1
|
Afshar-Sterle S, Carli ALE, O'Keefe R, Tse J, Fischer S, Azimpour AI, Baloyan D, Elias L, Thilakasiri P, Patel O, Ferguson FM, Eissmann MF, Chand AL, Gray NS, Busuttil R, Boussioutas A, Lucet IS, Ernst M, Buchert M. DCLK1 induces a pro-tumorigenic phenotype to drive gastric cancer progression. Sci Signal 2024; 17:eabq4888. [PMID: 39288218 DOI: 10.1126/scisignal.abq4888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 03/22/2023] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
Doublecortin-like kinase 1 (DCLK1) is a proposed driver of gastric cancer (GC) that phosphorylates serine and threonine residues. Here, we showed that the kinase activity of DCLK1 orchestrated cancer cell-intrinsic and-extrinsic processes that led to pro-invasive and pro-metastatic reprogramming of GC cells. Inhibition of the kinase activity of DCLK1 reduced the growth of subcutaneous xenograft tumors formed from MKN1 human gastric carcinoma cells in mice and decreased the abundance of the stromal markers α-Sma, vimentin, and collagen. Similar effects were seen in mice with xenograft tumors formed from MKN1 cells expressing a kinase-inactive DCLK1 mutant (MKN1D511N). MKN1D511N cells also had reduced in vitro migratory potential and stemness compared with control cells. Mice orthotopically grafted with MKN1 cells overexpressing DCLK1 (MKN1DCLK1) showed increased invasiveness and had a greater incidence of lung metastases compared with those grafted with control MKN1 cells. Mechanistically, we showed that the chemokine CXCL12 acted downstream of DCLK1 in cultured MKN1 cells and in mice subcutaneously implanted with gastric tumors formed by MKN1DCLK1 cells. Moreover, inhibition of the kinase activity of DCLK1 or the expression of DCLK1D511N reversed the pro-tumorigenic and pro-metastatic phenotype. Together, this study establishes DCLK1 as a broadly acting and potentially targetable promoter of GC.
Collapse
Affiliation(s)
- Shoukat Afshar-Sterle
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Annalisa L E Carli
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Ryan O'Keefe
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Janson Tse
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Stefanie Fischer
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Alexander I Azimpour
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - David Baloyan
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Lena Elias
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Pathum Thilakasiri
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Onisha Patel
- ACRF Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Fleur M Ferguson
- Department of Chemistry and Biochemistry and the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Moritz F Eissmann
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Ashwini L Chand
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Rita Busuttil
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Gastroenterology, Alfred Hospital, Melbourne, VIC, Australia
| | - Alex Boussioutas
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Gastroenterology, Alfred Hospital, Melbourne, VIC, Australia
| | - Isabelle S Lucet
- ACRF Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Matthias Ernst
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Michael Buchert
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
2
|
Liang Z, Ge Y, Li J, Bai Y, Xiao Z, Yan R, An G, Zhang D. Targeting the PI3K/AKT/mTOR pathway offer a promising therapeutic strategy for cholangiocarcinoma patients with high doublecortin-like kinase 1 expression. J Cancer Res Clin Oncol 2024; 150:342. [PMID: 38980538 PMCID: PMC11233391 DOI: 10.1007/s00432-024-05875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Cholangiocarcinoma (CCA), characterized by high heterogeneity and extreme malignancy, has a poor prognosis. Doublecortin-like kinase 1 (DCLK1) promotes a variety of malignant cancers in their progression. Targeting DCLK1 or its associated regulatory pathways can prevent the generation and deterioration of several malignancies. However, the role of DCLK1 in CCA progression and its molecular mechanisms remain unknown. Therefore, we aimed to investigate whether and how DCLK1 contributes to CCA progression. METHODS The expression of DCLK1 in CCA patients was detected using Immunohistochemistry (IHC). We established DCLK1 knockout and DCLK1 overexpression cell lines for Colony Formation Assay and Transwell experiments to explore the tumor-promoting role of DCLK1. RT-PCR, Western blot and multiple fluorescent staining were used to assess the association between DCLK1 and epithelial-mesenchymal transition (EMT) markers. RNA sequencing and bioinformatics analysis were performed to identify the underlying mechanisms by which DCLK1 regulates CCA progression and the EMT program. RESULTS DCLK1 was overexpressed in CCA tissues and was associated with poor prognosis. DCLK1 overexpression facilitated CCA cell invasion, migration, and proliferation, whereas DCLK1 knockdown reversed the malignant tendencies of CCA cells, which had been confirmed both in vivo and in vitro. Furthermore, we demonstrated that DCLK1 was substantially linked to the advancement of the EMT program, which included the overexpression of mesenchymal markers and the downregulation of epithelial markers. For the underlying mechanism, we proposed that the PI3K/AKT/mTOR pathway is the key process for the role of DCLK1 in tumor progression and the occurrence of the EMT program. When administered with LY294002, an inhibitor of the PI3K/AKT/mTOR pathway, the tumor's ability to proliferate, migrate, and invade was greatly suppressed, and the EMT process was generally reversed. CONCLUSIONS DCLK1 facilitates the malignant biological behavior of CCA cells through the PI3K/AKT/mTOR pathway. In individuals with cholangiocarcinoma who express DCLK1 at high levels, inhibitors of the PI3K/AKT/mTOR signaling pathway may be an effective therapeutic approach.
Collapse
Affiliation(s)
- Ziwei Liang
- Department of Oncology, Beijing Chao Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu Road, Chaoyang Dist., Beijing, 100020, China
| | - Yang Ge
- Department of Oncology, Beijing Chao Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu Road, Chaoyang Dist., Beijing, 100020, China
| | - Jianjian Li
- Department of Basic Medical Sciences, School of Medicine, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Yunting Bai
- Department of Oncology, Beijing Chao Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu Road, Chaoyang Dist., Beijing, 100020, China
| | - Zeru Xiao
- Department of Oncology, Beijing Chao Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu Road, Chaoyang Dist., Beijing, 100020, China
| | - Rui Yan
- Department of Oncology, Beijing Chao Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu Road, Chaoyang Dist., Beijing, 100020, China
| | - Guangyu An
- Department of Oncology, Beijing Chao Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu Road, Chaoyang Dist., Beijing, 100020, China.
| | - Donglei Zhang
- Department of Gastroenterology, Beijing Chao Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu Road, Chaoyang Dist., Beijing, 100020, China.
| |
Collapse
|
3
|
Velázquez-Enríquez JM, Cerna R, Beltrán-Ramírez O, Piña-Vázquez C, Villa-Treviño S, Vásquez-Garzón VR. DCLK1 is Overexpressed and Associated with Immune Cell Infiltration in Hepatocellular Carcinoma. Biochem Genet 2024:10.1007/s10528-024-10667-y. [PMID: 38294590 DOI: 10.1007/s10528-024-10667-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024]
Abstract
Recent research has shown that Doublecortin-like kinase 1 (DCLK1) is overexpressed in different types of cancer. It has recently been described as a cancer stem cells (CSCs) marker, is associated with carcinogenesis, and positively correlates with infiltration of multiple immune cell types in some cancers. However, studies focused on assessing DCLK1 expression in HCC are limited, and the role of DCLK1 in HCC tumor immunity remains to be determined. In this study, we used a modified model of the resistant hepatocyte (MRHM) to evaluate DCLK1 expression in HCC. Furthermore, DCLK1 expression in HCC was analyzed using TIMER 2.0, UALCAN, GEPIA, GEO, and HPA web-based tools. Correlations between DCLK1 expression and clinicopathological factors in patients were analyzed using the UALCAN web-based tool. Finally, correlations between DCLK1 and immune infiltrates were investigated using the TIMER 2.0 and TISIDB web-based tools. The results showed that DCLK1 is significantly overexpressed during progression of the HCC carcinogenic process in the MRHM. DCLK1 is overexpressed in HCC according to multiple publics web-based tools, and its overexpression is associated with cancer stage. Furthermore, DCLK1 expression was correlated with infiltration levels of multiple immune cells, immunomodulatory factors, immunoinhibitors, MHC molecules, chemokines, receptors, and immune cell-specific markers. These results suggest that DCLK1 is a potential prognostic biomarker that determines cancer progression and correlates with immune cell infiltration in HCC.
