1
|
Horváth K, Vági P, Juhász B, Kuti D, Ferenczi S, Kovács KJ. Sex Differences in the Neuroendocrine Stress Response: A View from a CRH-Reporting Mouse Line. Int J Mol Sci 2024; 25:12004. [PMID: 39596070 PMCID: PMC11593550 DOI: 10.3390/ijms252212004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Corticotropin-releasing hormone (CRH) neurons within the paraventricular hypothalamic nucleus (PVH) play a crucial role in initiating the neuroendocrine response to stress and are also pivotal in coordination of autonomic, metabolic, and behavioral stress reactions. Although the role of parvocellular CRHPVH neurons in activation of the hypothalamic-pituitary-adrenal (HPA) axis is well established, the distribution and function of CRH-expressing neurons across the whole central nervous system are less understood. Stress responses activate complex neural networks, which differ depending on the type of stressor and on the sex of the individual. Because of the technical difficulties of localizing CRH neurons throughout the rodent brain, several CRH reporter mouse lines have recently been developed. In this study, we used Crh-IRES-Cre;Ai9 reporter mice to examine whether CRH neurons are recruited in a stressor- or sex-specific manner, both within and outside the hypothalamus. In contrast to the clear sexual dimorphism of CRH-mRNA-expressing neurons, quantification of CRH-reporting, tdTomato-positive neurons in different stress-related brain areas revealed only subtle differences between male and female subjects. These results strongly imply that sex differences in CRH mRNA expression occur later in development under the influence of sex steroids and reflects the limitations of using genetic reporter constructs to reveal the current physiological/transcriptional status of a specific neuron population. Next, we compared the recruitment of stress-related, tdTomato-expressing (putative CRH) neurons in male and female Crh-IRES-Cre;Ai9 reporter mice that had been exposed to predator odor. In male mice, fox odor triggered more c-Fos in the CRH neurons of the paraventricular hypothalamic nucleus, central amygdala, and anterolateral bed nucleus of the stria terminalis compared to females. These results indicate that male mice are more sensitive to predator exposure due to a combination of hormonal, environmental, and behavioral factors.
Collapse
Affiliation(s)
- Krisztina Horváth
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Hungarian Research Network, 1083 Budapest, Hungary; (K.H.); (B.J.); (D.K.); (S.F.)
| | - Pál Vági
- Nikon Center of Excellence, Institute of Experimental Medicine, Hungarian Research Network, 1083 Budapest, Hungary;
| | - Balázs Juhász
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Hungarian Research Network, 1083 Budapest, Hungary; (K.H.); (B.J.); (D.K.); (S.F.)
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Dániel Kuti
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Hungarian Research Network, 1083 Budapest, Hungary; (K.H.); (B.J.); (D.K.); (S.F.)
| | - Szilamér Ferenczi
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Hungarian Research Network, 1083 Budapest, Hungary; (K.H.); (B.J.); (D.K.); (S.F.)
| | - Krisztina J. Kovács
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Hungarian Research Network, 1083 Budapest, Hungary; (K.H.); (B.J.); (D.K.); (S.F.)
| |
Collapse
|
2
|
Takeuchi E, Hatanaka T, Iijima T, Kimura M, Katoh A. The effects of corticotropin-releasing factor on motor learning. Sci Rep 2024; 14:17056. [PMID: 39048594 PMCID: PMC11269602 DOI: 10.1038/s41598-024-66736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
Corticotropin-releasing factor (CRF) is mainly secreted from the hypothalamic paraventricular nuclei and plays a crucial role in stress-related responses. Recent studies have reported that CRF is a neuromodulator in the central nervous system. In the cerebellum, CRF is essential for the induction of long-term depression (LTD) at the parallel fiber-Purkinje cell synapses. Given that LTD is thought to be one of the fundamental mechanisms of motor learning, CRF may affect motor learning. However, the role of CRF in motor learning in vivo remains unclear. In this study, we aimed to examine the role of CRF in motor learning. This was achieved through a series of behavioral experiments involving the in vivo administration of CRF and its antagonists. Rats injected with CRF directly into the cerebellum exhibited superior performance on the rotarod test, especially during initial training phases, compared to control subjects. Conversely, rats receiving a CRF receptor antagonist demonstrated reduced endurance on the rotating rod compared to controls. Notably, CRF mRNA expression levels in the cerebellum did not show significant variance between the CRF-injected and control groups. These findings imply a critical role of endogenous CRF in cerebellar motor learning and suggest that exogenous CRF can augment this process. (199 words).
Collapse
Affiliation(s)
- Eri Takeuchi
- Institute of Innovative Science and Technology, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan
| | - Tomomi Hatanaka
- Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Course of Pharmacy, Graduated School of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Takatoshi Iijima
- Institute of Innovative Science and Technology, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Minoru Kimura
- Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Akira Katoh
- Institute of Innovative Science and Technology, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
- Department of Physiology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| |
Collapse
|
3
|
Zhao W, Yu YM, Wang XY, Xia SH, Ma Y, Tang H, Tao M, Li H, Xu Z, Yang JX, Wu P, Zhang H, Ding HL, Cao JL. CRF regulates pain sensation by enhancement of corticoaccumbal excitatory synaptic transmission. Mol Psychiatry 2024; 29:2170-2184. [PMID: 38454083 DOI: 10.1038/s41380-024-02488-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
Both peripheral and central corticotropin-releasing factor (CRF) systems have been implicated in regulating pain sensation. However, compared with the peripheral, the mechanisms underlying central CRF system in pain modulation have not yet been elucidated, especially at the neural circuit level. The corticoaccumbal circuit, a structure rich in CRF receptors and CRF-positive neurons, plays an important role in behavioral responses to stressors including nociceptive stimuli. The present study was designed to investigate whether and how CRF signaling in this circuit regulated pain sensation under physiological and pathological pain conditions. Our studies employed the viral tracing and circuit-, and cell-specific electrophysiological methods to label the CRF-containing circuit from the medial prefrontal cortex to the nucleus accumbens shell (mPFCCRF-NAcS) and record its neuronal propriety. Combining optogenetic and chemogenetic manipulation, neuropharmacological methods, and behavioral tests, we were able to precisely manipulate this circuit and depict its role in regulation of pain sensation. The current study found that the CRF signaling in the NAc shell (NAcS), but not NAc core, was necessary and sufficient for the regulation of pain sensation under physiological and pathological pain conditions. This process was involved in the CRF-mediated enhancement of excitatory synaptic transmission in the NAcS. Furthermore, we demonstrated that the mPFCCRF neurons monosynaptically connected with the NAcS neurons. Chronic pain increased the protein level of CRF in NAcS, and then maintained the persistent NAcS neuronal hyperactivity through enhancement of this monosynaptic excitatory connection, and thus sustained chronic pain behavior. These findings reveal a novel cell- and circuit-based mechanistic link between chronic pain and the mPFCCRF → NAcS circuit and provide a potential new therapeutic target for chronic pain.
Collapse
Affiliation(s)
- Weinan Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yu-Mei Yu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xiao-Yi Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Department of Anesthesiology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China
| | - Sun-Hui Xia
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yu Ma
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Huimei Tang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Mingshu Tao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - He Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Zheng Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jun-Xia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Peng Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Hai-Lei Ding
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
4
|
Watanabe M, Sinha AS, Shinmyo Y, Fukuda A. Early establishment of chloride homeostasis in CRH neurons is altered by prenatal stress leading to fetal HPA axis dysregulation. Front Mol Neurosci 2024; 17:1373337. [PMID: 38577026 PMCID: PMC10994000 DOI: 10.3389/fnmol.2024.1373337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
Corticotropin-releasing hormone (CRH) neurons play an important role in the regulation of neuroendocrine responses to stress. The excitability of CRH neurons is regulated by inhibitory GABAergic inputs. However, it is unclear when GABAergic regulation of CRH neurons is established during fetal brain development. Furthermore, the exact progression of the developmental shift of GABA action from depolarization to hyperpolarization remains unelucidated. Considering the importance of CRH neuron function in subsequent hypothalamic-pituitary-adrenal (HPA) axis regulation during this critical phase of development, we investigated the ontogeny of GABAergic inputs to CRH neurons and consequent development of chloride homeostasis. Both CRH neuron soma in the paraventricular nucleus (PVN) and axons projecting to the median eminence could be identified at embryonic day 15 (E15). Using acute slices containing the PVN of CRF-VenusΔNeo mice, gramicidin perforated-patch clamp-recordings of CRH neurons at E15, postnatal day 0 (P0), and P7 were performed to evaluate the developmental shift of GABA action. The equilibrium potential of GABA (EGABA) was similar between E15 and P0 and showed a further hyperpolarizing shift between P0 and P7 that was comparable to EGABA values in adult CRH neurons. GABA primarily acted as an inhibitory signal at E15 and KCC2 expression was detected in CRH neurons at this age. Activation of the HPA axis has been proposed as the primary mechanism through which prenatal maternal stress shapes fetal development and subsequent long-term disease risk. We therefore examined the impact of maternal food restriction stress on the development of chloride homeostasis in CRH neurons. We observed a depolarization shift of EGABA in CRH neurons of pups exposed to maternal food restriction stress. These results suggest that Cl- homeostasis in early developmental CRH neurons attains mature intracellular Cl- levels, GABA acts primarily as inhibitory, and CRH neurons mature and function early compared with neurons in other brain regions, such as the cortex and hippocampus. Maternal food restriction stress alters chloride homeostasis in CRH neurons of pups, reducing their inhibitory control by GABA. This may contribute to increased CRH neuron activity and cause activation of the HPA axis in pups.
Collapse
Affiliation(s)
| | | | - Yohei Shinmyo
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
5
|
Sato T, Sugaya T, Talukder AH, Tsushima Y, Sasaki S, Uchida K, Sato T, Ikoma Y, Sakimura K, Fukuda A, Matsui K, Itoi K. Dual action of serotonin on local excitatory and inhibitory neural circuits regulating the corticotropin-releasing factor neurons in the paraventricular nucleus of the hypothalamus. J Neuroendocrinol 2023; 35:e13351. [PMID: 37901949 DOI: 10.1111/jne.13351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023]
Abstract
Serotonergic neurons originating from the raphe nuclei have been proposed to regulate corticotropin-releasing factor (CRF) neurons in the paraventricular nucleus of the hypothalamus (PVH). Since glutamate- and γ-aminobutyric acid (GABA)-containing neurons, constituting the hypothalamic local circuits, innervate PVH CRF neurons, we examined whether they mediate the actions of serotonin (5-hydroxytryptamine [5-HT]) on CRF neurons. Spontaneous excitatory postsynaptic currents (sEPSCs) or spontaneous inhibitory postsynaptic currents (sIPSCs) were recorded in PVH CRF neurons, under whole cell patch-clamp, using the CRF-modified yellow fluorescent protein (Venus) ΔNeo mouse. Serotonin elicited an increase in the frequency of sEPSCs in 77% of the cells and a decrease in the frequency of sIPSCs in 71% of the cells, tested in normal medium. Neither the amplitude nor decay time of sEPSC and sIPSC was affected, thus the site(s) of action of serotonin may be presynaptic. In the presence of tetrodotoxin (TTX), serotonin had no significant effects on either parameter of sEPSC or sIPSC, indicating that the effects of serotonin are action potential-dependent, and that the presynaptic interneurons are largely intact within the slice; distant neurons may exist, though, since some 20%-30% of neurons did not respond to serotonin without TTX. We next examined through what receptor subtype(s) serotonin exerts its effects on presynaptic interneurons. DOI (5-HT2A/2C agonist) mimicked the action of serotonin on the sIPSCs, and the serotonin-induced decrease in sIPSC frequency was inhibited by a selective 5-HT2C antagonist RS102221. 8-OH-DPAT (5-HT1A/7 agonist) mimicked the action of serotonin on the sEPSCs, and the serotonin-induced increase in sEPSC frequency was inhibited by a selective 5-HT7 antagonist SB269970. Thus, serotonin showed a dual action on PVH CRF neurons, by upregulating glutamatergic- and downregulating GABAergic interneurons; the former may partly be mediated by 5-HT7 receptors, whereas the latter by 5-HT2C receptors. The CRF-Venus ΔNeo mouse was useful for the electrophysiological examination.
