1
|
The Pedunculopontine Tegmental Nucleus is not Important for Breathing Impairments Observed in a Parkinson's Disease Model. Neuroscience 2023; 512:32-46. [PMID: 36690033 DOI: 10.1016/j.neuroscience.2022.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/21/2023]
Abstract
Parkinson's disease (PD) is a motor disorder resulting from degeneration of dopaminergic neurons of substantia nigra pars compacta (SNpc), with classical and non-classical symptoms such as respiratory instability. An important region for breathing control, the Pedunculopontine Tegmental Nucleus (PPTg), is composed of cholinergic, glutamatergic, and GABAergic neurons. We hypothesize that degenerated PPTg neurons in a PD model contribute to the blunted respiratory activity. Adult mice (40 males and 29 females) that express the fluorescent green protein in cholinergic, glutamatergic or GABAergic cells were used (Chat-cre Ai6, Vglut2-cre Ai6 and Vgat-cre Ai6) and received bilateral intrastriatal injections of vehicle or 6-hydroxydopamine (6-OHDA). Ten days later, the animals were exposed to hypercapnia or hypoxia to activate PPTg neurons. Vglut2-cre Ai6 animals also received retrograde tracer injections (cholera toxin b) into the retrotrapezoid nucleus (RTN) or preBötzinger Complex (preBötC) and anterograde tracer injections (AAV-mCherry) into the SNpc. In 6-OHDA-injected mice, there is a 77% reduction in the number of dopaminergic neurons in SNpc without changing the number of neurons in the PPTg. Hypercapnia activated fewer Vglut2 neurons in PD, and hypoxia did not activate PPTg neurons. PPTg neurons do not input RTN or preBötC regions but receive projections from SNpc. Although our results did not show a reduction in the number of glutamatergic neurons in PPTg, we observed a reduction in the number of neurons activated by hypercapnia in the PD animal model, suggesting that PPTg may participate in the hypercapnia ventilatory response.
Collapse
|
2
|
Su JH, Hu YW, Song YP, Yang Y, Li RY, Zhou KG, Hu L, Wan XH, Teng F, Jin LJ. Dystonia-like behaviors and impaired sensory-motor integration following neurotoxic lesion of the pedunculopontine tegmental nucleus in mice. Front Neurol 2023; 14:1102837. [PMID: 37064180 PMCID: PMC10101329 DOI: 10.3389/fneur.2023.1102837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/02/2023] [Indexed: 04/18/2023] Open
Abstract
Introduction The pedunculopontine nucleus (PPTg) is a vital interface between the basal ganglia and cerebellum, participating in modulation of the locomotion and muscle tone. Pathological changes of the PPTg have been reported in patients and animal models of dystonia, while its effect and mechanism on the phenotyping of dystonia is still unknown. Methods In this study, a series of behavioral tests focusing on the specific deficits of dystonia were conducted for mice with bilateral and unilateral PPTg excitotoxic lesion, including the dystonia-like movements evaluation, different types of sensory-motor integrations, explorative behaviors and gait. In addition, neural dysfunctions including apoptosis, neuroinflammation, neurodegeneration and neural activation of PPTg-related motor areas in the basal ganglia, reticular formations and cerebellum were also explored. Results Both bilateral and unilateral lesion of the PPTg elicited dystonia-like behaviors featured by the hyperactivity of the hindlimb flexors. Moreover, proprioceptive and auditory sensory-motor integrations were impaired in bilaterally lesioned mice, while no overt alterations were found for the tactile sensory-motor integration, explorative behaviors and gait. Similar but milder behavioral deficits were found in the unilaterally lesioned mice, with an effective compensation was observed for the auditory sensory-motor integration. Histologically, no neural loss, apoptosis, neuroinflammation and neurodegeneration were found in the substantia nigra pars compacta and caudate putamen (CPu) following PPTg lesion, while reduced neural activity was found in the dorsolateral part of the CPu and striatal indirect pathway-related structures including subthalamic nucleus, globus pallidus internus and substantia nigra pars reticular. Moreover, the neural activity was decreased for the reticular formations such as pontine reticular nucleus, parvicellular reticular nucleus and gigantocellular reticular nucleus, while deep cerebellar nuclei were spared. Conclusion In conclusion, lesion of the PPTg could elicit dystonia-like behaviors through its effect on the balance of the striatal pathways and the reticular formations.
