1
|
Villar M, Pacheco I, Mateos-Hernández L, Cabezas-Cruz A, Tabor AE, Rodríguez-Valle M, Mulenga A, Kocan KM, Blouin EF, de la Fuente J. Characterization of tick salivary gland and saliva alphagalactome reveals candidate alpha-gal syndrome disease biomarkers. Expert Rev Proteomics 2021; 18:1099-1116. [PMID: 34904495 DOI: 10.1080/14789450.2021.2018305] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Ticks are obligate hematophagous arthropods that synthesize the glycan Galα1-3Galβ1-(3)4GlcNAc-R (α-Gal) associated with the alpha-gal syndrome (AGS) or allergy to mammalian meat consumption. RESEARCH DESIGN AND METHODS In this study, we used a proteomics approach to characterize tick proteins in salivary glands (sialome SG), secreted saliva (sialome SA) and with α-Gal modification (alphagalactome SG and SA) in model tick species associated with the AGS in the United States (Amblyomma americanum) and Australia (Ixodes holocyclus). Selected proteins reactive to sera (IgE) from patients with AGS were identified to advance in the identification of possible proteins associated with the AGS. For comparative analysis, the α-Gal content was measured in various tick species. RESULTS The results confirmed that ticks produce proteins with α-Gal modifications and secreted into saliva during feeding. Proteins identified in tick alphagalactome SA by sera from patients with severe AGS symptomatology may constitute candidate disease biomarkers. CONCLUSIONS The results support the presence tick-derived proteins with α-Gal modifications in the saliva with potential implications in AGS and other disorders and protective capacity against tick infestations and pathogen infection. Future research should focus on the characterization of the function of tick glycoproteins with α-Gal in tick biology and AGS.
Collapse
Affiliation(s)
- Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain.,Biochemistry Section, Faculty of Science and Chemical Technologies, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Iván Pacheco
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain
| | - Lourdes Mateos-Hernández
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, 94700, France
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, 94700, France
| | - Ala E Tabor
- Queensland Alliance for Agriculture & Food Innovation, Centre for Animal Science, The University of Queensland, 306 Carmody Road, St. Lucia, QLD 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, 68 Cooper Road, St. Lucia, QLD 4072, Australia
| | - Manuel Rodríguez-Valle
- Queensland Alliance for Agriculture & Food Innovation, Centre for Animal Science, The University of Queensland, 306 Carmody Road, St. Lucia, QLD 4072, Australia
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX77843, United States
| | - Katherine M Kocan
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Edmour F Blouin
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
2
|
Microarray profiling predicts early neurological and immune phenotypic traits in advance of CNS disease during disease progression in Trypanosoma. b. brucei infected CD1 mouse brains. PLoS Negl Trop Dis 2021; 15:e0009892. [PMID: 34762691 PMCID: PMC8584711 DOI: 10.1371/journal.pntd.0009892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/10/2021] [Indexed: 01/09/2023] Open
Abstract
Human African trypanosomiasis (HAT), also known as sleeping sickness, is a major cause of mortality and morbidity in sub-Saharan Africa. We hypothesised that recent findings of neurological features and parasite brain infiltration occurring at much earlier stages in HAT than previously thought could be explained by early activation of host genetic programmes controlling CNS disease. Accordingly, a transcriptomal analysis was performed on brain tissue at 0, 7, 14, 21 and 28dpi from the HAT CD1/GVR35 mouse model. Up to 21dpi, most parasites are restricted to the blood and lymphatic system. Thereafter the trypanosomes enter the brain initiating the encephalitic stage. Analysis of ten different time point Comparison pairings, revealed a dynamic transcriptome comprising four message populations. All 7dpi Comparisons had by far more differentially expressed genes compared to all others. Prior to invasion of the parenchyma, by 7dpi, ~2,000 genes were up-regulated, denoted [7dpi↑] in contrast to a down regulated population [7dpi↓] also numbering ~2,000. However, by 14dpi both patterns had returned to around the pre-infected levels. The third, [28dpi↑] featured over three hundred transcripts which had increased modestly up to14dpi, thereafter were significantly up-regulated and peaked at 28dpi. The fourth, a minor population, [7dpi↑-28dpi↑], had similar elevated levels at 7dpi and 28dpi. KEGG and GO enrichment analysis predicted a diverse phenotype by 7dpi with changes to innate and adaptive immunity, a Type I interferon response, neurotransmission, synaptic plasticity, pleiotropic signalling, circadian activity and vascular permeability without disruption of the blood brain barrier. This key observation is consistent with recent rodent model neuroinvasion studies and clinical reports of Stage 1 HAT patients exhibiting CNS symptoms. Together, these findings challenge the strict Stage1/Stage2 phenotypic demarcation in HAT and show that that significant neurological, and immune changes can be detected prior to the onset of CNS disease.