Collapse
Affiliation(s)
- Takayuki Sato
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Takuma Sugaya
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Ashraf Hossain Talukder
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Yuki Tsushima
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Shotaro Sasaki
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Katsuya Uchida
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Tatsuya Sato
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Yoko Ikoma
- Super-Network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Atsuo Fukuda
- Department of Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ko Matsui
- Super-Network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Keiichi Itoi
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
- Super-Network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Department of Neuroendocrinology, Graduate School of Medicine, Tohoku University, Sendai, Japan
- Department of Nursing, Tohoku Fukushi University, Sendai, Japan
| |
Collapse
|
6
|
Nishida K, Matsumura S, Uchida H, Abe M, Sakimura K, Badea TC, Kobayashi T. Brn3a controls the soma localization and axonal extension patterns of developing spinal dorsal horn neurons. PLoS One 2023; 18:e0285295. [PMID: 37733805 PMCID: PMC10513334 DOI: 10.1371/journal.pone.0285295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023] Open
Abstract
The spinal dorsal horn comprises heterogeneous neuronal populations, that interconnect with one another to form neural circuits modulating various types of sensory information. Decades of evidence has revealed that transcription factors expressed in each neuronal progenitor subclass play pivotal roles in the cell fate specification of spinal dorsal horn neurons. However, the development of subtypes of these neurons is not fully understood in more detail as yet and warrants the investigation of additional transcription factors. In the present study, we examined the involvement of the POU domain-containing transcription factor Brn3a in the development of spinal dorsal horn neurons. Analyses of Brn3a expression in the developing spinal dorsal horn neurons in mice demonstrated that the majority of the Brn3a-lineage neurons ceased Brn3a expression during embryonic stages (Brn3a-transient neurons), whereas a limited population of them continued to express Brn3a at high levels after E18.5 (Brn3a-persistent neurons). Loss of Brn3a disrupted the localization pattern of Brn3a-persistent neurons, indicating a critical role of this transcription factor in the development of these neurons. In contrast, Brn3a overexpression in Brn3a-transient neurons directed their localization in a manner similar to that in Brn3a-persistent neurons. Moreover, Brn3a-overexpressing neurons exhibited increased axonal extension to the ventral and ventrolateral funiculi, where the axonal tracts of Brn3a-persistent neurons reside. These results suggest that Brn3a controls the soma localization and axonal extension patterns of Brn3a-persistent spinal dorsal horn neurons.
Collapse
Affiliation(s)
- Kazuhiko Nishida
- Department of Medical Chemistry, Kansai Medical University, Hirakata, Osaka, Japan
| | - Shinji Matsumura
- Department of Medical Chemistry, Kansai Medical University, Hirakata, Osaka, Japan
| | - Hitoshi Uchida
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tudor Constantin Badea
- Research and Development Institute, Faculty of Medicine, Transylvania University of Brasov, Brasov, Romania
- National Brain Research Center, ICIA, Romanian Academy, Bucharest, Romania
| | - Takuya Kobayashi
- Department of Medical Chemistry, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
7
|
Zhao C, Ries C, Du Y, Zhang J, Sakimura K, Itoi K, Deussing JM. Differential CRH expression level determines efficiency of Cre- and Flp-dependent recombination. Front Neurosci 2023; 17:1163462. [PMID: 37599997 PMCID: PMC10434532 DOI: 10.3389/fnins.2023.1163462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Corticotropin-releasing hormone expressing (CRH+) neurons are distributed throughout the brain and play a crucial role in shaping the stress responses. Mouse models expressing site-specific recombinases (SSRs) or reporter genes are important tools providing genetic access to defined cell types and have been widely used to address CRH+ neurons and connected brain circuits. Here, we investigated a recently generated CRH-FlpO driver line expanding the CRH system-related tool box. We directly compared it to a previously established and widely used CRH-Cre line with respect to the FlpO expression pattern and recombination efficiency. In the brain, FlpO mRNA distribution fully recapitulates the expression pattern of endogenous Crh. Combining both Crh locus driven SSRs driver lines with appropriate reporters revealed an overall coherence of respective spatial patterns of reporter gene activation validating CRH-FlpO mice as a valuable tool complementing existing CRH-Cre and reporter lines. However, a substantially lower number of reporter-expressing neurons was discerned in CRH-FlpO mice. Using an additional CRH reporter mouse line (CRH-Venus) and a mouse line allowing for conversion of Cre into FlpO activity (CAG-LSL-FlpO) in combination with intersectional and subtractive mouse genetic approaches, we were able to demonstrate that the reduced number of tdTomato reporter expressing CRH+ neurons can be ascribed to the lower recombination efficiency of FlpO compared to Cre recombinase. This discrepancy particularly manifests under conditions of low CRH expression and can be overcome by utilizing homozygous CRH-FlpO mice. These findings have direct experimental implications which have to be carefully considered when targeting CRH+ neurons using CRH-FlpO mice. However, the lower FlpO-dependent recombination efficiency also entails advantages as it provides a broader dynamic range of expression allowing for the visualization of cells showing stress-induced CRH expression which is not detectable in highly sensitive CRH-Cre mice as Cre-mediated recombination has largely been completed in all cells generally possessing the capacity to express CRH. These findings underscore the importance of a comprehensive evaluation of novel SSR driver lines prior to their application.
Collapse
Affiliation(s)
- Chen Zhao
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Clemens Ries
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Ying Du
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jingwei Zhang
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Keiichi Itoi
- Super-Network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Jan M. Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
8
|
Chudoba R, Dabrowska J. Distinct populations of corticotropin-releasing factor (CRF) neurons mediate divergent yet complementary defensive behaviors in response to a threat. Neuropharmacology 2023; 228:109461. [PMID: 36775096 PMCID: PMC10055972 DOI: 10.1016/j.neuropharm.2023.109461] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Defensive behaviors in response to a threat are shared across the animal kingdom. Active (fleeing, sheltering) or passive (freezing, avoiding) defensive responses are adaptive and facilitate survival. Selecting appropriate defensive strategy depends on intensity, proximity, temporal threat threshold, and past experiences. Hypothalamic corticotropin-releasing factor (CRF) is a major driver of an acute stress response, whereas extrahypothalamic CRF mediates stress-related affective behaviors. In this review, we shift the focus from a monolithic role of CRF as an anxiogenic peptide to comprehensively dissecting contributions of distinct populations of CRF neurons in mediating defensive behaviors. Direct interrogation of CRF neurons of the central amygdala (CeA) or the bed nucleus of the stria terminalis (BNST) show they drive unconditioned defensive responses, such as vigilance and avoidance of open spaces. Although both populations also contribute to learned fear responses in familiar, threatening contexts, CeA-CRF neurons are particularly attuned to the ever-changing environment. Depending on threat intensities, they facilitate discrimination of salient stimuli predicting manageable threats, and prevent their generalization. Finally, hypothalamic CRF neurons mediate initial threat assessment and active defense such as escape to shelter. Overall, these three major populations of CRF neurons demonstrate divergent, yet complementary contributions to the versatile defense system: heightened vigilance, discriminating salient threats, and active escape, representing three legs of the defense tripod. Despite the 'CRF exhaustion' in the field of affective neuroscience, understanding contributions of specific CRF neurons during adaptive defensive behaviors is needed in order to understand the implications of their dysregulation in fear- and anxiety-related psychiatric disorders. This article is part of the Special Issue on "Fear, Anxiety and PTSD".
Collapse
Affiliation(s)
- Rachel Chudoba
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States; Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States; School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States; Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States; School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States.
| |
Collapse
|
9
|
Hagiwara A, Mizutani A, Kawamura S, Abe M, Hida Y, Sakimura K, Ohtsuka T. Critical Role of the Presynaptic Protein CAST in Maintaining the Photoreceptor Ribbon Synapse Triad. Int J Mol Sci 2023; 24:ijms24087251. [PMID: 37108413 PMCID: PMC10138387 DOI: 10.3390/ijms24087251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The cytomatrix at the active zone-associated structural protein (CAST) and its homologue, named ELKS, being rich in glutamate (E), leucine (L), lysine (K), and serine (S), belong to a family of proteins that organize presynaptic active zones at nerve terminals. These proteins interact with other active zone proteins, including RIMs, Munc13s, Bassoon, and the β subunit of Ca2+ channels, and have various roles in neurotransmitter release. A previous study showed that depletion of CAST/ELKS in the retina causes morphological changes and functional impairment of this structure. In this study, we investigated the roles of CAST and ELKS in ectopic synapse localization. We found that the involvement of these proteins in ribbon synapse distribution is complex. Unexpectedly, CAST and ELKS, in photoreceptors or in horizontal cells, did not play a major role in ribbon synapse ectopic localization. However, depletion of CAST and ELKS in the mature retina resulted in degeneration of the photoreceptors. These findings suggest that CAST and ELKS play critical roles in maintaining neural signal transduction in the retina, but the regulation of photoreceptor triad synapse distribution is not solely dependent on their actions within photoreceptors and horizontal cells.
