1
|
Kopelman J, Keller TA, Panny B, Griffo A, Degutis M, Spotts C, Cruz N, Bell E, Do-Nguyen K, Wallace ML, Mathew SJ, Howland RH, Price RB. Rapid neuroplasticity changes and response to intravenous ketamine: a randomized controlled trial in treatment-resistant depression. Transl Psychiatry 2023; 13:159. [PMID: 37160885 PMCID: PMC10170140 DOI: 10.1038/s41398-023-02451-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023] Open
Abstract
Intravenous ketamine is posited to rapidly reverse depression by rapidly enhancing neuroplasticity. In human patients, we quantified gray matter microstructural changes on a rapid (24-h) timescale within key regions where neuroplasticity enhancements post-ketamine have been implicated in animal models. In this study, 98 unipolar depressed adults who failed at least one antidepressant medication were randomized 2:1 to a single infusion of intravenous ketamine (0.5 mg/kg) or vehicle (saline) and completed diffusion tensor imaging (DTI) assessments at pre-infusion baseline and 24-h post-infusion. DTI mean diffusivity (DTI-MD), a putative marker of microstructural neuroplasticity in gray matter, was calculated for 7 regions of interest (left and right BA10, amygdala, and hippocampus; and ventral Anterior Cingulate Cortex) and compared to clinical response measured with the Montgomery-Asberg Depression Rating Scale (MADRS) and the Quick Inventory of Depressive Symptoms-Self-Report (QIDS-SR). Individual differences in DTI-MD change (greater decrease from baseline to 24-h post-infusion, indicative of more neuroplasticity enhancement) were associated with larger improvements in depression scores across several regions. In the left BA10 and left amygdala, these relationships were driven primarily by the ketamine group (group * DTI-MD interaction effects: p = 0.016-0.082). In the right BA10, these associations generalized to both infusion arms (p = 0.007). In the left and right hippocampus, on the MADRS only, interaction effects were observed in the opposite direction, such that DTI-MD change was inversely associated with depression change in the ketamine arm specifically (group * DTI-MD interaction effects: p = 0.032-0.06). The acute effects of ketamine on depression may be mediated, in part, by acute changes in neuroplasticity quantifiable with DTI.
Collapse
Affiliation(s)
- Jared Kopelman
- University of California San Diego School of Medicine, San Diego, CA, USA
| | | | - Benjamin Panny
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Angela Griffo
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michelle Degutis
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Crystal Spotts
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nicolas Cruz
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Elizabeth Bell
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kevin Do-Nguyen
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Sanjay J Mathew
- Baylor College of Medicine and Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Robert H Howland
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rebecca B Price
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Wang AR, Kuijper FM, Barbosa DAN, Hagan KE, Lee E, Tong E, Choi EY, McNab JA, Bohon C, Halpern CH. Human habit neural circuitry may be perturbed in eating disorders. Sci Transl Med 2023; 15:eabo4919. [PMID: 36989377 DOI: 10.1126/scitranslmed.abo4919] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/03/2023] [Indexed: 03/31/2023]
Abstract
Circuit-based mechanisms mediating the development and execution of habitual behaviors involve complex cortical-striatal interactions that have been investigated in animal models and more recently in humans. However, how human brain circuits implicated in habit formation may be perturbed in psychiatric disorders remains unclear. First, we identified the locations of the sensorimotor putamen and associative caudate in the human brain using probabilistic tractography from Human Connectome Project data. We found that multivariate connectivity of the sensorimotor putamen was altered in humans with binge eating disorder and bulimia nervosa and that the degree of alteration correlated with severity of disordered eating behavior. Furthermore, the extent of this circuit aberration correlated with mean diffusivity in the sensorimotor putamen and decreased basal dopamine D2/3 receptor binding potential in the striatum, consistent with previously reported microstructural changes and dopamine signaling mediating habit learning in animal models. Our findings suggest a neural circuit that links habit learning and binge eating behavior in humans, which could, in part, explain the treatment-resistant behavior common to eating disorders and other psychiatric conditions.
Collapse
Affiliation(s)
- Allan R Wang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Fiene Marie Kuijper
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Université Paris Cité, Paris 75006, France
- Assistance Publique des Hôpitaux de Paris, Paris 75012, France
| | - Daniel A N Barbosa
- Department of Neurosurgery, Perelman School of Medicine, Richards Medical Research Laboratories, Pennsylvania Hospital, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kelsey E Hagan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eric Lee
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elizabeth Tong
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305 USA
| | - Eun Young Choi
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jennifer A McNab
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305 USA
| | - Cara Bohon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Casey H Halpern
- Department of Neurosurgery, Perelman School of Medicine, Richards Medical Research Laboratories, Pennsylvania Hospital, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Surgery, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Ripp I, Emch M, Wu Q, Lizarraga A, Udale R, von Bastian CC, Koch K, Yakushev I. Adaptive working memory training does not produce transfer effects in cognition and neuroimaging. Transl Psychiatry 2022; 12:512. [PMID: 36513642 PMCID: PMC9747798 DOI: 10.1038/s41398-022-02272-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Despite growing interest in cognitive interventions from academia and industry, it remains unclear if working memory (WM) training, one of the most popular cognitive interventions, produces transfer effects. Transfer effects are training-induced gains in performance in untrained cognitive tasks, while practice effects are improvements in trained task. The goal of this study was to evaluate potential transfer effects by comprehensive cognitive testing and neuroimaging. In this prospective, randomized-controlled, and single-blind study, we administered an 8-week n-back training to 55 healthy middle-aged (50-64 years) participants. State-of-the-art multimodal neuroimaging was used to examine potential anatomic and functional changes. Relative to control subjects, who performed non-adaptive WM training, no near or far transfer effects were detected in experimental subjects, who performed adaptive WM training. Equivalently, no training-related changes were observed in white matter integrity, amplitude of low frequency fluctuations, glucose metabolism, functional and metabolic connectivity. Exploratory within-group comparisons revealed some gains in transfer tasks, which, however, cannot be attributed to an increased WM capacity. In conclusion, WM training produces transfer effects neither at the cognitive level nor in terms of neural structure or function. These results speak against a common view that training-related gains reflect an increase in underlying WM capacity. Instead, the presently observed practice effects may be a result of optimized task processing strategies, which do not necessarily engage neural plasticity.