Collapse
Affiliation(s)
- Jun-Hui Su
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yao-Wen Hu
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yun-Ping Song
- Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yi Yang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ruo-Yu Li
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kai-Ge Zhou
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ling Hu
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Xin-Hua Wan
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Teng
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Fei Teng
| | - Ling-Jing Jin
- Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Ling-Jing Jin
| |
Collapse
|
3
|
Su JH, Hu YW, Yang Y, Li RY, Teng F, Li LX, Jin LJ. Dystonia and the pedunculopontine nucleus: Current evidences and potential mechanisms. Front Neurol 2022; 13:1065163. [PMID: 36504662 PMCID: PMC9727297 DOI: 10.3389/fneur.2022.1065163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Being a major component of the midbrain locomotion region, the pedunculopontine nucleus (PPN) is known to have various connections with the basal ganglia, the cerebral cortex, thalamus, and motor regions of the brainstem and spinal cord. Functionally, the PPN is associated with muscle tone control and locomotion modulation, including motor initiation, rhythm and speed. In addition to its motor functions, the PPN also contribute to level of arousal, attention, memory and learning. Recent studies have revealed neuropathologic deficits in the PPN in both patients and animal models of dystonia, and deep brain stimulation of the PPN also showed alleviation of axial dystonia in patients of Parkinson's disease. These findings indicate that the PPN might play an important role in the development of dystonia. Moreover, with increasing preclinical evidences showed presence of dystonia-like behaviors, muscle tone changes, impaired cognitive functions and sleep following lesion or neuromodulation of the PPN, it is assumed that the pathological changes of the PPN might contribute to both motor and non-motor manifestations of dystonia. In this review, we aim to summarize the involvement of the PPN in dystonia based on the current preclinical and clinical evidences. Moreover, potential mechanisms for its contributions to the manifestation of dystonia is also discussed base on the dystonia-related basal ganglia-cerebello-thalamo-cortical circuit, providing fundamental insight into the targeting of the PPN for the treatment of dystonia in the future.
Collapse
Affiliation(s)
- Jun-hui Su
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China,Department of Neurology and Neurological Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yao-wen Hu
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Yang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ruo-yu Li
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fei Teng
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li-xi Li
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ling-jing Jin
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China,Department of Neurology and Neurological Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China,*Correspondence: Ling-jing Jin
| |
Collapse
|
4
|
del Rey NLG, Balzano T, Martin-Rodriguez L, Salinas-Rebolledo C, Trigo-Damas I, Rojas-Fernandez A, Alvarez-Erviti L, Blesa J. Lack of Parkinsonian Pathology and Neurodegeneration in Mice After Long-Term Injections of a Proteasome Inhibitor in Olfactory Bulb and Amygdala. Front Aging Neurosci 2021; 13:698979. [PMID: 34744683 PMCID: PMC8570189 DOI: 10.3389/fnagi.2021.698979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/27/2021] [Indexed: 11/24/2022] Open
Abstract
Proteinaceous inclusions, called Lewy bodies (LBs), are used as a pathological hallmark for Parkinson's disease (PD). Recent studies suggested a prion-like spreading mechanism for α-synucleinopathy where early neuropathological deposits occur, among others, in the olfactory bulb (OB) and amygdala. LBs contain insoluble α-synuclein and many other ubiquitinated proteins, suggesting a role of protein degradation system failure in PD pathogenesis. Therefore, we wanted to study the effects of a proteasomal inhibitor, lactacystin, on the aggregability and transmissibility of α-synuclein in the OB and amygdala. We performed injections of lactacystin in the OB and amygdala of wild-type mice. Motor behavior, markers of neuroinflammation, α-synuclein, and dopaminergic integrity were assessed by immunohistochemistry. Overall, there were no differences in the number of neurons and α-synuclein expression in these regions following injection of lactacystin into either the OB or amygdala. Microglial and astroglial labeling appeared to be correlated with surgery-induced inflammation or local effects of lactacystin. Consistent with the behavior and pathological findings, there was no loss of dopaminergic cell bodies in the substantia nigra and terminals in the striatum. Our data showed that long-term lactacystin injections in extra nigrostriatal regions may not mimic spreading aspects of PD and reinforce the special vulnerability of dopaminergic neurons of the substantia nigra pars compacta (SNc).