Collapse
Affiliation(s)
- Juan Manuel Velázquez-Enríquez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, C.P. 68020, Oaxaca, México
| | - Renata Cerna
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360, Ciudad de México, México
| | - Olga Beltrán-Ramírez
- Universidad Estatal de Sonora, Unidad Académica Navojoa, Boulevard Manlio Fabio Beltrones 810, Colonia Bugambilias, C.P. 85875, Navojoa, Sonora, México
| | - Carolina Piña-Vázquez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360, Ciudad de México, México
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360, Ciudad de México, México
| | - Verónica Rocío Vásquez-Garzón
- CONACYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, C.P. 68020, Oaxaca, México.
| |
Collapse
|
4
|
Zhao Q, Zong H, Zhu P, Su C, Tang W, Chen Z, Jin S. Crosstalk between colorectal CSCs and immune cells in tumorigenesis, and strategies for targeting colorectal CSCs. Exp Hematol Oncol 2024; 13:6. [PMID: 38254219 PMCID: PMC10802076 DOI: 10.1186/s40164-024-00474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy in the treatment of colorectal cancer, and relapse after tumor immunotherapy has attracted increasing attention. Cancer stem cells (CSCs), a small subset of tumor cells with self-renewal and differentiation capacities, are resistant to traditional therapies such as radiotherapy and chemotherapy. Recently, CSCs have been proven to be the cells driving tumor relapse after immunotherapy. However, the mutual interactions between CSCs and cancer niche immune cells are largely uncharacterized. In this review, we focus on colorectal CSCs, CSC-immune cell interactions and CSC-based immunotherapy. Colorectal CSCs are characterized by robust expression of surface markers such as CD44, CD133 and Lgr5; hyperactivation of stemness-related signaling pathways, such as the Wnt/β-catenin, Hippo/Yap1, Jak/Stat and Notch pathways; and disordered epigenetic modifications, including DNA methylation, histone modification, chromatin remodeling, and noncoding RNA action. Moreover, colorectal CSCs express abnormal levels of immune-related genes such as MHC and immune checkpoint molecules and mutually interact with cancer niche cells in multiple tumorigenesis-related processes, including tumor initiation, maintenance, metastasis and drug resistance. To date, many therapies targeting CSCs have been evaluated, including monoclonal antibodies, antibody‒drug conjugates, bispecific antibodies, tumor vaccines adoptive cell therapy, and small molecule inhibitors. With the development of CSC-/niche-targeting technology, as well as the integration of multidisciplinary studies, novel therapies that eliminate CSCs and reverse their immunosuppressive microenvironment are expected to be developed for the treatment of solid tumors, including colorectal cancer.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hong Zong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Pingping Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chang Su
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wenxue Tang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jing‑ba Road, Zhengzhou, 450014, China.
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Shuiling Jin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
5
|
Wu X, Li S, Yang Y, Hu J, Yang T. Correlation Between DCAMKL-1 Protein Expression and K-ras Gene Mutation in Colorectal Cancer. Cancer Manag Res 2024; 16:11-21. [PMID: 38196736 PMCID: PMC10775797 DOI: 10.2147/cmar.s440845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/23/2023] [Indexed: 01/11/2024] Open
Abstract
Aim To investigate the correlation between doublecortin and CaM kinase-like-1 (DCAMKL-1) protein expression, K-ras gene mutation, and their impact on patient prognosis in colorectal cancer (CRC). Methods Immunohistochemistry was used to detect the expression of DCAMKL-1 protein in 60 cases of colorectal adenoma, 82 cases of CRC (including 65 cases of lymph node metastasis) and paraffin-embedded paracancerous intestinal mucosal tissue. K-ras gene mutations in primary CRC lesions were detected using an amplification-refractory mutation system and fluorescent polymerase chain reaction. The relationship between DCAMKL-1 protein expression and K-ras gene mutations with the clinicopathological characteristics of patients with CRC was analyzed. Univariate Kaplan‒Meier survival analysis and multivariate Cox regression analysis were performed using follow-up data. Results The mutation rate of the K-ras gene in 82 cases of CRC was 48.8% (40/82). The positivity rate for the presence of DCAMKL-1 protein in CRC was 70.7% (58/82), significantly higher than that for colorectal adenomas (53.3%; 32/60) and paracancerous intestinal mucosa (0%; 0/82) (P<0.05). The positive expression rate for the presence of DCAMKL-1 protein in 65 patients with lymph node metastasis was higher in the primary lesions (69.2%; 45/65) than in the lymph node metastases (52.3%; 34/65) (χ2=12.087, P=0.001). The K-ras gene mutation status was positively correlated with DCAMKL-1 protein expression (r=0.252, P=0.022). Conclusion In this study, a potential positive correlation between K-ras gene mutation and DCAMKL-1 protein expression was identified in CRC tissues. The assessment of K-ras gene mutation status and DCAMKL-1 protein expression holds promise for augmenting early diagnosis and prognosis evaluation in CRC. This approach may improve the overall prognosis and survival outcomes for CRC patients.
Collapse
Affiliation(s)
- Xuefang Wu
- Department of Pathology, The Affiliated People’s Hospital of Ningbo University, Ningbo, 315100, People’s Republic of China
- Department of Pathology, Guizhou Provincial People’s Hospital, Guiyang, 550002, People’s Republic of China
| | - Shuang Li
- Department of Pathology, Guizhou Provincial People’s Hospital, Guiyang, 550002, People’s Republic of China
| | - Yingchun Yang
- Department of Pathology, Guizhou Provincial People’s Hospital, Guiyang, 550002, People’s Republic of China
| | - Jianjun Hu
- Department of Pathology, Guizhou Provincial People’s Hospital, Guiyang, 550002, People’s Republic of China
| | - Tongyin Yang
- Department of Pathology, Guizhou Provincial People’s Hospital, Guiyang, 550002, People’s Republic of China
| |
Collapse
|
6
|
Ye L, Liu B, Huang J, Zhao X, Wang Y, Xu Y, Wang S. DCLK1 and its oncogenic functions: A promising therapeutic target for cancers. Life Sci 2024; 336:122294. [PMID: 38007147 DOI: 10.1016/j.lfs.2023.122294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023]
Abstract
Doublecortin-like kinase 1 (DCLK1), a significant constituent of the protein kinase superfamily and the doublecortin family, has been recognized as a prooncogenic factor that exhibits a strong association with the malignant progression and clinical prognosis of various cancers. DCLK1 serves as a stem cell marker that governs tumorigenesis, tumor cell reprogramming, and epithelial-mesenchymal transition. Multiple studies have indicated the capable of DCLK1 in regulating the DNA damage response and facilitating DNA damage repair. Additionally, DCLK1 is involved in the regulation of the immune microenvironment and the promotion of tumor immune evasion. Recently, DCLK1 has emerged as a promising therapeutic target for a multitude of cancers. Several small-molecule inhibitors of DCLK1 have been identified. Nevertheless, the biological roles of DCLK1 are mainly ambiguous, particularly with the disparities between its α- and β-form transcripts in the malignant progression of cancers, which impedes the development of more precisely targeted drugs. This article focuses on tumor stem cells, tumor epithelial-mesenchymal transition, the DNA damage response, and the tumor microenvironment to provide a comprehensive overview of the association between DCLK1 and tumor malignant progression, address unsolved questions and current challenges, and project future directions for targeting DCLK1 for the diagnosis and treatment of cancers.
