1
|
Cheng PZ, Lee HC, Lane TJ, Hsu TY, Duncan NW. Structural alterations in a rumination-related network in patients with major depressive disorder. Psychiatry Res Neuroimaging 2024; 345:111911. [PMID: 39481246 DOI: 10.1016/j.pscychresns.2024.111911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/25/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024]
Abstract
Rumination is a common symptom in major depressive disorder (MDD). Previous work has connected individual differences in rumination to structural properties in various brain regions. Some of these, such as the dorsolateral prefrontal cortex (dlPFC), have also been highlighted as being altered in MDD, suggesting a connection between structural changes and ruminative symptoms. Although informative, such localised relations have limitations in the context of a network view of the brain. To further investigate rumination-related structural changes in depression, and to situate these within potential functional networks, we acquired T1-weighted structural MRI data from patients with MDD (n = 32) and controls (n = 69). Rumination was measured with the Rumination Response Scale. Surface-based, whole-brain analysis of cortical grey-matter identified group differences in the dlPFC that were, however, not related to rumination. Instead, rumination was correlated with grey-matter properties in the right precuneus. Using normative functional connectivity analysis on an independent sample (n = 100), we show these two regions to be interconnected. Further developing a network-based perspective, it was shown that the rumination-related precuneus region is connected with networks associated with processes such as executive function, autobiographical memory, and visual perception. Notably, these processes have been connected to rumination. These results suggest that rumination in depression may be linked to focal structural changes. The effects of these focal changes on rumination may then be connected to their influence on distributed functional networks.
Collapse
Affiliation(s)
- Paul Z Cheng
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Chien Lee
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Psychiatry, Taipei Medical University Hospital, Taipei, Taiwan; Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan
| | - Timothy J Lane
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan; Brain and Consciousness Research Centre, Taipei Medical University, Taipei, Taiwan; Institute of European and American Studies, Academia Sinica, Taipei, Taiwan
| | - Tzu-Yu Hsu
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
| | - Niall W Duncan
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
2
|
Cheng Y, Cai H, Liu S, Yang Y, Pan S, Zhang Y, Mo F, Yu Y, Zhu J. Brain Network Localization of Gray Matter Atrophy and Neurocognitive and Social Cognitive Dysfunction in Schizophrenia. Biol Psychiatry 2024:S0006-3223(24)01489-6. [PMID: 39103010 DOI: 10.1016/j.biopsych.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/13/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Numerous studies have established the presence of gray matter atrophy and brain activation abnormalities during neurocognitive and social cognitive tasks in schizophrenia. Despite a growing consensus that diseases localize better to distributed brain networks than individual anatomical regions, relatively few studies have examined brain network localization of gray matter atrophy and neurocognitive and social cognitive dysfunction in schizophrenia. METHODS To address this gap, we initially identified brain locations of structural and functional abnormalities in schizophrenia from 301 published neuroimaging studies with 8712 individuals with schizophrenia and 9275 healthy control participants. By applying novel functional connectivity network mapping to large-scale resting-state functional magnetic resonance imaging datasets, we mapped these affected brain locations to 3 brain abnormality networks of schizophrenia. RESULTS The gray matter atrophy network of schizophrenia comprised a broadly distributed set of brain areas predominantly implicating the ventral attention, somatomotor, and default networks. The neurocognitive dysfunction network was also composed of widespread brain areas primarily involving the frontoparietal and default networks. By contrast, the social cognitive dysfunction network consisted of circumscribed brain regions mainly implicating the default, subcortical, and visual networks. CONCLUSIONS Our findings suggest shared and unique brain network substrates of gray matter atrophy and neurocognitive and social cognitive dysfunction in schizophrenia, which may not only refine the understanding of disease neuropathology from a network perspective but may also contribute to more targeted and effective treatments for impairments in different cognitive domains in schizophrenia.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Huanhuan Cai
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Siyu Liu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Yang Yang
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Shan Pan
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Yongqi Zhang
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Fan Mo
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China.
| | - Jiajia Zhu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China.