Collapse
Affiliation(s)
- Natalia Lopez-Gonzalez del Rey
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University-Cajal Institute, Madrid, Spain
| | - Tiziano Balzano
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Lucia Martin-Rodriguez
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
| | | | - Ines Trigo-Damas
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Lydia Alvarez-Erviti
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Javier Blesa
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
5
|
Sharma PK, Wells L, Rizzo G, Elson JL, Passchier J, Rabiner EA, Gunn RN, Dexter DT, Pienaar IS. DREADD Activation of Pedunculopontine Cholinergic Neurons Reverses Motor Deficits and Restores Striatal Dopamine Signaling in Parkinsonian Rats. Neurotherapeutics 2020; 17:1120-1141. [PMID: 31965550 PMCID: PMC7609798 DOI: 10.1007/s13311-019-00830-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The brainstem-based pedunculopontine nucleus (PPN) traditionally associates with motor function, but undergoes extensive degeneration during Parkinson's disease (PD), which correlates with axial motor deficits. PPN-deep brain stimulation (DBS) can alleviate certain symptoms, but its mechanism(s) of action remains unknown. We previously characterized rats hemi-intranigrally injected with the proteasomal inhibitor lactacystin, as an accurate preclinical model of PD. Here we used a combination of chemogenetics with positron emission tomography imaging for in vivo interrogation of discrete neural networks in this rat model of PD. Stimulation of excitatory designer receptors exclusively activated by designer drugs expressed within PPN cholinergic neurons activated residual nigrostriatal dopaminergic neurons to produce profound motor recovery, which correlated with striatal dopamine efflux as well as restored dopamine receptor 1- and dopamine receptor 2-based medium spiny neuron activity, as was ascertained with c-Fos-based immunohistochemistry and stereological cell counts. By revealing that the improved axial-related motor functions seen in PD patients receiving PPN-DBS may be due to stimulation of remaining PPN cholinergic neurons interacting with dopaminergic ones in both the substantia nigra pars compacta and the striatum, our data strongly favor the PPN cholinergic-midbrain dopaminergic connectome as mechanism for PPN-DBS's therapeutic effects. These findings have implications for refining PPN-DBS as a promising treatment modality available to PD patients.
Collapse
Affiliation(s)
- Puneet K Sharma
- Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Lisa Wells
- Invicro, Hammersmith Hospital Campus, Imperial College London, London, W12 0NN, UK
| | - Gaia Rizzo
- Invicro, Hammersmith Hospital Campus, Imperial College London, London, W12 0NN, UK
| | - Joanna L Elson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Jan Passchier
- Invicro, Hammersmith Hospital Campus, Imperial College London, London, W12 0NN, UK
| | - Eugenii A Rabiner
- Invicro, Hammersmith Hospital Campus, Imperial College London, London, W12 0NN, UK
| | - Roger N Gunn
- Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- Invicro, Hammersmith Hospital Campus, Imperial College London, London, W12 0NN, UK
| | - David T Dexter
- Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Ilse S Pienaar
- Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
- School of Life Sciences, University of Sussex, Falmer, BN1 9PH, UK.
| |
Collapse
|
6
|
Cenci MA, Björklund A. Animal models for preclinical Parkinson's research: An update and critical appraisal. PROGRESS IN BRAIN RESEARCH 2020; 252:27-59. [PMID: 32247366 DOI: 10.1016/bs.pbr.2020.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Animal models of Parkinson's disease (PD) are essential to investigate pathogenic pathways at the whole-organism level. Moreover, they are necessary for a preclinical investigation of potential new therapies. Different pathological features of PD can be induced in a variety of invertebrate and vertebrate species using toxins, drugs, or genetic perturbations. Each model has a particular utility and range of applicability. Invertebrate PD models are particularly useful for high throughput-screening applications, whereas mammalian models are needed to explore complex motor and non-motor features of the human disease. Here, we provide a comprehensive review and critical appraisal of the most commonly used mammalian models of PD, which are produced in rats and mice. A substantial loss of nigrostriatal dopamine neurons is necessary for the animal to exhibit a hypokinetic motor phenotype responsive to dopaminergic agents, thus resembling clinical PD. This level of dopaminergic neurodegeneration can be induced using specific neurotoxins, environmental toxicants, or proteasome inhibitors. Alternatively, nigrostriatal dopamine degeneration can be induced via overexpression of α-synuclein using viral vectors or transgenic techniques. In addition, protein aggregation pathology can be triggered by inoculating preformed fibrils of α-synuclein in the substantia nigra or the striatum. Thanks to the conceptual and technical progress made in the past few years a vast repertoire of well-characterized animal models are currently available to address different aspects of PD in the laboratory.
