1
|
Chary PS, Shaikh S, Rajana N, Bhavana V, Mehra NK. Unlocking nature's arsenal: Nanotechnology for targeted delivery of venom toxins in cancer therapy. BIOMATERIALS ADVANCES 2024; 162:213903. [PMID: 38824828 DOI: 10.1016/j.bioadv.2024.213903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/24/2024] [Accepted: 05/19/2024] [Indexed: 06/04/2024]
Abstract
AIM The aim of the present review is to shed light on the nanotechnological approaches adopted to overcome the shortcomings associated with the delivery of venom peptides which possess inherent anti-cancer properties. BACKGROUND Venom peptides although have been reported to demonstrate anti-cancer effects, they suffer from several disadvantages such as in vivo instability, off-target adverse effects, limited drug loading and low bioavailability. This review presents a comprehensive compilation of different classes of nanocarriers while underscoring their advantages, disadvantages and potential to carry such peptide molecules for in vivo delivery. It also discusses various nanotechnological aspects such as methods of fabrication, analytical tools to assess these nanoparticulate formulations, modulation of nanocarrier polymer properties to enhance loading capacity, stability and improve their suitability to carry toxic peptide drugs. CONCLUSION Nanotechnological approaches bear great potential in delivering venom peptide-based molecules as anticancer agents by enhancing their bioavailability, stability, efficacy as well as offering a spatiotemporal delivery approach. However, the challenges associated with toxicity and biocompatibility of nanocarriers must be duly addressed. PERSPECTIVES The everlasting quest for new breakthroughs for safer delivery of venom peptides in human subjects is fuelled by unmet clinical needs in the current landscape of chemotherapy. In addition, exhaustive efforts are required in obtaining and purifying the venom peptides followed by designing and optimizing scale up technologies.
Collapse
Affiliation(s)
- Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Samia Shaikh
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Naveen Rajana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
2
|
Johnson H, Narayan S, Sharma AK. Altering phosphorylation in cancer through PP2A modifiers. Cancer Cell Int 2024; 24:11. [PMID: 38184584 PMCID: PMC10770906 DOI: 10.1186/s12935-023-03193-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/25/2023] [Indexed: 01/08/2024] Open
Abstract
Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase integral to the regulation of many cellular processes. Due to the deregulation of PP2A in cancer, many of these processes are turned toward promoting tumor progression. Considerable research has been undertaken to discover molecules capable of modulating PP2A activity in cancer. Because PP2A is capable of immense substrate specificity across many cellular processes, the therapeutic targeting of PP2A in cancer can be completed through either enzyme inhibitors or activators. PP2A modulators likewise tend to be effective in drug-resistant cancers and work synergistically with other known cancer therapeutics. In this review, we will discuss the patterns of PP2A deregulation in cancer, and its known downstream signaling pathways important for cancer regulation, along with many activators and inhibitors of PP2A known to inhibit cancer progression.
Collapse
Affiliation(s)
- Hannah Johnson
- Department of Pharmacology, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Satya Narayan
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL, 32610, USA
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
3
|
Synthesis and bioactivity evaluation of 5,6-epoxynorcantharidin mono-amide and imide derivatives. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02905-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Zhang S, Yang Y, Hua Y, Hu C, Zhong Y. NCTD elicits proapoptotic and antiglycolytic effects on colorectal cancer cells via modulation of Fam46c expression and inhibition of ERK1/2 signaling. Mol Med Rep 2020; 22:774-782. [PMID: 32468032 PMCID: PMC7339822 DOI: 10.3892/mmr.2020.11151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/01/2019] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer is a digestive tract malignancy and the third leading cause of cancer‑related mortality worldwide. Norcantharidin (NCTD), the demethylated form of cantharidin, has been reported to possess anticancer properties. Family‑with‑sequence‑similarity‑46c (Fam46c), a non‑canonical poly(A) polymerase, has been reported to be critical in NCTD‑mediated effects in numerous types of cancer, including hepatoma. In the current study, it was found that Fam46c expression was reduced in colorectal cancer tissues and cells. Treatment with NCTD was observed to significantly enhance apoptosis and inhibit glycolysis in colorectal cancer cells. In addition, Fam46c and cleaved caspase 3 expression levels were found to be increased in response to NCTD treatment, in contrast to tumor‑specific pyruvate kinase M2 and phosphorylated ERK expression, which was reduced. Importantly, overexpression of Fam46c exerted similar effects as NCTD treatment on the apoptosis and glycolysis of colorectal cancer cells, whereas Fam46c knockdown strongly attenuated the effect of NCTD. Moreover, epidermal growth factor, which acts as an agonist of ERK1/2 signaling, weakened the effects of NCTD on colorectal cancer cells. Taken together, the results indicated that NCTD promotes apoptosis and suppresses glycolysis in colorectal cancer cells by possibly targeting Fam46c and inhibiting ERK1/2 signaling, hence suggesting that Fam46c may act as a tumor suppressor in colorectal cancer. Thus, the present study identified a novel therapeutic target of NCTD in the clinical treatment of colorectal cancer.
Collapse
Affiliation(s)
- Shiqiang Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P.R. China
- Department of Oncology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai 200082, P.R. China
| | - Yun Yang
- Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P.R. China
- Department of Oncology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai 200082, P.R. China
| | - Yunwei Hua
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai 200082, P.R. China
| | - Chen Hu
- School of Life Sciences and Technology, Tongji University, Shanghai 200082, P.R. China
| | - Yi Zhong
- Department of Oncology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai 200082, P.R. China
| |
Collapse
|
5
|
Pan MS, Cao J, Fan YZ. Insight into norcantharidin, a small-molecule synthetic compound with potential multi-target anticancer activities. Chin Med 2020; 15:55. [PMID: 32514288 PMCID: PMC7260769 DOI: 10.1186/s13020-020-00338-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023] Open
Abstract
Norcantharidin (NCTD) is a demethylated derivative of cantharidin, which is an anticancer active ingredient of traditional Chinese medicine, and is currently used clinically as a routine anti-cancer drug in China. Clarifying the anticancer effect and molecular mechanism of NCTD is critical for its clinical application. Here, we summarized the physiological, chemical, pharmacokinetic characteristics and clinical applications of NCTD. Besides, we mainly focus on its potential multi-target anticancer activities and underlying mechanisms, and discuss the problems existing in clinical application and scientific research of NCTD, so as to provide a potential anticancer therapeutic agent for human malignant tumors.
Collapse
Affiliation(s)
- Mu-Su Pan
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Jin Cao
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Yue-Zu Fan
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| |
Collapse
|
6
|
Zhao C, Jia J, Wang X, Luo C, Wang Y. Synthesis of Norcantharidin Complex Salts. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Changkuo Zhao
- Department of Pharmacology and Key Laboratory of Basic Pharmacology of Ministry of EducationZunyi Medical University No. 6 Xue Fu West Road, Xin Pu New District Zunyi 563003 Guizhou China
| | - Jia Jia
- Department of Pharmacology and Key Laboratory of Basic Pharmacology of Ministry of EducationZunyi Medical University No. 6 Xue Fu West Road, Xin Pu New District Zunyi 563003 Guizhou China
| | - Xianheng Wang
- Department of Pharmacology and Key Laboratory of Basic Pharmacology of Ministry of EducationZunyi Medical University No. 6 Xue Fu West Road, Xin Pu New District Zunyi 563003 Guizhou China
| | - Canmin Luo
- Department of Pharmacology and Key Laboratory of Basic Pharmacology of Ministry of EducationZunyi Medical University No. 6 Xue Fu West Road, Xin Pu New District Zunyi 563003 Guizhou China
| | - Yuhe Wang
- Department of PharmacyZunyi Medical University Affiliated Hospital 149 Dalian Road Zunyi 563003 Guizhou China
| |
Collapse
|
7
|
Zhu Y, Mi Y, Wang Z, Jia X, Jin Z. Norcantharidin inhibits viability and induces cell cycle arrest and apoptosis in osteosarcoma. Oncol Lett 2018; 17:456-461. [PMID: 30655787 DOI: 10.3892/ol.2018.9615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 08/22/2018] [Indexed: 12/28/2022] Open
Abstract
Osteosarcoma is the most frequent malignant bone tumor in children and adolescents. Norcantharidin (NCTD) is a purified component from blister beetles and has been identified to exert antitumor effects in a variety of cancer types. However, the antitumor effect of NCTD in osteosarcoma remains to be elucidated. In the current study, it was first demonstrated that NCTD inhibited proliferation and induced G2/M-phase arrest and cell apoptosis in human osteosarcoma cells. Furthermore, NCTD significantly decreased the phosphorylation of Akt and the mammalian target of rapamycin in human osteosarcoma cells. These results suggest that NCTD is a promising candidate for the treatment of osteosarcoma patients in the future.
Collapse
Affiliation(s)
- Yingchun Zhu
- Department of Orthopedics, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Yunfeng Mi
- Department of Orthopedics, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Zheyang Wang
- Department of Orthopedics, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Xuewen Jia
- Department of Orthopedics, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Zhanping Jin
- Department of Orthopedics, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| |
Collapse
|
8
|
Khusro A, Aarti C, Barbabosa-Pliego A, Rivas-Cáceres RR, Cipriano-Salazar M. Venom as therapeutic weapon to combat dreadful diseases of 21 st century: A systematic review on cancer, TB, and HIV/AIDS. Microb Pathog 2018; 125:96-107. [PMID: 30195644 DOI: 10.1016/j.micpath.2018.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/26/2018] [Accepted: 09/05/2018] [Indexed: 12/13/2022]
Abstract
Cancer and infectious diseases are the preeminent causes of human morbidities and mortalities worldwide. At present, chemotherapy, radiotherapy, immunotherapy, and gene therapy are considered as predominant options in order to treat cancer. But these therapies provide inadequate consequences by affecting both the normal and tumor cells. On the other hand, tuberculosis (TB), and HIV (human immunodeficiency virus) infections are significant threats, causing over a million mortalities each year. The extensive applications of antibiotics have caused the microbes to acquire resistance to the existing antibiotics. With the emerging dilemma of drug resistant microbes, it has become imperative to identify novel therapeutic agents from natural sources as emphatic alternative approach. Over the past few decades, venoms derived from several reptiles, amphibians, and arthropods including snakes, scorpions, frogs, spiders, honey bees, wasps, beetles, caterpillars, ants, centipedes, and sponges have been identified as efficient therapeutics. Venoms constitute plethora of bioactive components, particularly peptides, enzymes, and other chemical entities, which exhibit a large array of anticancer and anti-pathogenic activities. This review highlights the panorama of bioactive components of animal venoms divulging the anticancer, anti-tubercular, and anti-HIV activities. In a nutshell, this context discloses the decisive role of animal venoms as alternative natural resources to combat these deadly diseases of 21st century, and propounding the plausible development of new therapeutic drugs in the present era.