Collapse
Affiliation(s)
- Akari Hagiwara
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
- Department of Biochemistry, Faculty of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Ayako Mizutani
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| | - Saki Kawamura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Yamato Hida
- Department of Biochemistry, Faculty of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Toshihisa Ohtsuka
- Department of Biochemistry, Faculty of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| |
Collapse
|
10
|
Wang T, Ma YN, Zhang CC, Liu X, Sun YX, Wang HL, Wang H, Zhong YH, Su YA, Li JT, Si TM. The Nucleus Accumbens CRH-CRHR1 System Mediates Early-Life Stress-Induced Sleep Disturbance and Dendritic Atrophy in the Adult Mouse. Neurosci Bull 2023; 39:41-56. [PMID: 35750984 PMCID: PMC9849529 DOI: 10.1007/s12264-022-00903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/14/2022] [Indexed: 01/24/2023] Open
Abstract
Adverse experiences in early life have long-lasting negative impacts on behavior and the brain in adulthood, one of which is sleep disturbance. As the corticotropin-releasing hormone (CRH)-corticotropin-releasing hormone receptor 1 (CRHR1) system and nucleus accumbens (NAc) play important roles in both stress responses and sleep-wake regulation, in this study we investigated whether the NAc CRH-CRHR1 system mediates early-life stress-induced abnormalities in sleep-wake behavior in adult mice. Using the limited nesting and bedding material paradigm from postnatal days 2 to 9, we found that early-life stress disrupted sleep-wake behaviors during adulthood, including increased wakefulness and decreased non-rapid eye movement (NREM) sleep time during the dark period and increased rapid eye movement (REM) sleep time during the light period. The stress-induced sleep disturbances were accompanied by dendritic atrophy in the NAc and both were largely reversed by daily systemic administration of the CRHR1 antagonist antalarmin during stress exposure. Importantly, Crh overexpression in the NAc reproduced the effects of early-life stress on sleep-wake behavior and NAc morphology, whereas NAc Crhr1 knockdown reversed these effects (including increased wakefulness and reduced NREM sleep in the dark period and NAc dendritic atrophy). Together, our findings demonstrate the negative influence of early-life stress on sleep architecture and the structural plasticity of the NAc, and highlight the critical role of the NAc CRH-CRHR1 system in modulating these negative outcomes evoked by early-life stress.
Collapse
Affiliation(s)
- Ting Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yu-Nu Ma
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Chen-Chen Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xiao Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Ya-Xin Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Hong-Li Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Han Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yu-Heng Zhong
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yun-Ai Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Ji-Tao Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Tian-Mei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
11
|
An Epilepsy-Associated Mutation of Salt-Inducible Kinase 1 Increases the Susceptibility to Epileptic Seizures and Interferes with Adrenocorticotropic Hormone Therapy for Infantile Spasms in Mice. Int J Mol Sci 2022; 23:ijms23147927. [PMID: 35887274 PMCID: PMC9319016 DOI: 10.3390/ijms23147927] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 12/10/2022] Open
Abstract
Six mutations in the salt-inducible kinase 1 (SIK1) have been identified in developmental and epileptic encephalopathy (DEE-30) patients, and two of the mutations are nonsense mutations that truncate the C-terminal region of SIK1. In a previous study, we generated SIK1 mutant (SIK1-MT) mice recapitulating the C-terminal truncated mutations using CRISPR/Cas9-mediated genome editing and found an increase in excitatory synaptic transmission and enhancement of neural excitability in neocortical neurons in SIK1-MT mice. NMDA was injected into SIK1-MT males to induce epileptic seizures in the mice. The severity of the NMDA-induced seizures was estimated by the latency and the number of tail flickering and hyperflexion. Activated brain regions were evaluated by immunohistochemistry against c-fos, Iba1, and GFAP. As another epilepsy model, pentylenetetrazol was injected into the adult SIK1 mutant mice. Seizure susceptibility induced by both NMDA and PTZ was enhanced in SIK1-MT mice. Brain regions including the thalamus and hypothalamus were strongly activated in NMDA-induced seizures. The epilepsy-associated mutation of SIK1 canceled the pharmacological effects of the ACTH treatment on NMDA-induced seizures. These results suggest that SIK1 may be involved in the neuropathological mechanisms of NMDA-induced spasms and the pharmacological mechanism of ACTH treatment.
Collapse
|
12
|
Hagiwara H, Sakimura K, Abe M, Itoi K, Kamiya Y, Akema T, Funabashi T. Sex differences in pain-induced modulation of corticotropin-releasing hormone neurons in the dorsolateral part of the stria terminalis in mice. Brain Res 2021; 1773:147688. [PMID: 34644526 DOI: 10.1016/j.brainres.2021.147688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/22/2021] [Accepted: 10/06/2021] [Indexed: 01/06/2023]
Abstract
We earlier reported female-biased, sex-specific involvement of the dorsolateral bed nucleus of the stria terminalis (dl BST) in the formalin-induced pain response in rats. The present study investigated pain effects on mice behaviors. Because the dl BST is densely populated with corticotropin-releasing hormone (CRH) neurons, we examined sex differences in these parameters for the dl BST CRH neurons in male and female mice of a mouse line for which the CRH gene promoter (corticotropin-releasing factor [CRF]-Venus ΔNeo) controls the expression of the modified yellow fluorescent protein (Venus). Approximately 92% of Venus-positive cells in the dl BST were also CRH mRNA-positive, irrespective of sex. Therefore, the cells identified using Venus fluorescence were regarded as CRH neurons. A female-biased sex difference was observed in pain-induced behaviors during the interphase (5-15 min after formalin injection) but not during the later phase (phase 2, 15-60 min) in wild-type mice. In CRF-Venus ΔNeo mice, a female-biased difference was observed in either the earlier phase (phase 1, 0-5 min) or the interphase, but not in phase 2. Patch-clamp recordings taken using an acute BST slice obtained from a CRF-Venus ΔNeo mouse after formalin injection showed miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs). Remarkably, the mEPSCs frequency was higher in the Venus-expressing cells of formalin-injected female mice than in vehicle-treated female mice. Male mice showed no increase in mEPSC frequency by formalin injection. Formalin injection had no effect on mEPSC or mIPSC amplitudes in either sex. Pain-induced changes in mEPSC frequency in putative CRH neurons were phase-dependent. Results show that excitatory synaptic inputs to BST CRH neurons are temporally enhanced along with behavioral sex differences in pain response, suggesting that pain signals alter the BST CRH neurons excitability in a sex-dependent manner.
Collapse
Affiliation(s)
- Hiroko Hagiwara
- Department of Physiology, St. Marianna University School of Medicine, 2-16-1 Sugao Miyamae-ku, Kawasaki 216-8511, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori Chuo-ku, Niigata 951-8585, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori Chuo-ku, Niigata 951-8585, Japan
| | - Keiichi Itoi
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, 6-3-09 Aramaki-aza Aoba-ku, Sendai 980-8579, Japan
| | - Yoshinori Kamiya
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 950-8510, Japan
| | - Tatsuo Akema
- Department of Physiology, St. Marianna University School of Medicine, 2-16-1 Sugao Miyamae-ku, Kawasaki 216-8511, Japan
| | - Toshiya Funabashi
- Department of Physiology, St. Marianna University School of Medicine, 2-16-1 Sugao Miyamae-ku, Kawasaki 216-8511, Japan.
| |
Collapse
|
13
|
Sukhareva EV. The role of the corticotropin-releasing hormone and its receptors in the regulation of stress response. Vavilovskii Zhurnal Genet Selektsii 2021; 25:216-223. [PMID: 34901719 PMCID: PMC8627883 DOI: 10.18699/vj21.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/19/2020] [Accepted: 10/06/2020] [Indexed: 11/19/2022] Open
Abstract
Stress is an essential part of everyday life. The neuropeptide corticotropin-releasing hormone (CRH, also
called CRF and corticoliberin) plays a key role in the integration of neuroendocrine, autonomic and behavioral
responses to stress. The activation of the hypothalamic-pituitary-adrenal axis (HPA axis) by neurons of the paraventricular hypothalamic nucleus (PVN), the primary site of synthesis CRH, triggers stress reactions. In addition to the
hypothalamus, CRH is widespread in extrahypothalamic brain structures, where it functions as a neuromodulator
for coordination and interaction between the humoral and behavioral aspects of a stress response. The axons of
neurons expressing CRH are directed to various structures of the brain, where the neuropeptide interacts with
specific receptors (CRHR1, CRHR2) and can affect various mediator systems that work together to transmit signals
to different brain regions to cause many reactions to stress. Moreover, the effect of stress on brain functions varies
from behavioral adaptation to increased survival and increased risk of developing mental disorders. Disturbances
of the CRH system regulation are directly related to such disorders: mental pathologies (depression, anxiety, addictions), deviations of neuroendocrinological functions, inflammation, as well as the onset and development of
neurodegenerative diseases such as Alzheimer’s disease. In addition, the role of CRH as a regulator of the neurons
structure in the areas of the developing and mature brain has been established. To date, studies have been conducted in which CRHR1 is a target for antidepressants, which are, in fact, antagonists of this receptor. In this regard,
the study of the participation of the CRH system and its receptors in negative effects on hormone-dependent
systems, as well as the possibility of preventing them, is a promising task of modern physiological genetics. In this
review, attention will be paid to the role of CRH in the regulation of response to stress, as well as to the involvement
of extrahypothalamic CRH in pathophysiology and the correction of mental disorders.
Collapse
Affiliation(s)
- E V Sukhareva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
14
|
Yokoi N, Fukata Y, Okatsu K, Yamagata A, Liu Y, Sanbo M, Miyazaki Y, Goto T, Abe M, Kassai H, Sakimura K, Meijer D, Hirabayashi M, Fukai S, Fukata M. 14-3-3 proteins stabilize LGI1-ADAM22 levels to regulate seizure thresholds in mice. Cell Rep 2021; 37:110107. [PMID: 34910912 DOI: 10.1016/j.celrep.2021.110107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/08/2021] [Accepted: 11/16/2021] [Indexed: 01/17/2023] Open
Abstract
What percentage of the protein function is required to prevent disease symptoms is a fundamental question in genetic disorders. Decreased transsynaptic LGI1-ADAM22 protein complexes, because of their mutations or autoantibodies, cause epilepsy and amnesia. However, it remains unclear how LGI1-ADAM22 levels are regulated and how much LGI1-ADAM22 function is required. Here, by genetic and structural analysis, we demonstrate that quantitative dual phosphorylation of ADAM22 by protein kinase A (PKA) mediates high-affinity binding of ADAM22 to dimerized 14-3-3. This interaction protects LGI1-ADAM22 from endocytosis-dependent degradation. Accordingly, forskolin-induced PKA activation increases ADAM22 levels. Leveraging a series of ADAM22 and LGI1 hypomorphic mice, we find that ∼50% of LGI1 and ∼10% of ADAM22 levels are sufficient to prevent lethal epilepsy. Furthermore, ADAM22 function is required in excitatory and inhibitory neurons. These results suggest strategies to increase LGI1-ADAM22 complexes over the required levels by targeting PKA or 14-3-3 for epilepsy treatment.