Collapse
Affiliation(s)
- M Angela Cenci
- Department of Experimental Medical Science, Wallenberg Neuroscience Centre, Lund University, Lund, Sweden.
| | - Anders Björklund
- Department of Experimental Medical Science, Wallenberg Neuroscience Centre, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Chambers NE, Lanza K, Bishop C. Pedunculopontine Nucleus Degeneration Contributes to Both Motor and Non-Motor Symptoms of Parkinson's Disease. Front Pharmacol 2020; 10:1494. [PMID: 32009944 PMCID: PMC6974690 DOI: 10.3389/fphar.2019.01494] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/19/2019] [Indexed: 12/31/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by hypokinetic motor features; however, patients also display non-motor symptoms like sleep disorders. The standard treatment for PD is dopamine replacement with L-DOPA; however, symptoms including gait deficits and sleep disorders are unresponsive to L-DOPA. Notably, these symptoms have been linked to aberrant activity in the pedunculopontine nucleus (PPN). Of late, clinical trials involving PPN deep brain stimulation (DBS) have been employed to alleviate gait deficits. Although preclinical evidence implicating PPN cholinergic neurons in gait dysfunction was initially promising, DBS trials fell short of expected outcomes. One reason for the failure of DBS may be that the PPN is a heterogenous nucleus that consists of GABAergic, cholinergic, and glutamatergic neurons that project to a diverse array of brain structures. Second, DBS trials may have been unsuccessful because PPN neurons are susceptible to mitochondrial dysfunction, Lewy body pathology, and degeneration in PD. Therefore, pharmaceutical or gene-therapy strategies targeting specific PPN neuronal populations or projections could better alleviate intractable PD symptoms. Unfortunately, how PPN neuronal populations and their respective projections influence PD motor and non-motor symptoms remains enigmatic. Herein, we discuss normal cellular and neuroanatomical features of the PPN, the differential susceptibility of PPN neurons to PD-related insults, and we give an overview of literature suggesting a role for PPN neurons in motor and sleep deficits in PD. Finally, we identify future approaches directed towards the PPN for the treatment of PD motor and sleep symptoms.
Collapse
Affiliation(s)
| | | | - Christopher Bishop
- Department of Psychology, Binghamton University, Binghamton, NY, United States
| |
Collapse
|
8
|
Tubert C, Galtieri D, Surmeier DJ. The pedunclopontine nucleus and Parkinson's disease. Neurobiol Dis 2019; 128:3-8. [PMID: 30171892 PMCID: PMC6546542 DOI: 10.1016/j.nbd.2018.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/22/2018] [Accepted: 08/26/2018] [Indexed: 01/08/2023] Open
Abstract
In the last decade, scientific and clinical interest in the pedunculopontine nucleus (PPN) has grown dramatically. This growth is largely a consequence of experimental work demonstrating its connection to the control of gait and of clinical work implicating PPN pathology in levodopa-insensitive gait symptoms of Parkinson's disease (PD). In addition, the development of optogenetic and chemogenetic approaches has made experimental analysis of PPN circuitry and function more tractable. In this brief review, recent findings in the field linking PPN to the basal ganglia and PD are summarized; in addition, an attempt is made to identify key gaps in our understanding and challenges this field faces in moving forward.