Collapse
Affiliation(s)
- Liu Ye
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Beibei Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jingling Huang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xiaolin Zhao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yuan Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yungen Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Shuping Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
7
|
Venkat A, Watterson G, Byrne DP, O'Boyle B, Shrestha S, Gravel N, Fairweather EE, Daly LA, Bunn C, Yeung W, Aggarwal I, Katiyar S, Eyers CE, Eyers PA, Kannan N. Mechanistic and evolutionary insights into isoform-specific 'supercharging' in DCLK family kinases. eLife 2023; 12:RP87958. [PMID: 37883155 PMCID: PMC10602587 DOI: 10.7554/elife.87958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Abstract
Catalytic signaling outputs of protein kinases are dynamically regulated by an array of structural mechanisms, including allosteric interactions mediated by intrinsically disordered segments flanking the conserved catalytic domain. The doublecortin-like kinases (DCLKs) are a family of microtubule-associated proteins characterized by a flexible C-terminal autoregulatory 'tail' segment that varies in length across the various human DCLK isoforms. However, the mechanism whereby these isoform-specific variations contribute to unique modes of autoregulation is not well understood. Here, we employ a combination of statistical sequence analysis, molecular dynamics simulations, and in vitro mutational analysis to define hallmarks of DCLK family evolutionary divergence, including analysis of splice variants within the DCLK1 sub-family, which arise through alternative codon usage and serve to 'supercharge' the inhibitory potential of the DCLK1 C-tail. We identify co-conserved motifs that readily distinguish DCLKs from all other calcium calmodulin kinases (CAMKs), and a 'Swiss Army' assembly of distinct motifs that tether the C-terminal tail to conserved ATP and substrate-binding regions of the catalytic domain to generate a scaffold for autoregulation through C-tail dynamics. Consistently, deletions and mutations that alter C-terminal tail length or interfere with co-conserved interactions within the catalytic domain alter intrinsic protein stability, nucleotide/inhibitor binding, and catalytic activity, suggesting isoform-specific regulation of activity through alternative splicing. Our studies provide a detailed framework for investigating kinome-wide regulation of catalytic output through cis-regulatory events mediated by intrinsically disordered segments, opening new avenues for the design of mechanistically divergent DCLK1 modulators, stabilizers, or degraders.
Collapse
Affiliation(s)
- Aarya Venkat
- Department of Biochemistry and Molecular Biology, University of GeorgiaAthensUnited States
| | - Grace Watterson
- Department of Biochemistry and Molecular Biology, University of GeorgiaAthensUnited States
| | - Dominic P Byrne
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
| | - Brady O'Boyle
- Department of Biochemistry and Molecular Biology, University of GeorgiaAthensUnited States
| | - Safal Shrestha
- Institute of Bioinformatics, University of GeorgiaAthensUnited States
| | - Nathan Gravel
- Institute of Bioinformatics, University of GeorgiaAthensUnited States
| | - Emma E Fairweather
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
| | - Leonard A Daly
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
- Centre for Proteome Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
| | - Claire Bunn
- Department of Biochemistry and Molecular Biology, University of GeorgiaAthensUnited States
| | - Wayland Yeung
- Institute of Bioinformatics, University of GeorgiaAthensUnited States
| | - Ishan Aggarwal
- Department of Biochemistry and Molecular Biology, University of GeorgiaAthensUnited States
| | - Samiksha Katiyar
- Department of Biochemistry and Molecular Biology, University of GeorgiaAthensUnited States
| | - Claire E Eyers
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
- Centre for Proteome Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
| | - Patrick A Eyers
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
| | - Natarajan Kannan
- Institute of Bioinformatics, University of GeorgiaAthensUnited States
| |
Collapse
|
8
|
Campillo Poveda M, Britton C, Devaney E, McNeilly TN, Gerbe F, Jay P, Maizels RM. Tuft Cells: Detectors, Amplifiers, Effectors and Targets in Parasite Infection. Cells 2023; 12:2477. [PMID: 37887321 PMCID: PMC10605326 DOI: 10.3390/cells12202477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Tuft cells have recently emerged as the focus of intense interest following the discovery of their chemosensory role in the intestinal tract, and their ability to activate Type 2 immune responses to helminth parasites. Moreover, they populate a wide range of mucosal tissues and are intimately connected to immune and neuronal cells, either directly or through the release of pharmacologically active mediators. They are now recognised to fulfil both homeostatic roles, in metabolism and tissue integrity, as well as acting as the first sensors of parasite infection, immunity to which is lost in their absence. In this review we focus primarily on the importance of tuft cells in the intestinal niche, but also link to their more generalised physiological role and discuss their potential as targets for the treatment of gastrointestinal disorders.
Collapse
Affiliation(s)
- Marta Campillo Poveda
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, UK;
| | - Collette Britton
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK; (C.B.); (E.D.)
| | - Eileen Devaney
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK; (C.B.); (E.D.)
| | - Tom N. McNeilly
- Disease Control Department, Moredun Research Institute, Penicuik EH26 0PZ, UK;
| | - François Gerbe
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, F-34094 Montpellier, France; (F.G.); (P.J.)
| | - Philippe Jay
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, F-34094 Montpellier, France; (F.G.); (P.J.)
| | - Rick M. Maizels
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, UK;
| |
Collapse
|
9
|
Anoushirvani AA, Jafarian Yazdi A, Amirabadi S, Asouri SA, Shafabakhsh R, Sheida A, Hosseini Khabr MS, Jafari A, Tamehri Zadeh SS, Hamblin MR, Kalantari L, Talaei Zavareh SA, Mirzaei H. Role of non-coding RNAs in neuroblastoma. Cancer Gene Ther 2023; 30:1190-1208. [PMID: 37217790 DOI: 10.1038/s41417-023-00623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/25/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
Neuroblastoma is known as the most prevalent extracranial malignancy in childhood with a neural crest origin. It has been widely accepted that non-coding RNAs (ncRNAs) play important roles in many types of cancer, including glioma and gastrointestinal cancers. They may regulate the cancer gene network. According to recent sequencing and profiling studies, ncRNAs genes are deregulated in human cancers via deletion, amplification, abnormal epigenetic, or transcriptional regulation. Disturbances in the expression of ncRNAs may act either as oncogenes or as anti-tumor suppressor genes, and can lead to the induction of cancer hallmarks. ncRNAs can be secreted from tumor cells inside exosomes, where they can be transferred to other cells to affect their function. However, these topics still need more study to clarify their exact roles, so the present review addresses different roles and functions of ncRNAs in neuroblastoma.
Collapse
Affiliation(s)
- Ali Arash Anoushirvani
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Sanaz Amirabadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University, Kashan, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University, Kashan, Iran
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. BOX: 15179/64311, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Leila Kalantari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University, Kashan, Iran.
| |
Collapse
|
10
|
Venkat A, Watterson G, Byrne DP, O’Boyle B, Shrestha S, Gravel N, Fairweather EE, Daly LA, Bunn C, Yeung W, Aggarwal I, Katiyar S, Eyers CE, Eyers PA, Kannan N. Mechanistic and evolutionary insights into isoform-specific 'supercharging' in DCLK family kinases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534689. [PMID: 37034755 PMCID: PMC10081240 DOI: 10.1101/2023.03.29.534689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Catalytic signaling outputs of protein kinases are dynamically regulated by an array of structural mechanisms, including allosteric interactions mediated by intrinsically disordered segments flanking the conserved catalytic domain. The Doublecortin Like Kinases (DCLKs) are a family of microtubule-associated proteins characterized by a flexible C-terminal autoregulatory 'tail' segment that varies in length across the various human DCLK isoforms. However, the mechanism whereby these isoform-specific variations contribute to unique modes of autoregulation is not well understood. Here, we employ a combination of statistical sequence analysis, molecular dynamics simulations and in vitro mutational analysis to define hallmarks of DCLK family evolutionary divergence, including analysis of splice variants within the DCLK1 sub-family, which arise through alternative codon usage and serve to 'supercharge' the inhibitory potential of the DCLK1 C-tail. We identify co-conserved motifs that readily distinguish DCLKs from all other Calcium Calmodulin Kinases (CAMKs), and a 'Swiss-army' assembly of distinct motifs that tether the C-terminal tail to conserved ATP and substrate-binding regions of the catalytic domain to generate a scaffold for auto-regulation through C-tail dynamics. Consistently, deletions and mutations that alter C-terminal tail length or interfere with co-conserved interactions within the catalytic domain alter intrinsic protein stability, nucleotide/inhibitor-binding, and catalytic activity, suggesting isoform-specific regulation of activity through alternative splicing. Our studies provide a detailed framework for investigating kinome-wide regulation of catalytic output through cis-regulatory events mediated by intrinsically disordered segments, opening new avenues for the design of mechanistically-divergent DCLK1 modulators, stabilizers or degraders.