Collapse
Affiliation(s)
- Isabelle Ripp
- grid.6936.a0000000123222966Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany ,grid.6936.a0000000123222966TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Munich, Germany
| | - Mónica Emch
- grid.6936.a0000000123222966TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Munich, Germany ,grid.6936.a0000000123222966Department of Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Qiong Wu
- grid.6936.a0000000123222966TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Munich, Germany ,grid.6936.a0000000123222966Department of Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany ,grid.5252.00000 0004 1936 973XInstitute of Medical Psychology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Aldana Lizarraga
- grid.6936.a0000000123222966Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Robert Udale
- grid.11835.3e0000 0004 1936 9262Department of Psychology, University of Sheffield, Sheffield, UK
| | | | - Kathrin Koch
- grid.6936.a0000000123222966TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Munich, Germany ,grid.6936.a0000000123222966Department of Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Igor Yakushev
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany. .,TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Munich, Germany.
| |
Collapse
|
4
|
Huang D, Yan S, Shen S, Lv S, Lai S, Zhong S, Jia Y. Effects of virtual reality working memory training on event-based prospective memory in patients with major depressive disorder. J Psychiatr Res 2022; 156:91-99. [PMID: 36244203 DOI: 10.1016/j.jpsychires.2022.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/17/2022] [Accepted: 09/24/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND Event-based prospective memory (EBPM) refers to remembering to perform delayed intention when specific events occur. EBPM deficit is present in patients with major depressive disorder (MDD) and hinders recovery from the illness. Working memory training (WMT) has been reported to enhance EBPM but its effect on EBPM in MDD remains unclear. We investigated whether virtual reality (VR)-based WMT can improve EBPM in MDD patients. METHODS Forty-six MDD patients and 41 healthy controls (HC) were recruited. Among the former ones, the first 23 consecutive patients were allocated to the experimental group (MDD-VR) and the next 23 consecutive patients to the waitlist control group (MDD-W). EBPM accuracy was used to assess EBPM performance. Hamilton Depression Rating Scale (HDRS) and Massachusetts General Hospital Cognitive and Physical Functioning Questionnaire (CPFQ) were employed to assess the cognitive functions and the depressive symptoms. RESULTS At baseline, EBPM accuracy did not significantly differ between MDD-VR and MDD-W but was lower in both of these two groups than in HC (both p < 0.001). Group-by-time interactions on EBPM accuracy (F = 4.614, p = 0.031) and CPFQ score (F = 5.754, p = 0.021) were present, whereas no significant group-by-time interaction or group effects were observed for HDRS score (both p > 0.05). After VR intervention, MDD-VR showed an increase in EBPM accuracy (Cohen's d = 1.20 [95% CI: 0.53, 1.86], p = 0.001). CONCLUSIONS Our results demonstrated that VR-based WMT could improve EBPM deficits in MDD patients. Large-scale studies of a VR-based WMT program are indicated.
Collapse
Affiliation(s)
- Dong Huang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Shuya Yan
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China; School of Management, Jinan University, Guangzhou, 510316, China
| | - Shiyi Shen
- School of Management, Jinan University, Guangzhou, 510316, China
| | - Sihui Lv
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China; School of Management, Jinan University, Guangzhou, 510316, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
5
|
Xu X, Jin Y, Pan N, Cao M, Jing J, Ma J, Fan X, Tan S, Song X, Li X. A Diffusion Tensor Imaging Study on the White Matter Structures Related to the Phonology in Cantonese-Mandarin Bilinguals. Front Hum Neurosci 2022; 16:851669. [PMID: 35601910 PMCID: PMC9120590 DOI: 10.3389/fnhum.2022.851669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Cantonese and Mandarin are logographic languages, and the phonology is the main difference between the two languages. It is unclear whether the long-term experience of Cantonese-Mandarin bilingualism will shape different brain white matter structures related to phonological processing. A total of 30 Cantonese-Mandarin bilinguals and 30 Mandarin monolinguals completed diffusion-weighted imaging scan and phonological processing tasks. The tractography and tract-based spatial statistics were used to investigate the structural differences in the bilateral superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus (ILF), and inferior fronto-occipital fasciculus (IFOF) between Cantonese-Mandarin bilinguals and Mandarin monolinguals. The post-hoc correlation analysis was conducted to investigate the relationship between the different structures with phonological processing skills. Compared to the Mandarin monolinguals, the Cantonese-Mandarin bilinguals had higher fractional anisotropy (FA) along the left ILFs higher mean diffusivity (MD) along the right IFOF and the temporoparietal segment of SLF (tSLF), higher axial diffusivity (AD) in the right IFOF and left ILF, and lower number of streamlines in the bilateral tSLF. The mean AD of the different voxels in the right IFOF and the mean FA of the different voxels in the left ILF were positively correlated with the inverse efficiency score (IES) of the Cantonese auditory and Mandarin visual rhyming judgment tasks, respectively, within the bilingual group. The correlation between FA and IES was different among the groups. The long-term experience of Cantonese-Mandarin bilinguals shapes the different brain white matter structures in tSLF, IFOF, and ILF. Compared to the monolinguals, the bilinguals' white matter showed higher diffusivity, especially in the axonal direction. These changes were related to bilinguals' phonological processing.
Collapse
Affiliation(s)
- Xiaoyu Xu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuying Jin
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ning Pan
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Muqing Cao
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jin Jing
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jingwen Ma
- Guangdong Provincial Maternal and Child Health Care Hospital, Guangzhou, China
| | - Xiaoxuan Fan
- Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Si Tan
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiaojing Song
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiuhong Li
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Childhood socioeconomic status is associated with psychometric intelligence and microstructural brain development. Commun Biol 2021; 4:470. [PMID: 33927305 PMCID: PMC8084976 DOI: 10.1038/s42003-021-01974-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 03/10/2021] [Indexed: 02/02/2023] Open
Abstract
Childhood socioeconomic status is robustly associated with various children's cognitive factors and neural mechanisms. Here we show the association of childhood socioeconomic status with psychometric intelligence and mean diffusivity and fractional anisotropy using diffusion tensor imaging at the baseline experiment (N = 285) and longitudinal changes in these metrics after 3.0 ± 0.3 years (N = 223) in a large sample of normal Japanese children (mean age = 11.2 ± 3.1 years). After correcting for confounding factors, cross-sectional and longitudinal analyses show that higher childhood socioeconomic status is associated with greater baseline and baseline to follow-up increase of psychometric intelligence and mean diffusivity in areas around the bilateral fusiform gyrus. These results demonstrate that higher socioeconomic status is associated with higher psychometric intelligence measures and altered microstructural properties in the fusiform gyrus which plays a key role in reading and letter recognition and further augmentation of such tendencies during development. Definitive conclusions regarding the causality of these relationships requires intervention and physiological studies. However, the current findings should be considered when developing and revising policies regarding education.