Collapse
|
3
|
Du X, Mawolo JB, Liu X, Mi X, Li Q, Wen Y. Expression and distribution of neuroglobin and hypoxia-inducible factor-1α in the adult yak telencephalon. Vet Med Sci 2021; 7:1707-1717. [PMID: 34146386 PMCID: PMC8464245 DOI: 10.1002/vms3.553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The telencephalon is also known as the cerebrum, and it consists of the largest part of the brain. It makes up about 85% of the total weight of the brain. Neuroglobin (Ngb) is a protein found in neurons of both the peripheral and central nervous system that appears to convey some resilience to hypoxia, while the hypoxia-inducible factor (Hif-1α) is a dimeric protein complex that plays an integral role in the body's response to low oxygen concentrations, or hypoxia. The study examines the expression of Ngb and Hif-1α in the telencephalon of adult yak in the telencephalon. The immunohistochemistry (IHC), quantitative real-time PCR and Western blot (WB) were employed to investigate Ngb and Hif-1α expression in the telencephalon. Ngb and Hif-1α are significantly expressed in all tissues of the telencephalon except the hypothalamus. The cerebellar cortex, hippocampus, amygdala, cerebellum and corpus callosum recorded the highest expression but not significant. The overall expression revealed that Ngb expression was higher as compared to Hif-1α. The IHC results also showed that the expression of Ngb and Hif-1α were higher in the cerebellar cortex, hippocampus, amygdala, cerebellum and corpus callosum as compared to other regions. The results suggested that Ngb and Hif-1α expression influence the adaptive mechanism of yak to the high altitude environment. Both Ngb and Hif-1α participate in oxygen transports throughout the telencephalon and have functions in neuroprotection. Further studies are needed to confirm the mechanism of adaptation.
Collapse
Affiliation(s)
- Xiaohua Du
- College of Veterinary MedicineGansu Agricultural UniversityLanzhou CityGansu ProvincePeople's Republic of China
| | - James Blackar Mawolo
- College of Life Science and TechnologyGansu Agricultural UniversityLanzhou CityGansu ProvincePeople's Republic of China
| | - Xia Liu
- College of Life Science and TechnologyGansu Agricultural UniversityLanzhou CityGansu ProvincePeople's Republic of China
| | - Xiaoyu Mi
- College of Life Science and TechnologyGansu Agricultural UniversityLanzhou CityGansu ProvincePeople's Republic of China
| | - Qiao Li
- College of Life Science and TechnologyGansu Agricultural UniversityLanzhou CityGansu ProvincePeople's Republic of China
| | - Yongqiang Wen
- College of Life Science and TechnologyGansu Agricultural UniversityLanzhou CityGansu ProvincePeople's Republic of China
| |
Collapse
|
4
|
Neuroglobin Expression Models as a Tool to Study Its Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5728129. [PMID: 31320982 PMCID: PMC6607734 DOI: 10.1155/2019/5728129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/12/2019] [Indexed: 01/13/2023]
Abstract
Neuroglobin (Ngb) is an evolutionary conserved member of the globin family with a primary expression in neurons of which the exact functions remain elusive. A plethora of in vivo and in vitro model systems has been generated to this day to determine the functional biological roles of Ngb. Here, we provide a comprehensive overview and discussion of the different Ngb models, covering animal and cellular models of both overexpression and knockout strategies. Intriguingly, an in-depth literature search of available Ngb expression models revealed crucial discrepancies in the outcomes observed in different models. Not only does the level of Ngb expression—either physiologically, overexpressed, or downregulated—alter its functional properties, the experimental setup, being in vitro or in vivo, does impact the functional outcome as well and, hence, whether or not a physiological and/or therapeutic role is ascribed to Ngb. These differences could highlight either technical or biological adaptations and should be considered until elucidation of the Ngb biology.