Collapse
Affiliation(s)
- Aarya Venkat
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Grace Watterson
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Dominic P. Byrne
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Brady O’Boyle
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Safal Shrestha
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Nathan Gravel
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Emma E. Fairweather
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Leonard A. Daly
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Claire Bunn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Wayland Yeung
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Ishan Aggarwal
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Samiksha Katiyar
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Claire E. Eyers
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Patrick A. Eyers
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
11
|
Shen Y, Ori-McKenney KM. Macromolecular Crowding Tailors the Microtubule Cytoskeleton Through Tubulin Modifications and Microtubule-Associated Proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544846. [PMID: 37398431 PMCID: PMC10312695 DOI: 10.1101/2023.06.14.544846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Cells remodel their cytoskeletal networks to adapt to their environment. Here, we analyze the mechanisms utilized by the cell to tailor its microtubule landscape in response to changes in osmolarity that alter macromolecular crowding. By integrating live cell imaging, ex vivo enzymatic assays, and in vitro reconstitution, we probe the impact of acute perturbations in cytoplasmic density on microtubule-associated proteins (MAPs) and tubulin posttranslational modifications (PTMs), unraveling the molecular underpinnings of cellular adaptation via the microtubule cytoskeleton. We find that cells respond to fluctuations in cytoplasmic density by modulating microtubule acetylation, detyrosination, or MAP7 association, without differentially affecting polyglutamylation, tyrosination, or MAP4 association. These MAP-PTM combinations alter intracellular cargo transport, enabling the cell to respond to osmotic challenges. We further dissect the molecular mechanisms governing tubulin PTM specification, and find that MAP7 promotes acetylation by biasing the conformation of the microtubule lattice, and directly inhibits detyrosination. Acetylation and detyrosination can therefore be decoupled and utilized for distinct cellular purposes. Our data reveal that the MAP code dictates the tubulin code, resulting in remodeling of the microtubule cytoskeleton and alteration of intracellular transport as an integrated mechanism of cellular adaptation.
Collapse
Affiliation(s)
- Yusheng Shen
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Kassandra M Ori-McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
12
|
Liu H, Yan R, Xiao Z, Huang X, Yao J, Liu J, An G, Ge Y. Targeting DCLK1 attenuates tumor stemness and evokes antitumor immunity in triple-negative breast cancer by inhibiting IL-6/STAT3 signaling. Breast Cancer Res 2023; 25:43. [PMID: 37069669 PMCID: PMC10108533 DOI: 10.1186/s13058-023-01642-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/20/2023] [Indexed: 04/19/2023] Open
Abstract
Triple-negative breast cancer (TNBC) exhibits the poorest outcomes among breast cancer subtypes due to the high heterogeneity and a lasting scarcity of effectual treatments. Targeted therapies based on molecular subtypes of TNBC are critical step toward tailoring treatments to improve clinical outcomes. Gastrointestinal cancer stem cell (CSC) marker DCLK1 was reported to be highly expressed in stem cell-rich subtype of TNBC. Here, we firstly explored the impacts of DCLK1 on tumor cells as well as their immune microenvironment in TNBC and potential therapeutic strategies for TNBC patients with high DCLK1 expression. Our results disclosed that DCLK1 overexpression promoted, while knockout of DCLK1 suppressed the CSC-like traits of TNBC cells and resistance to chemotherapeutics. Besides, DCLK1 supported immune escape by inhibiting intratumoral cytotoxic T cell infiltration in TNBC and hence limited immune checkpoint inhibitors efficacy. Mechanistically, bioinformatics analysis revealed that IL-6/STAT3 signaling was significantly enriched in high DCLK1-expressing patients, and our results further revealed that DCLK1 enhanced IL-6 expression and STAT3 activation in TNBC cells, which finally gave rise to upregulated CSC traits and suppressed CD8+ T-cell activity. Inhibiting IL-6/STAT3 pathway by IL-6R antagonist, Tocilizumab or STAT3 inhibitor, S31-201 could abolish DCLK1-promoted malignant phenotypes of TNBC cells. Finally, DCLK1 was identified to be specifically and highly expressed in the mesenchymal-like subtype of TNBC and targeting DCLK1 could improve chemotherapy efficacy and activate antitumor immunity. Overall, our study revealed the potential clinical benefits of targeting DCLK1 in TNBC treatment.
Collapse
Affiliation(s)
- Heshu Liu
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Rui Yan
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zeru Xiao
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xuying Huang
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jiannan Yao
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jian Liu
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Guangyu An
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yang Ge
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
13
|
He Y, Dai X, Li S, Zhang X, Gong K, Song K, Shi J. Doublecortin-like kinase 2 promotes breast cancer cell invasion and metastasis. Clin Transl Oncol 2023; 25:1102-1113. [PMID: 36477947 DOI: 10.1007/s12094-022-03018-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Doublecortin-like kinase 2 (DCLK2) is a microtubule-associated protein kinase that participates in neural development and maturation; however, whether it is involved in tumour progression remains unclear. METHODS DCLK2 overexpression and knockdown clones were established by lentivirus transfection. Western blot, PCR assays and bioinformatics analyses were conducted to observe the expression of DCLK2. CCK8, colony formation, scratch migration and Transwell assays were used to detect cell proliferation, migration and invasion, respectively. Tumour metastasis was evaluated in vivo using a tail vein metastasis model. Bioinformatics analyses were performed to analyse the expression correlation between DCLK2 and TCF4, or EMT markers in breast cancer. RESULTS Our data indicate that DCLK2 is highly expressed in breast cancer cells and is associated with poor prognosis. Silencing DCLK2 does not affect the proliferation rate of tumour cells, but significantly suppresses migration and invasion as well as lung metastasis processes. Overexpression of DCLK2 can enhance the migratory and invasive abilities of normal breast epithelial cells. Moreover, TCF4/β-catenin inhibitor LF3 downregulates the expression of DCLK2 and inhibits the migration and invasion of breast cancer cells. Furthermore, we found that the downregulation of DCLK2 blocks the epithelial-mesenchymal transition (EMT) process. CONCLUSION Our study indicates that DCLK2 plays an important role in EMT, cell invasion and metastasis, suggesting that DCLK2 is a potential target for the treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Yanling He
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Xiaoqin Dai
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shengnan Li
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- Guangzhou F.Q. PATHOTECH Co., Ltd, Guangzhou, Guangdong, China
| | - Xinyuan Zhang
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Kunxiang Gong
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Kai Song
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Jian Shi
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China.
| |
Collapse
|
14
|
Unraveling the function of epithelial-mesenchymal transition (EMT) in colorectal cancer: Metastasis, therapy response, and revisiting molecular pathways. Biomed Pharmacother 2023; 160:114395. [PMID: 36804124 DOI: 10.1016/j.biopha.2023.114395] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Colorectal cancer (CRC) is a dangerous form of cancer that affects the gastrointestinal tract. It is a major global health concern, and the aggressive behavior of tumor cells makes it difficult to treat, leading to poor survival rates for patients. One major challenge in treating CRC is the metastasis, or spread, of the cancer, which is a major cause of death. In order to improve the prognosis for patients with CRC, it is necessary to focus on ways to inhibit the cancer's ability to invade and spread. Epithelial-mesenchymal transition (EMT) is a process that is linked to the spread of cancer cells, also known as metastasis. The process transforms epithelial cells into mesenchymal ones, increasing their mobility and ability to invade other tissues. This has been shown to be a key mechanism in the progression of colorectal cancer (CRC), a particularly aggressive form of gastrointestinal cancer. The activation of EMT leads to increases in the spread of CRC cells, and during this process, levels of the protein E-cadherin decrease while levels of N-cadherin and vimentin increase. EMT also contributes to the development of resistance to chemotherapy and radiation therapy in CRC. Non-coding RNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), play a role in regulating EMT in CRC, often through their ability to "sponge" microRNAs. Anti-cancer agents have been shown to suppress EMT and reduce the progression and spread of CRC cells. These findings suggest that targeting EMT or related mechanisms may be a promising approach for treating CRC patients in the clinic.
Collapse
|
15
|
Zhao MH, Wu AW. Targeting KRAS G12C mutations in colorectal cancer. Gastroenterol Rep (Oxf) 2022; 11:goac083. [PMID: 36632627 PMCID: PMC9825714 DOI: 10.1093/gastro/goac083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 01/09/2023] Open
Abstract
With the advent of Kirsten rat sarcoma viral oncogene homologue G12C (KRAS G12C) inhibitors, RAS is no longer considered undruggable. For the suppression of RAS, new therapeutic approaches have been suggested. However, current clinical studies have indicated therapeutic resistance after short-lived tumour suppression. According to preclinical studies, this might be associated with acquired genetic alterations, reactivation of downstream pathways, and stimulation for upstream signalling. In this review, we aimed to summarize current approaches for combination therapy to alleviate resistance to KRAS G12C inhibitors in colorectal cancer with a focus on the mechanisms of therapeutic resistance. We also analysed the relationship between various mechanisms and therapeutic resistance.