Collapse
|
7
|
Effect of the interaction between BDNF Val66Met polymorphism and daily physical activity on mean diffusivity. Brain Imaging Behav 2021; 14:806-820. [PMID: 30617785 DOI: 10.1007/s11682-018-0025-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Numerous studies have reported that the Met allele of the brain-derived neurotrophic factor (BDNF) gene polymorphism reduces neural plasticity. A reduction in mean diffusivity (MD) in diffusion tensor imaging (DTI) characteristically reflects the neural plasticity that involves increased tissue components. In this study, we revealed that the number of Met-BDNF alleles was negatively associated with MD throughout the whole-brain gray and white matter areas of 743 subjects using DTI and whole-brain multiple regression analyses. Within the same sample, the region of interest analysis revealed that the number of Met-BDNF alleles significantly and positively correlated with the mean FA value in the body of the corpus callosum. In addition, we observed interaction effects between BDNF Val66Met polymorphism and daily physical activity levels on MD, but not FA, in significant clusters of the bilateral hemisphere (n = 577 subjects). Post-hoc multiple regression analyses revealed that after correcting for confounding variables, there was a significant negative correlation between the physical activity level and mean MD of the whole brain in the Val/Val group [standardized partial regression coefficient (β) = -0.196, P = 0.005, t = -2.825], but not in the Val/Met (β = 0.050, P = 0.412, t = 0.822) and Met/Met groups (β = 0.092, P = 0.382, t = 0.878). These results underscore the importance of the interaction between physical activity and the BDNF Val66Met polymorphism, which affects the plasticity of neural mechanisms.
Collapse
|
8
|
McPhee GM, Downey LA, Wesnes KA, Stough C. The Neurocognitive Effects of Bacopa monnieri and Cognitive Training on Markers of Brain Microstructure in Healthy Older Adults. Front Aging Neurosci 2021; 13:638109. [PMID: 33692683 PMCID: PMC7937913 DOI: 10.3389/fnagi.2021.638109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
Bacopa monnieri (BM) is a herbal supplement that increases signaling molecules implicated in synaptogenesis. Combined with cognitive stimulation, it may be a viable supplement to enhance long-term potentiation (LTP) and improve cognitive health in older adults. This randomized, double-blind, placebo-controlled trial asked 28 healthy adults aged over 55 years to complete cognitive training (CT) 3 hours weekly for 12 weeks. Fifteen consumed a standardized extract of BM and 13 consumed a placebo daily. Cognitive tasks, life-satisfaction, memory complaints and mood were assessed, and bloods analyzed for serum brain-derived neurotrophic factor (BDNF) before and after 12-weeks of the intervention. Diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) in gray (GM) and white matter (WM) were also analyzed. Results demonstrated slower reaction time in an image discrimination task in the BM group and faster reaction time in a spatial working memory task (SWM-O RT) in the placebo group. Mean accuracy was higher in the BM group for these tasks, suggesting a change in the speed accuracy trade-off. Exploratory neuroimaging analysis showed increased WM mean diffusivity (MD) and GM dispersion of neurites (orientation dispersion index, ODI) and decreased WM fractional anisotropy (FA) and GM neurite density (ND) in the BM group. No other outcomes reached statistical significance. An increase in ODI with a decrease in MD and ND in the BM group may indicate an increase in network complexity (through higher dendritic branching) accompanied by dendritic pruning to enhance network efficiency. These neuroimaging outcomes conflict with the behavioral results, which showed poorer reaction time in the BM group. Given the exploratory outcomes and inconsistent findings between the behavioral and neuroimaging data, a larger study is needed to confirm the synaptogenic mechanisms of BM.
Collapse
Affiliation(s)
- Grace M McPhee
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Luke A Downey
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia.,Institute for Breathing and Sleep, Austin Health, Melbourne, VIC, Australia
| | - Keith A Wesnes
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia.,Wesnes Cognition Ltd., Streatley, United Kingdom.,University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Con Stough
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Dorsolateral Prefrontal Cortex Activity during a Brain Training Game Predicts Cognitive Improvements after Four Weeks' Brain Training Game Intervention: Evidence from a Randomized Controlled Trial. Brain Sci 2020; 10:brainsci10080560. [PMID: 32824185 PMCID: PMC7464011 DOI: 10.3390/brainsci10080560] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Recent studies have demonstrated that brain activities using NIRS (near-infrared spectroscopy) at baseline during cognitive tasks (e.g., N-back task) can predict the cognitive benefits of a cognitive training. In this study, we investigated whether brain activities during brain training game (BT) at baseline would predict benefits to cognitive functions after the intervention period. METHODS In a four-week double-blinded randomized control trial (RCT) 72 young adults were randomly assigned to one of the two groups: participants in the BT group played specific game, called the Brain Age. Participants in an active control group (ACT) played the puzzle game Tetris. We measured brain activity during the training games using two channel NIRS before the intervention period. Cognitive functions were tested before and after the four-week intervention period. RESULTS The BT showed significant improvements in inhibition, processing speed, and working memory performance compared to ACT. The left and right DLPFC (dorsolateral prefrontal cortex) brain activities during the BT at baseline were associated with improvements in inhibition and processing speed. DISCUSSION This randomized control trial first provides scientific evidence that DLPFC activities during BT at baseline can predict cognitive improvements after a four-week intervention period.
Collapse
|
10
|
Takeuchi H, Taki Y, Nouchi R, Yokoyama R, Nakagawa S, Iizuka K, Sakaki K, Araki T, Nozawa T, Ikeda S, Yokota S, Hanawa S, Magistro D, Kotozaki Y, Sasaki Y, Dos S Kawata KH, Kawashima R. The associations of BMI with mean diffusivity of basal ganglia among young adults with mild obesity and without obesity. Sci Rep 2020; 10:12566. [PMID: 32724120 PMCID: PMC7387490 DOI: 10.1038/s41598-020-69438-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/09/2020] [Indexed: 11/09/2022] Open
Abstract
Obesity causes a wide range of systemic diseases and is associated with mood and anxiety disorders. It is also associated with dopaminergic reward system function. However, the relationships between microstructural properties of the dopaminergic system and body mass index (BMI) have not been investigated. In this study, we investigated the associations of BMI with mean diffusivity (MD), diffusion tensor imaging measure in areas of the dopaminergic system (MDDS) in 435 healthy young adults with mild obesity and without obesity (BMI < 40). We detected the association between greater BMI and lower MD of the right globus pallidus and the right putamen. These results suggest that the property of the dopaminergic system is associated with BMI among young adults with mild obesity and without obesity.
Collapse
Affiliation(s)
- Hikarua Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan.
