1
|
Borland JM. The effects of different types of social interactions on the electrophysiology of neurons in the nucleus accumbens in rodents. Neurosci Biobehav Rev 2024; 164:105809. [PMID: 39004323 PMCID: PMC11771367 DOI: 10.1016/j.neubiorev.2024.105809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
BORLAND, J.M., The effects of different types of social interactions on the electrophysiology of neurons in the nucleus accumbens in rodents, NEUROSCI BIOBEH REV 21(1) XXX-XXX, 2024.-Sociality shapes an organisms' life. The nucleus accumbens is a critical brain region for mental health. In the following review, the effects of different types of social interactions on the physiology of neurons in the nucleus accumbens is synthesized. More specifically, the effects of sex behavior, aggression, social defeat, pair-bonding, play behavior, affiliative interactions, parental behaviors, the isolation from social interactions and maternal separation on measures of excitatory synaptic transmission, intracellular signaling and factors of transcription and translation in neurons in the nucleus accumbens in rodent models are reviewed. Similarities and differences in effects depending on the type of social interaction is then discussed. This review improves the understanding of the molecular and synaptic mechanisms of sociality.
Collapse
|
2
|
Novoa J, Rivero CJ, Pérez-Cardona EU, Freire-Arvelo JA, Zegers J, Yarur HE, Santiago-Marerro IG, Agosto-Rivera JL, González-Pérez JL, Gysling K, Segarra AC. Social isolation of adolescent male rats increases anxiety and K + -induced dopamine release in the nucleus accumbens: Role of CRF-R1. Eur J Neurosci 2021; 54:4888-4905. [PMID: 34097788 DOI: 10.1111/ejn.15345] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 04/08/2021] [Accepted: 05/04/2021] [Indexed: 12/19/2022]
Abstract
Early life adversity can disrupt development leading to emotional and cognitive disorders. This study investigated the effects of social isolation after weaning on anxiety, body weight and locomotion, and on extracellular dopamine (DA) and glutamate (GLU) in the nucleus accumbens (NAc) and their modulation by corticotropin releasing factor receptor 1. On the day of weaning, male rats were housed singly or in groups for 10 consecutive days. Anxiety-like behaviors were assessed by an elevated plus maze (EPM) and an open field test (OF). Neurotransmitter levels were measured by in vivo microdialysis. Single-housed rats spent less time, and entered more, into the closed arms of an EPM than group-housed rats. They also spent less time in the center of an OF, weighed more and showed greater locomotion. In the NAc, no differences in CRF, or in basal extracellular DA or GLU between groups, were observed. A depolarizing stimulus increased DA release in both groups but to higher levels in isolated rats, whereas GLU increased only in single-housed rats. Blocking CRF-R1 receptors with CP-154,526 decreased DA release in single-housed but not in group-housed rats. The corticotropin releasing factor receptor type 1 receptor antagonist also decreased GLU in group-housed animals. These results show that isolating adolescent rats increases anxiety, body weight and ambulation, as well as the sensitivity of dopaminergic neurons to a depolarizing stimulus. This study provides further evidence of the detrimental effects of social isolation during early development and indicates that dysregulation of the CRF system in the NAc may contribute to the pathologies observed.
Collapse
Affiliation(s)
- Javier Novoa
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos J Rivero
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Enrique U Pérez-Cardona
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Jaime A Freire-Arvelo
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Juan Zegers
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Héctor E Yarur
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | - Jorge L González-Pérez
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Katia Gysling
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Annabell C Segarra
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
3
|
Shelton HW, Gabbita SP, Gill WD, Burgess KC, Whicker WS, Brown RW. The effects of a novel inhibitor of tumor necrosis factor (TNF) alpha on prepulse inhibition and microglial activation in two distinct rodent models of schizophrenia. Behav Brain Res 2021; 406:113229. [PMID: 33684425 DOI: 10.1016/j.bbr.2021.113229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/14/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022]
Abstract
Increased neuroinflammation has been shown in individuals diagnosed with schizophrenia (SCHZ). This study evaluated a novel immune modulator (PD2024) that targets the pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) to alleviate sensorimotor gating deficits and microglial activation employing two different rodent models of SCHZ. In Experiment 1, rats were neonatally treated with saline or the dopamine D2-like agonist quinpirole (NQ; 1 mg/kg) from postnatal day (P) 1-21 which produces increases of dopamine D2 receptor sensitivity throughout the animal's lifetime. In Experiment 2, rats were neonatally treated with saline or the immune system stimulant polyinosinic:polycytidylic acid (Poly I:C) from P5-7. Neonatal Poly I:C treatment mimics immune system activation associated with SCHZ. In both experiments, rats were raised to P30 and administered a control diet or a novel TNFα inhibitor PD2024 (10 mg/kg) in the diet from P30 until P67. At P45-46 and from P60-67, animals were behaviorally tested on auditory sensorimotor gating as measured through prepulse inhibition (PPI). NQ or Poly I:C treatment resulted in PPI deficits, and PD2024 treatment alleviated PPI deficits in both models. Results also revealed that increased hippocampal and prefrontal cortex microglial activation produced by neonatal Poly I:C was significantly reduced to control levels by PD2024. In addition, a separate group of animals neonatally treated with saline or Poly I:C from P5-7 demonstrated increased TNFα protein levels in the hippocampus but not prefrontal cortex, verifying increased TNFα in the brain produced by Poly I:C. Results from this study suggests that that brain TNFα is a viable pharmacological target to treat the neuroinflammation known to be associated with SCHZ.