Collapse
Affiliation(s)
- Norihiko Yokoi
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan.
| | - Kei Okatsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Atsushi Yamagata
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| | - Yan Liu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Makoto Sanbo
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Yuri Miyazaki
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Teppei Goto
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Hidetoshi Kassai
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Dies Meijer
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Masumi Hirabayashi
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan; Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Shuya Fukai
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan.
| |
Collapse
|
15
|
Kawatani M, deGroat W, Itoi K, Uchida K, Sakimura K, Yamanaka A, Yamashita T, Kawatani M. Downstream projection of Barrington's nucleus to the spinal cord in mice. J Neurophysiol 2021; 126:1959-1977. [PMID: 34731061 DOI: 10.1152/jn.00026.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Barrington's nucleus (Bar) which controls micturition behavior through downstream projections to the spinal cord contains two types of projection neurons BarCRH and BarESR1 that have different functions and target different spinal circuitry. Both types of neurons project to the L6-S1 spinal intermediolateral (IML) nucleus while BarESR1 neurons also project to the dorsal commissural nucleus (DCN). To obtain more information about the spinal circuits targeted by Bar, we used patch-clamp recording in spinal slices from adult mice in combination with optogenetic stimulation of Bar terminals. Recording of opto-evoked excitatory post synaptic currents (oEPSCs) in DiI-labeled lumbosacral preganglionic neurons (LS-PGN) revealed that both Bar neuronal populations make strong glutamatergic monosynaptic connections with LS-PGN, while BarESR1 neurons also elicited smaller amplitude glutamatergic polysynaptic oEPSCs or polysynaptic inhibitory post synaptic currents (oIPSCs) in some LS-PGN. Optical stimulation of BarCRH and BarESR1 terminals also elicited monosynaptic oEPSCs and polysynaptic oIPSCs in sacral DCN neurons, some of which must include interneurons projecting either to the IML or ventral horn. Application of capsaicin increased opto-evoked firing during repetitive stimulation of Bar terminals through the modulation of spontaneous post synaptic currents in LS-PGN. In conclusion, our experiments have provided insights into the synaptic mechanisms underlying the integration of inputs from Bar to autonomic circuitry in the lumbosacral spinal cord that may control micturition.
Collapse
Affiliation(s)
- Masahiro Kawatani
- Department of Neurophysiology, Graduate School of Medicine, Akita University, Akita, Japan.,Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan.,Department of Physiology, School of Medicine, Fujita Health University, Aichi, Japan
| | - William deGroat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Keiichi Itoi
- Department of Neuroendocrinology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Katsuya Uchida
- Department of Neuroendocrinology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan
| | - Takayuki Yamashita
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan.,Department of Physiology, School of Medicine, Fujita Health University, Aichi, Japan
| | - Masahito Kawatani
- Department of Neurophysiology, Graduate School of Medicine, Akita University, Akita, Japan
| |
Collapse
|
16
|
Ruat J, Hartmann A, Heinz DE, Nemcova P, Stoffel R, Deussing JM, Chen A, Wotjak CT. CB1 receptors in corticotropin-releasing factor neurons selectively control the acoustic startle response in male mice. GENES BRAIN AND BEHAVIOR 2021; 20:e12775. [PMID: 34672092 DOI: 10.1111/gbb.12775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/30/2022]
Abstract
The endocannabinoid system is an important regulator of the hormonal and behavioral stress responses, which critically involve corticotropin-releasing factor (CRF) and its receptors. While it has been shown that CRF and the cannabinoid type 1 (CB1) receptor are co-localized in several brain regions, the physiological relevance of this co-expression remains unclear. Using double in situ hybridization, we confirmed co-localization in the piriform cortex, the lateral hypothalamic area, the paraventricular nucleus, and the Barrington's nucleus, albeit at low levels. To study the behavioral and physiological implications of this co-expression, we generated a conditional knockout mouse line that selectively lacks the expression of CB1 receptors in CRF neurons. We found no effects on fear and anxiety-related behaviors under basal conditions nor after a traumatic experience. Additionally, plasma corticosterone levels were unaffected at baseline and after restraint stress. Only acoustic startle responses were significantly enhanced in male, but not female, knockout mice. Taken together, the consequences of depleting CB1 in CRF-positive neurons caused a confined hyperarousal phenotype in a sex-dependent manner. The current results suggest that the important interplay between the central endocannabinoid and CRF systems in regulating the organism's stress response is predominantly taking place at the level of CRF receptor-expressing neurons.
Collapse
Affiliation(s)
- Julia Ruat
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Max Planck Institute of Psychiatry, Munich, Germany.,Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
| | - Alice Hartmann
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
| | - Daniel E Heinz
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany.,Max Planck School of Cognition, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Paulina Nemcova
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
| | - Rainer Stoffel
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan M Deussing
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Scientific Core Unit Genetically Engineered Mouse Models, Max Planck Institute of Psychiatry, Munich, Germany
| | - Alon Chen
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Carsten T Wotjak
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany.,Max Planck School of Cognition, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Central Nervous System Diseases Research (CNSDR), Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany
| |
Collapse
|
17
|
Chaves T, Fazekas CL, Horváth K, Correia P, Szabó A, Török B, Bánrévi K, Zelena D. Stress Adaptation and the Brainstem with Focus on Corticotropin-Releasing Hormone. Int J Mol Sci 2021; 22:ijms22169090. [PMID: 34445795 PMCID: PMC8396605 DOI: 10.3390/ijms22169090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
Stress adaptation is of utmost importance for the maintenance of homeostasis and, therefore, of life itself. The prevalence of stress-related disorders is increasing, emphasizing the importance of exploratory research on stress adaptation. Two major regulatory pathways exist: the hypothalamic–pituitary–adrenocortical axis and the sympathetic adrenomedullary axis. They act in unison, ensured by the enormous bidirectional connection between their centers, the paraventricular nucleus of the hypothalamus (PVN), and the brainstem monoaminergic cell groups, respectively. PVN and especially their corticotropin-releasing hormone (CRH) producing neurons are considered to be the centrum of stress regulation. However, the brainstem seems to be equally important. Therefore, we aimed to summarize the present knowledge on the role of classical neurotransmitters of the brainstem (GABA, glutamate as well as serotonin, noradrenaline, adrenaline, and dopamine) in stress adaptation. Neuropeptides, including CRH, might be co-localized in the brainstem nuclei. Here we focused on CRH as its role in stress regulation is well-known and widely accepted and other CRH neurons scattered along the brain may also complement the function of the PVN. Although CRH-positive cells are present on some parts of the brainstem, sometimes even in comparable amounts as in the PVN, not much is known about their contribution to stress adaptation. Based on the role of the Barrington’s nucleus in micturition and the inferior olivary complex in the regulation of fine motoric—as the main CRH-containing brainstem areas—we might assume that these areas regulate stress-induced urination and locomotion, respectively. Further studies are necessary for the field.
Collapse
Affiliation(s)
- Tiago Chaves
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Csilla Lea Fazekas
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Krisztina Horváth
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Pedro Correia
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Adrienn Szabó
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Bibiána Török
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Krisztina Bánrévi
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
| | - Dóra Zelena
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
18
|
Kawakami N, Otubo A, Maejima S, Talukder AH, Satoh K, Oti T, Takanami K, Ueda Y, Itoi K, Morris JF, Sakamoto T, Sakamoto H. Variation of pro-vasopressin processing in parvocellular and magnocellular neurons in the paraventricular nucleus of the hypothalamus: Evidence from the vasopressin-related glycopeptide copeptin. J Comp Neurol 2021; 529:1372-1390. [PMID: 32892351 DOI: 10.1002/cne.25026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 11/05/2022]
Abstract
Arginine vasopressin (AVP) is synthesized in parvocellular- and magnocellular neuroendocrine neurons in the paraventricular nucleus (PVN) of the hypothalamus. Whereas magnocellular AVP neurons project primarily to the posterior pituitary, parvocellular AVP neurons project to the median eminence (ME) and to extrahypothalamic areas. The AVP gene encodes pre-pro-AVP that comprises the signal peptide, AVP, neurophysin (NPII), and a copeptin glycopeptide. In the present study, we used an N-terminal copeptin antiserum to examine copeptin expression in magnocellular and parvocellular neurons in the hypothalamus in the mouse, rat, and macaque monkey. Although magnocellular NPII-expressing neurons exhibited strong N-terminal copeptin immunoreactivity in all three species, a great majority (~90%) of parvocellular neurons that expressed NPII was devoid of copeptin immunoreactivity in the mouse, and in approximately half (~53%) of them in the rat, whereas in monkey hypothalamus, virtually all NPII-immunoreactive parvocellular neurons contained strong copeptin immunoreactivity. Immunoelectron microscopy in the mouse clearly showed copeptin-immunoreactivity co-localized with NPII-immunoreactivity in neurosecretory vesicles in the internal layer of the ME and posterior pituitary, but not in the external layer of the ME. Intracerebroventricular administration of a prohormone convertase inhibitor, hexa-d-arginine amide resulted in a marked reduction of copeptin-immunoreactivity in the NPII-immunoreactive magnocellular PVN neurons in the mouse, suggesting that low protease activity and incomplete processing of pro-AVP could explain the disproportionally low levels of N-terminal copeptin expression in rodent AVP (NPII)-expressing parvocellular neurons. Physiologic and phylogenetic aspects of copeptin expression among neuroendocrine neurons require further exploration.
Collapse
Affiliation(s)
- Natsuko Kawakami
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.,Department of Biology, Faculty of Science, Okayama University, Okayama, Japan.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Akito Otubo
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Sho Maejima
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Ashraf H Talukder
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Keita Satoh
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.,Department of Anatomy, Kawasaki Medical School, Okayama, Japan
| | - Takumi Oti
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.,Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka, Kanagawa, Japan
| | - Keiko Takanami
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.,Mouse Genomics Resources Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Yasumasa Ueda
- Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Physiology, Kansai Medical University, Osaka, Japan
| | - Keiichi Itoi
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - John F Morris
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Tatsuya Sakamoto
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Hirotaka Sakamoto
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
CRH Neurons in the Laterodorsal Tegmentum Mediate Acute Stress-induced Anxiety. Neurosci Bull 2021; 37:999-1004. [PMID: 33844158 DOI: 10.1007/s12264-021-00684-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/18/2020] [Indexed: 10/21/2022] Open
|
20
|
Neuroendocrine control of appetite and metabolism. Exp Mol Med 2021; 53:505-516. [PMID: 33837263 PMCID: PMC8102538 DOI: 10.1038/s12276-021-00597-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 02/02/2023] Open
Abstract
Body homeostasis is predominantly controlled by hormones secreted by endocrine organs. The central nervous system contains several important endocrine structures, including the hypothalamic-pituitary axis. Conventionally, neurohormones released by the hypothalamus and the pituitary gland (hypophysis) have received much attention owing to the unique functions of the end hormones released by their target peripheral organs (e.g., glucocorticoids released by the adrenal glands). Recent advances in mouse genetics have revealed several important metabolic functions of hypothalamic neurohormone-expressing cells, many of which are not readily explained by the action of the corresponding classical downstream hormones. Notably, the newly identified functions are better explained by the action of conventional neurotransmitters (e.g., glutamate and GABA) that constitute a neuronal circuit. In this review, we discuss the regulation of appetite and metabolism by hypothalamic neurohormone-expressing cells, with a focus on the distinct contributions of neurohormones and neurotransmitters released by these neurons.
