altogether different story. Independent of age, longitudinal improvements in associative memory were significantly associated with linear reductions in FA and increases in RD. The present findings demonstrate the sensitivity of DTI-derived indices to changes in the brain and cognition and affirm the importance of longitudinal models for evaluating brain-cognition relations.
Collapse
Affiliation(s)
- Andrew R Bender
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.
| | - John J Prindle
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Andreas M Brandmaier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Naftali Raz
- Institute of Gerontology & Department of Psychology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
15
|
Sorg SF, Squeglia LM, Taylor MJ, Alhassoon OM, Delano-Wood LM, Grant I. Effects of aging on frontal white matter microstructure in alcohol use disorder and associations with processing speed. J Stud Alcohol Drugs 2016; 76:296-306. [PMID: 25785805 DOI: 10.15288/jsad.2015.76.296] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE The number of older adults with alcohol use disorder (AUD) is expected to significantly increase in the coming years. Both aging and AUD have been associated with compromised white matter microstructure, although the extent of combined AUD and aging effects is unclear. This study investigated interactions between aging and AUD in cerebral white matter integrity using diffusion tensor imaging (DTI). METHOD All participants (44 recently detoxified participants with AUD and 28 healthy controls; ages 31-64 years) completed neurocognitive testing and a DTI scan. Regions of interests were identified on Tract-Based Spatial Statistics images. Hierarchical multiple regression was used to examine interactions between age and AUD status on DTI values [e.g., fractional anisotropy (FA)]. RESULTS Significant Age × AUD interactions were found across several prefrontal white matter regions (R(2)Δ = 5%-9%). Regional FA was negatively associated with age in the AUD group (rs = -.33 - -.53) but not in the control group (rs = .18 - -.32). This pattern remained after adjusting for lifetime history of drinking and recent drinking. Lifetime alcohol consumption negatively correlated with frontal white matter integrity in the AUD group (rs = -.33 - -.40). Finally, processing speed was significantly slower in the AUD group versus controls (p = .001) and was positively correlated with FA values in frontal white matter regions (rs = .34-.53). CONCLUSIONS Cumulative alcohol consumption may affect frontal white matter integrity, and persons with AUD may be more prone to reductions in frontal white matter integrity with advancing age. These reductions in frontal white matter integrity may contribute to reductions in processing speed.
Collapse
Affiliation(s)
- Scott F Sorg
- Veterans Affairs San Diego Healthcare System, La Jolla, California, Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Lindsay M Squeglia
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Michael J Taylor
- Veterans Affairs San Diego Healthcare System, La Jolla, California, Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Omar M Alhassoon
- Department of Psychiatry, University of California, San Diego, La Jolla, California, California School of Professional Psychology, San Diego, California
| | - Lisa M Delano-Wood
- Veterans Affairs San Diego Healthcare System, La Jolla, California, Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Igor Grant
- Veterans Affairs San Diego Healthcare System, La Jolla, California, Department of Psychiatry, University of California, San Diego, La Jolla, California
| |
Collapse
|
16
|
Rajkowska G, Mahajan G, Maciag D, Sathyanesan M, Iyo AH, Moulana M, Kyle PB, Woolverton WL, Miguel-Hidalgo JJ, Stockmeier CA, Newton SS. Oligodendrocyte morphometry and expression of myelin - Related mRNA in ventral prefrontal white matter in major depressive disorder. J Psychiatr Res 2015; 65:53-62. [PMID: 25930075 PMCID: PMC4836860 DOI: 10.1016/j.jpsychires.2015.04.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/10/2015] [Accepted: 04/09/2015] [Indexed: 11/25/2022]
Abstract
White matter disturbance in the ventral prefrontal cortex (vPFC) in major depressive disorder (MDD) has been noted with diffusion tensor imaging (DTI). However, the cellular and molecular pathology of prefrontal white matter in MDD and potential influence of antidepressant medications is not fully understood. Oligodendrocyte morphometry and myelin-related mRNA and protein expression was examined in the white matter of the vPFC in MDD. Sections of deep and gyral white matter from the vPFC were collected from 20 subjects with MDD and 16 control subjects. Density and size of CNPase-immunoreactive (-IR) oligodendrocytes were estimated using 3-dimensional cell counting. While neither density nor soma size of oligodendrocytes was significantly affected in deep white matter, soma size was significantly decreased in the gyral white matter in MDD. In rhesus monkeys treated chronically with fluoxetine there was no significant effect on oligodendrocyte morphometry. Using quantitative RT-PCR to measure oligodendrocyte-related mRNA for CNPase, PLP1, MBP, MOG, MOBP, Olig1 and Olig2, in MDD there was a significantly reduced expression of PLP1 mRNA (which positively correlated with smaller sizes) and increased expression of mRNA for CNPase, OLIG1 and MOG. The expression of CNPase protein was significantly decreased in MDD. Altered expression of four myelin genes and CNPase protein suggests a mechanism for the degeneration of cortical axons and dysfunctional maturation of oligodendrocytes in MDD. The change in oligodendrocyte morphology in gyral white matter may parallel altered axonal integrity as revealed by DTI.