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
- Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Radiology and Nuclear Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Rui Nouchi
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Science, Tohoku University, Sendai, Japan
- Human and Social Response Research Division, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Seishu Nakagawa
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kunio Iizuka
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kohei Sakaki
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Takayuki Nozawa
- Collaborative Research Center for Happiness Co-Creation Society Through Intelligent Communications, Tokyo Institute of Technology, Tokyo, Japan
| | - Shigeyuki Ikeda
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Susumu Yokota
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Sugiko Hanawa
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Daniele Magistro
- National Centre for Sport and Exercise Medicine (NCSEM), The NIHR Leicester-Loughborough Diet, Lifestyle and Physical Activity Biomedical Research Unit, School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, England
| | - Yuka Kotozaki
- Division of Clinical Research, Medical-Industry Translational Research Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yukako Sasaki
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Science, Tohoku University, Sendai, Japan
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
11
|
Effects of Simultaneously Performed Dual-Task Training with Aerobic Exercise and Working Memory Training on Cognitive Functions and Neural Systems in the Elderly. Neural Plast 2020. [DOI: 10.1155/2020/3859824] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Working memory (WM) training (WMT), aerobic exercise training (AET), and dual-task training improve cognitive functions and alter neural systems in older adults. In particular, the effects have been investigated of dual-task training that combines a walking or standing activity (balance exercise) simultaneously performed with cognitive training (which is ecologically difficult for the elderly). In this study, we investigated the effects of simultaneously performed dual-task training incorporating both AET and WMT (SDAEWMT), using a recumbent ergocycle bicycle and a WMT program that provided a portable console and made the training ecologically easy for the elderly. Older adults (65.9±13.7 years old) participated in 3 months of SDAEWMT, WMT, or AET after random allocation, and the effects of SDAEWMT were compared with those of WMT and AET. Prior to and after training, all the subjects underwent cognitive testing, magnetic resonance imaging (MRI) involving diffusion tensor imaging (DTI), and functional MRI during performance of an N-back WM task. SDAEWMT improved executive function (performance of a frontal assessment battery); however, there was no evidence of broader transfer effects or enhanced learning with WMT. SDAEWMT resulted in mean diffusivity changes in brain areas involving the dopaminergic system, suggesting that neural tissue changes occurred in these areas. SDAEWMT also resulted in an increase in brain activity during the 2-back working memory task in brain areas involved in attentional reorientation. These results suggest that SDAEWMT is effective for improving cognitive functions and inducing beneficial neural changes in older adults.
Collapse
|
12
|
Takeuchi H, Taki Y, Nouchi R, Yokoyama R, Kotozaki Y, Nakagawa S, Sekiguchi A, Iizuka K, Yamamoto Y, Hanawa S, Araki T, Miyauchi CM, Sakaki K, Sassa Y, Nozawa T, Ikeda S, Yokota S, Daniele M, Kawashima R. Mean diffusivity associated with trait emotional intelligence. Soc Cogn Affect Neurosci 2020; 14:871-883. [PMID: 31593230 PMCID: PMC6847659 DOI: 10.1093/scan/nsz059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 07/03/2019] [Accepted: 07/10/2019] [Indexed: 11/21/2022] Open
Abstract
Previous neuroimaging studies have suggested that the neural bases of trait emotional intelligence (TEI) lie in the social cognition network (SCN) and the somatic marker circuitry (SMC). The current study was the first to investigate the associations of total TEI factors and subfactors with mean diffusivity (MD) of these networks as well as regional MD of the dopaminergic system (MDDS). We found that TEI intrapersonal factor score and total TEI score were negatively correlated with regional MDDS in the vicinity of the right putamen and right pallidum and that TEI intrapersonal factor score was negatively correlated with MD values of the fusiform gyrus. Total TEI score and TEI factor scores were positively correlated with MD values of various areas within or adjacent to SCN components, SMC structures and the lateral prefrontal cortex (LPFC). Our MD findings demonstrated the importance of the dopaminergic system to TEI and implicate the SCN, SMC and LPFC in TEI. Future studies are required to investigate the implications of positive and negative associations with MD values.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Yasuyuki Taki
- Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8575, Japan.,Department of Radiology and Nuclear Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Rui Nouchi
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Science, Tohoku University, Sendai 980-8575, Japan.,Human and Social Response Research Division, International Research Institute of Disaster Science, Tohoku University, Sendai 980-8575, Japan.,Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | | | - Yuka Kotozaki
- Division of Clinical Research, Medical-Industry Translational Research Center, School of Medicine, Fukushima Medical University, Fukushima 960-1925, Japan
| | - Seishu Nakagawa
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.,Division of Psychiatry, Tohoku Medical and Pharmaceutical University, Sendai 983-8536, Japan
| | - Atsushi Sekiguchi
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8553, Japan
| | - Kunio Iizuka
- Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yuki Yamamoto
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Sugiko Hanawa
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Tsuyoshi Araki
- Advantage Risk Management Co., Ltd, Tokyo 153-0051, Japan
| | - Carlos Makoto Miyauchi
- Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Kohei Sakaki
- Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Yuko Sassa
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Takayuki Nozawa
- Research Center for the Earth Inclusive Sensing Empathizing with Silent Voices, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Shigeyuki Ikeda
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Susumu Yokota
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Magistro Daniele
- Research Center for the Earth Inclusive Sensing Empathizing with Silent Voices, Tokyo Institute of Technology, Tokyo 152-8550, Japan.,Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.,Department of Sport Science, School of Science and Technology, Nottingham Trent University, Nottingham, UK, NG11 8NS
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.,Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.,Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
13
|