Collapse
|
21
|
Wang Y, Hu P, Shan Q, Huang C, Huang Z, Chen P, Li A, Gong H, Zhou JN. Single-cell morphological characterization of CRH neurons throughout the whole mouse brain. BMC Biol 2021; 19:47. [PMID: 33722214 PMCID: PMC7962243 DOI: 10.1186/s12915-021-00973-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 02/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Corticotropin-releasing hormone (CRH) is an important neuromodulator that is widely distributed in the brain and plays a key role in mediating stress responses and autonomic functions. While the distribution pattern of fluorescently labeled CRH-expressing neurons has been studied in different transgenic mouse lines, a full appreciation of the broad diversity of this population and local neural connectivity can only come from integration of single-cell morphological information as a defining feature. However, the morphologies of single CRH neurons and the local circuits formed by these neurons have not been acquired at brain-wide and dendritic-scale levels. RESULTS We screened the EYFP-expressing CRH-IRES-Cre;Ai32 mouse line to reveal the morphologies of individual CRH neurons throughout the whole mouse brain by using a fluorescence micro-optical sectioning tomography (fMOST) system. Diverse dendritic morphologies and projection fibers of CRH neurons were found in various brain regions. Follow-up reconstructions showed that hypothalamic CRH neurons had the smallest somatic volumes and simplest dendritic branches and that CRH neurons in several brain regions shared a common bipolar morphology. Further investigations of local CRH neurons in the medial prefrontal cortex unveiled somatic depth-dependent morphologies of CRH neurons that exhibited three types of mutual connections: basal dendrites (upper layer) with apical dendrites (layer 3); dendritic-somatic connections (in layer 2/3); and dendritic-dendritic connections (in layer 4). Moreover, hypothalamic CRH neurons were classified into two types according to their somatic locations and characteristics of dendritic varicosities. Rostral-projecting CRH neurons in the anterior parvicellular area had fewer and smaller dendritic varicosities, whereas CRH neurons in the periventricular area had more and larger varicosities that were present within dendrites projecting to the third ventricle. Arborization-dependent dendritic spines of CRH neurons were detected, among which the most sophisticated types were found in the amygdala and the simplest types were found in the hypothalamus. CONCLUSIONS By using the CRH-IRES-Cre;Ai32 mouse line and fMOST imaging, we obtained region-specific morphological distributions of CRH neurons at the dendrite level in the whole mouse brain. Taken together, our findings provide comprehensive brain-wide morphological information of stress-related CRH neurons and may facilitate further studies of the CRH neuronal system.
Collapse
Affiliation(s)
- Yu Wang
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Pu Hu
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Qinghong Shan
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Chuan Huang
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Zhaohuan Huang
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Peng Chen
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Anan Li
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.,Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hui Gong
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China. .,Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Jiang-Ning Zhou
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China. .,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
22
|
Hammack SE, Braas KM, May V. Chemoarchitecture of the bed nucleus of the stria terminalis: Neurophenotypic diversity and function. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:385-402. [PMID: 34225977 DOI: 10.1016/b978-0-12-819975-6.00025-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) is a compact but neurophenotypically complex structure in the ventral forebrain that is structurally and functionally linked to other limbic structures, including the amygdala nuclear complex, hypothalamic nuclei, hippocampus, and related midbrain structures, to participate in a wide range of functions, especially emotion, emotional learning, stress-related responses, and sexual behaviors. From a variety of sensory inputs, the BNST acts as a node for signal integration and coordination for information relay to downstream central neuroendocrine and autonomic centers for appropriate homeostatic physiological and behavioral responses. In contrast to the role of the amygdala in fear, the BNST has gained wide interest from work suggesting that it has main roles in mediating sustained responses to diffuse, unpredictable and/or long-duration threats that are typically associated with anxiety-related responses. Further, some BNST subregions are highly sexually dimorphic which appear contributory to the differential stress and social interactive behaviors, including reproductive responses, between males and females. Notably, maladaptive BNST neuroplasticity and function have been implicated in chronic pain, depression, anxiety-related abnormalities, and other psychopathologies including posttraumatic stress disorders. The BNST circuits are predominantly GABAergic-the glutaminergic neurons represent a minor population-but the complexity of the system results from an overlay of diverse neuropeptide coexpression in these neurons. More than a dozen neuropeptides may be differentially coexpressed in BNST neurons, and from variable G protein-coupled receptor signaling, may inhibit or activate downstream circuit activities. The mechanisms and roles of these peptides in modulating intrinsic BNST neurocircuit signaling and BNST long-distance target cell projections are still not well understood. Nevertheless, an understanding of some of the principal players may allow assembly of the circuit interactions.
Collapse
Affiliation(s)
- Sayamwong E Hammack
- Department of Psychological Science, University of Vermont, Burlington, VT, United States
| | - Karen M Braas
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Victor May
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, United States.
| |
Collapse
|
23
|
Hirose Y, Kitazono T, Sezaki M, Abe M, Sakimura K, Funato H, Handa H, Vogt KE, Yanagisawa M. Hypnotic effect of thalidomide is independent of teratogenic ubiquitin/proteasome pathway. Proc Natl Acad Sci U S A 2020; 117:23106-23112. [PMID: 32848052 PMCID: PMC7502749 DOI: 10.1073/pnas.1917701117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thalidomide exerts its teratogenic and immunomodulatory effects by binding to cereblon (CRBN) and thereby inhibiting/modifying the CRBN-mediated ubiquitination pathway consisting of the Cullin4-DDB1-ROC1 E3 ligase complex. The mechanism of thalidomide's classical hypnotic effect remains largely unexplored, however. Here we examined whether CRBN is involved in the hypnotic effect of thalidomide by generating mice harboring a thalidomide-resistant mutant allele of Crbn (Crbn YW/AA knock-in mice). Thalidomide increased non-REM sleep time in Crbn YW/AA knock-in homozygotes and heterozygotes to a similar degree as seen in wild-type littermates. Thalidomide similarly depressed excitatory synaptic transmission in the cortical slices obtained from wild-type and Crbn YW/AA homozygous knock-in mice without affecting GABAergic inhibition. Thalidomide induced Fos expression in vasopressin-containing neurons of the supraoptic nucleus and reduced Fos expression in the tuberomammillary nuclei. Thus, thalidomide's hypnotic effect seems to share some downstream mechanisms with general anesthetics and GABAA-activating sedatives but does not involve the teratogenic CRBN-mediated ubiquitin/proteasome pathway.
Collapse
Affiliation(s)
- Yuki Hirose
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Tomohiro Kitazono
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Maiko Sezaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Chuo-ku Niigata 951-8585 Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Chuo-ku Niigata 951-8585 Japan
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Department of Anatomy, Faculty of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan
| | - Hiroshi Handa
- Department of Chemical Biology, Tokyo Medical University, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Kaspar E Vogt
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan;
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 305-8575 Tsukuba, Japan
- R&D Center for Frontiers of MIRAI in Policy and Technology, University of Tsukuba, 305-8575 Tsukuba, Japan
| |
Collapse
|
24
|
Mukai Y, Nagayama A, Itoi K, Yamanaka A. Identification of substances which regulate activity of corticotropin-releasing factor-producing neurons in the paraventricular nucleus of the hypothalamus. Sci Rep 2020; 10:13639. [PMID: 32788592 PMCID: PMC7424526 DOI: 10.1038/s41598-020-70481-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022] Open
Abstract
The stress response is a physiological system for adapting to various internal and external stimuli. Corticotropin-releasing factor-producing neurons in the paraventricular nucleus of the hypothalamus (PVN-CRF neurons) are known to play an important role in the stress response as initiators of the hypothalamic-pituitary-adrenal axis. However, the mechanism by which activity of PVN-CRF neurons is regulated by other neurons and bioactive substances remains unclear. Here, we developed a screening method using calcium imaging to identify how physiological substances directly affect the activity of PVN-CRF neurons. We used acute brain slices expressing a genetically encoded calcium indicator in PVN-CRF neurons using CRF-Cre recombinase mice and an adeno-associated viral vector under Cre control. PVN-CRF neurons were divided into ventral and dorsal portions. Bath application of candidate substances revealed 12 substances that increased and 3 that decreased intracellular calcium concentrations. Among these substances, angiotensin II and histamine mainly increased calcium in the ventral portion of the PVN-CRF neurons via AT1 and H1 receptors, respectively. Conversely, carbachol mainly increased calcium in the dorsal portion of the PVN-CRF neurons via both nicotinic and muscarinic acetylcholine receptors. Our method provides a precise and reliable means of evaluating the effect of a substance on PVN-CRF neuronal activity.
Collapse
Affiliation(s)
- Yasutaka Mukai
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.,CREST, JST, Honcho, Kawaguchi, Saitama, 332-0012, Japan.,JSPS Research Fellowship for Young Scientists, Tokyo, 102-0083, Japan
| | - Ayako Nagayama
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Keiichi Itoi
- Department of Neuroendocrinology, Graduate School of Medicine, Tohoku University, Sendai, 980-8575, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan. .,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan. .,CREST, JST, Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
25
|
Kawatani M, Itoi K, Talukder AH, Uchida K, Sakimura K, Kawatani M. Cholinergic modulation of CRH and non-CRH neurons in Barrington's nucleus of the mouse. J Neurophysiol 2020; 124:443-457. [PMID: 32609567 DOI: 10.1152/jn.00342.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Corticotropin-releasing hormone (CRH) is expressed in Barrington's nucleus (BarN), which plays an essential role in the regulation of micturition. To control the neural activities of BarN, glutamatergic and GABAergic inputs from multiple sources have been demonstrated; however, it is not clear how modulatory neurotransmitters affect the activity of BarN neurons. We have employed knock-in mice, CRH-expressing neurons of which are labeled with a modified yellow fluorescent protein (Venus). Using whole cell patch-clamp recordings, we examined the responses of Venus-expressing (putative CRH-expressing) neurons in BarN (BarCRH), as well as non-CRH-expressing neurons (BarCRH-negative), following bath application of cholinergic agonists. According to the present study, the activity of BarCRH neurons could be modulated by dual cholinergic mechanisms. First, they are inhibited by a muscarinic receptor-mediated mechanism, most likely through the M2 subclass of muscarinic receptors. Second, BarCRH neurons are excited by a nicotinic receptor-mediated mechanism. BarCRH-negative neurons also responded to cholinergic agents. Choline transporter-immunoreactive nerve terminals were observed in close proximity to the neurites, as well as the somata of BarCRH. The present results suggest that BarN neurons are capable of responding to cholinergic input.NEW & NOTEWORTHY This study investigates the effects of bath-applied cholinergic agonists on Barrington's nucleus (BarN) neurons in vitro. They were either excitatory, through nicotinic receptors, or inhibitory, through muscarinic receptors. Putative corticotropin-releasing hormone (CRH)-expressing neurons in BarN, as well as putative non-CRH-expressing neurons, responded to cholinergic agonists.