Collapse
Affiliation(s)
- Cecilia Tubert
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Daniel Galtieri
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
9
|
Geng X, Wang X, He F, Zhang X, Xie J, Gao G, Han H, Yao X, Zhang H, Gao Y, Wang Y, Wang M. Spike and Local Field Synchronization Between the Pedunculopontine Nucleus and Primary Motor Cortex in a Rat Model of Parkinson's Disease. Neuroscience 2019; 404:470-483. [DOI: 10.1016/j.neuroscience.2019.01.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/16/2018] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
|
10
|
Penttinen AM, Parkkinen I, Blom S, Kopra J, Andressoo JO, Pitkänen K, Voutilainen MH, Saarma M, Airavaara M. Implementation of deep neural networks to count dopamine neurons in substantia nigra. Eur J Neurosci 2018; 48:2354-2361. [PMID: 30144349 PMCID: PMC6585833 DOI: 10.1111/ejn.14129] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/24/2018] [Accepted: 08/10/2018] [Indexed: 12/04/2022]
Abstract
Unbiased estimates of neuron numbers within substantia nigra are crucial for experimental Parkinson's disease models and gene‐function studies. Unbiased stereological counting techniques with optical fractionation are successfully implemented, but are extremely laborious and time‐consuming. The development of neural networks and deep learning has opened a new way to teach computers to count neurons. Implementation of a programming paradigm enables a computer to learn from the data and development of an automated cell counting method. The advantages of computerized counting are reproducibility, elimination of human error and fast high‐capacity analysis. We implemented whole‐slide digital imaging and deep convolutional neural networks (CNN) to count substantia nigra dopamine neurons. We compared the results of the developed method against independent manual counting by human observers and validated the CNN algorithm against previously published data in rats and mice, where tyrosine hydroxylase (TH)‐immunoreactive neurons were counted using unbiased stereology. The developed CNN algorithm and fully cloud‐embedded Aiforia™ platform provide robust and fast analysis of dopamine neurons in rat and mouse substantia nigra.
Collapse
Affiliation(s)
- Anna-Maija Penttinen
- Institute of Biotechnology, HiLIFE Unit, University of Helsinki, Helsinki, Finland
| | - Ilmari Parkkinen
- Institute of Biotechnology, HiLIFE Unit, University of Helsinki, Helsinki, Finland
| | - Sami Blom
- Biomedicum, Fimmic Oy, Helsinki, Finland
| | - Jaakko Kopra
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jaan-Olle Andressoo
- Institute of Biotechnology, HiLIFE Unit, University of Helsinki, Helsinki, Finland
| | | | - Merja H Voutilainen
- Institute of Biotechnology, HiLIFE Unit, University of Helsinki, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE Unit, University of Helsinki, Helsinki, Finland
| | - Mikko Airavaara
- Institute of Biotechnology, HiLIFE Unit, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Temporal-Spatial Profiling of Pedunculopontine Galanin-Cholinergic Neurons in the Lactacystin Rat Model of Parkinson's Disease. Neurotox Res 2017; 34:16-31. [PMID: 29218504 DOI: 10.1007/s12640-017-9846-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/22/2017] [Accepted: 11/22/2017] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is conventionally seen as resulting from single-system neurodegeneration affecting nigrostriatal dopaminergic neurons. However, accumulating evidence indicates multi-system degeneration and neurotransmitter deficiencies, including cholinergic neurons which degenerate in a brainstem nucleus, the pedunculopontine nucleus (PPN), resulting in motor and cognitive impairments. The neuropeptide galanin can inhibit cholinergic transmission, while being upregulated in degenerating brain regions associated with cognitive decline. Here we determined the temporal-spatial profile of progressive expression of endogenous galanin within degenerating cholinergic neurons, across the rostro-caudal axis of the PPN, by utilizing the lactacystin-induced rat model of PD. First, we show progressive neuronal death affecting nigral dopaminergic and PPN cholinergic neurons, reflecting that seen in PD patients, to facilitate use of this model for assessing the therapeutic potential of bioactive peptides. Next, stereological analyses of the lesioned brain hemisphere found that the number of PPN cholinergic neurons expressing galanin increased by 11%, compared to sham-lesioned controls, and increasing by a further 5% as the neurodegenerative process evolved. Galanin upregulation within cholinergic PPN neurons was most prevalent closest to the intra-nigral lesion site, suggesting that galanin upregulation in such neurons adapt intrinsically to neurodegeneration, to possibly neuroprotect. This is the first report on the extent and pattern of galanin expression in cholinergic neurons across distinct PPN subregions in both the intact rat CNS and lactacystin-lesioned rats. The findings pave the way for future work to target galanin signaling in the PPN, to determine the extent to which upregulated galanin expression could offer a viable treatment strategy for ameliorating PD symptoms associated with cholinergic degeneration.
