1
|
Meligy FY, Elgamal DA, Abdelzaher LA, Khashbah MY, El-Mokhtar MA, Sayed AA, Refaiy AM, Othman ER. Adipose tissue-derived mesenchymal stem cells reduce endometriosis cellular proliferation through their anti-inflammatory effects. Clin Exp Reprod Med 2021; 48:322-336. [PMID: 34875740 PMCID: PMC8651762 DOI: 10.5653/cerm.2021.04357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/23/2021] [Indexed: 12/29/2022] Open
Abstract
Objective Endometriosis is a chronic debilitating inflammatory condition characterized by the presence of endometrial tissues outside the uterine cavity. Pelvic soreness and infertility are the usual association. Due to the poor effectiveness of the hormone therapy and the high incidence of recurrence following surgical excision, there is no single effective option for management of endometriosis. Mesenchymal stem cells (MSCs) are multipotent stromal cells studied for their broad immunoregulatory and anti-inflammatory properties; however, their efficiency in endometriosis cases is still a controversial issue. Our study aim was to evaluate whether adipose tissue-derived MSCs (AD-MSCs) could help with endometriosis through their studied anti-inflammatory role. Methods Female Wistar rats weighting 180 to 250 g were randomly divided into two groups: group 1, endometriosis group; established by transplanting autologous uterine tissue into rats’ peritoneal cavities and group 2, stem cell treated group; treated with AD-MSCs on the 5th day after induction of endometriosis. The proliferative activity of the endometriosis lesions was evaluated through Ki67 staining. Quantitative estimation of interferon γ, tumor necrosis factor-α, interleukin (IL)-6, IL-1β, IL-10, and transforming growth factor β expression, as well as immunohistochemical detection of CD68 positive macrophages, were used to assess the inflammatory status. Results The size and proliferative activity of endometriosis lesions were significantly reduced in the stem cell treated group. Stem cells efficiently mitigated endometriosis associated chronic inflammatory reactions estimated through reduction of CD68 positive macrophages and the expression of the proinflammatory cytokines. Conclusion Stem cell therapy can be considered a novel remedy in endometriosis possibly through its anti-inflammatory and antiproliferative properties.
Collapse
Affiliation(s)
- Fatma Y Meligy
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt.,Reproductive Science Research Center, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Dalia A Elgamal
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt.,Reproductive Science Research Center, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Lobna A Abdelzaher
- Reproductive Science Research Center, Faculty of Medicine, Assiut University, Assiut, Egypt.,Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Maha Y Khashbah
- Reproductive Science Research Center, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed A El-Mokhtar
- Reproductive Science Research Center, Faculty of Medicine, Assiut University, Assiut, Egypt.,Department of Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ayat A Sayed
- Reproductive Science Research Center, Faculty of Medicine, Assiut University, Assiut, Egypt.,Department of Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Abeer M Refaiy
- Reproductive Science Research Center, Faculty of Medicine, Assiut University, Assiut, Egypt.,Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Essam R Othman
- Reproductive Science Research Center, Faculty of Medicine, Assiut University, Assiut, Egypt.,Department of Obstetrics and Gynecology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
2
|
Bissonnette EY, Lauzon-Joset JF, Debley JS, Ziegler SF. Cross-Talk Between Alveolar Macrophages and Lung Epithelial Cells is Essential to Maintain Lung Homeostasis. Front Immunol 2020; 11:583042. [PMID: 33178214 PMCID: PMC7593577 DOI: 10.3389/fimmu.2020.583042] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022] Open
Abstract
The main function of the lung is to perform gas exchange while maintaining lung homeostasis despite environmental pathogenic and non-pathogenic elements contained in inhaled air. Resident cells must keep lung homeostasis and eliminate pathogens by inducing protective immune response and silently remove innocuous particles. Which lung cell type is crucial for this function is still subject to debate, with reports favoring either alveolar macrophages (AMs) or lung epithelial cells (ECs) including airway and alveolar ECs. AMs are the main immune cells in the lung in steady-state and their function is mainly to dampen inflammatory responses. In addition, they phagocytose inhaled particles and apoptotic cells and can initiate and resolve inflammatory responses to pathogens. Although AMs release a plethora of mediators that modulate immune responses, ECs also play an essential role as they are more than just a physical barrier. They produce anti-microbial peptides and can secrete a variety of mediators that can modulate immune responses and AM functions. Furthermore, ECs can maintain AMs in a quiescent state by expressing anti-inflammatory membrane proteins such as CD200. Thus, AMs and ECs are both very important to maintain lung homeostasis and have to coordinate their action to protect the organism against infection. Thus, AMs and lung ECs communicate with each other using different mechanisms including mediators, membrane glycoproteins and their receptors, gap junction channels, and extracellular vesicles. This review will revisit characteristics and functions of AMs and lung ECs as well as different communication mechanisms these cells utilize to maintain lung immune balance and response to pathogens. A better understanding of the cross-talk between AMs and lung ECs may help develop new therapeutic strategies for lung pathogenesis.