Collapse
Affiliation(s)
| | | | | | - Monica Sathyanesan
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD, 57069, USA.
| | - Abiye H. Iyo
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, U.S.A., 39216
| | | | - Patrick B. Kyle
- Department of Pathology, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, U.S.A., 39216
| | - William L. Woolverton
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, U.S.A., 39216
| | | | - Craig A. Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, U.S.A., 39216,Department of Psychiatry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH, U.S.A., 44106
| | - Samuel S. Newton
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD, U.S.A., 57069
| |
Collapse
|
17
|
Vik A, Hodneland E, Haász J, Ystad M, Lundervold AJ, Lundervold A. Fractional anisotropy shows differential reduction in frontal-subcortical fiber bundles-A longitudinal MRI study of 76 middle-aged and older adults. Front Aging Neurosci 2015; 7:81. [PMID: 26029102 PMCID: PMC4432666 DOI: 10.3389/fnagi.2015.00081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 04/27/2015] [Indexed: 01/30/2023] Open
Abstract
Motivated by the frontal- and white matter (WM) retrogenesis hypotheses and the assumptions that fronto-striatal circuits are especially vulnerable in normal aging, the goal of the present study was to identify fiber bundles connecting subcortical nuclei and frontal areas and obtain site-specific information about age related fractional anisotropy (FA) changes. Multimodal magnetic resonance image acquisitions [3D T1-weighted and diffusion weighted imaging (DWI)] were obtained from healthy older adults (N = 76, range 49-80 years at inclusion) at two time points, 3 years apart. A subset of the participants (N = 24) was included at a third time-point. In addition to the frontal-subcortical fibers, the anterior callosal fiber (ACF) and the corticospinal tract (CST) was investigated by its mean FA together with tract parameterization analysis. Our results demonstrated fronto-striatal structural connectivity decline (reduced FA) in normal aging with substantial inter-individual differences. The tract parameterization analysis showed that the along tract FA profiles were characterized by piece-wise differential changes along their extension rather than being uniformly affected. To the best of our knowledge, this is the first longitudinal study detecting age-related changes in frontal-subcortical WM connections in normal aging.
Collapse
Affiliation(s)
- Alexandra Vik
- Department of Biological and Medical Psychology, University of Bergen Bergen, Norway ; Department of Biomedicine, University of Bergen Bergen, Norway
| | | | - Judit Haász
- Department of Biological and Medical Psychology, University of Bergen Bergen, Norway ; Department of Biomedicine, University of Bergen Bergen, Norway ; Department of Clinical Medicine, University of Bergen Bergen, Norway
| | - Martin Ystad
- Department of Biomedicine, University of Bergen Bergen, Norway
| | - Astri J Lundervold
- Department of Biological and Medical Psychology, University of Bergen Bergen, Norway ; Kavli Research Center of Aging and Dementia, Haraldsplass Deaconess Hospital Bergen, Norway
| | - Arvid Lundervold
- Department of Biomedicine, University of Bergen Bergen, Norway ; Department of Radiology, Haukeland University Hospital Bergen, Norway
| |
Collapse
|
18
|
Bender AR, Raz N. Normal-appearing cerebral white matter in healthy adults: mean change over 2 years and individual differences in change. Neurobiol Aging 2015; 36:1834-48. [PMID: 25771392 DOI: 10.1016/j.neurobiolaging.2015.02.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/02/2015] [Accepted: 02/04/2015] [Indexed: 12/20/2022]
Abstract
Diffusion tensor imaging studies show age-related differences in cerebral white matter (WM). However, few have studied WM changes over time, and none evaluated individual differences in change across a wide age range. Here, we examined 2-year WM change in 96 healthy adults (baseline age, 19-78 years), individual differences in change, and the influence of vascular and metabolic risk thereon. Fractional anisotropy (FA), axial diffusivity, and radial diffusivity (RD) represented microstructural properties of normal-appearing WM within 13 regions. Cross-sectional analyses revealed age-related differences in all WM indices across the regions. In contrast, latent change score analyses showed longitudinal declines in axial diffusivity in association and projection fibers and increases in anterior commissural fibers. FA and RD evidenced a less consistent pattern of change. Metabolic risk mediated the effects of age on FA and RD change in corpus callosum body and dorsal cingulum. These findings underscore the importance of longitudinal studies in evaluating individual differences in change and the role of metabolic factors in shaping trajectories of brain aging.