Takeuchi H, Taki Y, Nouchi R, Yokoyama R, Kotozaki Y, Nakagawa S, Sekiguchi A, Iizuka K, Yamamoto Y, Hanawa S, Araki T, Miyauchi CM, Sakaki K, Nozawa T, Ikeda S, Yokota S, Daniele M, Sassa Y, Kawashima R. Association of iron levels in hair with brain structures and functions in young adults. J Trace Elem Med Biol 2020; 58:126436. [PMID: 31760327 DOI: 10.1016/j.jtemb.2019.126436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 11/02/2019] [Accepted: 11/12/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND Iron plays a critical role in normal brain functions and development, but it has also been known to have adverse neurological effects. METHODS Here, we investigated the associations of iron levels in hair with regional gray matter volume (rGMV), regional cerebral blood flow (rCBF), fractional anisotropy (FA), mean diffusivity (MD), and cognitive differences in a study cohort of 590 healthy young adults. RESULTS Our findings showed that high iron levels were associated with lower rGMV in areas including the hippocampus, lower rCBF in the anterior and posterior parts of the brain, greater FA in areas including the part of the splenium of the corpus callosum, lower MD in the overlapping area including the splenium of the corpus callosum, as well as greater MD in the left hippocampus and areas including the frontal lobe. CONCLUSION These results are compatible with the notion that iron plays diverse roles in neural mechanisms in healthy young adults.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan; Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Department of Radiology and Nuclear Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Rui Nouchi
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Science, Tohoku University, Sendai, Japan; Human and Social Response Research Division, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan; Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Yuka Kotozaki
- Division of Clinical research, Medical-Industry Translational Research Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Seishu Nakagawa
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan; Division of Psychiatry, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Atsushi Sekiguchi
- Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kunio Iizuka
- Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuki Yamamoto
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Sugiko Hanawa
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Carlos Makoto Miyauchi
- Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, Tokyo, Japan
| | - Kohei Sakaki
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Takayuki Nozawa
- Research Center for the Earth Inclusive Sensing Empathizing with Silent Voices, Tokyo Institute of Technology, Tokyo, Japan
| | - Shigeyuki Ikeda
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Susumu Yokota
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Magistro Daniele
- Department of Sport Science, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, United Kingdom
| | - Yuko Sassa
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan; Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan; Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
14
|
Ophey A, Giehl K, Rehberg S, Eggers C, Reker P, van Eimeren T, Kalbe E. Effects of working memory training in patients with Parkinson's disease without cognitive impairment: A randomized controlled trial. Parkinsonism Relat Disord 2020; 72:13-22. [PMID: 32078917 DOI: 10.1016/j.parkreldis.2020.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To determine the feasibility and evaluate effects of a computerized working memory (WM) training (WMT) in patients with Parkinson's Disease (PD) on cognitive and clinical outcomes. METHODS 76 patients with PD without cognitive impairment were randomized to either the WMT group (n = 37), who participated in a 5-week adaptive WMT, or a passive waiting-list control group (CG, n = 39). Patients underwent clinical and neuropsychological examination at baseline, after training, and at 3-months follow-up, with verbal WM and non-verbal WM as primary outcomes. Outcome assessors were blinded for group allocation. RESULTS All WMT participants completed the training successfully and reported high levels of motivation for and satisfaction with the training. Repeated-measures, linear mixed-effects models revealed positive training effects for the WMT group compared to the CG in verbal working memory with a small relative effect size 0.39 [95%CI 0.05; 0.76] for the 3-months follow-up only. No other reliable training effects in cognitive and clinical variables were found for either point of time. CONCLUSIONS In this randomized controlled trial, WMT was feasible and yielded some evidence for 3-months follow-up training gains in patients with PD. WMT might be an effective intervention to prevent cognitive decline in this patient group, however, more longitudinal studies with longer follow-up periods and more sensitive assessment tools will have to proof this concept. TRIAL REGISTRATION German Clinical Trials Register (DRKS00009379).
Collapse
Affiliation(s)
- Anja Ophey
- Department of Medical Psychology
- Neuropsychology & Gender Studies, Center for Neuropsychological Diagnostic and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937, Cologne, Germany.
| | - Kathrin Giehl
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937, Cologne, Germany.
| | - Sarah Rehberg
- Department of Medical Psychology
- Neuropsychology & Gender Studies, Center for Neuropsychological Diagnostic and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937, Cologne, Germany.
| | - Carsten Eggers
- Department of Neurology, University Hospital of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior - CMBB, Universities of Marburg and Gießen, Baldingerstraße, 35043, Marburg, Germany.
| | - Paul Reker
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937, Cologne, Germany.
| | - Thilo van Eimeren
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937, Cologne, Germany; Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937, Cologne, Germany; German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Straße 27, 53127, Bonn, Germany.
| | - Elke Kalbe
- Department of Medical Psychology
- Neuropsychology & Gender Studies, Center for Neuropsychological Diagnostic and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937, Cologne, Germany.
| |
Collapse
|
15
|
Abstract
Empathizing is defined as “the drive to identify another’s mental states and to respond to these with an appropriate emotion” and systemizing is defined as “the drive to the drive to analyze and construct rule-based systems”. While mean diffusivity (MD) has been robustly associated with several cognitive traits and disorders related with empathizing and systemizing, its direct correlation with empathizing and systemizing remains to be investigated. We undertook voxel-by-voxel investigations of regional MD to discover microstructural correlates of empathizing, systemizing, and the discrepancy between them (D score: systemizing − empathizing). Whole-brain analyses of covariance revealed that across both sexes, empathizing was positively correlated with MD of (a) an anatomical cluster that primarily spreads in the areas in and adjacent to the left dorsolateral prefrontal cortex, left anterior to the middle cingulate cortex, and left insula and (b) an anatomical cluster of the left postcentral gyrus and left rolandic operculum. The former overlaps with positive MD correlates of cooperativeness. The D score and systemizing did not show significant correlations. In conclusion, while increased MD has generally been associated with reduced neural tissues and possibly area function, higher empathizing and cooperativeness were commonly reflected by greater MD values in areas (a) that mainly overlap with areas that play a key role in emotional salience and empathy. In addition, higher empathizing was correlated with greater MD values in areas (b) that play a key role in the mirror neuron system.