Collapse
Affiliation(s)
- Ameer Khusro
- Research Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai, 600034, Tamil Nadu, India.
| | - Chirom Aarti
- Research Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai, 600034, Tamil Nadu, India
| | - Alberto Barbabosa-Pliego
- Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | - Raymundo Rene Rivas-Cáceres
- Universidad Autónoma de Ciudad Juárez, Ave. Plutarco Elías Calles No. 1210, FOVISSSTE Chamizal Cd, Juarez, C.P. 32310, Mexico
| | | |
Collapse
|
9
|
Mo L, Zhang X, Shi X, Wei L, Zheng D, Li H, Gao J, Li J, Hu Z. Norcantharidin enhances antitumor immunity of GM-CSF prostate cancer cells vaccine by inducing apoptosis of regulatory T cells. Cancer Sci 2018; 109:2109-2118. [PMID: 29770533 PMCID: PMC6029826 DOI: 10.1111/cas.13639] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 12/20/2022] Open
Abstract
Norcantharidin (NCTD) is a promising antitumor drug with low toxicity. It was reported to be able to regulate immunity, but the mechanism is not yet clear. Here we explored whether NCTD could enhance the antitumor immunity induced by prostate cancer cell vaccine. The results of the in vitro study showed that NCTD induced apoptosis and inhibited proliferation of regulatory T cells (Tregs). Mechanistic research showed that NCTD inhibited Akt activation and activated FOXO1 transcription, resulting in a pro‐apoptotic effect. The results of the in vivo study showed that more tumor‐infiltrating Tregs existed within peripheral blood and tumor tissue after treatment with the vaccine. Adding NCTD to vaccine treatment could decrease the number of tumor‐infiltrating Tregs and increase the number of CD4+ and CD8+ T cells. Combination therapy with NCTD and vaccine was more effective in inhibiting tumor growth than the vaccine alone. In general, this is the first report that NCTD could induce apoptosis of Tregs and enhance the vaccine‐induced immunity.
Collapse
Affiliation(s)
- Lijun Mo
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xinji Zhang
- Department of Urology, Shunde Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojun Shi
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lili Wei
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Dianpeng Zheng
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Hongwei Li
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jimin Gao
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jinlong Li
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Zhiming Hu
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Lin CL, Chen CM, Lin CL, Cheng CW, Lee CH, Hsieh YH. Norcantharidin induces mitochondrial-dependent apoptosis through Mcl-1 inhibition in human prostate cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1867-1876. [PMID: 28760656 DOI: 10.1016/j.bbamcr.2017.07.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/20/2017] [Accepted: 07/27/2017] [Indexed: 12/12/2022]
Abstract
Norcantharidin (NCTD) is the demethylated form of cantharidin that exhibits anticancer potential in many cancer cell types. Recent reports suggest that NCTD targeting ROS/AMPK and DNA replication signaling pathway could be an effective strategy for the treatment of PCa cells. However, supportive evidence is limited to the effect of NCTD that induction of apoptosis through suppression of the Mcl-1. Here, we show that NCTD induced PCa cell apoptosis and triggered caspase activation, which was associated with mitochondria dysfunction. Mechanistic investigations suggested that NCTD modulated the Akt signaling via increased nuclear translocation and interaction with the myeloid cell leukemia-1 (Mcl-1) promoter by FOXO4, resulting in an apoptotic effect. Moreover, miR-320d, which targets Mcl-1, was significantly upregulated after NCTD treatment. Overexpression of miR-320d by NCTD induced mitochondria dysfunction and apoptosis, which was notably attenuated with a miR-320d inhibitor. In vivo xenograft analysis revealed that NCTD significantly reduced tumor growth in mice with PC3 tumor xenografts. Taken together, our results provide new insights into the critical role of NCTD in suppressing Mcl-1 via epigenetic upregulation of miR-320d, resulting in PCa cell apoptosis.
Collapse
Affiliation(s)
- Chu-Liang Lin
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Min Chen
- Division of Neurosurgery, Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan; School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Liang Lin
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Chun-Wen Cheng
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Hsing Lee
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Division of Pediatric Surgery, Department of Surgery, Children's Hospital of China Medical University, Taichung. Taiwan.
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan; Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Clinical laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
11
|
Li L, Zhu L, Zhu J, Fan X, Ye X. Mechanisms of inhibiting human leukemia cell lines by serum of rats treated with compound banmao capsule. Oncol Lett 2017; 14:4092-4098. [PMID: 28989536 PMCID: PMC5620485 DOI: 10.3892/ol.2017.6688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/17/2017] [Indexed: 11/17/2022] Open
Abstract
Compound banmao capsule (CBC) is a traditional Chinese medicinal formula composed of extracts from 11 organisms. The present study investigated the mechanism of CBC on the biological behavior of human leukemia cell lines using seropharmacological methods. CBC-containing rat serum was prepared by intragastrical administration of CBC to rats. The proliferation of human leukemia HL60 and K562 cell lines was assayed by measuring cell viability with the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium method, while cell cycle distribution and the rate of apoptosis were evaluated with flow cytometry. The mRNA expression of vascular endothelial growth factor A (VEGF-A) and chemotactic and inflammatory genes in human leukemia cell lines was examined using reverse transcription quantitative-polymerase chain reaction methods. It was revealed that the proliferation of K562 and HL60 cells was significantly inhibited by the CBC-containing rat serum at 72 h. The CBC-containing serum also promoted the apoptosis of K562 and HL60 cell lines. The CBC-containing serum altered the cell cycle progression of K562 and HL60, increasing the proportion of the cells in G1 phase and decreasing the proportion of the cells in S phase. Attenuated expression of VEGF-A and a decreasing trend in the expression of chemotactic and inflammatory genes were identified following treatment with CBC-containing serum in HL60 and K562 cells. In conclusion, CBC-containing serum exerted an inhibitory effect on the growth of K562 and HL60 cells by decreasing cellular proliferation, promoting apoptosis and cell cycle arrest, and decreasing the expression of VEGF-A, and chemotactic and inflammatory genes.
Collapse
Affiliation(s)
- Li Li
- Department of Hematology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Lixia Zhu
- Department of Hematology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jingjing Zhu
- Department of Hematology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiaofen Fan
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiujin Ye
- Department of Hematology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
12
|
Hu C, Yu M, Ren Y, Li K, Maggio DM, Mei C, Ye L, Wei J, Jin J, Zhuang Z, Tong H. PP2A inhibition from LB100 therapy enhances daunorubicin cytotoxicity in secondary acute myeloid leukemia via miR-181b-1 upregulation. Sci Rep 2017; 7:2894. [PMID: 28588271 PMCID: PMC5460144 DOI: 10.1038/s41598-017-03058-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/21/2017] [Indexed: 12/11/2022] Open
Abstract
Patients with secondary acute myeloid leukemia (sAML) arising from myelodysplastic syndromes have a poor prognosis marked by an increased resistance to chemotherapy. An urgent need exists for adjuvant treatments that can enhance or replace current therapeutic options. Here we show the potential of LB100, a small-molecule protein phosphatase 2 A (PP2A) inhibitor, as a monotherapy and chemosensitizing agent for sAML using an in-vitro and in-vivo approach. We demonstrate that LB100 decreases cell viability through caspase activation and G2/M cell-cycle arrest. LB100 enhances daunorubicin (DNR) cytotoxicity resulting in decreased xenograft volumes and improved overall survival. LB100 profoundly upregulates miR-181b-1, which we show directly binds to the 3′ untranslated region of Bcl-2 mRNA leading to its translational inhibition. MiR-181b-1 ectopic overexpression further diminishes Bcl-2 expression leading to suppression of sAML cell growth, and enhancement of DNR cytotoxicity. Our research highlights the therapeutic potential of LB100, and provides new insights into the mechanism of LB100 chemosensitization.
Collapse
Affiliation(s)
- Chao Hu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Mengxia Yu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China.,Department of Hematology, Hangzhou First People's Hospital, Hangzhou, 310006, Zhejiang Province, People's Republic of China
| | - Yanling Ren
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Kongfei Li
- Department of Hematology, Yin Zhou People's Hospital, Ningbo, 315040, Zhejiang Province, People's Republic of China
| | - Dominic M Maggio
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chen Mei
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Li Ye
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Juying Wei
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China. .,Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
13
|
Zhang QY, Yue XQ, Jiang YP, Han T, Xin HL. FAM46C is critical for the anti-proliferation and pro-apoptotic effects of norcantharidin in hepatocellular carcinoma cells. Sci Rep 2017; 7:396. [PMID: 28341836 PMCID: PMC5428258 DOI: 10.1038/s41598-017-00313-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 02/20/2017] [Indexed: 02/08/2023] Open
Abstract
Norcantharidin (NCTD), a demethylated analog of cantharidin derived from Chinese traditional medicine blister beetle, has been currently used as an anticancer drug for various cancers including hepatocellular carcinoma (HCC). In this study, for a more comprehensive understanding of the targets of NCTD in HCC, next-generation RNA-Seq was utilized. We revealed that the expression of FAM46C, which has been reported as a tumor suppressor for multiple myeloma, was enhanced after NCTD treatment. Re-analysis of TCGA (The Cancer Genome Atlas) LIHC (liver hepatocellular carcinoma) dataset demonstrated that FAM46C expression was significantly lower in HCC tissues than in normal liver tissues. NCTD injection or FAM46C overexpression could mitigate diethylnitrosamine (DEN)-initiated HCC in mice. Ectopic expression of FAM46C in two HCC cell lines, SMCC-7721 and SK-Hep-1, significantly repressed cell proliferation, and increased cells population in G2/M phase and cell apoptotic rate. We also found that FAM46C overexpression caused a notable decrease in Ras expression, MEK1/2 phosphorylation and ERK1/2 phosphorylation. More importantly, FAM46C knockdown significantly weakened the biological effects of NCTD on HCC cells, which suggested NCTD exerted the anticancer functions partially through up-regulating FAM46C. In conclusion, FAM46C, a tumor suppressor for HCC, is important for the anti-proliferation and proapoptotic effects of NCTD.
