1
|
Collin SP, Yopak KE, Crowe-Riddell JM, Camilieri-Asch V, Kerr CC, Robins H, Ha MH, Ceddia A, Dutka TL, Chapuis L. Bioimaging of sense organs and the central nervous system in extant fishes and reptiles in situ: A review. Anat Rec (Hoboken) 2024. [PMID: 39223842 DOI: 10.1002/ar.25566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Bioimaging is changing the field of sensory biology, especially for taxa that are lesser-known, rare, and logistically difficult to source. When integrated with traditional neurobiological approaches, developing an archival, digital repository of morphological images can offer the opportunity to improve our understanding of whole neural systems without the issues of surgical intervention and negate the risk of damage and artefactual interpretation. This review focuses on current approaches to bioimaging the peripheral (sense organs) and central (brain) nervous systems in extant fishes (cartilaginous and bony) and non-avian reptiles in situ. Magnetic resonance imaging (MRI), micro-computed tomography (μCT), both super-resolution track density imaging and diffusion tensor-based imaging, and a range of other new technological advances are presented, together with novel approaches in optimizing both contrast and resolution, for developing detailed neuroanatomical atlases and enhancing comparative analyses of museum specimens. For MRI, tissue preparation, including choice of fixative, impacts tissue MR responses, where both resolving power and signal-to-noise ratio improve as field strength increases. Time in fixative, concentration of contrast agent, and duration of immersion in the contrast agent can also significantly affect relaxation times, and thus image quality. For μCT, the use of contrast-enhancing stains (iodine-, non-iodine-, or nanoparticle-based) is critical, where the type of fixative used, and the concentration of stain and duration of staining time often require species-specific optimization. Advanced reconstruction algorithms to reduce noise and artifacts and post-processing techniques, such as deconvolution and filtering, are now being used to improve image quality and resolution.
Collapse
Affiliation(s)
- Shaun P Collin
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Kara E Yopak
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Jenna M Crowe-Riddell
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Victoria Camilieri-Asch
- Max Planck Queensland Centre for the Materials Science of Extracellular Matrices, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Caroline C Kerr
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Hope Robins
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Myoung Hoon Ha
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Annalise Ceddia
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Travis L Dutka
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Lucille Chapuis
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
- School of Biological Sciences, University of Bristol, Bristol, UK
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh, New Zealand
| |
Collapse
|
2
|
Green AL, Cowell EC, Carr LM, Hemsley K, Sherratt E, Collins-Praino LE, Carr JM. Application of diceCT to Study the Development of the Zika Virus-Infected Mouse Brain. Viruses 2024; 16:1330. [PMID: 39205304 PMCID: PMC11358961 DOI: 10.3390/v16081330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Zika virus (ZIKV) impacts the developing brain. Here, a technique was applied to define, in 3D, developmental changes in the brains of ZIKV-infected mice. Postnatal day 1 mice were uninfected or ZIKV-infected, then analysed by iodine staining and micro-CT scanning (diffusible iodine contrast-enhanced micro-CT; diceCT) at 3-, 6-, and 10-days post-infection (dpi). Multiple brain regions were visualised using diceCT: the olfactory bulb, cerebrum, hippocampus, midbrain, interbrain, and cerebellum, along with the lens and retina of the eye. Brain regions were computationally segmented and quantitated, with increased brain volumes and developmental time in uninfected mice. Conversely, in ZIKV-infected mice, no quantitative differences were seen at 3 or 6 dpi when there were no clinical signs, but qualitatively, diverse visual defects were identified at 6-10 dpi. By 10 dpi, ZIKV-infected mice had significantly lower body weight and reduced volume of brain regions compared to 10 dpi-uninfected or 6 dpi ZIKV-infected mice. Nissl and immunofluorescent Iba1 staining on post-diceCT tissue were successful, but RNA extraction was not. Thus, diceCT shows utility for detecting both 3D qualitative and quantitative changes in the developing brain of ZIKV-infected mice, with the benefit, post-diceCT, of retaining the ability to apply traditional histology and immunofluorescent analysis to tissue.
Collapse
Affiliation(s)
- Amy L. Green
- College of Medicine and Public Health, Flinders University, P.O. Box 2100, Adelaide, SA 5001, Australia; (A.L.G.); (E.C.C.); (K.H.)
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5001, Australia
| | - Evangeline C. Cowell
- College of Medicine and Public Health, Flinders University, P.O. Box 2100, Adelaide, SA 5001, Australia; (A.L.G.); (E.C.C.); (K.H.)