| |
Collapse
|
3
|
Salvalaggio A, Pini L, Gaiola M, Velco A, Sansone G, Anglani M, Fekonja L, Chioffi F, Picht T, Thiebaut de Schotten M, Zagonel V, Lombardi G, D’Avella D, Corbetta M. White Matter Tract Density Index Prediction Model of Overall Survival in Glioblastoma. JAMA Neurol 2023; 80:1222-1231. [PMID: 37747720 PMCID: PMC10520843 DOI: 10.1001/jamaneurol.2023.3284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/07/2023] [Indexed: 09/26/2023]
Abstract
Importance The prognosis of overall survival (OS) in patients with glioblastoma (GBM) may depend on the underlying structural connectivity of the brain. Objective To examine the association between white matter tracts affected by GBM and patients' OS by means of a new tract density index (TDI). Design, Setting, and Participants This prognostic study in patients with a histopathologic diagnosis of GBM examined a discovery cohort of 112 patients who underwent surgery between February 1, 2015, and November 30, 2020 (follow-up to May 31, 2023), in Italy and 70 patients in a replicative cohort (n = 70) who underwent surgery between September 1, 2012, and November 30, 2015 (follow-up to May 31, 2023), in Germany. Statistical analyses were performed from June 1, 2021, to May 31, 2023. Thirteen and 12 patients were excluded from the discovery and the replicative sets, respectively, because of magnetic resonance imaging artifacts. Exposure The density of white matter tracts encompassing GBM. Main Outcomes and Measures Correlation, linear regression, Cox proportional hazards regression, Kaplan-Meier, and prediction analysis were used to assess the association between the TDI and OS. Results were compared with common prognostic factors of GBM, including age, performance status, O6-methylguanine-DNA methyltransferase methylation, and extent of surgery. Results In the discovery cohort (n = 99; mean [SD] age, 62.2 [11.5] years; 29 female [29.3%]; 70 male [70.7%]), the TDI was significantly correlated with OS (r = -0.34; P < .001). This association was more stable compared with other prognostic factors. The TDI showed a significant regression pattern (Cox: hazard ratio, 0.28 [95% CI, 0.02-0.55; P = .04]; linear: t = -2.366; P = .02). and a significant Kaplan-Meier stratification of patients as having lower or higher OS based on the TDI (log-rank test = 4.52; P = .03). Results were confirmed in the replicative cohort (n = 58; mean [SD] age, 58.5 [11.1] years, 14 female [24.1%]; 44 male [75.9%]). High (24-month cutoff) and low (18-month cutoff) OS was predicted based on the TDI computed in the discovery cohort (accuracy = 87%). Conclusions and Relevance In this study, GBMs encompassing regions with low white matter tract density were associated with longer OS. These findings indicate that the TDI is a reliable presurgical outcome predictor that may be considered in clinical trials and clinical practice. These findings support a framework in which the outcome of GBM depends on the patient's brain organization.
Collapse
Affiliation(s)
- Alessandro Salvalaggio
- Clinica Neurologica, Department of Neuroscience, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Lorenzo Pini
- Clinica Neurologica, Department of Neuroscience, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Matteo Gaiola
- Clinica Neurologica, Department of Neuroscience, University of Padova, Padova, Italy
| | - Aron Velco
- Clinica Neurologica, Department of Neuroscience, University of Padova, Padova, Italy
| | - Giulio Sansone
- Clinica Neurologica, Department of Neuroscience, University of Padova, Padova, Italy
| | | | - Lucius Fekonja
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, Berlin, Germany
- Cluster of Excellence “Matters of Activity. Image Space Material,” Humboldt University, Berlin, Germany
| | - Franco Chioffi
- Division of Neurosurgery, Azienda Ospedaliera Università di Padova, Padova, Italy
| | - Thomas Picht
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, Berlin, Germany
- Cluster of Excellence “Matters of Activity. Image Space Material,” Humboldt University, Berlin, Germany
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
- Groupe d’Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Vittorina Zagonel
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Domenico D’Avella
- Academic Neurosurgery, Department of Neurosciences, University of Padova, Padova, Italy
| | - Maurizio Corbetta
- Clinica Neurologica, Department of Neuroscience, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, Fondazione Biomedica, Padova, Italy
| |
Collapse
|
4
|
Nabizadeh F, Aarabi MH. Functional and structural lesion network mapping in neurological and psychiatric disorders: a systematic review. Front Neurol 2023; 14:1100067. [PMID: 37456650 PMCID: PMC10349201 DOI: 10.3389/fneur.2023.1100067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