Collapse
Affiliation(s)
- Andrew R Bender
- Institute of Gerontology, Wayne State University, Detroit, MI, USA.
| | - Naftali Raz
- Institute of Gerontology, Wayne State University, Detroit, MI, USA; Department of Psychology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
19
|
Jang SH, Seo JP. Aging of corticospinal tract fibers according to the cerebral origin in the human brain: A diffusion tensor imaging study. Neurosci Lett 2015; 585:77-81. [PMID: 25445381 DOI: 10.1016/j.neulet.2014.11.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/01/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022]
|
20
|
Attems J, Jellinger KA. The overlap between vascular disease and Alzheimer's disease--lessons from pathology. BMC Med 2014; 12:206. [PMID: 25385447 PMCID: PMC4226890 DOI: 10.1186/s12916-014-0206-2] [Citation(s) in RCA: 478] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/07/2014] [Indexed: 12/15/2022] Open
Abstract
Recent epidemiological and clinico-pathological data indicate considerable overlap between cerebrovascular disease (CVD) and Alzheimer's disease (AD) and suggest additive or synergistic effects of both pathologies on cognitive decline. The most frequent vascular pathologies in the aging brain and in AD are cerebral amyloid angiopathy and small vessel disease. Up to 84% of aged subjects show morphological substrates of CVD in addition to AD pathology. AD brains with minor CVD, similar to pure vascular dementia, show subcortical vascular lesions in about two-thirds, while in mixed type dementia (AD plus vascular dementia), multiple larger infarcts are more frequent. Small infarcts in patients with full-blown AD have no impact on cognitive decline but are overwhelmed by the severity of Alzheimer pathology, while in early stages of AD, cerebrovascular lesions may influence and promote cognitive impairment, lowering the threshold for clinically overt dementia. Further studies are warranted to elucidate the many hitherto unanswered questions regarding the overlap between CVD and AD as well as the impact of both CVD and AD pathologies on the development and progression of dementia.
Collapse
Affiliation(s)
- Johannes Attems
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK.
| | | |
Collapse
|
21
|
Rasgon NL, Kenna HA, Wroolie TE, Williams KE, DeMuth BN, Silverman DHS. Insulin resistance and medial prefrontal gyrus metabolism in women receiving hormone therapy. Psychiatry Res 2014; 223:28-36. [PMID: 24819305 DOI: 10.1016/j.pscychresns.2014.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 04/02/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
Abstract
Insulin resistance (IR) is a putative risk factor for cognitive decline and dementia, and has been shown to impede neuronal glucose metabolism in animal models. This post hoc study focused on metabolic changes in the medial prefrontal region, a brain region exhibiting decline years before documented cognitive changes, relative to high or low IR status in a cohort of postmenopausal women at risk for dementia who were randomized to continue or discontinue existing stable hormone therapy (HT) for 2 years. Subjects were dichotomized into high and low IR groups based on the homeostatic model assessment of insulin resistance, which was within clinically normal limits for the group as a whole at both baseline and 2-year follow-up. Results showed that high and low IR groups showed significant differences in metabolic decline of the medial prefrontal gyrus, regardless of HT randomization group. However, HT randomization was predictive of metabolic decline only in women with low HOMA (homeostatic assessment of insulin resistance). Performance in working memory was consistent with observed metabolic changes. These results suggest IR may be an independent moderator of regional metabolic changes, while protective metabolic effects of HT are most apparent in those at low-end range of IR. If replicated in future studies, these findings will help to better understand the interaction between putative risk and protective factors, and further delineate cohort postmenopausal women who may benefit from HT.