Collapse
Affiliation(s)
- Ming-He Zhao
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education; Unit III, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, P. R. China
| | - Ai-Wen Wu
- Corresponding author. Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Gastrointestinal Cancer Center, Unit III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd, Haidian District, Beijing 100142, China. Tel/Fax: +86-10-88196981;
| |
Collapse
|
16
|
Li L, Ma M, Duan T, Sui X. The critical roles and therapeutic implications of tuft cells in cancer. Front Pharmacol 2022; 13:1047188. [PMID: 36569325 PMCID: PMC9780677 DOI: 10.3389/fphar.2022.1047188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Tuft cells are solitary chemosensory epithelial cells with microvilli at the top, which are found in hollow organs such as the gastrointestinal tract, pancreas, and lungs. Recently, an increasing number of studies have revealed the chemotactic abilities and immune function of the tuft cells, and numerous efforts have been devoted to uncovering the role of tuft cells in tumors. Notably, accumulating evidence has shown that the specific genes (POU2F3, DCLK1) expressed in tuft cells are involved in vital processes related with carcinogenesis and cancer development. However, the interaction between the tuft cells and cancer remains to be further elucidated. Here, based on an introduction of biological functions and specific markers of the tuft cells, we have summarized the functional roles and potential therapeutic implications of tuft cells in cancers, including pancreatic cancer, lung cancer, gastric cancer, colon cancer, and liver cancer, which is in the hope of inspiring the future research in validating tuft cells as novel strategies for cancer therapies.
Collapse
Affiliation(s)
- Lin Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Mengmeng Ma
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Ting Duan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Xinbing Sui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
17
|
DCLK1 Suppresses Tumor-Specific Cytotoxic T Lymphocyte Function Through Recruitment of MDSCs via the CXCL1-CXCR2 Axis. Cell Mol Gastroenterol Hepatol 2022; 15:463-485. [PMID: 36309200 PMCID: PMC9791173 DOI: 10.1016/j.jcmgh.2022.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS Gastrointestinal cancer stem cell marker doublecortin-like kinase (DCLK1) is strongly associated with poor outcomes in colorectal cancer (CRC). Although DCLK1's regulatory effect on the tumor immune microenvironment has been hypothesized, its mode of action has not been shown previously in vivo, which hampers the potential intervention based on this molecule for clinical practice. METHODS To define the immunomodulatory mechanisms of DCLK1 in vivo, we generated DCLK1-/- tumor cells by Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) and developed subcutaneous and intestinal orthotopic transplantation tumor models. Tumor tissues were harvested and subjected to immunofluorescence staining, flow cytometry analysis of tumor-infiltrating immune cell populations, tumor myeloid-derived suppressor cell (MDSC) sorting by isolation kit and then co-culture with spleen T cells, and RNA sequencing for transcriptomic analysis. RESULTS We found that DCLK1-/- tumor cells lose their tumorigenicity under immune surveillance. Failed tumor establishment of DCLK1-/- was associated with an increase in infiltration of CD8+ T cells and effector CD4+ T cells, and reduced numbers of MDSCs in the tumor tissue. Furthermore, DCLK1 promoted the up-regulation of C-X-C motif ligand 1, which recruits MDSCs in CRC through chemokine C-X-C motif receptor 2. The ability of in vivo tumor growth of DCLK1-/- tumor cells was rescued by C-X-C motif ligand 1 overexpression. Collectively, we validated that DCLK1 promotes tumor growth in CRC through recruitment of T-cell-suppressive MDSCs. CONCLUSIONS DCLK1-mediated immune suppression in tumor models allows escaping from the host's antitumor response. Because DCLK1 is one of the most common markers in gastrointestinal tumors, these results identify a precise therapeutic target for related clinical interventions.
Collapse
|
18
|
Chhetri D, Vengadassalapathy S, Venkadassalapathy S, Balachandran V, Umapathy VR, Veeraraghavan VP, Jayaraman S, Patil S, Iyaswamy A, Palaniyandi K, Gnanasampanthapandian D. Pleiotropic effects of DCLK1 in cancer and cancer stem cells. Front Mol Biosci 2022; 9:965730. [PMID: 36250024 PMCID: PMC9560780 DOI: 10.3389/fmolb.2022.965730] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
Doublecortin-like kinase 1 (DCLK1), a protein molecule, has been identified as a tumor stem cell marker in the cancer cells of gastrointestinal, pancreas, and human colon. DCLK1 expression in cancers, such as breast carcinoma, lung carcinoma, hepatic cell carcinoma, tuft cells, and human cholangiocarcinoma, has shown a way to target the DCLK1 gene and downregulate its expression. Several studies have discussed the inhibition of tumor cell proliferation along with neoplastic cell arrest when the DCLK1 gene, which is expressed in both cancer and normal cells, was targeted successfully. In addition, previous studies have shown that DCLK1 plays a vital role in various cancer metastases. The correlation of DCLK1 with numerous stem cell receptors, signaling pathways, and genes suggests its direct or an indirect role in promoting tumorigenesis. Moreover, the impact of DCLK1 was found to be related to the functioning of an oncogene. The downregulation of DCLK1 expression by using targeted strategies, such as embracing the use of siRNA, miRNA, CRISPR/Cas9 technology, nanomolecules, specific monoclonal antibodies, and silencing the pathways regulated by DCLK1, has shown promising results in both in vitro and in vivo studies on gastrointestinal (GI) cancers. In this review, we will discuss about the present understanding of DCLK1 and its role in the progression of GI cancer and metastasis.
Collapse
Affiliation(s)
- Dibyashree Chhetri
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
| | - Srinivasan Vengadassalapathy
- Department of Pharmacology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | | | - Varadharaju Balachandran
- Department of Physiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Sree Balaji Dental College and Hospital, Chennai, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States
| | - Ashok Iyaswamy
- Centre for Parkinsons Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Kanagaraj Palaniyandi
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
- *Correspondence: Kanagaraj Palaniyandi, ; Dhanavathy Gnanasampanthapandian,
| | - Dhanavathy Gnanasampanthapandian
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
- *Correspondence: Kanagaraj Palaniyandi, ; Dhanavathy Gnanasampanthapandian,
| |
Collapse
|
19
|
Kalantari E, Razmi M, Tajik F, Asadi-Lari M, Ghods R, Madjd Z. Oncogenic functions and clinical significances of DCLK1 isoforms in colorectal cancer: a systematic review and meta-analysis. Cancer Cell Int 2022; 22:217. [PMID: 35717205 PMCID: PMC9206744 DOI: 10.1186/s12935-022-02632-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/06/2022] [Indexed: 12/24/2022] Open
Abstract
Background The oncogenic role of doublecortin-like kinase 1 (DCLK1) as a putative cancer stem cell (CSC) marker has been clarified in colorectal cancer (CRC). Isoform-specific functions of DCLK1 have shed new light on different functions of DCLK1 short (DCLK1-S) and DCLK1 long (DCLK1-L) isoforms in tumor initiation, growth, and metastasis. Therefore, the current systematic review and meta-analysis aimed to review the available in vitro, in vivo, and clinical evidence on the oncogenic roles and clinical significance of DCLK1 isoforms in colorectal cancer. Methods The literature databases of PubMed, Scopus, ISI Web of Science, and Embase were searched to identify eligible articles. The description characteristics of in vitro and pre-clinical studies were extracted from identified reports. In addition, hazard ratios (HRs) or odds ratios (ORs) with 95% confidence intervals (CIs) were recorded to determine the relationships between DCLK1-L and DCLK1-S expression and prognostic outcomes in patients with CRC. Results Both in vitro and in vivo evidence have emphasized the potential oncogenic functions of DCLK1 in tumor initiation, self-renewal ability, tumor invasion, epithelial-mesenchymal transition (EMT), and metastasis. However, the anti-DCLK1 antibodies generally utilized in these studies could detect sequence homology epitopes of both isoforms. Recent limited isoform-specific evidence has strongly supported the significant positive expression and rather oncogenic efficacy of DCLK1-S in tumorigenesis, EMT, and invasion compared with DCLK1-L in human CRC cell lines. Our meta-analysis findings of limited clinical studies indicated that only overexpression of DCLK1-S is associated with worse overall survival (OS) (HR = 7.930, 95% CI 2.252–27.924, p = 0.001). Increased expression of both DCLK1-S (HR = 1.610, 95% CI 1.020–2.541, p = 0.041) and DCLK1-L (HR = 5.890, 95% CI 1.219–28.453, p = 0.027) isoforms was closely associated with worse DSS/CSS in CRC patients. Furthermore, the high expression of DCLK1-S was found to be associated with poor DFS/RFS/PFS (HR = 1.913, 95% CI 1.230–2.973, p = 0.004). Conclusions The current findings strongly supported that the DCLK1-S isoform may play a crucial role in the invasion, aggressive tumor behavior, and worsened survival outcomes of CRC patients. However, further critical investigations related to the potential preclinical and clinical utilities of DCLK1-S as a specific CRC-CSC marker are warranted. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02632-9.