Collapse
|
16
|
Takeuchi H, Taki Y, Nouchi R, Yokoyama R, Kotozaki Y, Nakagawa S, Sekiguchi A, Iizuka K, Yamamoto Y, Hanawa S, Araki T, Miyauchi CM, Sakaki K, Nozawa T, Ikeda S, Yokota S, Magistro D, Sassa Y, Kawashima R. The Effects of Family Socioeconomic Status on Psychological and Neural Mechanisms as Well as Their Sex Differences. Front Hum Neurosci 2019; 12:543. [PMID: 30713493 PMCID: PMC6345688 DOI: 10.3389/fnhum.2018.00543] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/31/2018] [Indexed: 12/28/2022] Open
Abstract
Family socioeconomic status (SES) is an important factor that affects an individual’s neural and cognitive development. The two novel aims of this study were to reveal (a) the effects of family SES on mean diffusivity (MD) using diffusion tensor imaging given the characteristic property of MD to reflect neural plasticity and development and (b) the sex differences in SES effects. In a study cohort of 1,216 normal young adults, we failed to find significant main effects of family SES on MD; however, previously observed main effects of family SES on regional gray matter volume and fractional anisotropy (FA) were partly replicated. We found a significant effect of the interaction between sex and family income on MD in the thalamus as well as significant effects of the interaction between sex and parents’ educational qualification (year’s of education) on MD and FA in the body of the corpus callosum as well as white matter areas between the anterior cingulate cortex and lateral prefrontal cortex. These results suggest the sex-specific associations of family SES with neural and/or cognitive mechanisms particularly in neural tissues in brain areas that play key roles in basic information processing and higher-order cognitive processes in a way females with greater family SES level show imaging outcome measures that have been associated with more neural tissues (such as greater FA and lower MD) and males showed opposite.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Radiology and Nuclear Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Rui Nouchi
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan.,Human and Social Response Research Division, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan.,Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Yuka Kotozaki
- Division of Clinical Research, Medical-Industrial Translational Research Center, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Seishu Nakagawa
- Department of Functional Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Division of Psychiatry, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Atsushi Sekiguchi
- Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Functional Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kunio Iizuka
- Department of Psychiatry, Tohoku University School of Medicine, Sendai, Japan
| | - Yuki Yamamoto
- Department of Functional Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Sugiko Hanawa
- Department of Functional Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Carlos Makoto Miyauchi
- Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kohei Sakaki
- Department of Functional Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Takayuki Nozawa
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Shigeyuki Ikeda
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Susumu Yokota
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Daniele Magistro
- Department of Sport Science, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Yuko Sassa
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Functional Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
17
|
Association of copper levels in the hair with gray matter volume, mean diffusivity, and cognitive functions. Brain Struct Funct 2019; 224:1203-1217. [PMID: 30656448 DOI: 10.1007/s00429-019-01830-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/08/2019] [Indexed: 12/11/2022]
Abstract
Although copper plays a critical role in normal brain functions and development, it is known that excess copper causes toxicity. Here we investigated the associations of copper levels in the hair with regional gray matter volume (rGMV), mean diffusivity (MD), and cognitive differences in a study cohort of 924 healthy young adults. Our findings showed that high copper levels were associated mostly with low cognitive abilities (low scores on the intelligence test consisting of complex speed tasks, involving reasoning task, a complex arithmetic task, and a reading comprehension task) as well as lower reverse Stroop interference, high rGMV over widespread areas of the brain [mainly including the bilateral lateral and medial parietal cortices, medial temporal structures (amygdala, hippocampus, and parahippocampal gyrus), middle cingulate cortex, orbitofrontal cortex, insula, perisylvian areas, inferior temporal lobe, temporal pole, occipital lobes, and supplementary motor area], as well as high MD of the right substantia nigra and bilateral hippocampus, which are indicative of low density in brain tissues. These results suggest that copper levels are associated with mostly aberrant cognitive functions, greater rGMV in extensive areas, greater MD (which are indicative of low density in brain tissues) in subcortical structures in the healthy young adults, possibly reflecting copper's complex roles in neural mechanisms.
Collapse
|
18
|
Crespi C, Laureiro-Martínez D, Dodich A, Cappa SF, Brusoni S, Zollo M, Falini A, Canessa N. Improving innovative decision-making: Training-induced changes in fronto-parietal networks. Brain Cogn 2018; 128:46-55. [DOI: 10.1016/j.bandc.2018.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/01/2018] [Accepted: 11/06/2018] [Indexed: 01/09/2023]
|
19
|
Takeuchi H, Taki Y, Nouchi R, Yokoyama R, Kotozaki Y, Nakagawa S, Sekiguchi A, Iizuka K, Yamamoto Y, Hanawa S, Araki T, Miyauchi CM, Shinada T, Sakaki K, Nozawa T, Ikeda S, Yokota S, Daniele M, Sassa Y, Kawashima R. Shorter sleep duration and better sleep quality are associated with greater tissue density in the brain. Sci Rep 2018; 8:5833. [PMID: 29643448 PMCID: PMC5895621 DOI: 10.1038/s41598-018-24226-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 03/28/2018] [Indexed: 01/30/2023] Open
Abstract
Poor sleep quality is associated with unfavorable psychological measurements, whereas sleep duration has complex relationships with such measurements. The aim of this study was to identify the associations between microstructural properties of the brain and sleep duration/sleep quality in a young adult. The associations between mean diffusivity (MD), a measure of diffusion tensor imaging (DTI), and sleep duration/sleep quality were investigated in a study cohort of 1201 normal young adults. Positive correlations between sleep duration and MD of widespread areas of the brain, including the prefrontal cortex (PFC) and the dopaminergic systems, were identified. Negative correlations between sleep quality and MD of the widespread areas of the brain, including the PFC and the right hippocampus, were also detected. Lower MD has been previously associated with more neural tissues in the brain. Further, shorter sleep duration was associated with greater persistence and executive functioning (lower Stroop interference), whereas good sleep quality was associated with states and traits relevant to positive affects. These results suggest that bad sleep quality and longer sleep duration were associated with aberrant neurocognitive measurements in the brain in healthy young adults.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Radiology and Nuclear Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Rui Nouchi
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Science, Tohoku University, Sendai, Japan.,Human and Social Response Research Division, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan.,Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Yuka Kotozaki
- Division of Clinical research, Medical-Industry Translational Research Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Seishu Nakagawa
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Psychiatry, Tohoku Pharmaceutical University, Sendai, Japan
| | - Atsushi Sekiguchi
- Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kunio Iizuka
- Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuki Yamamoto
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Sugiko Hanawa
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Carlos Makoto Miyauchi
- Graduate School of Arts and Sciences, Department of General Systems Studies, The University of Tokyo, Tokyo, Japan
| | - Takamitsu Shinada
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kohei Sakaki
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Takayuki Nozawa
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Shigeyuki Ikeda
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Susumu Yokota
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Magistro Daniele
- School of Electronic, Electrical and Systems Engineering, Loughborough University, England, UK
| | - Yuko Sassa
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
20
|
Darki F, Klingberg T. Functional differentiation between convergence and non-convergence zones of the striatum in children. Neuroimage 2018; 173:384-393. [PMID: 29501552 DOI: 10.1016/j.neuroimage.2018.02.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/30/2018] [Accepted: 02/26/2018] [Indexed: 11/16/2022] Open
Abstract
Most cortical areas send projections to the striatum. In some parts of the striatum, the connections converge from several cortical areas. It is unknown whether the convergence and non-convergence zones of the striatum differ functionally. Here, we used diffusion-weighted magnetic resonance imaging and probabilistic fiber tracking to parcellate the striatum based on its connections to dorsolateral prefrontal, parietal and orbitofrontal cortices in two different datasets (children aged 6-7 years and adults). In both samples, quantitative susceptibility mapping (QSM) values were significantly correlated with working memory (WM) in convergence zones, but not in non-convergence zones. In children, this was also true for mean diffusivity, MD. The association of MD to WM specifically in the convergent zone was replicated in the Pediatric Imaging, Neurocognition, and Genetics (PING) dataset for 135 children aged 6-9 years. QSM data was not available in the PING dataset, and the association to QSM still needs to be replicated. These results suggest that connectivity-based segments of the striatum exhibit functionally different characteristics. The association between convergence zones and WM performance might relate to a role in integrating and coordinating activity in different cortical areas.