Collapse
Affiliation(s)
- Elyse Y Bissonnette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval, Quebec City, QC, Canada
| | - Jean-François Lauzon-Joset
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval, Quebec City, QC, Canada
| | - Jason S Debley
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States
| | - Steven F Ziegler
- Department of Immunology, Benaroya Research Institute, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
3
|
McGrath-Morrow SA, Ndeh R, Collaco JM, Rothblum-Oviatt C, Wright J, O’Reilly MA, Singer BD, Lederman HM. Inflammation and transcriptional responses of peripheral blood mononuclear cells in classic ataxia telangiectasia. PLoS One 2018; 13:e0209496. [PMID: 30586396 PMCID: PMC6306200 DOI: 10.1371/journal.pone.0209496] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/06/2018] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Classic ataxia telangiectasia (A-T) is an autosomal recessive disease characterized by early onset ataxia, immune deficiency, sino-pulmonary disease, lymphoid/solid malignancies and telangiectasias. Prior studies have suggested that chronic inflammation and premature aging may contribute to the development of malignancy and pulmonary disease in people with A-T. To further examine the link between A-T and inflammation, we hypothesized that subjects with classic A-T would have greater enrichment of inflammatory pathways in peripheral blood mononuclear cells (PBMCs) compared to non A-T age-matched controls. To test this hypothesis we used RNAseq as an unsupervised approach to identify biological processes altered in people with classic A-T. METHODS PBMCs were isolated from subjects with classic A-T and compared to non-A-T age-matched healthy controls. RNAseq with differential gene expression analyses was then performed. Selected genes were validated by RT-qPCR using cohorts of subjects consisting of classic A-T, mild A-T or non-A-T controls. Subjects with mild A-T were characterized by later onset/mild neurologic features and normal/near normal immune status. RESULTS RNAseq revealed 310 differentially expressed genes (DEGs) including genes involved in inflammation, immune regulation, and cancer. Using gene set enrichment analysis, A-T subjects were found to have biological processes enriched for inflammatory and malignancy pathways. In examining a cohort of A-T subjects in which baseline serum IL8 and IL6 levels were measured previously, an association was found between higher serum IL8 levels and higher likelihood of developing malignancy and/or death in a subsequent 4-6 year period. CONCLUSION RNAseq using PBMCs from subjects with classic A-T uncovered differential expression of immune response genes and biological processes associated with inflammation, immune regulation, and cancer. Follow-up of A-T subjects over a 4-6 year period revealed an association between higher baseline serum IL8 levels and malignancy/death. These findings support a role for inflammation as a contributing factor in A-T phenotypes.
Collapse
Affiliation(s)
- Sharon A. McGrath-Morrow
- Eudowood Division of Pediatric Respiratory Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Roland Ndeh
- Eudowood Division of Pediatric Respiratory Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Joseph M. Collaco
- Eudowood Division of Pediatric Respiratory Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | | | - Jennifer Wright
- Eudowood Division of Pediatric, Allergy and Immunology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Michael A. O’Reilly
- Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, Rochester, New York, United States of America
| | - Benjamin D. Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Howard M. Lederman
- Eudowood Division of Pediatric, Allergy and Immunology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| |
Collapse
|