Collapse
Affiliation(s)
- Elham Kalantari
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mahdieh Razmi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohsen Asadi-Lari
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran. .,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran. .,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
20
|
Wang L, Zhao L, Lin Z, Yu D, Jin M, Zhou P, Ren J, Cheng J, Yang K, Wu G, Zhang T, Zhang D. Targeting DCLK1 overcomes 5-fluorouracil resistance in colorectal cancer through inhibiting CCAR1/β-catenin pathway-mediated cancer stemness. Clin Transl Med 2022; 12:e743. [PMID: 35522902 PMCID: PMC9076011 DOI: 10.1002/ctm2.743] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/30/2022] [Accepted: 02/08/2022] [Indexed: 12/24/2022] Open
Abstract
Background To date, 5‐fluorouracil‐based chemotherapy is very important for locally advanced or metastatic colorectal cancer (CRC). However, chemotherapy resistance results in tumor recurrence and metastasis, which is a major obstacle for treatment of CRC. Methods In the current research, we establish 5‐fluorouracil resistant cell lines and explore the potential targets associated with 5‐fluorouracil resistance in CRC. Moreover, we perform clinical specimen research, in vitro and in vivo experiments and molecular mechanism research, to reveal the biological effects and the mechanism of DCLK1 promoting 5‐fluorouracil resistance, and to clarify the potential clinical value of DCLK1 as a target of 5‐fluorouracil resistance in CRC. Results We discover that doublecortin‐like kinase 1 (DCLK1), a cancer stem cell maker, is correlated with 5‐fluorouracil resistance, and functionally promotes cancer stemness and 5‐fluorouracil resistance in CRC. Mechanistically, we elucidate that DCLK1 interacts with cell cycle and apoptosis regulator 1 (CCAR1) through the C‐terminal domain, and phosphorylates CCAR1 at the Ser343 site, which is essential for CCAR1 stabilisation. Moreover, we find that DCLK1 positively regulates β‐catenin signalling via CCAR1, which is responsible for maintaining cancer stemness. Subsequently, we prove that blocking β‐catenin inhibits DCLK1‐mediated 5‐fluorouracil resistance in CRC cells. Importantly, we demonstrate that DCLK1 inhibitor could block CCAR1/β‐catenin pathway‐mediated cancer stemness and consequently suppresses 5‐fluorouracil resistant CRC cells in vitro and in vivo. Conclusions Collectively, our findings reveal that DCLK1 promotes 5‐fluorouracil resistance in CRC by CCAR1/β‐catenin pathway‐mediated cancer stemness, and suggest that targeting DCLK1 might be a promising method to eliminate cancer stem cells for overcoming 5‐fluorouracil resistance in CRC.
Collapse
Affiliation(s)
- Lanqing Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhenyu Lin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dandan Yu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Min Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengfei Zhou
- Wuhan YZY Medical Science & Technology Co., Ltd., Wuhan 430075, China
| | - Jinghua Ren
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Cheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dejun Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
21
|
Abstract
Although tuft cells were discovered over 60 years ago, their functions have long been enigmatic, especially in human health. Nonetheless, tuft cells have recently emerged as key orchestrators of the host response to diverse microbial infections in the gut and airway. While tuft cells are epithelial in origin, they exhibit functions akin to immune cells and mediate important interkingdom interactions between the host and helminths, protists, viruses, and bacteria. With broad intra- and intertissue heterogeneity, tuft cells sense and respond to microbes with exquisite specificity. Tuft cells can recognize helminth and protist infection, driving a type 2 immune response to promote parasite expulsion. Tuft cells also serve as the primary physiologic target of persistent murine norovirus (MNV) and promote immune evasion. Recently, tuft cells were also shown to be infected by rotavirus. Other viral infections, such as influenza A virus, can induce tuft cell–dependent tissue repair. In the context of coinfection, tuft cells promote neurotropic flavivirus replication by dampening antiviral adaptive immune responses. Commensal and pathogenic bacteria can regulate tuft cell abundance and function and, in turn, tuft cells are implicated in modulating bacterial infiltration and mucosal barrier integrity. However, the contribution of tuft cells to microbial sensing in humans and their resulting effector responses are poorly characterized. Herein, we aim to provide a comprehensive overview of microbial activation of tuft cells with an emphasis on tuft cell heterogeneity and differences between mouse and human tuft cell biology as it pertains to human health and disease.
Collapse
Affiliation(s)
- Madison S. Strine
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Craig B. Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, United States of America
- * E-mail: ,
| |
Collapse
|
22
|
Reineking W, Schauerte IE, Junginger J, Hewicker-Trautwein M. Sox9, Hopx, and survivin and tuft cell marker DCLK1 expression in normal canine intestine and in intestinal adenoma and adenocarcinoma. Vet Pathol 2022; 59:415-426. [DOI: 10.1177/03009858221079666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Self-renewal of the intestinal epithelium originates from stem cells located at the crypt base. Upregulation of various stem cell markers in intestinal epithelial neoplasms indicates a potential role of stem cells in tumorigenesis. In this study, the immunoreactivity of potential intestinal stem cell markers ( Sry box transcription factor 9 [Sox9], homeodomain-only protein [Hopx], survivin) and tuft cell marker doublecortin-like kinase 1 (DCLK1) in normal canine intestine and intestinal epithelial neoplasms was investigated. Formalin-fixed paraffin-embedded (FFPE) small and large intestine as well as intestinal neoplasms (55 colorectal adenomas [CRAs], 17 small intestinal adenocarcinomas [SICs], and 12 colorectal adenocarcinomas [CRCs]) were analyzed immunohistologically. Potential stem cell markers Sox9, Hopx, and survivin were detected in the crypts of normal canine small and large intestine. DCLK1+ tuft cells were present in decreasing numbers along the crypt-villus axis of the jejunum and rarely detectable in large intestine. In canine intestinal epithelial tumors, nuclear Sox9 immunoreactivity was detectable in 84.9% (CRA), 80% (CRC), and 77% of epithelial neoplastic cells (SIC). Hopx and survivin were expressed within cytoplasm and nuclei of neoplastic cells in benign and malignant tumors. DCLK1 showed a cytoplasmic reaction within neoplastic cells. The combined score of Hopx, DCLK1, and survivin varied among the examined cases. Overall, malignant tumors showed lower DCLK1 scores but higher Hopx scores in comparison with benign tumors. For survivin, no differences were detectable. In conclusion, stem cell markers Sox9, Hopx, and survivin were detectable at the crypt base and the immunoreactivity of Sox9, DCLK1, survivin, and Hopx was increased in canine intestinal adenomas and adenocarcinomas compared with normal mucosa.