Collapse
Affiliation(s)
- Fahimeh Darki
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.
| | - Torkel Klingberg
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | -
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
21
|
Takeuchi H, Kawashima R. Mean Diffusivity in the Dopaminergic System and Neural Differences Related to Dopaminergic System. Curr Neuropharmacol 2018; 16:460-474. [PMID: 29119929 PMCID: PMC6018195 DOI: 10.2174/1570159x15666171109124839] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 05/29/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The mean diffusivity (MD) parameter obtained by diffusion tensor imaging provides a measure of how freely water molecules move in brain tissue. Greater tissue density conferred by closely arrayed cellular structures is assumed to lower MD by inhibiting the free diffusion of water molecules. METHODS In this paper, we review studies showing MD variation among regions of the brain dopaminergic system (MDDS), especially subcortical structures such as the putamen, caudate nucleus, and globus pallidus, in different conditions with known associations to dopaminergic system function or dysfunction. The methodologies and background related to MD and MDDS are also discussed. RESULTS Past studies indicate that MDDS is sensitive to pathological derangement of dopaminergic activity, neural changes caused by cognitive and pharmacological interventions that are known to affect the dopaminergic system, and individual character traits related to dopaminergic function. CONCLUSION These results suggest that MDDS can be one useful tool to tap the neural differences related to the dopaminergic system.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- Address correspondence to this author at the Division of Developmental Cognitive Neuroscience, IDAC, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; Tel/Fax: +81-22-717-7988;, E-mail:
| | | |
Collapse
|
22
|
Takeuchi H, Taki Y, Nouchi R, Sekiguchi A, Kotozaki Y, Nakagawa S, Makoto Miyauchi C, Sassa Y, Kawashima R. Neural plasticity in amplitude of low frequency fluctuation, cortical hub construction, regional homogeneity resulting from working memory training. Sci Rep 2017; 7:1470. [PMID: 28469197 PMCID: PMC5431219 DOI: 10.1038/s41598-017-01460-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 03/30/2017] [Indexed: 01/10/2023] Open
Abstract
Working memory training (WMT) induces changes in cognitive function and various neurological systems. Here, we investigated changes in recently developed resting state functional magnetic resonance imaging measures of global information processing [degree of the cortical hub, which may have a central role in information integration in the brain, degree centrality (DC)], the magnitude of intrinsic brain activity [fractional amplitude of low frequency fluctuation (fALFF)], and local connectivity (regional homogeneity) in young adults, who either underwent WMT or received no intervention for 4 weeks. Compared with no intervention, WMT increased DC in the anatomical cluster, including anterior cingulate cortex (ACC), to the medial prefrontal cortex (mPFC). Furthermore, WMT increased fALFF in the anatomical cluster including the right dorsolateral prefrontal cortex (DLPFC), frontopolar area and mPFC. WMT increased regional homogeneity in the anatomical cluster that spread from the precuneus to posterior cingulate cortex and posterior parietal cortex. These results suggest WMT-induced plasticity in spontaneous brain activity and global and local information processing in areas of the major networks of the brain during rest.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Radiology and Nuclear Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Rui Nouchi
- Human and Social Response Research Division, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Atsushi Sekiguchi
- Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Adult Mental Health, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuka Kotozaki
- Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Seishu Nakagawa
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Carlos Makoto Miyauchi
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yuko Sassa
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
23
|
Chung WW, Hudziak JJ. The Transitional Age Brain: "The Best of Times and the Worst of Times". Child Adolesc Psychiatr Clin N Am 2017; 26:157-175. [PMID: 28314448 DOI: 10.1016/j.chc.2016.12.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Over the past two decades, there have been substantial developments in the understanding of brain development and the importance of environmental inputs and context. This paper focuses on the neurodevelopmental mismatch that occurs during the epoch we term the 'transitional age brain' (ages 13-25) and the collateral behavioral correlates. We summarize research findings supporting the argument that, because of this neurodevelopmental mismatch, transitional age youth are at high risk for engaging in behaviors that lead to negative outcomes, morbidity, and mortality. We highlight the need to develop new, neuroscience-inspired health promotion and illness prevention approaches for transitional age youth.
Collapse
Affiliation(s)
- Winston W Chung
- Vermont Center for Children, Youth, and Family, University of Vermont Medical Center, 1 South Prospect Street, Arnold 3, Burlington, Vermont 05401, USA
| | - James J Hudziak
- University of Vermont College of Medicine and Medical Center, 1 South Prospect Street, Arnold 3, Burlington, Vermont 05401, USA.
| |
Collapse
|
24
|
Takeuchi H, Taki Y, Hashizume H, Asano K, Asano M, Sassa Y, Yokota S, Kotozaki Y, Nouchi R, Kawashima R. Impact of videogame play on the brain's microstructural properties: cross-sectional and longitudinal analyses. Mol Psychiatry 2016; 21:1781-1789. [PMID: 26728566 PMCID: PMC5116480 DOI: 10.1038/mp.2015.193] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 10/08/2015] [Accepted: 10/21/2015] [Indexed: 11/17/2022]
Abstract
Videogame play (VGP) has been associated with numerous preferred and non-preferred effects. However, the effects of VGP on the development of microstructural properties in children, particularly those associated with negative psychological consequences of VGP, have not been identified to date. The purpose of this study was to investigate this issue through cross-sectional and longitudinal prospective analyses. In the present study of humans, we used the diffusion tensor imaging mean diffusivity (MD) measurement to measure microstructural properties and examined cross-sectional correlations with the amount of VGP in 114 boys and 126 girls. We also assessed correlations between the amount of VGP and longitudinal changes in MD that developed after 3.0±0.3 (s.d.) years in 95 boys and 94 girls. After correcting for confounding factors, we found that the amount of VGP was associated with increased MD in the left middle, inferior and orbital frontal cortex; left pallidum; left putamen; left hippocampus; left caudate; right putamen; right insula; and thalamus in both cross-sectional and longitudinal analyses. Regardless of intelligence quotient type, higher MD in the areas of the left thalamus, left hippocampus, left putamen, left insula and left Heschl gyrus was associated with lower intelligence. We also confirmed an association between the amount of VGP and decreased verbal intelligence in both cross-sectional and longitudinal analyses. In conclusion, increased VGP is directly or indirectly associated with delayed development of the microstructure in extensive brain regions and verbal intelligence.