Collapse
Affiliation(s)
- Natalie L Rasgon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| | - Heather A Kenna
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Tonita E Wroolie
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine E Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Bevin N DeMuth
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel H S Silverman
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
22
|
Clewett D, Bachman S, Mather M. Age-related reduced prefrontal-amygdala structural connectivity is associated with lower trait anxiety. Neuropsychology 2014; 28:631-42. [PMID: 24635708 DOI: 10.1037/neu0000060] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE A current neuroanatomical model of anxiety posits that greater structural connectivity between the amygdala and ventral prefrontal cortex (vPFC) facilitates regulatory control over the amygdala and helps reduce anxiety. However, some neuroimaging studies have reported contradictory findings, demonstrating a positive rather than negative association between trait anxiety and amygdala-vPFC white matter integrity. To help reconcile these findings, we tested the regulatory hypothesis of anxiety circuitry using aging as a model of white matter decline in the amygdala-vPFC pathway. METHODS We used probabilistic tractography to trace connections between the amygdala and vPFC in 21 younger, 18 middle-aged, and 15 healthy older adults. The resulting tract estimates were used to extract 3 indices of white-matter integrity: fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD). The relationship between these amygdala-vPFC structural connectivity measures and age and State-Trait Anxiety Inventory (STAI) scores were assessed. RESULTS The tractography results revealed age-related decline in the FA (p = .005) and radial diffusivity (p = .002) of the amygdala-vPFC pathway. Contrary to the regulatory hypothesis, we found a positive rather than negative association between trait anxiety and right amygdala-vPFC FA (p = .01). CONCLUSION These findings argue against the notion that greater amygdala-vPFC structural integrity facilitates better anxiety outcomes in healthy adults. Instead, our results suggest that white matter degeneration in this network relates to lower anxiety in older adults.
Collapse
Affiliation(s)
- David Clewett
- Neuroscience Graduate Program, University of Southern California
| | - Shelby Bachman
- Neuroscience Undergraduate Program, University of Southern California
| | - Mara Mather
- Neuroscience Graduate Program, University of Southern California
| |
Collapse
|
23
|
Samson RD, Barnes CA. Impact of aging brain circuits on cognition. Eur J Neurosci 2013; 37:1903-15. [PMID: 23773059 DOI: 10.1111/ejn.12183] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/05/2013] [Accepted: 02/11/2013] [Indexed: 01/01/2023]
Abstract
Brain networks that engage the hippocampus and prefrontal cortex are central for enabling effective interactions with our environment. Some of the cognitive processes that these structures mediate, such as encoding and retrieving episodic experience, wayfinding, working memory and attention are known to be altered across the lifespan. As illustrated by examples given below, there is remarkable consistency across species in the pattern of age-related neural and cognitive change observed in healthy humans and other animals. These include changes in cognitive operations that are known to be dependent on the hippocampus, as well as those requiring intact prefrontal cortical circuits. Certain cognitive constructs that reflect the function of these areas lend themselves to investigation across species, allowing brain mechanisms at different levels of analysis to be studied in greater depth.
Collapse
Affiliation(s)
- Rachel D Samson
- Evelyn F McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
24
|
Phillips OR, Clark KA, Luders E, Azhir R, Joshi SH, Woods RP, Mazziotta JC, Toga AW, Narr KL. Superficial white matter: effects of age, sex, and hemisphere. Brain Connect 2013; 3:146-59. [PMID: 23461767 DOI: 10.1089/brain.2012.0111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Structural and diffusion imaging studies demonstrate effects of age, sex, and asymmetry in many brain structures. However, few studies have addressed how individual differences might influence the structural integrity of the superficial white matter (SWM), comprised of short-range association (U-fibers), and intracortical axons. This study thus applied a sophisticated computational analysis approach to structural and diffusion imaging data obtained from healthy individuals selected from the International Consortium for Brain Mapping (ICBM) database across a wide adult age range (n=65, age: 18-74 years, all Caucasian). Fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD) were sampled and compared at thousands of spatially matched SWM locations and within regions-of-interest to examine global and local variations in SWM integrity across age, sex, and hemisphere. Results showed age-related reductions in FA that were more pronounced in the frontal SWM than in the posterior and ventral brain regions, whereas increases in RD and AD were observed across large areas of the SWM. FA was significantly greater in left temporoparietal regions in men and in the posterior callosum in women. Prominent leftward FA and rightward AD and RD asymmetries were observed in the temporal, parietal, and frontal regions. Results extend previous findings restricted to the deep white matter pathways to demonstrate regional changes in the SWM microstructure relating to processes of demyelination and/or to the number, coherence, or integrity of axons with increasing age. SWM fiber organization/coherence appears greater in the left hemisphere regions spanning language and other networks, while more localized sex effects could possibly reflect sex-specific advantages in information strategies.