Collapse
Affiliation(s)
- Qiao-Yan Zhang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Xiao-Qiang Yue
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Yi-Ping Jiang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Ting Han
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Hai-Liang Xin
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai, 200433, P. R. China.
| |
Collapse
|
14
|
Li CC, Yu FS, Fan MJ, Chen YY, Lien JC, Chou YC, Lu HF, Tang NY, Peng SF, Huang WW, Chung JG. Anticancer effects of cantharidin in A431 human skin cancer (Epidermoid carcinoma) cells in vitro and in vivo. ENVIRONMENTAL TOXICOLOGY 2017; 32:723-738. [PMID: 27113412 DOI: 10.1002/tox.22273] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 06/05/2023]
Abstract
Cantharidin (CTD), a potential anticancer agent of Traditional Chinese Medicine has cytotxic effects in different human cancer cell lines. The cytotoxic effects of CTD on A431 human skin cancer (epidermoid carcinoma) cells in vitro and in A431 cell xenograft mouse model were examined. In vitro, A431 human skin cell were treated with CTD for 24 and 48 h. Cell phase distribution, ROS production, Ca2+ release, Caspase activity and the level of apoptosis associated proteins were measured. In vivo, A431 cell xenograft mouse model were examined. CTD-induced cell morphological changes and decreased percentage of viable A431 cells via G0/G1 phase arrest and induced apoptosis. CTD-induced G0/G1 phase arrest through the reduction of protein levels of cyclin E, CDK6, and cyclin D in A431 cells. CTD-induced cell apoptosis of A431 cells also was confirm by DNA gel electrophoresis showed CTD-induced DNA fragmentation. CTD reduced the mitochondrial membrane potential and stimulated release of cytochrome c, AIF and Endo G in A431 cells. Flow cytometry demonstrated that CTD increased activity of caspase-8, -9 and -3. However, when cells were pretreated with specific caspase inhibitors activity was reduced and cell viability increased. CTD increased protein levels of death receptors such as DR4, DR5, TRAIL and levels of the active form of caspase-8, -9 and -3 in A431 cells. AIF and Endo G proteins levels were also enhanced by CTD. In vivo studies showed that CTD significantly inhibited A431 cell xenograft tumors in mice. Taken together, these in vitro and in vivo results provide insight into the mechanisms of CTD on cell growth and tumor production. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 723-738, 2017.
Collapse
Affiliation(s)
- Chi-Chuan Li
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, 404
| | - Fu-Shun Yu
- School of Dentistry, China Medical University, Taichung, Taiwan, 404
| | - Ming-Jen Fan
- Department of Biotechnology, Asia University, Taichung, Taiwan, 413
| | - Ya-Yin Chen
- Department of Chinese-Western Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan, 402
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, 402
| | - Jin-Cherng Lien
- School of Pharmacy, China Medical University, Taichung, Taiwan, 404
| | - Yu-Cheng Chou
- Division of Neurosurgical Oncology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan, 407
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, 114
| | - Hsu-Feng Lu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, 112
| | - Nou-Ying Tang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan, 402
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, 404
| | - Wen-Wen Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, 404
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, 404
- Department of Biotechnology, Asia University, Taichung, Taiwan, 413
| |
Collapse
|
15
|
Meyer-Rochow VB. Therapeutic arthropods and other, largely terrestrial, folk-medicinally important invertebrates: a comparative survey and review. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2017; 13:9. [PMID: 28173820 PMCID: PMC5296966 DOI: 10.1186/s13002-017-0136-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/11/2017] [Indexed: 05/24/2023]
Abstract
Traditional healing methods involving hundreds of insect and other invertebrate species are reviewed. Some of the uses are based on the tenet of "similia similibus" (let likes be cured by likes), but not all non-conventional health promoting practices should be dismissed as superstition or wishful thinking, for they have stood the test of time. Two questions are addressed: how can totally different organ systems in a human possibly benefit from extracts, potions, powders, secretions, ashes, etc. of a single species and how can different target organs, e.g. bronchi, lungs, the urinary bladder, kidneys, etc. apparently respond to a range of taxonomically not even closely related species? Even though therapeutically used invertebrates are generally small, they nevertheless possess organs for specific functions, e.g. digestion, gas exchange, reproduction. They have a nervous system, endocrine glands, a heart and muscle tissue and they contain a multitude of different molecules like metabolites, enzymes, hormones, neurotransmitters, secretions, etc. that have come under increased scientific scrutiny for pharmacological properties. Bearing that in mind it seems likely that a single species prepared and used in different ways could have a multitude of uses. But how, for example, can there be remedies for breathing and other problems, involving earthworms, molluscs, termites, beetles, cockroaches, bugs, and dragonflies? Since invertebrates themselves can suffer from infections and cancers, common defence reactions are likely to have evolved in all invertebrates, which is why it would be far more surprising to find that each species had evolved its own unique disease fighting system. To obtain a more comprehensive picture, however, we still need information on folk medicinal uses of insects and other invertebrates from a wider range of regions and ethnic groups, but this task is hampered by western-based medicines becoming increasingly dominant and traditional healers being unable and sometimes even unwilling to transmit their knowledge to the younger generation. However, collecting and uncontrolled uses of therapeutic invertebrates can put undue pressure on certain highly sought after species and this is something that has to be borne in mind as well.
Collapse
Affiliation(s)
- V Benno Meyer-Rochow
- Department of Genetics and Physiology, Oulu University, Oulu, SF-90140, Finland.
- Research Institute of Luminous Organisms, Hachijo, Nakanogo, Hachijojima, Tokyo, 100-1623, Japan.
| |
Collapse
|
16
|
Wang W, Deng L, Tang S, Qian Q. Synthesis of Pyrazole-linked Norcantharidin Analogues of Substituted Chromones. J Heterocycl Chem 2016. [DOI: 10.1002/jhet.1665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei Wang
- Chemistry and Chemical Engineering Institute; Shaoxing University; Shaoxing Zhejiang 312000 People's Republic of China
- Zhejiang Supor Pharmaceuticals; Shaoxing 312000 People's Republic of China
| | - Liping Deng
- Chemistry and Chemical Engineering Institute; Shaoxing University; Shaoxing Zhejiang 312000 People's Republic of China
| | - Shenlong Tang
- Chemistry and Chemical Engineering Institute; Shaoxing University; Shaoxing Zhejiang 312000 People's Republic of China
| | - Qing Qian
- Chemistry and Chemical Engineering Institute; Shaoxing University; Shaoxing Zhejiang 312000 People's Republic of China
| |
Collapse
|
17
|
Synthesis, crystal structure, spectroscopic properties and potential anti-cancerous activities of four unsaturated bis-norcantharimides. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.02.093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Yang PY, Hu DN, Kao YH, Lin IC, Chou CY, Wu YC. Norcantharidin induces apoptosis in human prostate cancer cells through both intrinsic and extrinsic pathways. Pharmacol Rep 2016; 68:874-80. [PMID: 27351942 DOI: 10.1016/j.pharep.2016.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/12/2016] [Accepted: 04/15/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Norcantharidin, a modified pure compound from blister beetles, was previously demonstrated to induce apoptosis of cancer cells. This study investigated its anti-cancer activity in prostate cancer cells and the mechanisms involved. METHODS Two human prostate cancer cell lines, 22Rv1 and Du145, were treated with norcantharidin at concentrations ranging from 3 to 30μg/ml. Cytotoxic effect of norcantharidin was determined by use of the 3-(4,5-dimethylthiazol-yl)-diphenyl tetrazoliumbromide (MTT) assay. The effects of apoptosis were evaluated by cell death assay, Caspase-3, -8, -9 activity and cytochrome c release. The apoptotic related protein expressions (Bcl-2 family and inhibitor of apoptosis proteins) were determined using western blotting. RESULTS An MTT assay revealed that norcantharidin induced cytotoxicity against both prostate cancer cells in dose- and time-dependent manners. Treatment with norcantharidin at 3μg/ml or higher significantly increased oligonucleosomal formation with concomitant appearance of PARP cleavage, implicating the induction of apoptosis. Norcantharidin intrinsically elevated cytosolic cytochrome c levels and activated caspase-3, -8, and -9. Extrinsically, it upregulated the expression of not only the death receptors Fas and DR5 in 22Rv1 cells, but also of RIP and TRADD adaptor proteins in Du145 cells. Mechanistically, norcantharidin increased ratios of pro-/anti-apoptotic proteins and decreased expression of IAP family member proteins, including cIAP1 and survivin, regardless of the distinct status of androgen receptor expression in both cells. CONCLUSIONS Norcantharidin exhibited cytotoxicity against 22Rv1 and Du145 prostate cancer cells by inducing both intrinsic and extrinsic apoptotic pathways and could thus potentially be a remedy for prostate cancer.