Background The traditional approach to studying the neurobiological mechanisms of brain disorders and localizing brain function involves identifying brain abnormalities and comparing them to matched controls. This method has been instrumental in clinical neurology, providing insight into the functional roles of different brain regions. However, it becomes challenging when lesions in diverse regions produce similar symptoms. To address this, researchers have begun mapping brain lesions to functional or structural networks, a process known as lesion network mapping (LNM). This approach seeks to identify common brain circuits associated with lesions in various areas. In this review, we focus on recent studies that have utilized LNM to map neurological and psychiatric symptoms, shedding light on how this method enhances our understanding of brain network functions. Methods We conducted a systematic search of four databases: PubMed, Scopus, and Web of Science, using the term "Lesion network mapping." Our focus was on observational studies that applied lesion network mapping in the context of neurological and psychiatric disorders. Results Following our screening process, we included 52 studies, comprising a total of 6,814 subjects, in our systematic review. These studies, which utilized functional connectivity, revealed several regions and network overlaps across various movement and psychiatric disorders. For instance, the cerebellum was found to be part of a common network for conditions such as essential tremor relief, parkinsonism, Holmes tremor, freezing of gait, cervical dystonia, infantile spasms, and tics. Additionally, the thalamus was identified as part of a common network for essential tremor relief, Holmes tremor, and executive function deficits. The dorsal attention network was significantly associated with fall risk in elderly individuals and parkinsonism. Conclusion LNM has proven to be a powerful tool in localizing a broad range of neuropsychiatric, behavioral, and movement disorders. It holds promise in identifying new treatment targets through symptom mapping. Nonetheless, the validity of these approaches should be confirmed by more comprehensive prospective studies.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- Neuroscience Research Group (NRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Aarabi
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, Padua, Italy
| |
Collapse
|
5
|
Brain disconnections refine the relationship between brain structure and function. Brain Struct Funct 2022; 227:2893-2895. [PMID: 36282422 PMCID: PMC10064792 DOI: 10.1007/s00429-022-02585-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Dulyan L, Talozzi L, Pacella V, Corbetta M, Forkel SJ, Thiebaut de Schotten M. Longitudinal prediction of motor dysfunction after stroke: a disconnectome study. Brain Struct Funct 2022; 227:3085-3098. [PMID: 36334132 PMCID: PMC9653357 DOI: 10.1007/s00429-022-02589-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 10/20/2022] [Indexed: 06/01/2023]
Abstract
Motricity is the most commonly affected ability after a stroke. While many clinical studies attempt to predict motor symptoms at different chronic time points after a stroke, longitudinal acute-to-chronic studies remain scarce. Taking advantage of recent advances in mapping brain disconnections, we predict motor outcomes in 62 patients assessed longitudinally two weeks, three months, and one year after their stroke. Results indicate that brain disconnection patterns accurately predict motor impairments. However, disconnection patterns leading to impairment differ between the three-time points and between left and right motor impairments. These results were cross-validated using resampling techniques. In sum, we demonstrated that while some neuroplasticity mechanisms exist changing the structure-function relationship, disconnection patterns prevail when predicting motor impairment at different time points after stroke.
Collapse
Affiliation(s)
- Lilit Dulyan
- Groupe d'Imagerie Neurofonctionnelle, Institut Des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France.
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France.
- Donders Centre for Brain Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| | - Lia Talozzi
- Groupe d'Imagerie Neurofonctionnelle, Institut Des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France
| | - Valentina Pacella
- Groupe d'Imagerie Neurofonctionnelle, Institut Des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France
| | - Maurizio Corbetta
- Clinica Neurologica, Department of Neuroscience, University of Padova, Padua, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padua, Italy
- Venetian Institute of Molecular Medicine, VIMM, Padua, Italy
| | - Stephanie J Forkel
- Groupe d'Imagerie Neurofonctionnelle, Institut Des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France.
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France.
- Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- Donders Centre for Brain Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
- Department of Neurosurgery, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Michel Thiebaut de Schotten
- Groupe d'Imagerie Neurofonctionnelle, Institut Des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France.
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France.
| |
Collapse
|