Collapse
Affiliation(s)
- Owen R Phillips
- Laboratory of Neuro Imaging, Department of Neurology, Geffen School of Medicine at UCLA, Los Angeles, California 90095-7334, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Jellinger KA, Attems J. Neuropathological approaches to cerebral aging and neuroplasticity. DIALOGUES IN CLINICAL NEUROSCIENCE 2013. [PMID: 23576887 PMCID: PMC3622466 DOI: 10.31887/dcns.2013.15.1/kjellinger] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cerebral aging is a complex and heterogenous process related to a large variety of molecular changes involving multiple neuronal networks, due to alterations of neurons (synapses, axons, dendrites, etc), particularly affecting strategically important regions, such as hippocampus and prefrontal areas. A substantial proportion of nondemented, cognitively unimpaired elderly subjects show at least mild to moderate, and rarely even severe, Alzheimer-related lesions, probably representing asymptomatic preclinical Alzheimer's disease, and/or mixed pathologies. While the substrate of resilience to cognitive decline in the presence of abundant pathologies has been unclear, recent research has strengthened the concept of cognitive or brain reserve, based on neuroplasticity or the ability of the brain to manage or counteract age-related changes or pathologies by reorganizing its structure, connections, and functions via complex molecular pathways and mechanisms that are becoming increasingly better understood. Part of neuroplasticity is adult neurogenesis in specific areas of the brain, in particular the hippocampal formation important for memory function, the decline of which is common even in “healthy” aging. To obtain further insights into the mechanisms of brain plasticity and adult neurogenesis, as the basis for prevention and potential therapeutic options, is a major challenge of modern neurosciences.
Collapse
|
26
|
Zald DH, McHugo M, Ray KL, Glahn DC, Eickhoff SB, Laird AR. Meta-analytic connectivity modeling reveals differential functional connectivity of the medial and lateral orbitofrontal cortex. ACTA ACUST UNITED AC 2012; 24:232-48. [PMID: 23042731 DOI: 10.1093/cercor/bhs308] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The orbitofrontal cortex (OFC) is implicated in a broad range of behaviors and neuropsychiatric disorders. Anatomical tracing studies in nonhuman primates reveal differences in connectivity across subregions of the OFC, but data on the connectivity of the human OFC remain limited. We applied meta-analytic connectivity modeling in order to examine which brain regions are most frequently coactivated with the medial and lateral portions of the OFC in published functional neuroimaging studies. The analysis revealed a clear divergence in the pattern of connectivity for the medial OFC (mOFC) and lateral OFC (lOFC) regions. The lOFC showed coactivations with a network of prefrontal regions and areas involved in cognitive functions including language and memory. In contrast, the mOFC showed connectivity with default mode, autonomic, and limbic regions. Convergent patterns of coactivations were observed in the amygdala, hippocampus, striatum, and thalamus. A small number of regions showed connectivity specific to the anterior or posterior sectors of the OFC. Task domains involving memory, semantic processing, face processing, and reward were additionally analyzed in order to identify the different patterns of OFC functional connectivity associated with specific cognitive and affective processes. These data provide a framework for understanding the human OFC's position within widespread functional networks.