Collapse
Affiliation(s)
- Masahiro Kawatani
- Department of Neurophysiology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Keiichi Itoi
- Laboratory of Information Biology, Graduate School of Information Sciences Tohoku University, Sendai, Japan.,Department of Neuroendocrinology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Ashraf Hossain Talukder
- Laboratory of Information Biology, Graduate School of Information Sciences Tohoku University, Sendai, Japan
| | - Katsuya Uchida
- Laboratory of Information Biology, Graduate School of Information Sciences Tohoku University, Sendai, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masahito Kawatani
- Department of Neurophysiology, Graduate School of Medicine, Akita University, Akita, Japan
| |
Collapse
|
26
|
Takahashi D, Asaoka Y, Kimura K, Hara R, Arakaki S, Sakasai K, Suzuki H, Yamauchi N, Nomura H, Amano T, Minami M. Tonic Suppression of the Mesolimbic Dopaminergic System by Enhanced Corticotropin-Releasing Factor Signaling Within the Bed Nucleus of the Stria Terminalis in Chronic Pain Model Rats. J Neurosci 2019; 39:8376-8385. [PMID: 31451580 PMCID: PMC6794933 DOI: 10.1523/jneurosci.3047-18.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 07/01/2019] [Accepted: 08/16/2019] [Indexed: 02/02/2023] Open
Abstract
Although dysfunction of the mesolimbic dopaminergic system has been implicated in chronic pain, the underlying mechanisms remain to be elucidated. We hypothesized that increased inhibitory inputs to the neuronal pathway from the dorsolateral bed nucleus of the stria terminalis (dlBNST) to the ventral tegmental area (VTA) during chronic pain may induce tonic suppression of the mesolimbic dopaminergic system. To test this hypothesis, male Sprague Dawley rats were subjected to spinal nerve ligation to induce neuropathic pain and then spontaneous IPSCs (sIPSCs) were measured in this neuronal pathway. Whole-cell patch-clamp electrophysiology of brain slices containing the dlBNST revealed that the frequency of sIPSCs significantly increased in VTA-projecting dlBNST neurons 4 weeks after surgery. Next, the role of corticotropin-releasing factor (CRF) signaling within the dlBNST in the increased sIPSCs was examined. CRF increased the frequency of sIPSCs in VTA-projecting dlBNST neurons in sham-operated controls, but not in chronic pain rats. By contrast, NBI27914, a CRF type 1 receptor antagonist, decreased the frequency of sIPSCs in VTA-projecting dlBNST neurons in the chronic pain rats, but not in the control animals. In addition, histological analyses revealed the increased expression of CRF mRNA in the dlBNST. Finally, bilateral injections of NBI27914 into the dlBNST of chronic pain rats activated mesolimbic dopaminergic neurons and induced conditioned place preference. Together, these results suggest that the mesolimbic dopaminergic system is tonically suppressed during chronic pain by enhanced CRF signaling within the dlBNST via increased inhibitory inputs to VTA-projecting dlBNST neurons.SIGNIFICANCE STATEMENT The comorbidity of chronic pain and depression has long been recognized. Although dysfunction of the mesolimbic dopaminergic system has been implicated in both chronic pain and depression, the underlying mechanisms remain to be elucidated. Here, we show that the inhibitory inputs to the neuronal pathway from the dorsolateral bed nucleus of the stria terminalis (dlBNST) to the ventral tegmental area increase during chronic pain. This neuroplastic change is mediated by enhanced corticotropin-releasing factor signaling within the dlBNST that leads to tonic suppression of the mesolimbic dopaminergic system, which may be involved in the depressive mood and anhedonia under the chronic pain condition.
Collapse
Affiliation(s)
- Daiki Takahashi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yuta Asaoka
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Keisuke Kimura
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Ryuto Hara
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Saya Arakaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Keisuke Sakasai
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hiroe Suzuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Naoki Yamauchi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hiroshi Nomura
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Taiju Amano
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
27
|
Distribution of D1 and D2 receptor- immunoreactive neurons in the paraventricular nucleus of the hypothalamus in the rat. J Chem Neuroanat 2019; 98:97-103. [DOI: 10.1016/j.jchemneu.2019.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
|
28
|
Itoga CA, Chen Y, Fateri C, Echeverry PA, Lai JM, Delgado J, Badhon S, Short A, Baram TZ, Xu X. New viral-genetic mapping uncovers an enrichment of corticotropin-releasing hormone-expressing neuronal inputs to the nucleus accumbens from stress-related brain regions. J Comp Neurol 2019; 527:2474-2487. [PMID: 30861133 DOI: 10.1002/cne.24676] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/14/2019] [Accepted: 03/04/2019] [Indexed: 12/18/2022]
Abstract
Corticotropin-releasing hormone (CRH) is an essential, evolutionarily-conserved stress neuropeptide. In addition to hypothalamus, CRH is expressed in brain regions including amygdala and hippocampus where it plays crucial roles in modulating the function of circuits underlying emotion and cognition. CRH+ fibers are found in nucleus accumbens (NAc), where CRH modulates reward/motivation behaviors. CRH actions in NAc may vary by the individual's stress history, suggesting roles for CRH in neuroplasticity and adaptation of the reward circuitry. However, the origin and extent of CRH+ inputs to NAc are incompletely understood. We employed viral genetic approaches to map both global and CRH+ projection sources to NAc in mice. We injected into NAc variants of a new designer adeno-associated virus that permits robust retrograde access to NAc-afferent projection neurons. Cre-dependent viruses injected into CRH-Cre mice enabled selective mapping of CRH+ afferents. We employed anterograde AAV1-directed axonal tracing to verify NAc CRH+ fiber projections and established the identity of genetic reporter-labeled cells via validated antisera against native CRH. We quantified the relative contribution of CRH+ neurons to total NAc-directed projections. Combined retrograde and anterograde tracing identified the paraventricular nucleus of the thalamus, bed nucleus of stria terminalis, basolateral amygdala, and medial prefrontal cortex as principal sources of CRH+ projections to NAc. CRH+ NAc afferents were selectively enriched in NAc-projecting brain regions involved in diverse aspects of the sensing, processing and memory of emotionally salient events. These findings suggest multiple, complex potential roles for the molecularly-defined, CRH-dependent circuit in modulation of reward and motivation behaviors.
Collapse
Affiliation(s)
- Christy A Itoga
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California
| | - Yuncai Chen
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California.,Department of Pediatrics, School of Medicine, University of California-Irvine, Irvine, California
| | - Cameron Fateri
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California
| | - Paula A Echeverry
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California
| | - Jennifer M Lai
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California
| | - Jasmine Delgado
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California
| | - Shapatur Badhon
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California
| | - Annabel Short
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California.,Department of Pediatrics, School of Medicine, University of California-Irvine, Irvine, California
| | - Tallie Z Baram
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California.,Department of Pediatrics, School of Medicine, University of California-Irvine, Irvine, California
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California-Irvine, Irvine, California.,Department of Biomedical Engineering, University of California, Irvine, California.,Department of Microbiology and Molecular Genetics, University of California, Irvine, California
| |
Collapse
|
29
|
Uchida K, Otsuka H, Morishita M, Tsukahara S, Sato T, Sakimura K, Itoi K. Female-biased sexual dimorphism of corticotropin-releasing factor neurons in the bed nucleus of the stria terminalis. Biol Sex Differ 2019; 10:6. [PMID: 30691514 PMCID: PMC6350317 DOI: 10.1186/s13293-019-0221-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 01/06/2019] [Indexed: 12/03/2022] Open
Abstract
Background The bed nucleus of the stria terminalis (BNST) contains the highest density of corticotropin-releasing factor (CRF)-producing neurons in the brain. CRF-immunoreactive neurons show a female-biased sexual dimorphism in the dorsolateral BNST in the rat. Since CRF neurons cannot be immunostained clearly with available CRF antibodies in the mouse, we used a mouse line, in which modified yellow fluorescent protein (Venus) was inserted to the CRF gene, and the Neo cassette was removed, to examine the morphological characteristics of CRF neurons in the dorsolateral BNST. Developmental changes of CRF neurons were examined from postnatal stages to adulthood. Gonadectomy (GDX) was carried out in adult male and female mice to examine the effects of sex steroids on the number of CRF neurons in the dorsolateral BNST. Methods The number of Venus-expressing neurons, stained by immunofluorescence, was compared between male and female mice over the course of development. GDX was carried out in adult mice. Immunohistochemistry, in combination with Nissl staining, was carried out, and the effects of sex or gonadal steroids were examined by estimating the number of Venus-expressing neurons, as well as the total number of neurons or glial cells, in each BNST subnucleus, using a stereological method. Results Most Venus-expressing neurons co-expressed Crf mRNA in the dorsolateral BNST. They constitute a group of neurons without calbindin immunoreactivity, which makes a contrast to the principal nucleus of the BNST that is characterized by calbindin immunostaining. In the dorsolateral BNST, the number of Venus-expressing neurons increased across developmental stages until adulthood. Sexual difference in the number of Venus-expressing neurons was not evident by postnatal day 5. In adulthood, however, there was a significant female predominance in the number of Venus expressing neurons in two subnuclei of the dorsolateral BNST, i.e., the oval nucleus of the BNST (ovBNST) and the anterolateral BNST (alBNST). The number of Venus-expressing neurons was smaller significantly in ovariectomized females compared with proestrous females in either ovBNST or alBNST, and greater significantly in orchiectomized males compared with gonadally intact males in ovBNST. The total number of neurons was also greater significantly in females than in males in ovBNST and alBNST, but it was not affected by GDX. Conclusion Venus-expressing CRF neurons showed female-biased sexual dimorphism in ovBNST and alBNST of the mouse. Expression of Venus in these subnuclei was controlled by gonadal steroids.
Collapse
Affiliation(s)
- Katsuya Uchida
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai City, Japan.
| | - Hiroko Otsuka
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai City, Japan
| | - Masahiro Morishita
- Department of Regulation Biology, Graduate School of Science and Engineering, Saitama University, Saitama City, Japan
| | - Shinji Tsukahara
- Department of Regulation Biology, Graduate School of Science and Engineering, Saitama University, Saitama City, Japan
| | - Tatsuya Sato
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai City, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata City, Japan
| | - Keiichi Itoi
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai City, Japan.
| |
Collapse
|
30
|
Tanaka H, Okazaki T, Aoyama S, Yokota M, Koike M, Okada Y, Fujiki Y, Gotoh Y. Peroxisomes control mitochondrial dynamics and the mitochondrion-dependent pathway of apoptosis. J Cell Sci 2019; 132:jcs.224766. [DOI: 10.1242/jcs.224766] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 05/01/2019] [Indexed: 01/03/2023] Open
Abstract
Peroxisomes cooperate with mitochondria in the performance of cellular metabolic functions such as fatty acid oxidation and maintenance of redox homeostasis. Whether peroxisomes also regulate mitochondrial fission-fusion dynamics or mitochondrion-dependent apoptosis has remained unclear, however. We now show that genetic ablation of the peroxins Pex3 or Pex5, which are essential for peroxisome biogenesis, resulted in mitochondrial fragmentation in MEFs in a manner dependent on Drp1. Conversely, treatment with 4-PBA, a peroxisome proliferator, resulted in mitochondrial elongation in wild-type MEFs, but not in Pex3-deficient MEFs. We further found that peroxisome deficiency increased the levels of cytosolic cytochrome c and caspase activity under basal conditions without inducing apoptosis. It also greatly enhanced etoposide-induced caspase activation and apoptosis, indicative of an enhanced cellular sensitivity to death signals. Together, our data unveil a previously unrecognized role of peroxisomes in the regulation of mitochondrial dynamics and mitochondrion-dependent apoptosis. Effects of peroxin genes mutations on mitochondrion-dependent apoptosis may contribute to pathogenesis of peroxisome biogenesis disorders.