Collapse
Affiliation(s)
- H Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan,Division of Developmental Cognitive Neuroscience, Institute of Development, Ageing and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan. E-mail:
| | - Y Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan,Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan,Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - H Hashizume
- Research Administration Office, Kyoto University, Kyoto, Japan
| | - K Asano
- Department of Neurology, Medical-Industry Translational Research Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - M Asano
- Department of Child and Adolescent Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Y Sassa
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - S Yokota
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Y Kotozaki
- Division of Clinical Research, Medical-Industry Translational Research Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - R Nouchi
- Human and Social Response Research Division, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - R Kawashima
- Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan,Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan,Smart Ageing International Research Centre, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
25
|
Cognitive Intervention for Attention and Executive Function Impairments in Children With Traumatic Brain Injury: A Pilot Study. J Head Trauma Rehabil 2016; 31:407-418. [DOI: 10.1097/htr.0000000000000200] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Takeuchi H, Taki Y, Sekiguchi A, Nouchi R, Kotozaki Y, Nakagawa S, Miyauchi CM, Iizuka K, Yokoyama R, Shinada T, Yamamoto Y, Hanawa S, Araki T, Kunitoki K, Sassa Y, Kawashima R. Mean diffusivity of basal ganglia and thalamus specifically associated with motivational states among mood states. Brain Struct Funct 2016; 222:1027-1037. [PMID: 27364694 DOI: 10.1007/s00429-016-1262-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 06/22/2016] [Indexed: 11/28/2022]
Abstract
Previously, we proposed that the mean diffusivity (MD), a measure of diffusion tensor imaging (DTI) in areas of the dopaminergic system (MDDS), is associated with motivation. In this study, we tested if and how the motivational state is associated with MD in comparison with other mood states. We also tested the associations of these mood states with multiple cognitive functions. We examined these issues in 766 right-handed healthy young adults. We employed analyses of MD and a psychological measure of the profile of mood states (POMS) as well as multiple cognitive functions. We detected associations between the higher Vigor subscale of POMS and lower MD in the right globus pallidum, right putamen to right posterior insula, right caudate body, and right thalamus, and these associations were highly specific to the Vigor subscale. Similarly, the association of the motivational state with creativity measured by divergent thinking (CMDT) was rather specific and prominent compared with that of the other mood states and cognitive functions. In conclusion, when affective states are finely divided, only the motivational state is associated with MD in the areas related to the dopaminergic system, and psychological mechanisms that had been associated with dopaminergic system (CMDT). These results suggest that these mechanisms specifically contribute to the motivational state and not to the other states, such as depression and anxiety.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan.
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan.,Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Radiology and Nuclear Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Atsushi Sekiguchi
- Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Rui Nouchi
- Human and Social Response Research Division, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Yuka Kotozaki
- Division of Clinical research, Medical-Industry Translational Research Center, Fukushima Medical University, School of Medicine, Fukushima, Japan
| | - Seishu Nakagawa
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Carlos Makoto Miyauchi
- Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Kunio Iizuka
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryoichi Yokoyama
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takamitsu Shinada
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yuki Yamamoto
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Sugiko Hanawa
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tsuyoshi Araki
- Smart Aging International Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Yuko Sassa
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan.,Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Division of Clinical research, Medical-Industry Translational Research Center, Fukushima Medical University, School of Medicine, Fukushima, Japan
| |
Collapse
|
27
|
Increased integrity of white matter pathways after dual n-back training. Neuroimage 2016; 133:244-250. [PMID: 27001498 DOI: 10.1016/j.neuroimage.2016.03.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/05/2016] [Accepted: 03/13/2016] [Indexed: 01/10/2023] Open
Abstract
Dual n-back WM training has been shown to produce broad transfer effects to different untrained cognitive functions. The task is demanding to the cognitive system because it includes a bi-modal (auditory and visual) dual-task component. A previous WM training study showed increased white matter integrity in the parietal lobe as well as the anterior part of the corpus callosum after visual n-back training. We investigated dual n-back training-related changes in white matter pathways. We anticipated dual n-back training to increase white matter integrity in pathways that connect brain regions related to WM processes. Additionally, we hypothesized that dual n-back training would produce more brain-wide white matter changes than single n-back training because of the involvement of two modalities and the additional dual-task coordination component of the task. The dual n-back training group showed increased white matter integrity (reflected as increased fractional anisotropy, FA) after training. The effects were mostly left lateralized as compared with changes from pretest to posttest in the passive and active control groups. Additionally, significant effects were observed in the anterior part of the corpus callosum, when the training group was compared with the passive control group. There were no changes in pretest to posttest FA changes between the passive and active control groups. The results therefore show that dual n-back training produces increased integrity in white matter pathways connecting different brain regions. The results are discussed in reference to the bi-modal dual-task component of the training task.
Collapse
|
28
|
Takeuchi H, Taki Y, Nouchi R, Hashizume H, Sekiguchi A, Kotozaki Y, Nakagawa S, Miyauchi CM, Sassa Y, Kawashima R. Working memory training improves emotional states of healthy individuals. Front Syst Neurosci 2014; 8:200. [PMID: 25360090 PMCID: PMC4199268 DOI: 10.3389/fnsys.2014.00200] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/23/2014] [Indexed: 11/13/2022] Open
Abstract
Working memory (WM) capacity is associated with various emotional aspects, including states of depression and stress, reactions to emotional stimuli, and regulatory behaviors. We have previously investigated the effects of WM training (WMT) on cognitive functions and brain structures. However, the effects of WMT on emotional states and related neural mechanisms among healthy young adults remain unknown. In the present study, we investigated these effects in young adults who underwent WMT or received no intervention for 4 weeks. Before and after the intervention, subjects completed self-report questionnaires related to their emotional states and underwent scanning sessions in which brain activities related to negative emotions were measured. Compared with controls, subjects who underwent WMT showed reduced anger, fatigue, and depression. Furthermore, WMT reduced activity in the left posterior insula during tasks evoking negative emotion, which was related to anger. It also reduced activity in the left frontoparietal area. These findings show that WMT can reduce negative mood and provide new insight into the clinical applications of WMT, at least among subjects with preclinical-level conditions.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University Sendai, Japan
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University Sendai, Japan ; Division of Medical Image Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University Sendai, Japan ; Department of Radiology and Nuclear Medicine, Institute of Development, Aging and Cancer, Tohoku University Sendai, Japan
| | - Rui Nouchi
- Department of Advanced Brain Science, Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University Sendai, Japan
| | - Hiroshi Hashizume
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University Sendai, Japan
| | - Atsushi Sekiguchi
- Department of Advanced Brain Science, Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University Sendai, Japan
| | - Yuka Kotozaki
- Department of Advanced Brain Science, Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University Sendai, Japan
| | - Seishu Nakagawa
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University Sendai, Japan
| | - Carlos Makoto Miyauchi
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University Sendai, Japan
| | - Yuko Sassa
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University Sendai, Japan
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University Sendai, Japan ; Division of Medical Image Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University Sendai, Japan ; Department of Advanced Brain Science, Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University Sendai, Japan
| |
Collapse
|