Collapse
|
5
|
da Conceição RR, de Souza JS, de Oliveira KC, Romano RM, de Barros Maciel RM, Dias-da-Silva MR, Romano MA, Chiamolera MI, Giannocco G. Evaluation of neuroglobin and cytoglobin expression in adult rats exposed to silver nanoparticles during prepubescence. Metab Brain Dis 2019; 34:705-713. [PMID: 30701417 DOI: 10.1007/s11011-019-0386-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/20/2019] [Indexed: 02/06/2023]
Abstract
Silver nanoparticles (AgNPs) are clusters of silver atoms with diameters that range from 1 to 100 nm. Due to the various shapes and large surface areas, AgNPs have been employed in the food and textile industries and medical fields. Therefore, because of the widespread use of these compounds, the aim of this study was to evaluate the effect of AgNP exposure on the gene and protein expression levels of Neuroglobin (Ngb) and Cytoglobin (Cygb), in the rat cortex, hippocampus and cerebellum. Post-natal day (PND) 21 male Wistar rats were randomly divided into three groups. One group received 15 μg/kg body weight of AgNP by gavage another group received 30 μg/kg and the control group that received saline, from PND23 to PND58. On PND102 the animals were euthanized and the cortex, hippocampus and cerebellum were isolated and evaluated for gene and protein expression levels of Nbg and Cygb. The results demonstrated that the 30 μg/kg AgNP group displayed increased gene and protein expression of Cygb in the cortex. In the Hippocampus, AgNP exposure did not modulate gene or protein expression levels of Ngb and Cygb. In cerebellum the Ngb gene and protein expression was increased with both doses of AgNP. AgNP exposure during prepubescence can modulate the gene and protein expression levels of Ngb and Cygb in adulthood. Furthermore, the observed modulation was specific to the cerebellum, and cortex, and was dose dependent.
Collapse
Affiliation(s)
- Rodrigo Rodrigues da Conceição
- Laboratório de Endocrinologia Molecular e Translacional, Departamento de Medicina, Disciplina de Endocrinologia Clínica, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039032, Brazil.
| | - Janaina Sena de Souza
- Laboratório de Endocrinologia Molecular e Translacional, Departamento de Medicina, Disciplina de Endocrinologia Clínica, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039032, Brazil
| | - Kelen Carneiro de Oliveira
- Laboratório de Endocrinologia Molecular e Translacional, Departamento de Medicina, Disciplina de Endocrinologia Clínica, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039032, Brazil
| | - Renata Marino Romano
- Laboratory of Reproductive Toxicology, Department of Pharmacy, State University of Centro-Oeste, da Conceição RR, Rua Simeao Camargo Varela de Sa, 03, Parana, 85040-080, Brazil
| | - Rui Monteiro de Barros Maciel
- Laboratório de Endocrinologia Molecular e Translacional, Departamento de Medicina, Disciplina de Endocrinologia Clínica, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039032, Brazil
| | - Magnus Régios Dias-da-Silva
- Laboratório de Endocrinologia Molecular e Translacional, Departamento de Medicina, Disciplina de Endocrinologia Clínica, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039032, Brazil
| | - Marco Aurélio Romano
- Laboratory of Reproductive Toxicology, Department of Pharmacy, State University of Centro-Oeste, da Conceição RR, Rua Simeao Camargo Varela de Sa, 03, Parana, 85040-080, Brazil
| | - Maria Izabel Chiamolera
- Laboratório de Endocrinologia Molecular e Translacional, Departamento de Medicina, Disciplina de Endocrinologia Clínica, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039032, Brazil
| | - Gisele Giannocco
- Laboratório de Endocrinologia Molecular e Translacional, Departamento de Medicina, Disciplina de Endocrinologia Clínica, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039032, Brazil
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| |
Collapse
|
6
|
Gan SY, Wong LZ, Wong JW, Tan EL. Fucosterol exerts protection against amyloid β-induced neurotoxicity, reduces intracellular levels of amyloid β and enhances the mRNA expression of neuroglobin in amyloid β-induced SH-SY5Y cells. Int J Biol Macromol 2018; 121:207-213. [PMID: 30300695 DOI: 10.1016/j.ijbiomac.2018.10.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that leads to progressive loss of neurons which often results in deterioration of memory and cognitive function. The development of AD is highly associated with the formation of senile plaques and neurofibrillary tangles. Amyloid β (Aβ) induces neurotoxicity and contributes to the development of AD. Recent evidences also highlighted the importance of neuroglobin (Ngb) in ameliorating AD. This study assessed the ability of fucosterol, a phytosterol found in brown alga, in protecting SH-SY5Y cells against Aβ-induced neurotoxicity. Its effects on the mRNA levels of APP and Ngb as well as the intracellular Aβ levels were also determined in Aβ-induced SH-SY5Y cells. SH-SY5Y cells were exposed to fucosterol prior to Aβ treatment. The effect on apoptosis was determined using Annexin V FITC staining and mRNA expression was studied using RT-PCR. Flow cytometry confirmed the protective effects of fucosterol on SH-SY5Y cells against Aβ-induced apoptosis. Pretreatment with fucosterol increased the Ngb mRNA levels but reduced the levels of APP mRNA and intracellular Aβ in Aβ-induced SH-SY5Y cells. These observations demonstrated the protective properties of fucosterol against Aβ-induced neurotoxicity in neuronal cells.