Collapse
|
23
|
Wang Y, Yi J, Liu X. Roles of Dclk1 in the pathogenesis, diagnosis, prognosis and treatment of pancreatic cancer: A review. Expert Rev Gastroenterol Hepatol 2022; 16:13-19. [PMID: 34937474 DOI: 10.1080/17474124.2022.2020643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/16/2021] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Pancreatic cancer (PC) is a malignant tumor with significantly increased incidence and poor prognosis. Its extremely poor prognosis is generally attributed to its early invasion and metastasis as well as the presence of chemotherapy resistance, which may be related to the potential role of cancer stem cells (CSCs). Doublecortin-like kinase 1 (Dclk1) has been recognized to be a marker of CSCs in PC, showing intimate association with its occurrence, metastasis, and poor prognosis. AREAS COVERED A review serves to provide a comprehensive overview of Dclk1 in the pathogenesis, diagnosis, prognosis, and treatment in PC. EXPERT OPINION Searching for potential key biomarkers for PC has been an urgent issue to be addressed. The expression of Dclk1 is increasing in PC, and its effect is linked to the mutant Kras, supporting that it may be a potential new target. Therefore, it highlights Dclk1 as a candidate biomarker and therapeutic target in future clinical application.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Jun Yi
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Xiaowei Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
24
|
Kalantari E, Ghods R, Zanjani LS, Rahimi M, Eini L, Razmi M, Asadi-Lari M, Madjd Z. Cytoplasmic expression of DCLK1-S, a novel DCLK1 isoform, is associated with tumor aggressiveness and worse disease-specific survival in colorectal cancer. Cancer Biomark 2021; 33:277-289. [DOI: 10.3233/cbm-210330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND: Isoform-specific function of doublecortin-like kinase 1 (DCLK1) has highlighted the key role of the DCLK1-S (short isoform) in the maintenance, progression, and invasion of the tumor. OBJECTIVE: This study was designed to produce an anti-DCLK1-S polyclonal antibody to evaluate DCLK1-S in human colorectal cancer (CRC) specifically. METHODS: The expression pattern and clinical significance of DCLK1-S were assessed in a well-defined tissue microarray (TMA) series of 348 CRC and 51 adjacent normal tissues during a follow-up period of 108 months. RESULTS: Expression of DCLK1-S was significantly higher in CRC samples compared to adjacent normal samples (P< 0.001). Cytoplasmic expression of DCLK1-S was significantly higher in the tumors at the advanced stage of cancer and with poorer differentiation (P< 0.001, P= 0.02). The patients with CRC whose tumors showed higher cytoplasmic expression of DCLK1-S had worse disease-specific survival (DSS) (log-rank test, P= 0.03) and 5-year DSS rates (P= 0.01). Additionally, an improved prognostic value was observed in the patients with CRC with high DCLK1-S expression vs. its moderate expression (HR: 2.70, 95% CI: 0.98–7.38; p= 0.04) by multivariate analysis. CONCLUSIONS: Our findings strongly supported that high cytoplasmic expression of DCLK1-S compared to its moderate expression could be considered an independent prognostic factor influencing DSS.
Collapse
Affiliation(s)
- Elham Kalantari
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Mandana Rahimi
- Hasheminejad Kidney Center, Pathology Department, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Leila Eini
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Division of Histology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahdieh Razmi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohsen Asadi-Lari
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
25
|
Vijai M, Baba M, Ramalingam S, Thiyagaraj A. DCLK1 and its interaction partners: An effective therapeutic target for colorectal cancer. Oncol Lett 2021; 22:850. [PMID: 34733368 PMCID: PMC8561619 DOI: 10.3892/ol.2021.13111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/02/2021] [Indexed: 12/23/2022] Open
Abstract
Doublecortin-like kinase protein 1 (DCLK1) is a microtubule-associated protein with a C-terminal serine/threonine kinase domain. Its expression was first reported in radial glial cells, where it serves an essential role in early neurogenesis, and since then, other functions of the DCLK1 protein have also been identified. Initially considered to be a marker of quiescent gastrointestinal and pancreatic stem cells, DCLK1 has recently been identified in the gastrointestinal tract as a marker of tuft cells. It has also been implicated in different types of cancer, where it regulates several vital pathways, such as Kras signaling. However, its underlying molecular mechanisms remain unclear. The present review discusses the different roles of DCLK1 and its interactions with other proteins that are homologically similar to DCLK1 to develop a novel therapeutic strategy to target cancer cells more accurately.
Collapse
Affiliation(s)
- Muthu Vijai
- Department of Genetic Engineering, SRM Institute of Science and Technology, Sri Ramaswamy Memorial (SRM) Nagar, Kattankulathur, Tamil Nadu 603203, India
| | - Mursaleen Baba
- Department of Genetic Engineering, SRM Institute of Science and Technology, Sri Ramaswamy Memorial (SRM) Nagar, Kattankulathur, Tamil Nadu 603203, India
| | - Satish Ramalingam
- Department of Genetic Engineering, SRM Institute of Science and Technology, Sri Ramaswamy Memorial (SRM) Nagar, Kattankulathur, Tamil Nadu 603203, India
| | - Anand Thiyagaraj
- Department of Genetic Engineering, SRM Institute of Science and Technology, Sri Ramaswamy Memorial (SRM) Nagar, Kattankulathur, Tamil Nadu 603203, India
| |
Collapse
|
26
|
Ge Y, Fan X, Huang X, Weygant N, Xiao Z, Yan R, Liu H, Liu J, An G, Yao J. DCLK1-Short Splice Variant Promotes Esophageal Squamous Cell Carcinoma Progression via the MAPK/ERK/MMP2 Pathway. Mol Cancer Res 2021; 19:1980-1991. [PMID: 34610960 DOI: 10.1158/1541-7786.mcr-21-0161] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/06/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022]
Abstract
Cancer stem cell (CSC) marker doublecortin-like kinase 1 (DCLK1) contributes greatly to the malignancy of gastrointestinal cancers, and DCLK1-targeted agents have potential therapeutic value. However, the molecular pathways regulated by DCLK1-S (DCLK1 isoform 4), a shortened splice variant of DCLK1, still remain obscure. Here we found that the expression of DCLK1-S is significantly increased in human esophageal squamous cell carcinoma (ESCC) tissues and associated with malignant progression and poor prognosis. Functional studies indicated that silencing total of DCLK1 mediated by CRISPR/Cas9 inhibited ESCC cell proliferation, migration, and invasion. Conversely, these changes were largely reversed after DCLK1-S rescue or overexpression. More importantly, DCLK1-S significantly enhanced primary tumor formation and metastatic lung colonization in vivo. The Cancer Genome Atlas database and molecular analysis showed that DCLK1-S was closely related to the epithelial-mesenchymal transition (EMT) process in patients with ESCC. Further RNA sequencing and Kyoto Encyclopedia of Genes and Genomes analysis demonstrated that MAPK signaling pathway was significantly enriched. Our in vitro study proclaimed that DCLK1-S induced MMP2 expression in ESCC cells via MAPK/ERK signaling, leading to the activation of EMT. In addition, administration of ERK1/2 blocker SCH772984 attenuated the proliferative and migratory phenotype induced by DCLK1-S. In conclusion, these findings suggest that DCLK1-S may be a key molecule in MAPK/ERK/MMP2 pathway-mediated progression of ESCC, and that it has potential as a biomarker or therapeutic target to improve outcomes in patients with ESCC. IMPLICATIONS: : DCLK1-S induces ESCC progression by activating the MAPK/ERK/MMP2 axis and may serve as a prognostic biomarker or therapeutic target for patients with ESCC.
Collapse
Affiliation(s)
- Yang Ge
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Xiaona Fan
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Xuying Huang
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Nathaniel Weygant
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, P.R. China.,Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, P.R. China
| | - Zeru Xiao
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Rui Yan
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Heshu Liu
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Jian Liu
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China.,Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Guangyu An
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China.
| | - Jiannan Yao
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China.
| |
Collapse
|
27
|
Structural basis for small molecule targeting of Doublecortin Like Kinase 1 with DCLK1-IN-1. Commun Biol 2021; 4:1105. [PMID: 34545159 PMCID: PMC8452690 DOI: 10.1038/s42003-021-02631-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/01/2021] [Indexed: 02/03/2023] Open
Abstract
Doublecortin-like kinase 1 (DCLK1) is an understudied bi-functional kinase with a proven role in tumour growth and development. However, the presence of tissue-specific spliced DCLK1 isoforms with distinct biological functions have challenged the development of effective strategies to understand the role of DCLK1 in oncogenesis. Recently, DCLK1-IN-1 was reported as a highly selective DCLK1 inhibitor, a powerful tool to dissect DCLK1 biological functions. Here, we report the crystal structures of DCLK1 kinase domain in complex with DCLK1-IN-1 and its precursors. Combined, our data rationalises the structure-activity relationship that informed the development of DCLK1-IN-1 and provides the basis for the high selectivity of DCLK1-IN-1, with DCLK1-IN-1 inducing a drastic conformational change of the ATP binding site. We demonstrate that DCLK1-IN-1 binds DCLK1 long isoforms but does not prevent DCLK1's Microtubule-Associated Protein (MAP) function. Together, our work provides an invaluable structural platform to further the design of isoform-specific DCLK1 modulators for therapeutic intervention.