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5001, Australia
| | - Laura M. Carr
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (L.M.C.); (L.E.C.-P.)
| | - Kim Hemsley
- College of Medicine and Public Health, Flinders University, P.O. Box 2100, Adelaide, SA 5001, Australia; (A.L.G.); (E.C.C.); (K.H.)
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5001, Australia
| | - Emma Sherratt
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Lyndsey E. Collins-Praino
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (L.M.C.); (L.E.C.-P.)
| | - Jillian M. Carr
- College of Medicine and Public Health, Flinders University, P.O. Box 2100, Adelaide, SA 5001, Australia; (A.L.G.); (E.C.C.); (K.H.)
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5001, Australia
| |
Collapse
|
3
|
Straight PJ, Gignac PM, Kuenzel WJ. A histological and diceCT-derived 3D reconstruction of the avian visual thalamofugal pathway. Sci Rep 2024; 14:8447. [PMID: 38600121 PMCID: PMC11006926 DOI: 10.1038/s41598-024-58788-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
Amniotes feature two principal visual processing systems: the tectofugal and thalamofugal pathways. In most mammals, the thalamofugal pathway predominates, routing retinal afferents through the dorsolateral geniculate complex to the visual cortex. In most birds, the thalamofugal pathway often plays the lesser role with retinal afferents projecting to the principal optic thalami, a complex of several nuclei that resides in the dorsal thalamus. This thalamic complex sends projections to a forebrain structure called the Wulst, the terminus of the thalamofugal visual system. The thalamofugal pathway in birds serves many functions such as pattern discrimination, spatial memory, and navigation/migration. A comprehensive analysis of avian species has unveiled diverse subdivisions within the thalamic and forebrain structures, contingent on species, age, and techniques utilized. In this study, we documented the thalamofugal system in three dimensions by integrating histological and contrast-enhanced computed tomography imaging of the avian brain. Sections of two-week-old chick brains were cut in either coronal, sagittal, or horizontal planes and stained with Nissl and either Gallyas silver or Luxol Fast Blue. The thalamic principal optic complex and pallial Wulst were subdivided on the basis of cell and fiber density. Additionally, we utilized the technique of diffusible iodine-based contrast-enhanced computed tomography (diceCT) on a 5-week-old chick brain, and right eyeball. By merging diceCT data, stained histological sections, and information from the existing literature, a comprehensive three-dimensional model of the avian thalamofugal pathway was constructed. The use of a 3D model provides a clearer understanding of the structural and spatial organization of the thalamofugal system. The ability to integrate histochemical sections with diceCT 3D modeling is critical to better understanding the anatomical and physiologic organization of complex pathways such as the thalamofugal visual system.
Collapse
Affiliation(s)
- Parker J Straight
- Poultry Science Department, University of Arkansas, Fayetteville, AR, USA.
| | - Paul M Gignac
- Cellular and Molecular Medicine Department, University of Arizona Health Sciences, Tucson, AZ, USA
- MicroCT Imaging Consortium for Research and Outreach, University of Arkansas, Fayetteville, AR, USA
| | - Wayne J Kuenzel
- Poultry Science Department, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
4
|
Gray JA, Gignac PM, Stanley EL. The first full body diffusible iodine-based contrast-enhanced computed tomography dataset and teaching materials for a member of the Testudines. Anat Rec (Hoboken) 2024; 307:535-548. [PMID: 37409685 DOI: 10.1002/ar.25282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023]
Abstract
Diffusible iodine-based contrast-enhanced Computed Tomography (diceCT) is now a widely used technique for imaging metazoan soft anatomy. Turtles present a particular challenge for anatomists; gross dissection is inherently destructive and irreversible, whereas their near complete shell of bony plates, covered with keratinous scutes, presents a barrier for iodine diffusion and significantly increases contrast-enhanced CT preparation time. Consequently, a complete dataset visualizing the internal soft anatomy of turtles at high resolution and in three dimensions has not yet been successfully achieved. Here we outline a novel method that augments traditional diceCT preparation with an iodine injection technique to acquire the first full body contrast-enhanced dataset for the Testudines. We show this approach to be an effective method of staining the soft tissues inside the shell. The resulting datasets were processed to produce anatomical 3D models that can be used in teaching and research. As diceCT becomes a widely employed method for nondestructively documenting the internal soft anatomy of alcohol preserved museum specimens, we hope that methods applicable to the more challenging of these, such as turtles, will contribute toward the growing stock of digital anatomy in online repositories.
Collapse
Affiliation(s)
- Jaimi A Gray
- Florida Museum of Natural History, Gainesville, Florida, USA
| | | | | |
Collapse
|