Collapse
|
12
|
Bentea E, Verbruggen L, Massie A. The Proteasome Inhibition Model of Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2017; 7:31-63. [PMID: 27802243 PMCID: PMC5302045 DOI: 10.3233/jpd-160921] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The pathological hallmarks of Parkinson's disease are the progressive loss of nigral dopaminergic neurons and the formation of intracellular inclusion bodies, termed Lewy bodies, in surviving neurons. Accumulation of proteins in large insoluble cytoplasmic aggregates has been proposed to result, partly, from a failure in the function of intracellular protein degradation pathways. Evidence in support for such a hypothesis emerged in the beginning of the years 2000 with studies demonstrating structural and functional deficits in the ubiquitin-proteasome pathway in post-mortem nigral tissue of patients with Parkinson's disease. These fundamental findings have inspired the development of a new generation of animal models based on the use of proteasome inhibitors to disturb protein homeostasis and trigger nigral dopaminergic neurodegeneration. In this review, we provide an updated overview of the current approaches in employing proteasome inhibitors to model Parkinson's disease, with particular emphasis on rodent studies. In addition, the mechanisms underlying proteasome inhibition-induced cell death and the validity criteria (construct, face and predictive validity) of the model will be critically discussed. Due to its distinct, but highly relevant mechanism of inducing neuronal death, the proteasome inhibition model represents a useful addition to the repertoire of toxin-based models of Parkinson's disease that might provide novel clues to unravel the complex pathogenesis of this disorder.
Collapse
Affiliation(s)
| | | | - Ann Massie
- Correspondence to: Dr. Ann Massie, Department of Pharmaceutical Biotechnology and Molecular Biology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium. Tel.: +32 2 477 4502; E-mail:
| |
Collapse
|
13
|
Pepeu G, Grazia Giovannini M. The fate of the brain cholinergic neurons in neurodegenerative diseases. Brain Res 2017; 1670:173-184. [PMID: 28652219 DOI: 10.1016/j.brainres.2017.06.023] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 01/03/2023]
Abstract
The aims of this review are: 1) to describe which cholinergic neurons are affected in brain neurodegenerative diseases leading to dementia; 2) to discuss the possible causes of the degeneration of the cholinergic neurons, 3) to summarize the functional consequences of the cholinergic deficit. The brain cholinergic system is basically constituted by three populations of phenotypically similar neurons forming a series of basal forebrain nuclei, the midpontine nuclei and a large population of striatal interneurons. In Alzheimer's disease there is an extensive loss of forebrain cholinergic neurons accompanied by a reduction of the cholinergic fiber network of the cortical mantel and hippocampus. The midpontine cholinergic nuclei are spared. The same situation occurs in the corticobasal syndrome and dementia following alcohol abuse and traumatic brain injury. Conversely, in Parkinson's disease, the midpontine nuclei degenerate, together with the dopaminergic nuclei, reducing the cholinergic input to thalamus and forebrain whereas the forebrain cholinergic neurons are spared. In Parkinson's disease with dementia, Lewis Body Dementia and Parkinsonian syndromes both groups of forebrain and midpontine cholinergic nuclei degenerate. In Huntington's disease a dysfunction of the striatal cholinergic interneurons without cell loss takes place. The formation and accumulation of misfolded proteins such as β-amyloid oligomers and plaques, tau protein tangles and α-synuclein clumps, and aggregated mutated huntingtin play a crucial role in the neuronal degeneration by direct cellular toxicity of the misfolded proteins and through the toxic compounds resulting from an extensive inflammatory reaction. Evidences indicate that β-amyloid disrupts NGF metabolism causing the degeneration of the cholinergic neurons which depend on NGF for their survival, namely the forebrain cholinergic neurons, sparing the midpontine and striatal neurons which express no specific NGF receptors. It is feasible that the latter cholinergic neurons may be damaged by direct toxicity of tau, α-synuclein and inflammations products through mechanisms not fully understood. Attention and learning and memory impairment are the functional consequences of the forebrain cholinergic neuron dysfunction, whereas the loss of midpontine cholinergic neurons results primarily in motor and sleep disturbances.