Collapse
Affiliation(s)
- Pei-Yu Yang
- Department of Medical Research, Show Chwan Memorial Hospital, Changhua, Taiwan, ROC.
| | - Dan-Ning Hu
- Tissue Culture Center, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA.
| | - Ying-Hsien Kao
- Department of Medical Research, E-DA Hospital, Kaohsiung, Taiwan, ROC.
| | - I-Ching Lin
- Department of Family Medicine, Changhua Christian Hospital, Changhua, Taiwan, ROC; School of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC; School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC.
| | - Chih-Yuan Chou
- Division of Urology, Department of Surgery, Show-Chwan Memorial Hospital, Changhua, Taiwan, ROC.
| | - Yang-Chang Wu
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan, ROC.
| |
Collapse
|
19
|
Slator C, Barron N, Howe O, Kellett A. [Cu(o-phthalate)(phenanthroline)] Exhibits Unique Superoxide-Mediated NCI-60 Chemotherapeutic Action through Genomic DNA Damage and Mitochondrial Dysfunction. ACS Chem Biol 2016; 11:159-71. [PMID: 26488846 DOI: 10.1021/acschembio.5b00513] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The in cellulo catalytic production of reactive oxygen species (ROS) by copper(II) and iron(II) complexes is now recognized as a major mechanistic model in the design of effective cytotoxins of human cancer. The developmental complex, [Cu(o-phthalate)(1,10-phenanthroline)] (Cu-Ph), was recently reported as an intracellular ROS-active cytotoxic agent that induces double strand breaks in the genome of human cancer cells. In this work, we report the broad-spectrum action of Cu-Ph within the National Cancer Institute's (NCI) Developmental Therapeutics Program (DTP), 60 human cancer cell line screen. The activity profile is compared to established clinical agents-via the COMPARE algorithm-and reveals a novel mode of action to existing metal-based therapeutics. In this study, we identify the mechanistic activity of Cu-Ph through a series of molecular biological studies that are compared directly to the clinical DNA intercalator and topoisomerase II poison doxorubicin. The presence of ROS-specific scavengers was employed for in vitro and intracellular evaluation of prevailing radical species responsible for DNA oxidation with superoxide identified as playing a critical role in this mechanism. The ROS targeting properties of Cu-Ph on mitochondrial membrane potential were investigated, which showed that it had comparable activity to the uncoupling ionophore, carbonyl cyanide m-chlorophenyl hydrazine. The induction and origins of apoptotic activation were probed through detection of Annexin V and the activation of initiator (8,9) and executioner caspases (3/7) and were structurally visualized using confocal microscopy. Results here confirm a unique radical-induced mechanistic profile with intracellular hallmarks of damage to both genomic DNA and mitochondria.
Collapse
Affiliation(s)
- Creina Slator
- School
of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Niall Barron
- School
of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Orla Howe
- School of Biological Sciences & Focas Research Institute, Dublin Institute of Technology, Camden Row, Dublin 8, Ireland
| | - Andrew Kellett
- School
of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
20
|
N-Farnesyloxy-norcantharimide inhibits progression of human leukemic Jurkat T cells through regulation of mitogen-activated protein kinase and interleukin-2 production. Anticancer Drugs 2015; 26:1034-42. [PMID: 26288134 PMCID: PMC4588604 DOI: 10.1097/cad.0000000000000284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study investigated the anticancer effects of N-farnesyloxy-norcantharimide (NOC15), a newly synthesized norcantharidin (NCTD) analogue, on human leukemic Jurkat T cells and the signaling pathway underlying its effects. We found that the half maximal inhibitory concentration (IC50) of NOC15 on Jurkat T cells is 1.4 μmol/l, which is 11.14-fold (=15.6÷1.4) smaller than the 15.6 μmol/l of NCTD on Jurkat T cells, whereas the IC50 of NOC15 on human normal lymphoblast (HNL) is 207.9 μmol/l, which is 8.17-fold (=1698.0÷207.8) smaller than the 1698.0 μmol/l of NCTD on HNL cells. These results indicated that NOC15 exerts a higher anticancer effect on Jurkat T cells and has higher toxicity toward HNL cells than NCTD. Thus, NOC15 is 1.36-fold (=11.14÷8.17) beneficial as an anticancer agent toward Jurkat T cells compared with NCTD. Moreover, NOC15 can increase the percentage of cells in the sub-G1 phase and reduce the cell viability of Jurkat T cells, stimulate p38 and extracellular signal-regulated protein kinase 1/2 (ERK1/2) of mitogen-activated protein kinases (MAPKs) signaling pathway, and inhibit calcineurin expression and interleukin-2 (IL-2) production. However, NOC15 exerted no effects on the Jun-N-terminal kinase 1/2 (JNK1/2) signaling pathway, the production of IL-8, and tumor necrosis factor-α. We conclude that the anticancer activity of the newly synthesized NOC15 is 1.36-fold beneficial than NCTD as an anticancer agent and that NOC15 can increase the percentage of cells in the sub-G1 phase through the stimulation of p38 and ERK1/2 of the MAPK signaling pathway and the inhibition of calcineurin expression and IL-2 production. The NOC15 may have the potential of being developed into an anticancer agent in the future.
Collapse
|
21
|
Khabour OF, Enaya FM, Alzoubi K, Al-Azzam SI. Evaluation of DNA damage induced by norcantharidin in human cultured lymphocytes. Drug Chem Toxicol 2015; 39:303-6. [PMID: 26599593 DOI: 10.3109/01480545.2015.1113988] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Norcantharidin (NCTD) is currently used in the treatment of several cancers such as leukemia, melanoma and hepatoma. The mechanism of action of NCTD is suggested to involve induction of apoptosis of cancer cells via production of reactive oxygen species. In this study, the genotoxic effect of different concentrations of NCTD (1, 10 and 20 μm) in human lymphocytes was investigated using sister chromatid exchanges (SCEs) and chromosomal aberrations (CAs) assays. The results revealed that NCTD significantly increased the rate of SCEs (p < 0.05) in a dose-dependent manner. In addition, NCTD significantly increased the number of high-frequency cells (SCEs ≥ 8, p < 0.05). However, NCTD did not have any significant effect on the rate of CAs (p > 0.05). In addition, no significant differences were detected in the mitotic index or proliferative index at examined doses (up to 20 μm). In conclusion, NCTD is genotoxic to human cultured lymphocytes as measured by SCE assay.
Collapse
Affiliation(s)
- Omar F Khabour
- a Department of Medical Laboratory Sciences , Jordan University of Science and Technology , Irbid , Jordan .,b Biology Department , Faculty of Science, Taibah University , Almedina , Saudi Arabia , and
| | - Fatima M Enaya
- a Department of Medical Laboratory Sciences , Jordan University of Science and Technology , Irbid , Jordan
| | - Karem Alzoubi
- c Department of Clinical Pharmacy , Jordan University of Science and Technology , Irbid , Jordan
| | - Sayer I Al-Azzam
- c Department of Clinical Pharmacy , Jordan University of Science and Technology , Irbid , Jordan
| |
Collapse
|
22
|
A potential small-molecule synthetic antilymphangiogenic agent norcantharidin inhibits tumor growth and lymphangiogenesis of human colonic adenocarcinomas through blocking VEGF-A,-C,-D/VEGFR-2,-3 "multi-points priming" mechanisms in vitro and in vivo. BMC Cancer 2015; 15:527. [PMID: 26187792 PMCID: PMC4506614 DOI: 10.1186/s12885-015-1521-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/26/2015] [Indexed: 12/13/2022] Open
Abstract
Background Tumor lymphangiogenesis plays an important role in promoting growth and metastasis of tumors, but no antilymphangiogenic agent is used clinically. Based on the effect of norcantharidin (NCTD) on lymphangiogenesis of human lymphatic endothelial cells (LECs), we firstly investigated the antilymphangiogenic activity of NCTD as a tumor lymphangiogenic inhibitor for human colonic adenocarcinomas (HCACs). Methods In vivo and in vitro experiments to determine the effects of NCTD on tumor growth and lymphangiogenesis of the in-situ colonic xenografts in nude mice, and lymphatic tube formation of the three-dimensional (3-D) of the co-culture system of HCAC HT-29 cells and LECs were done. Proliferation, apoptosis, migration, invasion, Ki-67, Bcl-2 and cell cycle of LECs and the co-culture system in vitro were respectively determined. Streparidin-peroxidase staining, SABC, western blotting and RT-PCR were respectively used to examine the expression of LYVE-1, D2-40, CK20 (including their LMVD), and VEGF-A, VEGF-C, VEGF-D, VEGFR-2 and VEGFR-3 in vitro and in vivo. Results NCTD inhibited tumor growth and lymphangiogenesis of the in-situ colonic xenografts in vivo, and these observations were confirmed by facts that lymphatic tube formation, proliferation, apoptosis, migration, invasion, S-phase cell cycle, and Ki-67 and Bcl-2 expression in vitro, and LYVE-1, D2-40, CK20 expression and their LMVD in vitro and in vivo were inhibited and affected. Furthermore, the expression of VEGF-A, VEGF-C, VEGF-D, VEGFR-2 and VEGFR-3 at protein/mRNA levels in the process of lymphatic tube formation in vitro and tumor lymphangiogenesis in vivo was downregulated; NCTD in combination with mF4-31C1 or Sorafenib enhanced these effects. Conclusions NCTD inhibits tumor growth and lymphangiogenesis of HCACs through “multi-points priming” mechanisms i.e. affecting related malignant phenotypes, inhibiting Ki-67 and Bcl-2 expression, inducing S-phase cell cycle arrest, and directly or indirectly downregulating VEGF-A,-C,-D/VEGFR-2,-3 signaling pathways. The present finding strongly suggests that NCTD could serve as a potential antilymphangiogenic agent for tumor lymphangiogenesis and is of importance to explore NCTD is used for antitumor metastatic comprehensive therapy for HCACs.