Collapse
Affiliation(s)
- Sook Yee Gan
- Department of Life Science, School of Pharmacy, International Medical University, 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| | - Li Zhe Wong
- School of Postgraduate Studies, International Medical University, Jalan Jalil Perkasa 19, 57000 Kuala Lumpur, Malaysia
| | - Jia Wun Wong
- BPharm, School of Pharmacy, International Medical University, 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Eng Lai Tan
- Department of Life Science, School of Pharmacy, International Medical University, 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Van Acker ZP, Luyckx E, Dewilde S. Neuroglobin Expression in the Brain: a Story of Tissue Homeostasis Preservation. Mol Neurobiol 2018; 56:2101-2122. [DOI: 10.1007/s12035-018-1212-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 06/26/2018] [Indexed: 12/19/2022]
|
8
|
Cytoglobin affects tumorigenesis and the expression of ulcerative colitis-associated genes under chemically induced colitis in mice. Sci Rep 2018; 8:6905. [PMID: 29720595 PMCID: PMC5931983 DOI: 10.1038/s41598-018-24728-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/29/2018] [Indexed: 02/07/2023] Open
Abstract
Cytoglobin (Cygb) is a member of the hemoglobin family and is thought to protect against cellular hypoxia and oxidative stress. These functions may be particularly important in inflammation-induced cancer, e.g., in patients with ulcerative colitis (UC). In this study, we investigated the development of inflammation and tumors in a murine model of inflammation-induced colorectal cancer using a combined treatment of azoxymethane and dextran sulfate sodium. A bioinformatics analysis of genome-wide expression data revealed increased colonic inflammation at the molecular level accompanied by enhanced macroscopic tumor development in Cygb-deficient mice. Moreover, the expression of the UC-associated gene neurexophilin and PC-esterase domain family member 4 (Nxpe4) depended on the presence of Cygb in the inflamed colonic mucosa. Compared to wild type mice, RT-qPCR confirmed a 14-fold (p = 0.0003) decrease in Nxpe4 expression in the inflamed colonic mucosa from Cygb-deficient mice. An analysis of Cygb protein expression suggested that Cygb is expressed in fibroblast-like cells surrounding the colonic crypts. Histological examinations of early induced lesions suggested that the effect of Cygb is primarily at the level of tumor promotion. In conclusion, in this model, Cygb primarily seemed to inhibit the development of established microadenomas.