Collapse
Affiliation(s)
- Heath W Shelton
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, United States
| | | | - W Drew Gill
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, United States
| | - Katherine C Burgess
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, United States
| | - Wyatt S Whicker
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, United States
| | - Russell W Brown
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, United States.
| |
Collapse
|
4
|
Enhancing excitatory projections from the ventral subiculum to the nucleus accumbens shell contribute to the MK-801-induced impairment of prepulse inhibition. Neurosci Lett 2020; 731:135024. [PMID: 32380142 DOI: 10.1016/j.neulet.2020.135024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 11/20/2022]
Abstract
Prepulse inhibition (PPI), a measure of sensorimotor gating, has been shown to be disrupted in several animal models of neuropsychiatric disorders, such as schizophrenia. The neural circuits involving the hippocampus and nucleus accumbens (NAC) have been studied in rats to uncover the neurochemical and neuroanatomical substrates that regulate PPI. Majority of the studies of the hippocampus on PPI to date have been focused on CA1, CA2, and dentate gyrus (DG) area. Little is known about the role of the subiculum, which maintains the hippocampal formation intact, on the sensorimotor gating. In this study, the PPI disruption was induced by intraperitoneal injection of MK-801 in rats, and the neuronal activity in the dorsal and ventral subiculum by c-Fos immunostaining was examined. The projections from the subiculum to the nucleus accumbens (NAC) were detected by retrograde tracing of cholera toxin B subunit, in the PPI dysfunctional animals. The results showed an increase in neuronal activity in the ventral subiculum (vSub) while remaining constant in the dorsal subiculum during PPI disruption. The excitatory projections from the vSub to the NAC shell were significantly enhanced when PPI was disrupted. Muscimol Inhibition of vSub could significantly ameliorate the MK801-induced PPI deficit. This data suggests that the enhancement of neuronal activity in the vSub was associated with the PPI impairment, possibly due to the enhanced excitatory output from vSub the NAC shell.
Collapse
|
5
|
Keesom SM, Hurley LM. Silence, Solitude, and Serotonin: Neural Mechanisms Linking Hearing Loss and Social Isolation. Brain Sci 2020; 10:brainsci10060367. [PMID: 32545607 PMCID: PMC7349698 DOI: 10.3390/brainsci10060367] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
For social animals that communicate acoustically, hearing loss and social isolation are factors that independently influence social behavior. In human subjects, hearing loss may also contribute to objective and subjective measures of social isolation. Although the behavioral relationship between hearing loss and social isolation is evident, there is little understanding of their interdependence at the level of neural systems. Separate lines of research have shown that social isolation and hearing loss independently target the serotonergic system in the rodent brain. These two factors affect both presynaptic and postsynaptic measures of serotonergic anatomy and function, highlighting the sensitivity of serotonergic pathways to both types of insult. The effects of deficits in both acoustic and social inputs are seen not only within the auditory system, but also in other brain regions, suggesting relatively extensive effects of these deficits on serotonergic regulatory systems. Serotonin plays a much-studied role in depression and anxiety, and may also influence several aspects of auditory cognition, including auditory attention and understanding speech in challenging listening conditions. These commonalities suggest that serotonergic pathways are worthy of further exploration as potential intervening mechanisms between the related conditions of hearing loss and social isolation, and the affective and cognitive dysfunctions that follow.