Collapse
|
23
|
Zhang C, Hong CS, Hu X, Yang C, Wang H, Zhu D, Moon S, Dmitriev P, Lu J, Chiang J, Zhuang Z, Zhou Y. Inhibition of protein phosphatase 2A with the small molecule LB100 overcomes cell cycle arrest in osteosarcoma after cisplatin treatment. Cell Cycle 2015; 14:2100-8. [PMID: 25942376 DOI: 10.1080/15384101.2015.1041693] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor and affects a significant portion of pediatric oncology patients. Although surgery and adjuvant chemotherapy confer significant survival benefits, many patients go on to develop metastatic disease, particularly to the lungs, secondary to development of drug resistance. Inhibition of protein phosphatase 2A with the small molecule, LB100, has demonstrated potent chemo- and radio-sensitizing properties in numerous pre-clinical tumor models. In this study, we showed that LB100 overcame DNA repair mechanisms in osteosarcoma cells treated with cisplatin, in vitro, and recapitulated these findings in an in vivo xenograft model. Notably, the addition of LB100 to cisplatin prevented development of pulmonary metastases in the majority of treated animals. Our data indicated the mechanism of chemo-sensitization by LB100 involved abrogation of the ATM/ATR-activated DNA damage response, leading to hyperphosphorylation of Chk proteins and persistent cyclin activity. In addition, LB100 exposure suppressed Akt signaling, leading to Mdm2-mediated proteasomal degradation of functional p53. Taken together, LB100 prevented repair of cisplatin-induced DNA damage, resulting in mitotic catastrophe and cell death.
Collapse
Affiliation(s)
- Chao Zhang
- a Department of Orthopedics; Xinqiao Hospital; Third Military Medical University ; Chongqing , China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hong CS, Ho W, Zhang C, Yang C, Elder JB, Zhuang Z. LB100, a small molecule inhibitor of PP2A with potent chemo- and radio-sensitizing potential. Cancer Biol Ther 2015; 16:821-33. [PMID: 25897893 DOI: 10.1080/15384047.2015.1040961] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase that plays a significant role in mitotic progression and cellular responses to DNA damage. While traditionally viewed as a tumor suppressor, inhibition of PP2A has recently come to attention as a novel therapeutic means of driving senescent cancer cells into mitosis and promoting cell death via mitotic catastrophe. These findings have been corroborated in numerous studies utilizing naturally produced compounds that selectively inhibit PP2A. To overcome the known human toxicities associated with these compounds, a water-soluble small molecule inhibitor, LB100, was recently developed to competitively inhibit the PP2A protein. This review summarizes the pre-clinical studies to date that have demonstrated the anti-cancer activity of LB100 via its chemo- and radio-sensitizing properties. These studies demonstrate the tremendous therapeutic potential of LB100 in a variety of cancer types. The results of an ongoing phase 1 trial are eagerly anticipated.
Collapse
Key Words
- ABC, ATP-binding cassette.
- APC, adenomatous polyposis coli
- ARPP19, cyclic AMP-regulated phosphoprotein 19
- ATM, ataxia-telangiectasia mutated
- CIP2A, cancerous inhibitor of PP2A
- CNTF, ciliary neurotrophic factor
- DISC, death-inducing signaling complex
- DVL, dishevelled
- ENSA, α-endosulphine
- GBM, glioblastoma
- GFAP, glial fibrillary acidic protein
- HCC, hepatocellular carcinoma
- HDACs, histone deacetylase complexes
- HIF-1a, hypoxia-inducible factor-1a
- HRR, homologous recombination repair
- MDM2, mouse double minute 2 homolog
- MRI, magnetic resonance imaging
- NPC, nasopharyngeal carcinoma
- PP2A, protein phosphatase 2A
- Plk1, polo-like kinase 1
- TCTP, translationally-controlled tumor protein
- TMZ, temozolomide
- TRAIL, TNF-related apoptosis-inducing ligand
- VEGF, vascular endothelial growth factor
- cell cycle
- chemosensitization
- mitotic catastrophe
- protein phosphatase 2A
- radiosensitizationreview
- small molecule inhibitor
Collapse
Affiliation(s)
- Christopher S Hong
- a The Ohio State University Wexner Medical Center ; Department of Neurological Surgery ; Columbus , OH USA
| | | | | | | | | | | |
Collapse
|
25
|
Norcantharidin inhibits Wnt signal pathway via promoter demethylation of WIF-1 in human non-small cell lung cancer. Med Oncol 2015; 32:145. [PMID: 25814287 DOI: 10.1007/s12032-015-0592-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 12/26/2022]
Abstract
Wingless-type (Wnt) family of secreted glycoproteins is a group of signal molecules implicated in oncogenesis. Abnormal activation of Wnt signal pathway is associated with a variety of human cancers, including non-small cell lung cancer (NSCLC). Wnt antagonists, such as the secreted frizzled-related protein (SFRP) family, Wnt inhibitory factor-1 (WIF-1) and cerberus, inhibit Wnt signal pathway by directly binding to Wnt molecules. Norcantharidin (NCTD) is known to possess anticancer activity but less nephrotoxicity than cantharidin. In this study, we found that NCTD inhibited cell proliferation, induced apoptosis, arrested cell cycle and suppressed cell invasion/migration in vitro. Additionally, Wnt signal pathway transcription was also suppressed. NCTD treatment blocked cytoplasmic translocation of beta-catenin into the nucleus. Alterations of apoptosis-related proteins, such as Bax, cleaved caspase-3 (pro-apoptotic) and Bcl-2 (anti-apoptotic), had been detected. Furthermore, the expression levels of WIF-1 and SFRP1 were significantly increased in NCTD-treated groups compared with negative control (NC) groups. Abnormal methylation was observed in NC groups, while NCTD treatment promoted WIF-1 demethylation. The present study revealed that NCTD activated WIF-1 via promoter demethylation, inhibiting the canonical Wnt signal pathway in NSCLC, which may present a new therapeutic target in vivo.
Collapse
|
26
|
N-Farnesyloxy-norcantharimide and N-farnesyl-norcantharimide inhibit the progression of leukemia and increase survival days in a syngeneic mouse leukemia model. Anticancer Drugs 2015; 26:508-17. [PMID: 25588161 DOI: 10.1097/cad.0000000000000210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This study investigated the anticancer effects of two newly synthesized norcantharidin analogs, N-farnesyloxy-norcantharimide (NOC15) and N-farnesyl-norcantharimide (NC15), in L1210 cells and in a syngeneic mouse leukemia model (L1210 cell line plus DBA/2 mice). We found that the half-maximal inhibitory concentration (IC50) of NOC15 and NC15 on L1210 cells is 1.56 and 2.62 μmol/l, respectively, and that the IC50 of NOC15 and NC15 on human normal lymphoblast is 207.9 and 2569 μmol/l, respectively. In cell cycle analysis, NOC15 could increase the sub-G1 phase, whereas NC15 could induce G2/M arrest. Annexin-V apoptosis assay indicated that both NOC15 and NC15 could induce cell apoptosis. In the syngeneic mouse leukemia model, both NOC15 and NC15 could increase the survival days of mice and decrease the tumor weight. Moreover, both NOC15 and NC15 could retard the increase in peripheral blood leukocyte count due to L1210 cells. In the subcutaneous (s.c.) group, the treatment with NOC15 could retard the decrease in the weight of the liver and the spleen caused by L1210 cells, whereas the treatment with NC15 could retard the decrease in the weight of the spleen caused by L1210 cells. We conclude that the new compounds NOC15 and NC15 have strong anticancer activity and low toxicity both in vitro and in vivo. NOC15 and NC15 may have the potential to be developed into anticancer agents in the future.
Collapse
|
27
|
Firempong CK, Cao X, Tong S, Yu J, Xu X. Prospects for multitarget lipid-raft-coated silica beads: a remarkable online biomaterial for discovering multitarget antitumor lead compounds. RSC Adv 2015. [DOI: 10.1039/c5ra08322b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Application of lipid raft biomaterial with multiple cancer-related receptors for screening novel multitarget antitumour lead compounds.
Collapse
Affiliation(s)
- Caleb Kesse Firempong
- Department of Pharmaceutics
- School of Pharmacy
- Centre for Nano Drug/Gene Delivery and Tissue Engineering
- Jiangsu University
- Zhenjiang
| | - Xia Cao
- Department of Pharmaceutics
- School of Pharmacy
- Centre for Nano Drug/Gene Delivery and Tissue Engineering
- Jiangsu University
- Zhenjiang
| | - Shanshan Tong
- Department of Pharmaceutics
- School of Pharmacy
- Centre for Nano Drug/Gene Delivery and Tissue Engineering
- Jiangsu University
- Zhenjiang
| | - Jiangnan Yu
- Department of Pharmaceutics
- School of Pharmacy
- Centre for Nano Drug/Gene Delivery and Tissue Engineering
- Jiangsu University
- Zhenjiang
| | - Ximing Xu
- Department of Pharmaceutics
- School of Pharmacy
- Centre for Nano Drug/Gene Delivery and Tissue Engineering
- Jiangsu University
- Zhenjiang
| |
Collapse
|
28
|
Xie X, Wu MY, Shou LM, Chen LP, Gong FR, Chen K, Li DM, Duan WM, Xie YF, Mao YX, Li W, Tao M. Tamoxifen enhances the anticancer effect of cantharidin and norcantharidin in pancreatic cancer cell lines through inhibition of the protein kinase C signaling pathway. Oncol Lett 2014; 9:837-844. [PMID: 25624908 PMCID: PMC4301527 DOI: 10.3892/ol.2014.2711] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 08/22/2014] [Indexed: 11/22/2022] Open
Abstract
Cantharidin is an active constituent of mylabris, a traditional Chinese therapeutic agent. Cantharidin is a potent and selective inhibitor of protein phosphatase 2A (PP2A). Cantharidin has been previously reported to efficiently repress the growth of pancreatic cancer cells. However, excessively activated protein kinase C (PKC) has been shown to improve cell survival following the adminstration of cantharidin. Tamoxifen is widely used in the treatment of estrogen receptor-positive breast cancer. In addition, an increasing number of studies have found that tamoxifen selectively inhibits PKC and represses growth in estrogen receptor-negative cancer cells. Administration of a combination of PKC inhibitor and PP2A inhibitors has been demonstrated to exert a synergistic anticancer effect. The proliferation of pancreatic cancer cells was analyzed by 3-(4,5-dimethyltiazol-2-yl]2, 5-diphenyltetrazo-lium bromide assay. The expression levels of ERα and ERβ in various pancreatic cancer cell lines were determined by reverse transcription polymerase chain reaction. In addition, the protein levels of PKCα and phosphorylated PKCα in pancreatic cell lines were analyzed by western blot analysis. In the present study, tamoxifen was found to exert a cytotoxic effect against pancreatic cancer cells independent of the hormone receptor status. Tamoxifen repressed the phosphorylation of PKC, and amplified the anticancer effect induced by cantharidin and norcantharidin. The findings reveal a novel potential strategy against pancreatic cancer using co-treatment with tamoxifen plus cantharidin or cantharidin derivatives.