Collapse
|
9
|
Alekseeva OS, Grigor’ev IP, Korzhevskii DE. Neuroglobin, an oxygen-binding protein in the mammalian nervous system (localization and putative functions). J EVOL BIOCHEM PHYS+ 2017. [DOI: 10.1134/s0022093017040019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Tae B, Oliveira KC, Conceição RRD, Valenti VE, de Souza JS, Laureano-Melo R, Sato MA, Maciel RMDB, Giannocco G. Evaluation of globins expression in brain, heart, and lung in rats exposed to side stream cigarette smoke. ENVIRONMENTAL TOXICOLOGY 2017; 32:1252-1261. [PMID: 27441981 DOI: 10.1002/tox.22321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
The side stream cigarette smoke (SSCS) is a contributing factor in the pathogenesis of cigarette smoking-induced toxicity. Hemoglobin (Hb), myoglobin (Mb), neuroglobin (Ngb), and cytoglobin (Cygb) are globins with different distributions and functions in the tissues and have similar actions by providing O2 (oxygen) for respiratory chain, detoxification of ROS and nitric oxide (NO), and protect tissues against irreversible lesions. We aimed to investigate the effects of SSCS exposure on gene and protein expression of Ngb, Cygb, and Mb in different tissue. The Ngb and Cygb gene and protein expression in the cerebral cortex increased after 1 week of rat exposure to SSCS. In hippocampus, the Ngb gene and protein expression increased after 1 week or more of exposure and no change was observed in Cygb gene and protein expression. In myocardium, Mb and Cygb gene expression increased at 1 and 4 weeks of exposure, while protein expression of both increased at 1, 2, 3, and 4 weeks. In lung, observed an increase in Cygb gene and protein expression after 2, 3, and 4 weeks of exposure. The findings suggest that SSCS modulates Ngb, Cygb, and Mb in central and peripheral tissue © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1252-1261, 2017.
Collapse
Affiliation(s)
- Barbara Tae
- Departament of Morphology and Physiology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
| | - Kelen Carneiro Oliveira
- Departament of Morphology and Physiology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
- Departament of Medicine, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | - Monica Akemi Sato
- Departament of Morphology and Physiology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
| | | | - Gisele Giannocco
- Departament of Morphology and Physiology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
- Departament of Medicine, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil
| |
Collapse
|
11
|
Critical re-evaluation of neuroglobin expression reveals conserved patterns among mammals. Neuroscience 2016; 337:339-354. [DOI: 10.1016/j.neuroscience.2016.07.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/26/2016] [Accepted: 07/26/2016] [Indexed: 01/08/2023]
|
12
|
Abstract
Globins are globular proteins for either transport or storage of oxygen which are critical for cellular metabolism. Four globins have been identified in rodent and human brains. Among them, neuroglobin, cytoglobin and hemoglobin chains are constitutively expressed in normal brain, while myoglobin is only expressed in some neurological disorders. Studies on the molecular structure, expression and functional features of these brain globins indicated that they may play crucial roles in maintenance of neural cell survival and activity, including neurons and astrocytes. Their regulation in neurological disorders may help thoroughly understand initiation and progression of ischemia, Alzheimer's disease and glioma, etc. Elucidation of the brain globin functions might remarkably improve medical strategies that sustain neurological homeostasis and treat neurological diseases. Here the expression pattern and functions of brain globins and their involvement in neurological disorders are reviewed.
Collapse
Affiliation(s)
- Luo-Kun Xie
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Shao-Hua Yang
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
13
|
Oliveira KC, da Conceição RR, Piedade GC, de Souza JS, Sato MA, de Barros Maciel RM, Giannocco G. Thyroid hormone modulates neuroglobin and cytoglobin in rat brain. Metab Brain Dis 2015; 30:1401-8. [PMID: 26334191 DOI: 10.1007/s11011-015-9718-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
Abstract
Thyroid hormones (THs) are essential and crucial for brain development, playing a role in growth and differentiation. Two globins named neuroglobin (Ngb) and cytoglobin (Cygb) are located in the brain, and each one has different distribution and function: They seem to have similar action by providing O(2) for respiratory chain, and detoxification of reactive oxygen species (ROS) and nitric oxide (NO) protecting tissues against irreversible lesions. We aimed to investigate the influence of thyroid state in Ngb and Cygb metabolism in different brain regions and evaluate their responses in cerebellum, hippocampus and cerebral cortex (hereafter called as cortex) after supraphysiological doses at different time points of TH administration. Experiments were carried out in rats, divided in eight experimental groups Control (C), thyroidectomy (Tx), and thyroidectomy treated with jugular intravenous injection (i.v). T3 (100 μl/100 g) injection and sacrificed after 30, 60, 120 min and 6, 12 and 24 h. In cortex, we found increase in Ngb gene and protein expression in different time points compared to C group, however Cygb gene and protein expression were decreased. In hippocampus, Ngb and Cygb protein expression increased 24 h after i.v. T3 injection in comparison to Tx. In cerebellum, we found increased Ngb gene expression after 120 min, 6, 12 and 24 h after T3 administration compared to Tx, and in contrast, protein expression was found to be significantly increased only 12 and 24 h compared to Tx. Ngb and Cygb expression in brain is influenced by thyroid hormone state both by its lack or excess.