Collapse
Affiliation(s)
- Hideaki Tanaka
- Graduate School of Pharmaceutical Sciences, IRCN, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tomohiko Okazaki
- Graduate School of Pharmaceutical Sciences, IRCN, The University of Tokyo, Tokyo 113-0033, Japan
| | - Saeko Aoyama
- Graduate School of Pharmaceutical Sciences, IRCN, The University of Tokyo, Tokyo 113-0033, Japan
| | - Mutsumi Yokota
- Department of Cell Biology and Neuroscience, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Yasushi Okada
- Laboratory for Cell Dynamics Observation, Center for Biosystems Dynamics Research (BDR), RIKEN, Osaka 565-0874, Japan
- Department of Physics, Universal Biology Institute (UBI), and the International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo 113-0033, Japan
| | - Yukio Fujiki
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, IRCN, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
31
|
Hyper-diversity of CRH interneurons in mouse hippocampus. Brain Struct Funct 2018; 224:583-598. [PMID: 30456559 DOI: 10.1007/s00429-018-1793-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/09/2018] [Indexed: 12/20/2022]
Abstract
Hippocampal inhibitory interneurons comprise an anatomically, neurochemically and electrophysiologically diverse population of cells that are essential for the generation of the oscillatory activity underlying hippocampal spatial and episodic memory processes. Here, we aimed to characterize a population of interneurons that express the stress-related neuropeptide corticotropin-releasing hormone (CRH) within existing interneuronal categories through the use of combined electrophysiological and immunocytochemical approaches. Focusing on CA1 strata pyramidale and radiatum of mouse hippocampus, CRH interneurons were found to exhibit a heterogeneous neurochemical phenotype with parvalbumin, cholecystokinin and calretinin co-expression observed to varying degrees. In contrast, CRH and somatostatin were never co-expressed. Electrophysiological categorization identified heterogeneous firing pattern of CRH neurons, with two distinct subtypes within stratum pyramidale and stratum radiatum. Together, these findings indicate that CRH-expressing interneurons do not segregate into any single distinct subtype of interneuron using conventional criteria. Rather our findings suggest that CRH is likely co-expressed in subpopulations of previously described hippocampal interneurons. In addition, the observed heterogeneity suggests that distinct CRH interneuron subtypes may have specific functional roles in the both physiological and pathophysiological hippocampal processes.
Collapse
|
32
|
Stanton CH, Holmes AJ, Chang SWC, Joormann J. From Stress to Anhedonia: Molecular Processes through Functional Circuits. Trends Neurosci 2018; 42:23-42. [PMID: 30327143 DOI: 10.1016/j.tins.2018.09.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/13/2018] [Accepted: 09/24/2018] [Indexed: 12/23/2022]
Abstract
Converging evidence across species highlights the contribution of environmental stress to anhedonia (loss of pleasure and/or motivation). However, despite a clear link between stress and the emergence of anhedonic-like behavior in both human and animal models, the underlying biological pathways remain elusive. Here, we synthesize recent findings across multiple levels, from molecular signaling pathways through whole-brain networks, to discuss mechanisms through which stress may influence anhedonia. Recent work suggests the involvement of diverse systems that converge on the mesolimbic reward pathway, including medial-prefrontal cortical circuitry, neuroendocrine stress responses, homeostatic energy regulation systems, and inflammation. We conclude by emphasizing the need to disentangle the influences of key dimensions of stress on specific aspects of reward processing, taking into account individual differences that could moderate this relationship.
Collapse
Affiliation(s)
- Colin H Stanton
- Department of Psychology, Yale University, New Haven, CT 06511, USA.
| | - Avram J Holmes
- Department of Psychology, Yale University, New Haven, CT 06511, USA; Department of Psychiatry, Yale University, New Haven, CT 06511, USA
| | - Steve W C Chang
- Department of Psychology, Yale University, New Haven, CT 06511, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jutta Joormann
- Department of Psychology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
33
|
Deussing JM, Chen A. The Corticotropin-Releasing Factor Family: Physiology of the Stress Response. Physiol Rev 2018; 98:2225-2286. [DOI: 10.1152/physrev.00042.2017] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The physiological stress response is responsible for the maintenance of homeostasis in the presence of real or perceived challenges. In this function, the brain activates adaptive responses that involve numerous neural circuits and effector molecules to adapt to the current and future demands. A maladaptive stress response has been linked to the etiology of a variety of disorders, such as anxiety and mood disorders, eating disorders, and the metabolic syndrome. The neuropeptide corticotropin-releasing factor (CRF) and its relatives, the urocortins 1–3, in concert with their receptors (CRFR1, CRFR2), have emerged as central components of the physiological stress response. This central peptidergic system impinges on a broad spectrum of physiological processes that are the basis for successful adaptation and concomitantly integrate autonomic, neuroendocrine, and behavioral stress responses. This review focuses on the physiology of CRF-related peptides and their cognate receptors with the aim of providing a comprehensive up-to-date overview of the field. We describe the major molecular features covering aspects of gene expression and regulation, structural properties, and molecular interactions, as well as mechanisms of signal transduction and their surveillance. In addition, we discuss the large body of published experimental studies focusing on state-of-the-art genetic approaches with high temporal and spatial precision, which collectively aimed to dissect the contribution of CRF-related ligands and receptors to different levels of the stress response. We discuss the controversies in the field and unravel knowledge gaps that might pave the way for future research directions and open up novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jan M. Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; and Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; and Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
34
|
Walker LC, Cornish LC, Lawrence AJ, Campbell EJ. The effect of acute or repeated stress on the corticotropin releasing factor system in the CRH-IRES-Cre mouse: A validation study. Neuropharmacology 2018; 154:96-106. [PMID: 30266597 DOI: 10.1016/j.neuropharm.2018.09.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/31/2018] [Accepted: 09/22/2018] [Indexed: 12/18/2022]
Abstract
Corticotropin releasing factor (CRF) is a key component of stress responsivity, modulating related behaviors including anxiety and reward. Difficulties identifying CRF neurons, using traditional approaches including immunohistochemistry, has led to the development of a number of transgenic CRF reporter mice. The Crh-IRES-Cre::Ai14 (tdTomato) reporter mouse is increasing in popularity as a useful tool to assess the localization, connectivity and function of CRF neurons in various stress-related behaviors. However, without proper characterization of reporter expression, the in vivo and in vitro manifestations resulting from the manipulation of these cells must be interpreted with caution. Here we mapped the distribution of tdTomato-expressing CRF cells throughout the rostro-caudal extent of the Crh-IRES-Cre::Ai14 mouse brain. To determine if reporter expression faithfully reproduced native CRF expression, we assessed the colocalization of CRF expression with tdTomato reporter expression across several brain regions. Good concordance was observed in the extended amygdala and paraventricular nucleus of the hypothalamus (PVN), while discrepancies were observed within the lateral hypothalamus and hippocampus. Finally, we examined the activation of CRF neurons in Crh-IRES-Cre::Ai14 mice in response to different types of stressors using Fos immunohistochemistry. Acute psychological (swim) and pharmacological (yohimbine) stress stimulated Fos-protein expression in PVN CRF neurons. Interestingly though, exposure to four daily restraint stress sessions followed by a novel acute stressor did not further recruit CRF neurons across any brain region examined. Our results highlight the importance of thoroughly characterizing reporter mice before use and suggest that acute versus repeated stress may differentially impact the CRF system. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Leigh C Walker
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, 3052, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, 3010, Australia
| | - Lara C Cornish
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, 3052, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, 3052, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, 3010, Australia
| | - Erin J Campbell
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, 3052, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
35
|
Iwasaki K, Komiya H, Kakizaki M, Miyoshi C, Abe M, Sakimura K, Funato H, Yanagisawa M. Ablation of Central Serotonergic Neurons Decreased REM Sleep and Attenuated Arousal Response. Front Neurosci 2018; 12:535. [PMID: 30131671 PMCID: PMC6090062 DOI: 10.3389/fnins.2018.00535] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/16/2018] [Indexed: 12/22/2022] Open
Abstract
Sleep/wake behavior is regulated by distinct groups of neurons, such as dopaminergic, noradrenergic, and orexinergic neurons. Although monoaminergic neurons are usually considered to be wake-promoting, the role of serotonergic neurons in sleep/wake behavior remains inconclusive because of the effect of serotonin (5-HT)-deficiency on brain development and the compensation for inborn 5-HT deficiency by other sleep/wake-regulating neurons. Here, we performed selective ablation of central 5-HT neurons in the newly developed Rosa-diphtheria toxin receptor (DTR)-tdTomato mouse line that was crossed with Pet1Cre/+ mice to examine the role of 5-HT neurons in the sleep/wake behavior of adult mice. Intracerebroventricular administration of diphtheria toxin completely ablated tdTomato-positive cells in Pet1Cre/+; Rosa-DTR-tdTomato mice. Electroencephalogram/electromyogram-based sleep/wake analysis demonstrated that central 5-HT neuron ablation in adult mice decreased the time spent in rapid eye movement (REM) sleep, which was associated with fewer transitions from non-REM (NREM) sleep to REM sleep than in control mice. Central 5-HT neuron-ablated mice showed attenuated wake response to a novel environment and increased theta power during wakefulness compared to control mice. The current findings indicated that adult 5-HT neurons work to support wakefulness and regulate REM sleep time through a biased transition from NREM sleep to REM sleep.
Collapse
Affiliation(s)
- Kanako Iwasaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Haruna Komiya
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Miyo Kakizaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Chika Miyoshi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan.,Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan.,Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
36
|
Kelly EA, Fudge JL. The neuroanatomic complexity of the CRF and DA systems and their interface: What we still don't know. Neurosci Biobehav Rev 2018; 90:247-259. [PMID: 29704516 PMCID: PMC5993645 DOI: 10.1016/j.neubiorev.2018.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/14/2018] [Accepted: 04/15/2018] [Indexed: 12/28/2022]
Abstract
Corticotropin-releasing factor (CRF) is a neuropeptide that mediates the stress response. Long known to contribute to regulation of the adrenal stress response initiated in the hypothalamic-pituitary axis (HPA), a complex pattern of extrahypothalamic CRF expression is also described in rodents and primates. Cross-talk between the CRF and midbrain dopamine (DA) systems links the stress response to DA regulation. Classically CRF + cells in the extended amygdala and paraventricular nucleus (PVN) are considered the main source of this input, principally targeting the ventral tegmental area (VTA). However, the anatomic complexity of both the DA and CRF system has been increasingly elaborated in the last decade. The DA neurons are now recognized as having diverse molecular, connectional and physiologic properties, predicted by their anatomic location. At the same time, the broad distribution of CRF cells in the brain has been increasingly delineated using different species and techniques. Here, we review updated information on both CRF localization and newer conceptualizations of the DA system to reconsider the CRF-DA interface.