Collapse
Affiliation(s)
- Xin Xie
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China ; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221006, P.R. China
| | - Meng-Yao Wu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Liu-Mei Shou
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Long-Pei Chen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Fei-Ran Gong
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China ; Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China ; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Kai Chen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Dao-Ming Li
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Wei-Ming Duan
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yu-Feng Xie
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yi-Xiang Mao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Min Tao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China ; Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
29
|
Li M, Xu X, Lu F, Guo S. Primaryin vitroandin vivoevaluation of norcantharidin-chitosan/poly (vinyl alcohol) for cancer treatment. Drug Deliv 2013; 21:293-301. [DOI: 10.3109/10717544.2013.840692] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
30
|
Shou LM, Zhang QY, Li W, Xie X, Chen K, Lian L, Li ZY, Gong FR, Dai KS, Mao YX, Tao M. Cantharidin and norcantharidin inhibit the ability of MCF-7 cells to adhere to platelets via protein kinase C pathway-dependent downregulation of α2 integrin. Oncol Rep 2013; 30:1059-66. [PMID: 23835679 PMCID: PMC3783059 DOI: 10.3892/or.2013.2601] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 06/28/2013] [Indexed: 01/14/2023] Open
Abstract
Cancer metastasis is a highly coordinated and dynamic multistep process in which cancer cells interact with a variety of host cells. Morphological studies have documented the association of circulating tumor cells with host platelets, where a surface coating of platelets protects tumor cells from mechanical trauma and the immune system. Cantharidin is an active constituent of mylabris, a traditional Chinese medicine. Cantharidin and norcantharidin are potent protein phosphatase 2A (PP2A) inhibitors that exhibit in vitro and in vivo antitumor activity against several types of cancer, including breast cancer. We investigated whether cantharidin and norcantharidin could repress the ability of MCF-7 breast cancer cells to adhere to platelets. Using MTT, clone formation, apoptosis, adhesion and wound-healing assays, we found that cantharidin and norcantharidin induced apoptosis and repressed MCF-7 cell growth, adhesion and migration. Moreover, we developed a flow cytometry-based analysis of tumor cell adhesion to platelets. We proved that cantharidin and norcantharidin repressed MCF-7 cell adhesion to platelets through downregulation of α2 integrin, an adhesion molecule present on the surface of cancer cells. The repression of α2 integrin expression was found to be executed through the protein kinase C pathway, the activation of which could have been due to PP2A inhibition.
Collapse
Affiliation(s)
- Liu-Mei Shou
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lee YC, Lee LM, Yang CH, Lin AMY, Huang YC, Hsu CC, Chen MS, Chi CW, Yin PH, Kuo CD, Liao JF, Lee HC. Norcantharidin suppresses cell growth and migration with enhanced anticancer activity of gefitinib and cisplatin in human non-small cell lung cancer cells. Oncol Rep 2013; 29:237-243. [PMID: 23128522 DOI: 10.3892/or.2012.2118] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 09/07/2012] [Indexed: 11/06/2022] Open
Abstract
Norcantharidin is the demethylated analog of cantharidin isolated from blister beetles (Mylabris phalerata Pall.). In this study, we evaluated whether norcantharidin exhibits anticancer effects against the human non-small cell lung cancer cell lines A549 (epidermal growth factor receptor (EGFR) mutation-negative) and PC9 (EGFR mutation-positive). Our results revealed that norcantharidin dose-dependently retards cell growth, arrests cell cycle at G2/M phase, reduces cell migration, and even induces apoptosis at the concentration of 100 µM. Moreover, we found that norcantharidin enhances the anticancer effects of gefitinib and cisplatin. Norcantharidin exhibited similar potency of anticancer effects against the two cell lines with different EGFR mutation status and did not affect EGF-induced EGFR phosphorylation, suggesting that the EGFR signaling may not be the target of norcantharidin. In conclusion, our results suggest that norcantharidin exhibits anticancer effects against non-small cell lung cancer cells in vitro and support its potential as a chemotherapeutic agent for treating non-small cell lung cancer.
Collapse
Affiliation(s)
- Ya-Chun Lee
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yeh CH, Yang YY, Huang YF, Chow KC, Chen MF. Induction of apoptosis in human Hep3B hepatoma cells by norcantharidin through a p53 independent pathway via TRAIL/DR5 signal transduction. Chin J Integr Med 2012; 18:676-82. [DOI: 10.1007/s11655-012-1206-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Indexed: 11/30/2022]
|
33
|
Liu D, Shi P, Yin X, Chen Z, Zhang X. Effect of norcantharidin on the human breast cancer Bcap-37 cells. Connect Tissue Res 2012; 53:508-12. [PMID: 22606958 DOI: 10.3109/03008207.2012.694928] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Norcantharidin (NCTD), a chemically modified form of cantharidin, is a potential anticancer drug. In this study, the effects of NCTD on the cellular viability, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and DNA damage in the human breast cancer cell line Bcap-37 were investigated with confocal and fluorescence microscopy. The cell cycle was further analyzed using the CellQuest software of a Becton-Dickinson FACS flow cytometer. The results indicated that the cellular viability was decreased with the growing concentrations of NCTD and time exposure. Moreover, the fluorescence intensity of ROS was increased, whereas the MMP was decreased in Bcap-37 cells with the growing concentrations of NCTD. NCTD induced a dose-dependent DNA damage and reduced the G1 peak in Bcap-37 cells. The G2/M peak of Bcap-37 was also decreased by the higher concentration of NCTD.
Collapse
Affiliation(s)
- Dongwu Liu
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | | | | | | | | |
Collapse
|
34
|
Yu CC, Ko FY, Yu CS, Lin CC, Huang YP, Yang JS, Lin JP, Chung JG. Norcantharidin triggers cell death and DNA damage through S-phase arrest and ROS-modulated apoptotic pathways in TSGH 8301 human urinary bladder carcinoma cells. Int J Oncol 2012; 41:1050-60. [PMID: 22684608 DOI: 10.3892/ijo.2012.1511] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 04/27/2012] [Indexed: 11/05/2022] Open
Abstract
Norcantharidin (NCTD) is one of the ingredients of blister beetles which have been used in Chinese medicine for a long time. The purpose of this study was to investigate the inhibitory effects of NCTD on TSGH 8301 human bladder cancer cells in vitro and the mechanisms through which it exerts its anticancer action. Cell morphological analysis was performed using a phase-contrast microscope. The percentage of viable cells, cell cycle distribution, sub-G1 phase (apoptosis), reactive oxygen species (ROS) production and the levels of mitochondrial membrane potential (∆Ψ(m)) were analyzed by flow cytometry. DNA condensation and damage were determined by DAPI staining and comet assay. Apoptosis-associated protein level changes in TSGH 8301 cells following exposure to NCTD were examined, measured and determined by western blotting. Analysis of protein translocation was conducted by immunostaining and confocal laser microscopy. The results indicated that NCTD promoted cytotoxic effects, including the induction of cell morphological changes and the decrease in the percentage of viability, the induction of S-phase arrest as well as sub-G1 phase (apoptosis) in TSGH 8301 cells. The activities of caspase-3 and -9 were upregulated following NCTD treatment. Western blotting indicated that NCTD upregulated Fas, FasL, Bax, Bid, cytochrome c, caspase-3, -8 and -9 that led to the induction of apoptosis through the Fas extrinsic pathway. Furthermore, NCTD induced AIF and Endo G that were released from mitochondria to induce apoptosis through the mitochondrial-independent pathway. NCTD upregulated ROS production, downregulated ∆Ψ(m) and ERK, JNK, p38 protein kinases in TSGH 8301 cells. These findings suggest that NCTD triggers apoptosis in TSGH 8301 human bladder cancer cells via the Fas receptor, activation of the caspse-8, -9 and -3, mitochondrial-dependent and -independent pathways. NCTD may be useful for developing new therapeutic regimens for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Chien-Chih Yu
- School of Pharmacy, China Medical University, Taichung 404, Taiwan, R.O.C
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Synthesis and biological evaluation of novel benzothiazole-2-thiol derivatives as potential anticancer agents. Molecules 2012; 17:3933-44. [PMID: 22466853 PMCID: PMC6269011 DOI: 10.3390/molecules17043933] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 03/20/2012] [Accepted: 03/26/2012] [Indexed: 02/05/2023] Open
Abstract
A series of novel benzothiazole-2-thiol derivatives were synthesized and their structures determined by 1H-NMR, 13C-NMR and HRMS (ESI). The effects of all compounds on a panel of different types of human cancer cell lines were investigated. Among them, pyridinyl-2-amine linked benzothiazole-2-thiol compounds 7d, 7e, 7f and 7i exhibited potent and broad-spectrum inhibitory activities. Compound 7e displayed the most potent anticancer activity on SKRB-3 (IC50 = 1.2 nM), SW620 (IC50 = 4.3 nM), A549 (IC50 = 44 nM) and HepG2 (IC50 = 48 nM) and was found to induce apoptosis in HepG2 cancer cells.