Collapse
Affiliation(s)
- Giancarlo Pepeu
- Department of Health Sciences, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy.
| | - Maria Grazia Giovannini
- Department of Health Sciences, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy.
| |
Collapse
|
14
|
Nigral injection of a proteasomal inhibitor, lactacystin, induces widespread glial cell activation and shows various phenotypes of Parkinson's disease in young and adult mouse. Exp Brain Res 2017; 235:2189-2202. [PMID: 28439627 DOI: 10.1007/s00221-017-4962-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/19/2017] [Indexed: 12/18/2022]
Abstract
Proteinaceous inclusions, called Lewy bodies, are used as a pathological hallmark for Parkinson's disease (PD). Lewy bodies contain insoluble α-synuclein (aSyn) and many other ubiquitinated proteins, suggesting a role for protein degradation system failure in the PD pathogenesis. Indeed, proteasomal dysfunction has been linked to PD but commonly used in vivo toxin models, such as 6-OHDA or MPTP, do not have a significant effect on the proteasomal system or protein aggregation. Therefore, we wanted to study the characteristics of a proteasomal inhibitor, lactacystin, as a PD model on young and adult mice. To study this, we performed stereotactic microinjection of lactacystin above the substantia nigra pars compacta in young (2 month old) and adult (12-14 month old) C57Bl/6 mice. Motor behavior was measured by locomotor activity and cylinder tests, and the markers of neuroinflammation, aSyn, and dopaminergic system were assessed by immunohistochemistry and HPLC. We found that lactacystin induced a Parkinson's disease-like motor phenotype 5-7 days after injection in young and adult mice, and this was associated with widespread neuroinflammation based on glial cell markers, aSyn accumulation in substantia nigra, striatal dopamine decrease, and loss of dopaminergic cell bodies in the substantia nigra and terminals in the striatum. When comparing young and adult mice, adult mice were more sensitive for dopaminergic degeneration after lactacystin injection that further supports the use of adult mice instead of young when modeling neurodegeneration. Our data showed that lactacystin is useful in modeling various aspects of Parkinson's disease, and taken together, our findings emphasize the role of a protein degradation deficit in Parkinson's disease pathology, and support the use of proteasomal inhibitors as Parkinson's disease models.
Collapse
|
15
|
Pienaar IS, Vernon A, Winn P. The Cellular Diversity of the Pedunculopontine Nucleus: Relevance to Behavior in Health and Aspects of Parkinson's Disease. Neuroscientist 2016; 23:415-431. [PMID: 27932591 DOI: 10.1177/1073858416682471] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The pedunculopontine nucleus (PPN) is a rostral brainstem structure that has extensive connections with basal ganglia nuclei and the thalamus. Through these the PPN contributes to neural circuits that effect cortical and hippocampal activity. The PPN also has descending connections to nuclei of the pontine and medullary reticular formations, deep cerebellar nuclei, and the spinal cord. Interest in the PPN has increased dramatically since it was first suggested to be a novel target for treating patients with Parkinson's disease who are refractory to medication. However, application of frequency-specific electrical stimulation of the PPN has produced inconsistent results. A central reason for this is that the PPN is not a heterogeneous structure. In this article, we review current knowledge of the neurochemical identity and topographical distribution of neurons within the PPN of both humans and experimental animals, focusing on studies that used neuronally selective targeting strategies to ascertain how the neurochemical heterogeneity of the PPN relates to its diverse functions in relation to movement and cognitive processes. If the therapeutic potential of the PPN is to be realized, it is critical to understand the complex structure-function relationships that exist here.
Collapse
Affiliation(s)
- Ilse S Pienaar
- 1 Centre for Neuroinflammation & Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Cane Road, London, UK.,2 Faculty of Health and Life Sciences, Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Anthony Vernon
- 3 Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Philip Winn
- 4 Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
16
|
Associated degeneration of ventral tegmental area dopaminergic neurons in the rat nigrostriatal lactacystin model of parkinsonism and their neuroprotection by valproate. Neurosci Lett 2015; 614:16-23. [PMID: 26742637 PMCID: PMC4756273 DOI: 10.1016/j.neulet.2015.12.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/25/2015] [Accepted: 12/24/2015] [Indexed: 01/15/2023]
Abstract
Intranigral lactacystin causes degeneration of adjacent VTA dopaminergic neurons. Valproate is protective to VTA neurons in the lactacystin rat model of Parkinson’s. Valproate is a candidate for extra-nigral as well as intra-nigral neuroprotection.