Collapse
Affiliation(s)
- Sarah M. Keesom
- Department of Biology, Utica College, Utica, NY 13502, USA
- Correspondence:
| | - Laura M. Hurley
- Center for the Integrative Study of Animal Behavior, Department of Biology, Indiana University, Bloomington, IN 47405, USA;
| |
Collapse
|
6
|
Pickel VM, Bourie F, Chan J, Mackie K, Lane DA, Wang G. Chronic adolescent exposure to ∆9-tetrahydrocannabinol decreases NMDA current and extrasynaptic plasmalemmal density of NMDA GluN1 subunits in the prelimbic cortex of adult male mice. Neuropsychopharmacology 2020; 45:374-383. [PMID: 31323660 PMCID: PMC6901492 DOI: 10.1038/s41386-019-0466-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/01/2019] [Accepted: 07/12/2019] [Indexed: 12/21/2022]
Abstract
Adolescence is a vulnerable period of development when limbic connection of the prefrontal cortex (PFC) involved in emotional processing may be rendered dysfunctional by chronic exposure to delta-9-tetrahydrocannabinol (∆9-THC), the major psychoactive compound in marijuana. Cannabinoid-1 receptors (CB1Rs) largely mediate the central neural effects of ∆9-THC and endocannabinoids that regulate NMDA receptor-dependent synaptic plasticity of glutamatergic synapses in the prelimbic prefrontal cortex (PL-PFC). Thus, chronic occupancy of CB1Rs by ∆9-THC during adolescence may competitively decrease the functional expression and activity of NMDA receptors in the mature PL-PFC. We used a multidisciplinary approach to test this hypothesis in adult C57BL/6J male mice that received vehicle or ∆9-THC in escalating doses (2.5-10 mg/kg/ip) through adolescence (postnatal day 29-43). In comparison with vehicle, the mice receiving ∆9-THC showed a hyperpolarized resting membrane potential, decreased spontaneous firing rate, increased current-induced firing threshold, and decreased depolarizing response to NMDA in deep-layer PL-PFC neurons analyzed by current-clamp recordings. Electron microscopic immunolabeling in the PL-PFC of adult mice that had received Δ9-THC only during adolescence showed a significant (1) decrease in the extrasynaptic plasmalemmal density of obligatory GluN1-NMDA subunits in dendrites of all sizes and (2) a shift from cytoplasmic to plasmalemmal distribution of GluN1 in large dendrites receiving mainly inhibitory-type synapses from CB1R-labeled terminals. From these results and concomitant behavioral studies, we conclude that social dysfunctions resulting from excessive intake of ∆9-THC in the increasingly available marijuana products used by male teens may largely reflect circuit defects in PL-PFC networks communicating through endocannabinoid-regulated NMDA receptors.
Collapse
Affiliation(s)
- Virginia M Pickel
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Faye Bourie
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - June Chan
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Ken Mackie
- Linda and Jack Gill Center for Biomolecular Science, Dept. of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47404, USA
| | - Diane A Lane
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Gang Wang
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| |
Collapse
|
7
|
Fei XY, Liu S, Sun YH, Cheng L. Social isolation improves the performance of rodents in a novel cognitive flexibility task. Front Zool 2019; 16:43. [PMID: 31788010 PMCID: PMC6858689 DOI: 10.1186/s12983-019-0339-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/09/2019] [Indexed: 01/16/2023] Open
Abstract
Background Social isolation, i.e., the deprivation of social contact, is a highly stressful circumstance that affects behavioral and functional brain development in social animals. Cognitive flexibility, one of the essential executive brain function that facilitates survival problem solving, was reported to be impaired after social isolation rearing. However, most of the previous studies have focused on the constrained aspect of flexibility and little is known about the unconstrained aspect. In the present study, the unconstrained cognitive flexibility of Kunming mice (Mus musculus, Km) reared in isolation was examined by a novel digging task. The exploratory behavior of the mice was also tested utilizing the hole-board and elevated plus maze tests to explain the differences in cognitive flexibility between the mice reared socially and in isolation. Results The results demonstrated that the isolated mice had a higher success rate in solving the novel digging problem and showed a higher rate of exploratory behavior compared with the controls. Linear regression analysis revealed that the time it took the mice to solve the digging problem was negatively associated with exploratory behavior. Conclusions The data suggest that social isolation rearing improves unconstrained cognitive flexibility in mice, which is probably related to an increase in their exploratory behavior. Such effects may reflect the behavioral and cognitive evolutionary adaptations of rodents to survive under complex and stressful conditions.
Collapse
Affiliation(s)
- Xin-Yuan Fei
- 1School of Psychology & Key Laboratory of Adolescent Cyberpsycology and Behavior (CCNU) of Ministry of Education, Central China Normal University, Wuhan, 430079 China
| | - Sha Liu
- 1School of Psychology & Key Laboratory of Adolescent Cyberpsycology and Behavior (CCNU) of Ministry of Education, Central China Normal University, Wuhan, 430079 China
| | - Yan-Hong Sun
- 2Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, 430207 China
| | - Liang Cheng
- 1School of Psychology & Key Laboratory of Adolescent Cyberpsycology and Behavior (CCNU) of Ministry of Education, Central China Normal University, Wuhan, 430079 China
| |
Collapse
|
8
|
Casting a (Perineuronal) Net: Connecting Early Life Stress to Neuropathological Changes and Enhanced Anxiety in Adults. Biol Psychiatry 2019; 85:981-982. [PMID: 31171110 DOI: 10.1016/j.biopsych.2019.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 01/09/2023]
|