Collapse
Affiliation(s)
- Kelen Carneiro Oliveira
- Department Morphology and Physiology, Faculdade de Medicina do ABC, Santo Andre, SP, Brazil
- Department Medicine, Universidade Federal de Sao Paulo (UNIFESP), Rua Pedro de Toledo, Vila Clementino, Sao Paulo, SP, 04039032, Brazil
| | - Rodrigo Rodrigues da Conceição
- Department Medicine, Universidade Federal de Sao Paulo (UNIFESP), Rua Pedro de Toledo, Vila Clementino, Sao Paulo, SP, 04039032, Brazil
| | - Gisele Constantinov Piedade
- Department Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Janaina Sena de Souza
- Department Medicine, Universidade Federal de Sao Paulo (UNIFESP), Rua Pedro de Toledo, Vila Clementino, Sao Paulo, SP, 04039032, Brazil
| | - Monica Akemi Sato
- Department Morphology and Physiology, Faculdade de Medicina do ABC, Santo Andre, SP, Brazil
| | - Rui Monteiro de Barros Maciel
- Department Medicine, Universidade Federal de Sao Paulo (UNIFESP), Rua Pedro de Toledo, Vila Clementino, Sao Paulo, SP, 04039032, Brazil
| | - Gisele Giannocco
- Department Morphology and Physiology, Faculdade de Medicina do ABC, Santo Andre, SP, Brazil.
- Department Medicine, Universidade Federal de Sao Paulo (UNIFESP), Rua Pedro de Toledo, Vila Clementino, Sao Paulo, SP, 04039032, Brazil.
- Department Biological Sciences, Universidade Federal de Sao Paulo, Diadema, SP, Brazil.
| |
Collapse
|
14
|
GLOBIN-5-dependent O2 responses are regulated by PDL-1/PrBP that targets prenylated soluble guanylate cyclases to dendritic endings. J Neurosci 2015; 34:16726-38. [PMID: 25505325 DOI: 10.1523/jneurosci.5368-13.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aerobic animals constantly monitor and adapt to changes in O2 levels. The molecular mechanisms involved in sensing O2 are, however, incompletely understood. Previous studies showed that a hexacoordinated globin called GLB-5 tunes the dynamic range of O2-sensing neurons in natural C. elegans isolates, but is defective in the N2 lab reference strain (McGrath et al., 2009; Persson et al., 2009). GLB-5 enables a sharp behavioral switch when O2 changes between 21 and 17%. Here, we show that GLB-5 also confers rapid behavioral and cellular recovery from exposure to hypoxia. Hypoxia reconfigures O2-evoked Ca(2+) responses in the URX O2 sensors, and GLB-5 enables rapid recovery of these responses upon re-oxygenation. Forward genetic screens indicate that GLB-5's effects on O2 sensing require PDL-1, the C. elegans ortholog of mammalian PrBP/PDE6δ protein. In mammals, PDE6δ regulates the traffic and activity of prenylated proteins (Zhang et al., 2004; Norton et al., 2005). PDL-1 promotes localization of GCY-33 and GCY-35, atypical soluble guanylate cyclases that act as O2 sensors, to the dendritic endings of URX and BAG neurons, where they colocalize with GLB-5. Both GCY-33 and GCY-35 are predicted to be prenylated. Dendritic localization is not essential for GCY-35 to function as an O2 sensor, but disrupting pdl-1 alters the URX neuron's O2 response properties. Functional GLB-5 can restore dendritic localization of GCY-33 in pdl-1 mutants, suggesting GCY-33 and GLB-5 are in a complex. Our data suggest GLB-5 and the soluble guanylate cyclases operate in close proximity to sculpt O2 responses.