Collapse
|
27
|
Rogalski E, Stebbins GT, Barnes CA, Murphy CM, Stoub TR, George S, Ferrari C, Shah RC, deToledo-Morrell L. Age-related changes in parahippocampal white matter integrity: a diffusion tensor imaging study. Neuropsychologia 2012; 50:1759-65. [PMID: 22561887 DOI: 10.1016/j.neuropsychologia.2012.03.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/12/2012] [Accepted: 03/30/2012] [Indexed: 11/17/2022]
Abstract
The axons in the parahippocampal white matter (PWM) region that includes the perforant pathway relay multimodal sensory information, important for memory function, from the entorhinal cortex to the hippocampus. Previous work suggests that the integrity of the PWM shows changes in individuals with amnestic mild cognitive impairment and is further compromised as Alzheimer's disease progresses. The present study was undertaken to determine the effects of healthy aging on macro- and micro-structural alterations in the PWM. The study characterized in vivo white matter changes in the parahippocampal region that includes the perforant pathway in cognitively healthy young (YNG, n=21) compared to cognitively healthy older (OLD, n=21) individuals using volumetry, diffusion tensor imaging (DTI) and tractography. Results demonstrated a significant reduction in PWM volume in old participants, with further indications of reduced integrity of remaining white matter fibers. In logistic regressions, PWM volume, memory performance and DTI indices of PWM integrity were significant indicator variables for differentiating the young and old participants. Taken together, these findings suggest that age-related alterations do occur in the PWM region and may contribute to the normal decline in memory function seen in healthy aging by degrading information flow to the hippocampus.
Collapse
Affiliation(s)
- E Rogalski
- Cognitive Neurology and Alzheimer's Disease Center at Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Johansson BB. Multisensory stimulation in stroke rehabilitation. Front Hum Neurosci 2012; 6:60. [PMID: 22509159 PMCID: PMC3321650 DOI: 10.3389/fnhum.2012.00060] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 03/08/2012] [Indexed: 01/22/2023] Open
Abstract
The brain has a large capacity for automatic simultaneous processing and integration of sensory information. Combining information from different sensory modalities facilitates our ability to detect, discriminate, and recognize sensory stimuli, and learning is often optimal in a multisensory environment. Currently used multisensory stimulation methods in stroke rehabilitation include motor imagery, action observation, training with a mirror or in a virtual environment, and various kinds of music therapy. Non-invasive brain stimulation has showed promising preliminary results in aphasia and neglect. Patient heterogeneity and the interaction of age, gender, genes, and environment are discussed. Randomized controlled longitudinal trials starting earlier post-stroke are needed. The advance in brain network science and neuroimaging enabling longitudinal studies of structural and functional networks are likely to have an important impact on patient selection for specific interventions in future stroke rehabilitation. It is proposed that we should pay more attention to age, gender, and laterality in clinical studies.
Collapse
|
29
|
Luders E, Phillips OR, Clark K, Kurth F, Toga AW, Narr KL. Bridging the hemispheres in meditation: thicker callosal regions and enhanced fractional anisotropy (FA) in long-term practitioners. Neuroimage 2012; 61:181-7. [PMID: 22374478 DOI: 10.1016/j.neuroimage.2012.02.026] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 02/02/2012] [Accepted: 02/10/2012] [Indexed: 12/12/2022] Open
Abstract
Recent findings suggest a close link between long-term meditation practices and the structure of the corpus callosum. Prior analyses, however, have focused on estimating mean fractional anisotropy (FA) within two large pre-defined callosal tracts only. Additional effects might exist in other, non-explored callosal regions and/or with respect to callosal attributes not captured by estimates of FA. To further explore callosal features in the framework of meditation, we analyzed 30 meditators and 30 controls, carefully matched for sex, age, and handedness. We applied a multimodal imaging approach using diffusion tensor imaging (DTI) in combination with structural magnetic resonance imaging (MRI). Callosal measures of tract-specific FA were complemented with other global (segment-specific) estimates as well as extremely local (point-wise) measures of callosal micro- and macro-structure. Callosal measures were larger in long-term meditators compared to controls, particularly in anterior callosal sections. However, differences achieved significance only when increasing the regional sensitivity of the measurement (i.e., using point-wise measures versus segment-specific measures) and were more prominent for microscopic than macroscopic characteristics (i.e., callosal FA versus callosal thickness). Thicker callosal regions and enhanced FA in meditators might indicate greater connectivity, possibly reflecting increased hemispheric integration during cerebral processes involving (pre)frontal regions. Such a brain organization might be linked to achieving characteristic mental states and skills as associated with meditation, though this hypothesis requires behavioral confirmation. Moreover, longitudinal studies are required to address whether the observed callosal effects are induced by meditation or constitute an innate prerequisite for the start or successful continuation of meditation.
Collapse
Affiliation(s)
- Eileen Luders
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA 90095-7334, USA
| | | | | | | | | | | |
Collapse
|