Collapse
|
36
|
Man S, Gao W, Wei C, Liu C. Anticancer drugs from traditional toxic Chinese medicines. Phytother Res 2012; 26:1449-65. [PMID: 22389143 DOI: 10.1002/ptr.4609] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/12/2011] [Accepted: 12/19/2011] [Indexed: 02/06/2023]
Abstract
Many anticancer drugs are obtained from natural sources. Nature produces a variety of toxic compounds, which are often used as anticancer drugs. Up to now, there are at least 120 species of poisonous botanicals, animals and minerals, of which more than half have been found to possess significant anticancer properties. In spite of their clinical toxicity, they exhibit pharmacological effects and have been used as important traditional Chinese medicines for the different stages of cancer. The article reviews many structures such as alkaloids of Camptotheca acuminata, Catharanthus roseus and Cephalotaxus fortunei, lignans of Dysosma versipellis and Podophyllum emodi, ketones of Garcinia hanburyi, terpenoids of Mylabris and Ginkgo biloba, diterpenoids of Tripterygium wilfordii, Euphorbia fischeriana, Euphorbia lathyris, Euphorbia kansui, Daphne genkwa, Pseudolarix kaempferi and Brucea javanica, triterpenoids of Melia toosendan, steroids of Periploca sepium, Paris polyphylla and Venenum Bufonis, and arsenic compounds including Arsenicum and Realgar. By comparing their related phytochemistry, toxic effects and the recent advances in understanding the mechanisms of action, this review puts forward some ideals and examples about how to increase antitumour activity and/or reduce the side effects experienced with Chinese medicine.
Collapse
Affiliation(s)
- Shuli Man
- Key Laboratory of Industrial Fermentation Microbiology, (Tianjin University of Science and Technology), Ministry of Education, Tianjin, 300457, PR China
| | | | | | | |
Collapse
|
37
|
Yeh CB, Hsieh MJ, Hsieh YH, Chien MH, Chiou HL, Yang SF. Antimetastatic effects of norcantharidin on hepatocellular carcinoma by transcriptional inhibition of MMP-9 through modulation of NF-kB activity. PLoS One 2012; 7:e31055. [PMID: 22363545 PMCID: PMC3280344 DOI: 10.1371/journal.pone.0031055] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 12/31/2011] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The rate of morbidity and mortality of hepatocellular carcinoma (HCC) in Taiwan has not lessened because of difficulty in treating tumor metastasis. Norcantharidin (NCTD) is currently used as an anticancer drug for hepatoma, breast cancer, and colorectal adenocarcinoma. NCTD possesses various biological anticancer activities, including apoptosis. However, detailed effects and molecular mechanisms of NCTD on metastasis are unclear. Thus, HCC cells were subjected to treatment with NCTD and then analyzed to determine the effects of NCTD on cell metastasis. METHODOLOGY/PRINCIPAL FINDINGS Modified Boyden chamber assays revealed that NCTD treatment inhibited cell migration and invasion capacities of HCC cells substantially. Results of zymography and western blotting showed that activities and protein levels of matrix metalloproteinase-9 (MMP-9) and urokinase plasminogen activator (u-PA) were inhibited by NCTD. Western blot analysis showed that NCTD inhibits phosphorylation of ERK1/2. Testing of mRNA level, quantitative real-time PCR, and promoter assays evaluated the inhibitory effects of NCTD on MMP-9 and u-PA expression in HCC cells. The chromatin immunoprecipitation (ChIP) assay for analyzing the genomic DNA sequences bound to these proteins was reactive to the transcription protein nuclear factor (NF)-kappaB, which was inhibited by NCTD. The expression of NF-kappa B was measured by western blot analysis, which revealed decreased nuclear-factor DNA-binding activity after NCTD treatment. CONCLUSIONS NCTD inhibited MMP-9 and u-PA expression through the phosphorylation of ERK1/2 and NF-kappaB signaling pathway which serves as a powerful chemopreventive agent in HCC cell metastasis.
Collapse
Affiliation(s)
- Chao-Bin Yeh
- Department of Emergency Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Ju Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Hsien Chien
- Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hui-Ling Chiou
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- * E-mail: (HLC); (SFY)
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail: (HLC); (SFY)
| |
Collapse
|
38
|
Lu K, Cao M, Mao W, Sun X, Tang J, Shen Y, Sui M. Targeted acid-labile conjugates of norcantharidin for cancer chemotherapy. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm33069e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Novel pyrazolo[3,4-d]pyrimidine derivatives as potential antitumor agents: exploratory synthesis, preliminary structure-activity relationships, and in vitro biological evaluation. Molecules 2011; 16:10685-94. [PMID: 22186955 PMCID: PMC6264756 DOI: 10.3390/molecules161210685] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 12/02/2011] [Accepted: 12/13/2011] [Indexed: 02/05/2023] Open
Abstract
In a cell-based screen of novel anticancer agents, the hit compound 1a which bears a pyrazolo[3,4-d]pyrimidine scaffold exhibited high inhibitory activity against a panel of four different types of tumor cell lines. In particular, the IC50 for A549 cells was 2.24 µM, compared with an IC50 of 9.20 µM for doxorubicin, the positive control. Four synthetic routes of the key intermediate 3 of 1a were explored and 1a was prepared via route D on the gram scale for further research. Two analogs of 1a were synthesized and their preliminary structure-activity relationships were studied. Flow cytometric analysis revealed that compound 1a could significantly induce apoptosis in A549 cells in vitro at low micromolar concentrations. These results suggest that the target compound 1a and its analogs with the pyrazolo[3,4-d]pyrimidine scaffold might potentially constitute a novel class of anticancer agents, which requires further studies.
Collapse
|
40
|
Liu S, Yu H, Kumar SM, Martin JS, Bing Z, Sheng W, Bosenberg M, Xu X. Norcantharidin induces melanoma cell apoptosis through activation of TR3 dependent pathway. Cancer Biol Ther 2011; 12:1005-14. [PMID: 22123174 DOI: 10.4161/cbt.12.11.18380] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Norcantharidin (NCTD) has been reported to induce tumor cell apoptosis. However, the underlying mechanism behinds its antitumor effect remains elusive. We have previously shown that TR3 expression is significantly decreased in metastatic melanomas and involved in melanoma cell apoptosis. In this study, we showed that NCTD inhibited melanoma cell proliferation and induced apoptosis in a dose related manner. NCTD induced translocation of TR3 from nucleus to mitochondria where it co-localized with Bcl-2 in melanoma cells. NCTD also increased cytochome c release from mitochondria to the cytoplasm. These changes were accompanied by increased expression of Bax and cleaved caspase-3 along with decreased expression of Bcl2 and NF-κB2. The effects of NCTD were inhibited by knockdown of TR3 expression using TR3 specific shRNA in melanoma cells. Furthermore, NCTD significantly decreased tumor volume and improved survival of Tyr::CreER; BRAF(Ca/+); Pten(lox/lox) transgenic mice. Our data indicates that NCTD inhibits melanoma growth by inducing tumor cell apoptosis via activation of a TR3 dependent pathway. These results suggest that NCTD is a potential therapeutic agent for melanoma.
Collapse
Affiliation(s)
- Shujing Liu
- Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Ratcliffe NA, Mello CB, Garcia ES, Butt TM, Azambuja P. Insect natural products and processes: new treatments for human disease. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:747-69. [PMID: 21658450 DOI: 10.1016/j.ibmb.2011.05.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/16/2011] [Accepted: 05/20/2011] [Indexed: 05/09/2023]
Abstract
In this overview, some of the more significant recent developments in bioengineering natural products from insects with use or potential use in modern medicine are described, as well as in utilisation of insects as models for studying essential mammalian processes such as immune responses to pathogens. To date, insects have been relatively neglected as sources of modern drugs although they have provided valuable natural products, including honey and silk, for at least 4-7000 years, and have featured in folklore medicine for thousands of years. Particular examples of Insect Folk Medicines will briefly be described which have subsequently led through the application of molecular and bioengineering techniques to the development of bioactive compounds with great potential as pharmaceuticals in modern medicine. Insect products reviewed have been derived from honey, venom, silk, cantharidin, whole insect extracts, maggots, and blood-sucking arthropods. Drug activities detected include powerful antimicrobials against antibiotic-resistant bacteria and HIV, as well as anti-cancer, anti-angiogenesis and anti-coagulant factors and wound healing agents. Finally, the many problems in developing these insect products as human therapeutic drugs are considered and the possible solutions emerging to these problems are described.
Collapse
Affiliation(s)
- Norman A Ratcliffe
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Rio de Janeiro, 21045-900, RJ, Brazil.
| | | | | | | | | |
Collapse
|
42
|
Li S, Tang Y, Zhang J, Guo X, Shen H. 3A4, a new potential target for B and myeloid lineage leukemias. J Drug Target 2011; 19:797-804. [PMID: 21504388 DOI: 10.3109/1061186x.2011.572973] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Antibody-targeting therapy has drawn great interests to the hematologists and oncologists. Many antibodies have been studied for their potential targeting for hematopoietic malignancies. A few have been proved to be very effective for patients with these diseases. However, more antibodies are needed for clinical use. CD45 and its isoforms may convey clinical potential in terms of targeting therapy. Zhejiang Children's Hospital (ZCH)-6-3A4 (3A4), a novel antibody that can recognize an isoform of CD45 has been found to react with restricted cell components in hematopoietic system, which may have the potential for targeting therapy. Herein, we conducted an in vitro study of our newly prepared antibody 3A4 using various cellular and immunocytological methods. The results showed that the antibody 3A4 (murine IgG1κ) was a new clone of anti-CD45RA. It could block the binding to an epitope of CD45RA recognized by a standard anti-CD45RA antibody (Clone name L48). The reactivity of the 3A4 to both fresh leukemia cells from patients and well-defined leukemia cell lines was largely similar to those of L48, but the former recognized more leukemia cells than the latter. Cytometric analysis after papain treatment showed that the internalization rate of the 3A4 antibody to the target cells was as high as 71.3% after incubation at 37°C for 4 h, which was significantly higher than that of L48 (20.4%). The norcantharidin (NCTD)-conjugated immunotoxin (NCTD-3A4) was generated using an active ester method. The targeting inhibition rate on KG1a was as high as 61.10% after 96 h incubation in a dose-dependent manner, which was significantly higher than that (3.56%, P < 0.01) with 3A4-negative Nalm-6 cells. In conclusion, our new anti-CD45RA antibody 3A4 is probably a new target molecule of leukemia cells and holds a targeting therapeutic potential for hematopoietic malignancies, which warrants further development of this agent.