Collapse
|
15
|
Hundahl CA, Fahrenkrug J, Hannibal J. Neurochemical phenotype of cytoglobin-expressing neurons in the rat hippocampus. Biomed Rep 2014; 2:620-627. [PMID: 25054000 DOI: 10.3892/br.2014.299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 06/03/2014] [Indexed: 11/05/2022] Open
Abstract
Cytoglobin (Cygb), a novel oxygen-binding protein, is expressed in the majority of tissues and has been proposed to function in nitric oxide (NO) metabolism in the vasculature and to have cytoprotective properties. However, the overall functions of Cygb remain elusive. Cygb is also expressed in a subpopulation of brain neurons. Recently, it has been shown that stress upregulates Cygb expression in the brain and the majority of neuronal nitric oxide synthase (nNOS)-positive neurons, an enzyme that produces NO, co-express Cygb. However, there are more neurons expressing Cygb than nNOS, thus a large number of Cygb neurons remain uncharacterized by the neurochemical content. The aim of the present study was to provide an additional and more detailed neurochemical phenotype of Cygb-expressing neurons in the rat hippocampus. The rat hippocampus was chosen due to the abundance of Cygb, as well as this limbic structure being an important target in a number of neurodegenerative diseases. Using triple immunohistochemistry, it was demonstrated that nearly all the parvalbumin- and heme oxygenase 1-positive neurons co-express Cygb and to a large extent, these neuron populations are distinct from the population of Cygb neurons co-expressing nNOS. Furthermore, it was shown that the majority of neurons expressing somastostatin and vasoactive intestinal peptide also co-express Cygb and nNOS. Detailed information regarding the neurochemical phenotype of Cygb neurons in the hippocampus can be a valuable tool in determining the function of Cygb in the brain.
Collapse
Affiliation(s)
- Christian Ansgar Hundahl
- Department of Physiology, Institute of Bio- and Translational Medicine, University of Tartu, Tartu 50411, Estonia, Denmark ; Centre for Excellence in Translation Medicine, University of Tartu, Tartu 50411, Estonia, Denmark
| | - Jan Fahrenkrug
- Department of Clinical Biochemistry, Bispebjerg Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2400, Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2400, Denmark
| |
Collapse
|
16
|
Raida Z, Hundahl CA, Nyengaard JR, Hay-Schmidt A. Neuroglobin over expressing mice: expression pattern and effect on brain ischemic infarct size. PLoS One 2013; 8:e76565. [PMID: 24098534 PMCID: PMC3788103 DOI: 10.1371/journal.pone.0076565] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/28/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Stroke is a major cause of death and severe disability, but effective treatments are limited. Neuroglobin, a neuronal heme-globin, has been advocated as a novel pharmacological target in combating stroke and neurodegenerative disorders based on cytoprotective properties. Using thoroughly validated antibodies and oligos, we give a detailed brain anatomical characterization of transgenic mice over expressing Neuroglobin. Moreover, using permanent middle artery occlusion the effect of elevated levels of Neuroglobin on ischemic damage was studied. Lastly, the impact of mouse strain genetic background on ischemic damage was investigated. PRINCIPAL FINDINGS A four to five fold increase in Neuroglobin mRNA and protein expression was seen in the brain of transgenic mice. A β-actin promoter was used to drive Neuroglobin over expression, but immunohistochemistry and in situ hybridization showed over expression to be confined to primarily the cortex, hippocampus, cerebellum, and only in neurons. The level and expression pattern of endogenous Neuroglobin was unaffected by insertion of the over expressing Ngb transgene. Neuroglobin over expression resulted in a significant reduction in infarct volume 24 hours after ischemia. Immunohistochemistry showed no selective sparing of Neuroglobin expressing cells in the ischemic core or penumbra. A significant difference in infarct volume was found between mice of the same strain, but from different colonies. SIGNIFICANCE In contrast to some previous reports, Neuroglobin over expression is not global but confined to a few well-defined brain regions, and only in neurons. This study confirms previous reports showing a correlation between reduced infarct volume and elevated Neuroglobin levels, but underlines the need to study the likely contribution from compensatory mechanisms to the phenotype following a genetic perturbation. We also stress, that care should be taken when comparing results where different mouse strains and colonies have been used due to large genetic background contribution to the observed phenotype.
Collapse
Affiliation(s)
- Zindy Raida
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (ZR); (CAH); (AH-S)
| | - Christian Ansgar Hundahl
- Centre of Excellence for Translational Medicine, University of Tartu, Tartu, Estonia
- * E-mail: (ZR); (CAH); (AH-S)
| | - Jens R. Nyengaard
- Stereology and Electron Microscopy Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark
| | - Anders Hay-Schmidt
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (ZR); (CAH); (AH-S)
| |
Collapse
|