Parkinson’s disease (PD) manifests clinically as bradykinesia, rigidity, and development of a resting tremor, primarily due to degeneration of dopaminergic nigrostriatal pathways in the brain. Intranigral administration of the irreversible ubiquitin proteasome system inhibitor, lactacystin, has been used extensively to model nigrostriatal degeneration in rats, and study the effects of candidate neuroprotective agents on the integrity of the dopaminergic nigrostriatal system. Recently however, adjacent extra-nigral brain regions such as the ventral tegmental area (VTA) have been noted to also become affected in this model, yet their integrity in studies of candidate neuroprotective agents in the model have largely been overlooked. Here we quantify the extent and distribution of dopaminergic degeneration in the VTA of rats intranigrally lesioned with lactacystin, and quantify the extent of VTA dopaminergic neuroprotection after systemic treatment with an epigenetic therapeutic agent, valproate, shown previously to protect dopaminergic SNpc neurons in this model. We found that unilateral intranigral administration of lactacystin resulted in a 53.81% and 31.72% interhemispheric loss of dopaminergic SNpc and VTA neurons, respectively. Daily systemic treatment of lactacystin lesioned rats with valproate however resulted in dose-dependant neuroprotection of VTA neurons. Our findings demonstrate that not only is the VTA also affected in the intranigral lactacystin rat model of PD, but that this extra-nigral brain region is substrate for neuroprotection by valproate, an agent shown previously to induce neuroprotection and neurorestoration of SNpc dopaminergic neurons in this model. Our results therefore suggest that valproate is a candidate for extra-nigral as well as intra-nigral neuroprotection.
Collapse
|
17
|
Pienaar IS, Gartside SE, Sharma P, De Paola V, Gretenkord S, Withers D, Elson JL, Dexter DT. Pharmacogenetic stimulation of cholinergic pedunculopontine neurons reverses motor deficits in a rat model of Parkinson's disease. Mol Neurodegener 2015; 10:47. [PMID: 26394842 PMCID: PMC4580350 DOI: 10.1186/s13024-015-0044-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/08/2015] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Patients with advanced Parkinson's disease (PD) often present with axial symptoms, including postural- and gait difficulties that respond poorly to dopaminergic agents. Although deep brain stimulation (DBS) of a highly heterogeneous brain structure, the pedunculopontine nucleus (PPN), improves such symptoms, the underlying neuronal substrate responsible for the clinical benefits remains largely unknown, thus hampering optimization of DBS interventions. Choline acetyltransferase (ChAT)::Cre(+) transgenic rats were sham-lesioned or rendered parkinsonian through intranigral, unihemispheric stereotaxic administration of the ubiquitin-proteasomal system inhibitor, lactacystin, combined with designer receptors exclusively activated by designer drugs (DREADD), to activate the cholinergic neurons of the nucleus tegmenti pedunculopontine (PPTg), the rat equivalent of the human PPN. We have previously shown that the lactacystin rat model accurately reflects aspects of PD, including a partial loss of PPTg cholinergic neurons, similar to what is seen in the post-mortem brains of advanced PD patients. RESULTS In this manuscript, we show that transient activation of the remaining PPTg cholinergic neurons in the lactacystin rat model of PD, via peripheral administration of the cognate DREADD ligand, clozapine-N-oxide (CNO), dramatically improved motor symptoms, as was assessed by behavioral tests that measured postural instability, gait, sensorimotor integration, forelimb akinesia and general motor activity. In vivo electrophysiological recordings revealed increased spiking activity of PPTg putative cholinergic neurons during CNO-induced activation. c-Fos expression in DREADD overexpressed ChAT-immunopositive (ChAT+) neurons of the PPTg was also increased by CNO administration, consistent with upregulated neuronal activation in this defined neuronal population. CONCLUSIONS Overall, these findings provide evidence that functional modulation of PPN cholinergic neurons alleviates parkinsonian motor symptoms.
Collapse
Affiliation(s)
- Ilse S Pienaar
- Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, W12 ONN, UK.
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Sarah E Gartside
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Puneet Sharma
- Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, W12 ONN, UK
| | - Vincenzo De Paola
- Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Sabine Gretenkord
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Dominic Withers
- Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Joanna L Elson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
- Centre for Human Metabonomics, North-West University, Potchefstroom, South Africa
| | - David T Dexter
- Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, W12 ONN, UK
| |
Collapse
|