Collapse
Affiliation(s)
- Sisi Li
- Division of Hematology-Oncology, and Zhejiang Key Laboratory for Neonatal Disease, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | | | | | | | | |
Collapse
|
43
|
Yang PY, Chen MF, Kao YH, Hu DN, Chang FR, Wu YC. Norcantharidin induces apoptosis of breast cancer cells: Involvement of activities of mitogen activated protein kinases and signal transducers and activators of transcription. Toxicol In Vitro 2011; 25:699-707. [DOI: 10.1016/j.tiv.2011.01.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 12/09/2010] [Accepted: 01/18/2011] [Indexed: 01/05/2023]
|
44
|
PP2A inhibitors induce apoptosis in pancreatic cancer cell line PANC-1 through persistent phosphorylation of IKKα and sustained activation of the NF-κB pathway. Cancer Lett 2011; 304:117-27. [PMID: 21376459 DOI: 10.1016/j.canlet.2011.02.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 09/21/2010] [Accepted: 02/09/2011] [Indexed: 11/20/2022]
Abstract
Serine/threonine protein phosphatase 2A (PP2A), is thought to be a cancer suppresser, as inhibition of PP2A can induce phosphorylation and activation of substrate kinases, most of which can accelerate growth. Interestingly, cantharidin potently inhibits PP2A but efficiently represses various cancer cells. In the present study, we found that PP2A inhibitors, cantharidin or Okadaic acid, inhibited cell viability and triggered apoptosis in PANC-1 pancreatic cancer cell line dependent on PP2A/IKKα/IκBα/p65 NF-κB pathway. The activation of NF-κB pathway up-regulated downstream pro-apoptotic genes, TNF-α, TRAILR1 and TRAILR2, and triggered apoptosis through the extrinsic pathway, indicating that PP2A is a potential target for pancreatic cancer treatment.
Collapse
|
45
|
Norcantharidin induces cell cycle arrest and inhibits progression of human leukemic Jurkat T cells through mitogen-activated protein kinase-mediated regulation of interleukin-2 production. Toxicol In Vitro 2011; 25:206-12. [DOI: 10.1016/j.tiv.2010.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 10/06/2010] [Accepted: 11/03/2010] [Indexed: 01/01/2023]
|
46
|
Chang C, Zhu YQ, Mei JJ, Liu SQ, Luo J. Involvement of mitochondrial pathway in NCTD-induced cytotoxicity in human hepG2 cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:145. [PMID: 21059274 PMCID: PMC2987898 DOI: 10.1186/1756-9966-29-145] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 11/09/2010] [Indexed: 12/13/2022]
Abstract
BACKGROUND Norcantharidin, the demethylated analog of cantharidin derived from a traditional Chinese medicine, Mylabris, has been used in the treatment of anti-cancer effects. However, the detailed mechanisms underlying this process are generally unclear. The aim of this study was to investigate the mechanism of NCTD-induced apoptosis in HepG2 cells. METHODS The cytotoxicity was measured by MTT assay for cellular viability and by flow cytometry. The mitochondrial membrane potential and reactive oxygen species production was evaluated by flow cytometry analysis. The role of caspase activities were assayed using caspase apoptosis detection kit . Western blot analysis was used to evaluate the level of Cyto-C, Bcl-2, Bax, Bid, caspase 3, -9, -8 and PARP expression RESULTS After treatment with NCTD, a decrease in the viability of HepG2 cells and increase in apoptosis were observed. NCTD-induced apoptosis was accompanied by an increase in ROS production, loss of mitochondrial membrane potential and release of cytochrome c(cyto-c) from the mitochondria to the cytosol and down-regulation of anti-apoptotic protein Bcl-2 levels with concurrent up-regulation in pro-apoptotic protein Bax levels. However, another pro-apoptotic molecule, Bid, showed no change in such same treatment. NCTD-increased activity of caspase 9,caspase 3 and the subsequent cleavage caspase substrate PARP were also observed. The expression levels of pro-caspase-8 were not changed after NCTD treatment. CONCLUSION These results indicate that NCTD induced cytotoxicity in HepG2 cells by apoptosis, which is mediated through ROS generation and mitochondrial pathway.
Collapse
Affiliation(s)
- Cheng Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | | | | | | | | |
Collapse
|
47
|
Zeng XX, Zheng RL, Zhou T, He HY, Liu JY, Zheng Y, Tong AP, Xiang ML, Song XR, Yang SY, Yu LT, Wei YQ, Zhao YL, Yang L. Novel thienopyridine derivatives as specific anti-hepatocellular carcinoma (HCC) agents: Synthesis, preliminary structure–activity relationships, and in vitro biological evaluation. Bioorg Med Chem Lett 2010; 20:6282-5. [PMID: 20846862 DOI: 10.1016/j.bmcl.2010.08.088] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 07/27/2010] [Accepted: 08/18/2010] [Indexed: 10/19/2022]
|
48
|
Zhou J, Liang S, Fang L, Chen L, Tang M, Xu Y, Fu A, Yang J, Wei Y. Quantitative proteomic analysis of HepG2 cells treated with quercetin suggests IQGAP1 involved in quercetin-induced regulation of cell proliferation and migration. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 13:93-103. [PMID: 19207037 DOI: 10.1089/omi.2008.0075] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Quercetin, a wild distributed bioflavonoid, exhibits antitumor effects on murine models by inducing apoptosis and inhibiting growth of many cancer cell lines, while proteins involved in antitumor effects at proteomic level are still unclear. In our study, we used a quantitative proteomic strategy termed stable isotope labeling by amino acids in cell culture (SILAC)-mass spectrometry (MS) to study the differential proteomic profiling of HepG2 cells treated by quercetin. In all, there were 70 changed proteins among those quantified proteins in HepG2 cells treated by 50 microM quercetin for 48 h, and 14 proteins showed significant upregulation, whereas 56 proteins were downregulated. The functional classification of changed proteins includes signaling protein, protein synthesis, cytoskeleton, metabolism, etc. Of these, Ras GTPase-activating-like protein (IQGAP1) and beta-tubulin were found to be reduced at a large degree. The migration inhibition of HepG2 cells can be induced by quercetin, and the RNA and protein expression level of IQGAP1 and beta-tubulin were respectively decreased obviously in HepG2 cells exposed to quercetin for 48 h in the scratch migration assay. The downregulated expression of IQGAP1 and beta-tubulin by quercetin treatment correlated with cell migration ability, and quercetin probably inhibits HepG2 proliferation and migration through IQGAP1 and beta-tubulin expression changes and their interactions with other proteins.
Collapse
Affiliation(s)
- Jin Zhou
- State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Street 4, Gaopeng Street, Chengdu, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Li W, Xie L, Chen Z, Zhu Y, Sun Y, Miao Y, Xu Z, Han X. Cantharidin, a potent and selective PP2A inhibitor, induces an oxidative stress-independent growth inhibition of pancreatic cancer cells through G2/M cell-cycle arrest and apoptosis. Cancer Sci 2010; 101:1226-33. [PMID: 20331621 PMCID: PMC11158714 DOI: 10.1111/j.1349-7006.2010.01523.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Cantharidin is an active constituent of mylabris, a traditional Chinese medicine. It is a potent and selective inhibitor of protein phosphatase 2A (PP2A) that plays an important role in control of cell cycle, apoptosis, and cell-fate determination. Owing to its antitumor activity, cantharidin has been frequently used in clinical practice. In the present study, we investigated the therapeutic potential of cantharidin in pancreatic cancer. Cantharidin efficiently inhibited the growth of pancreatic cancer cells, but presented a much lighter toxicity effect against normal pancreatic duct cells. It caused G2/M cell-cycle arrest that was accompanied by the down-regulation of cyclin-dependent kinase 1 (CDK1) and up-regulation of p21 expression. It induced apoptosis and elevated the expressions of pro-apoptotic factors tumor necrosis factor-alpha (TNF-alpha), TNF-related apoptosis inducing receptor 1 (TRAILR1), TRAILR2, Bad, Bak, and Bid, and decreased the expression of anti-apoptotic Bcl-2. Activation of caspase-8 and caspase-9 suggested that both extrinsic and intrinsic pathways are involved in the induction of apoptosis. Interestingly, unlike previous studies on other cancer cells, we found that the inhibitory role of cantharidin is independent of oxidative stress in pancreatic cancer cells. Mitogen-activated protein kinases (MAPKs), including ERK, JNK, and p38, were activated after treatment with cantharidin. Inhibition of JNK, but not ERK or p38, alleviated the cytotoxity effect of cantharidin, suggesting cantharidin exerted its anticancer effect through the JNK-dependent way. Hence, in addition to being an attractive candidate compound with therapeutic potential, cantharidin also highlighted the possibility of using PP2A as a therapeutic target for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Wei Li
- Department of General Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Involvement of caspase and MAPK activities in norcantharidin-induced colorectal cancer cell apoptosis. Toxicol In Vitro 2010; 24:766-75. [DOI: 10.1016/j.tiv.2009.12.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/17/2009] [Accepted: 12/21/2009] [Indexed: 01/12/2023]
|