Collapse
Affiliation(s)
- E A Kelly
- University of Rochester, School of Medicine and Dentistry, The Ernest J Del Monte Institute for Neuroscience, Department of Neuroscience, Rochester, NY, United States
| | - J L Fudge
- University of Rochester, School of Medicine and Dentistry, The Ernest J Del Monte Institute for Neuroscience, Department of Neuroscience, Rochester, NY, United States; University of Rochester, School of Medicine and Dentistry, The Ernest J Del Monte Institute for Neuroscience, Department of Psychiatry, Rochester, NY, United States.
| |
Collapse
|
37
|
Ma S, Hangya B, Leonard CS, Wisden W, Gundlach AL. Dual-transmitter systems regulating arousal, attention, learning and memory. Neurosci Biobehav Rev 2018; 85:21-33. [PMID: 28757457 PMCID: PMC5747977 DOI: 10.1016/j.neubiorev.2017.07.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/16/2017] [Indexed: 01/12/2023]
Abstract
An array of neuromodulators, including monoamines and neuropeptides, regulate most behavioural and physiological traits. In the past decade, dramatic progress has been made in mapping neuromodulatory circuits, in analysing circuit dynamics, and interrogating circuit function using pharmacogenetic, optogenetic and imaging methods This review will focus on several distinct neural networks (acetylcholine/GABA/glutamate; histamine/GABA; orexin/glutamate; and relaxin-3/GABA) that originate from neural hubs that regulate wakefulness and related attentional and cognitive processes, and highlight approaches that have identified dual transmitter roles in these behavioural functions. Modulation of these different neural networks might be effective treatments of diseases related to arousal/sleep dysfunction and of cognitive dysfunction in psychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| | - Balázs Hangya
- 'Lendület' Laboratory of Systems Neuroscience, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - William Wisden
- Department of Life Sciences, Imperial College London, London, UK
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
38
|
Hooper A, Fuller PM, Maguire J. Hippocampal corticotropin-releasing hormone neurons support recognition memory and modulate hippocampal excitability. PLoS One 2018; 13:e0191363. [PMID: 29346425 PMCID: PMC5773215 DOI: 10.1371/journal.pone.0191363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/03/2018] [Indexed: 11/22/2022] Open
Abstract
Corticotropin-releasing hormone (CRH) signaling in the hippocampus has been established to be important for mediating the effects of stress on learning and memory. Given our laboratory’s recent characterization of a subset of hippocampal CRH neurons as a novel class of GABAergic interneurons, we hypothesized that these local GABAergic hippocampal CRH neurons may influence hippocampal function. Here we applied an array of molecular tools to selectively label and manipulate hippocampal CRH neurons in mice, in order to assess this interneuron population’s impact on hippocampus-dependent behaviors and hippocampal network excitability. Genetically-targeted ablation of hippocampal CRH neurons in vivo impaired object recognition memory and substantially enhanced the severity of kainic acid-induced seizures. Conversely, selective activation of CRH neurons in vitro suppressed the excitability of the mossy fiber-CA3 pathway. Additional experiments are needed to reconcile the functions of GABA and CRH signaling of hippocampal CRH neurons on hippocampal function. However, our results indicate that this interneuron population plays an important role in maintaining adaptive network excitability, and provide a specific circuit-level mechanism for this role.
Collapse
Affiliation(s)
- Andrew Hooper
- Tufts University School of Medicine, Department of Neuroscience, Boston, Massachusetts
| | - Patrick M. Fuller
- Beth Israel Deaconess Medical Center, Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Jamie Maguire
- Tufts University School of Medicine, Department of Neuroscience, Boston, Massachusetts
- * E-mail:
| |
Collapse
|
39
|
Netrin-1 Derived from the Ventricular Zone, but not the Floor Plate, Directs Hindbrain Commissural Axons to the Ventral Midline. Sci Rep 2017; 7:11992. [PMID: 28931893 PMCID: PMC5607380 DOI: 10.1038/s41598-017-12269-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/31/2017] [Indexed: 11/08/2022] Open
Abstract
Netrin-1 (Ntn1) emanating from the ventral midline has been thought to act as a long-range diffusible chemoattractant for commissural axons (CAs). However, CAs still grow towards the midline in the absence of the floor plate (FP), a glial structure occupying the midline. Here, using genetically loss-of-function approaches in mice, we show that Ntn1 derived from the ventricular zone (VZ), but not the FP, is crucial for CA guidance in the mouse hindbrain. During the period of CA growth, Ntn1 is expressed in the ventral two-thirds of the VZ, in addition to the FP. Remarkably, deletion of Ntn1 from the VZ and even from the dorsal VZ highly disrupts CA guidance to the midline, whereas the deletion from the FP has little impact on it. We also show that the severities of CA guidance defects found in the Ntn1 conditional mutants were irrelevant to their FP long-range chemoattractive activities. Our results are incompatible with the prevailing view that Ntn1 is an FP-derived long-range diffusible chemoattractant for CAs, but suggest a novel mechanism that VZ-derived Ntn1 directs CAs to the ventral midline by its local actions.
Collapse
|
40
|
Rosinger ZJ, Jacobskind JS, Park SG, Justice NJ, Zuloaga DG. Distribution of corticotropin-releasing factor receptor 1 in the developing mouse forebrain: A novel sex difference revealed in the rostral periventricular hypothalamus. Neuroscience 2017; 361:167-178. [PMID: 28823817 DOI: 10.1016/j.neuroscience.2017.08.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/19/2017] [Accepted: 08/09/2017] [Indexed: 12/16/2022]
Abstract
Corticotropin-releasing factor (CRF) signaling through CRF receptor 1 (CRFR1) regulates autonomic, endocrine and behavioral responses to stress and has been implicated in the pathophysiology of several disorders including anxiety, depression, and addiction. Using a validated CRFR1 reporter mouse line (bacterial artificial chromosome identified by green fluorescence protein (BAC GFP-CRFR1)), we investigated the distribution of CRFR1 in the developing mouse forebrain. Distribution of CRFR1 was investigated at postnatal days (P) 0, 4, and 21 in male and female mice. CRFR1 increased with age in several regions including the medial amygdala, arcuate nucleus, paraventricular hypothalamus, medial septum, CA1 hippocampal area, and the lateral habenula. Regions showing decreased CRFR1 expression with increased age include the intermediate portion of the periventricular hypothalamic nucleus, and CA3 hippocampal area. We report a sexually dimorphic expression of CRFR1 within the rostral portion of the anteroventral periventricular nucleus of the hypothalamus (AVPV/PeN), a region known to regulate ovulation, reproductive and maternal behaviors. Females had a greater number of CRFR1-GFP-ir cells at all time points in the AVPV/PeN and CRFR1-GFP-ir was nearly absent in males by P21. Overall, alterations in CRFR1-GFP-ir distribution based on age and sex may contribute to observed age- and sex-dependent differences in stress regulation.
Collapse
Affiliation(s)
| | | | - Shannon G Park
- University at Albany, Department of Psychology, Albany, NY 12222, USA
| | - Nicholas J Justice
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Sciences Center, Houston, TX, USA
| | - Damian G Zuloaga
- University at Albany, Department of Psychology, Albany, NY 12222, USA.
| |
Collapse
|
41
|
Peng J, Long B, Yuan J, Peng X, Ni H, Li X, Gong H, Luo Q, Li A. A Quantitative Analysis of the Distribution of CRH Neurons in Whole Mouse Brain. Front Neuroanat 2017; 11:63. [PMID: 28790896 PMCID: PMC5524767 DOI: 10.3389/fnana.2017.00063] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/11/2017] [Indexed: 11/13/2022] Open
Abstract
Corticotropin-releasing hormone (CRH), with widespread expression in the brain, plays a key role in modulating a series of behaviors, including anxiety, arousal, motor function, learning and memory. Previous studies have focused on some brain regions with densely distributed CRH neurons such as paraventricular hypothalamic nucleus (PVH) and bed nuclei of the stria terminalis (BST) and revealed some basic structural and functional knowledge of CRH neurons. However, there is no systematic analysis of brain-wide distribution of CRH neurons. Here, we performed a comprehensive study of CRH neurons in CRH-IRES-Cre;Ai3 mice via automatic imaging and stereoscopic cell counting in a whole mouse brain. We acquired four datasets of the CRH distributions with co-localized cytoarchitecture at a voxel resolution of 0.32 μm × 0.32 μm × 2 μm using brain-wide positioning system (BPS). Next, we precisely located and counted the EYFP-labeled neurons in different regions according to propidium iodide counterstained anatomical reference using Neuronal Global Position System. In particular, dense EYFP expression was found in piriform area, BST, central amygdalar nucleus, PVH, Barrington's nucleus, and inferior olivary complex. Considerable CRH neurons were also found in main olfactory bulb, medial preoptic nucleus, pontine gray, tegmental reticular nucleus, external cuneate nucleus, and midline thalamus. We reconstructed and compared the soma morphology of CRH neurons in 11 brain regions. The results demonstrated that CRH neurons had regional diversities of both cell distribution and soma morphology. This anatomical knowledge enhances the current understanding of the functions of CRH neurons. These results also demonstrated the ability of our platform to accurately orient, reconstruct and count neuronal somas in three-dimension for type-specific neurons in the whole brain, making it feasible to answer the fundamental neuroscience question of exact numbers of various neurons in the whole brain.
Collapse
Affiliation(s)
- Jie Peng
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and TechnologyWuhan, China.,Britton Chance Center, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China.,MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China
| | - Ben Long
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and TechnologyWuhan, China.,Britton Chance Center, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China.,MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China
| | - Jing Yuan
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and TechnologyWuhan, China.,Britton Chance Center, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China.,MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China
| | - Xue Peng
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and TechnologyWuhan, China.,Britton Chance Center, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China.,MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China
| | - Hong Ni
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and TechnologyWuhan, China.,Britton Chance Center, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China.,MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China
| | - Xiangning Li
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and TechnologyWuhan, China.,Britton Chance Center, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China.,MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China
| | - Hui Gong
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and TechnologyWuhan, China.,Britton Chance Center, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China.,MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China
| | - Qingming Luo
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and TechnologyWuhan, China.,Britton Chance Center, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China.,MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China
| | - Anan Li
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and TechnologyWuhan, China.,Britton Chance Center, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China.,MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China
| |
Collapse
|
42
|
Xu WX. Central and Peripheral Modulation of Visceral Pain and Visceral Hypersensitivity by the CRF-CRFR System. ACTA ACUST UNITED AC 2017. [DOI: 10.15406/ghoa.2017.06.00207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|