Collapse
|
28
|
He H, Yuan K, Chen W. Effect of miR-25 on Proliferation of Nasopharyngeal Carcinoma Cells through Wnt/ β-Catenin Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9957161. [PMID: 34485531 PMCID: PMC8416362 DOI: 10.1155/2021/9957161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To investigate the biological role and potential mechanism of miR-25 in nasopharyngeal carcinoma. METHODS The expression of miR-25 in nasopharyngeal carcinoma cell lines was detected by qRT-PCR. The effect of inhibition of miR-25 expression on the proliferative activity of nasopharyngeal carcinoma cell line HONE-1 was examined by CCK-8 method. Flow cytometry was used to detect the effect of miR-25 expression inhibition on the apoptosis rate of nasopharyngeal carcinoma cell line HONE-1. The miRNA target gene prediction site TargetScan predicts the target protein action site of miR-124 and verifies whether miR-25 interacts with the target by luciferase activity assay, qPCR, and Western experiments. The miR-25 inhibitor and target egg gene expression plasmids were cotransfected into HONE-1 cells for rescue experiments to investigate whether miR-25 inhibits proliferation of nasopharyngeal carcinoma cells by target genes. At the same time, qRT-PCR was used to detect the mRNA expression levels of Wnt/β-catenin pathway key proteins TCF4, c-Myc, and Cyclin D1 in different transfected cells. RESULTS miR-25 expression was upregulated in nasopharyngeal carcinoma cell lines. Functional studies showed that inhibition of miR-25 expression significantly inhibited the proliferation of nasopharyngeal carcinoma cell line HONE-1 (p < 0.05). Inhibition of miR-25 expression by flow cytometry significantly promoted apoptosis (p < 0.05). Detection of dual luciferase activity indicated that DKK3 is a direct target site for miR-25. Western blots showed that inhibition of miR-25 significantly upregulated DKK3 mRNA and protein levels. Supplementation with DKK3 significantly attenuated the inhibitory effect of miR-25 on the proliferation of nasopharyngeal carcinoma cell line HONE-1 (p < 0.05). qRT-PCR found that mRNA levels of TCF4, c-Myc, and Cyclin D1 were significantly upregulated in miR-25-transfected cells compared to control transfection. QRT PCR showed that the mRNA and protein levels of Tcf4, c-myc, and Cyclin D1 were significantly upregulated in miR-25 overexpression-transfected cells. CONCLUSION Inhibition of miR-25 expression promotes DKK3 gene expression, and inactivation of Wnt/β-catenin signaling pathway inhibits proliferation and promotes apoptosis of nasopharyngeal carcinoma cells.
Collapse
Affiliation(s)
- Haixia He
- Department of Otorhinolaryngology-Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Kun Yuan
- Department of Otorhinolaryngology-Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Wei Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| |
Collapse
|
29
|
Broner EC, Trujillo JA, Korzinkin M, Subbannayya T, Agrawal N, Ozerov IV, Zhavoronkov A, Rooper L, Kotlov N, Shen L, Pearson AT, Rosenberg AJ, Savage PA, Mishra V, Chatterjee A, Sidransky D, Izumchenko E. Doublecortin-Like Kinase 1 (DCLK1) Is a Novel NOTCH Pathway Signaling Regulator in Head and Neck Squamous Cell Carcinoma. Front Oncol 2021; 11:677051. [PMID: 34336664 PMCID: PMC8323482 DOI: 10.3389/fonc.2021.677051] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/29/2021] [Indexed: 12/30/2022] Open
Abstract
Despite recent advancements, the 5 year survival of head and neck squamous cell carcinoma (HNSCC) hovers at 60%. DCLK1 has been shown to regulate epithelial-to-mesenchymal transition as well as serving as a cancer stem cell marker in colon, pancreatic and renal cancer. Although it was reported that DCLK1 is associated with poor prognosis in oropharyngeal cancers, very little is known about the molecular characterization of DCLK1 in HNSCC. In this study, we performed a comprehensive transcriptome-based computational analysis on hundreds of HNSCC patients from TCGA and GEO databases, and found that DCLK1 expression positively correlates with NOTCH signaling pathway activation. Since NOTCH signaling has a recognized role in HNSCC tumorigenesis, we next performed a series of in vitro experiments in a collection of HNSCC cell lines to investigate the role of DCLK1 in NOTCH pathway regulation. Our analyses revealed that DCLK1 inhibition, using either a pharmacological inhibitor or siRNA, resulted in substantially decreased proliferation, invasion, migration, and colony formation. Furthermore, these effects paralleled downregulation of active NOTCH1, and its downstream effectors, HEY1, HES1 and HES5, whereas overexpression of DCLK1 in normal keratinocytes, lead to an upregulation of NOTCH signaling associated with increased proliferation. Analysis of 233 primary and 40 recurrent HNSCC cancer biopsies revealed that high DCLK1 expression was associated with poor prognosis and showed a trend towards higher active NOTCH1 expression in tumors with elevated DCLK1. Our results demonstrate the novel role of DCLK1 as a regulator of NOTCH signaling network and suggest its potential as a therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Esther C. Broner
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Jonathan A. Trujillo
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, United States
| | | | | | - Nishant Agrawal
- Section of Otolaryngology-Head and Neck Surgery, University of Chicago, Chicago, IL, United States
| | - Ivan V. Ozerov
- InSilico Medicine Hong Kong Ltd., Pak Shek Kok, Hong Kong
| | | | - Lisa Rooper
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Nikita Kotlov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Le Shen
- Department of Pathology, The University of Chicago Medicine, Chicago, IL, United States
| | - Alexander T. Pearson
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, United States
| | - Ari J. Rosenberg
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, United States
| | - Peter A. Savage
- Department of Pathology, The University of Chicago Medicine, Chicago, IL, United States
| | - Vasudha Mishra
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, United States
| | - Aditi Chatterjee
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - David Sidransky
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
30
|
Arzi L, Hoshyar R. Saffron anti-metastatic properties, ancient spice novel application. Crit Rev Food Sci Nutr 2021; 62:3939-3950. [PMID: 33653190 DOI: 10.1080/10408398.2020.1871320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Crocus sativus L. (saffron), was applied as a spice, food colorant and medicine since four millennia ago and has been used as a remedy for various maladies. In the last three decades, the anti-primary tumor properties of saffron and its main carotenoids, crocin and crocetin, have been well explored. Despite the fact that metastasis is the leading cause of death in cancer patients, the anti-metastatic potential of saffron and its carotenoids has been surveyed only this decade. This review aims to provide an unprecedented overview of the anti-metastatic effects of saffron, crocin and crocetin, and the mechanisms underlying these effects. Investigations on various cancers demonstrated the anti-migratory, anti-invasion, anti-angiogenic potentials of saffron and its carotenoids, as well as their effects suppressing cell-ECM adhesion and enhancing cell-cell attachment. Saffron and its carotenoids exert their impact through different mechanisms such as reduction of CD34 and suppression of Wnt/β-catenin, Ras/ERK, P38, DCLK1, EMT, matrix metalloproteinases and urokinases. Crocin displayed more effective anti-metastatic potency, in comparison with saffron extract and crocetin. The bioaccessibility/bioavailability, nontoxicity on normal cells, confirmed anti-tumor efficiency and the recent evidence on the anti-metastatic potential of saffron and its carotenoids, recommends them as a propitious multipotent dietary agent and herbal medicine.
Collapse
Affiliation(s)
- Laleh Arzi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Reyhane Hoshyar
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
31
|
Barrow TM, Wong Doo N, Milne RL, Giles GG, Willmore E, Strathdee G, Byun HM. Analysis of retrotransposon subfamily DNA methylation reveals novel early epigenetic changes in chronic lymphocytic leukemia. Haematologica 2021; 106:98-110. [PMID: 31919093 PMCID: PMC7776340 DOI: 10.3324/haematol.2019.228478] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 01/07/2020] [Indexed: 11/30/2022] Open
Abstract
Retrotransposons such as LINE-1 and Alu comprise >25% of the human genome. While global hypomethylation of these elements has been widely reported in solid tumours, their epigenetic dysregulation is yet to be characterised in chronic lymphocytic leukemia (CLL), and there has been scant consideration of their evolutionary history that mediates sensitivity to hypomethylation. Here, we developed an approach for locus- and evolutionary subfamily-specific analysis of retrotransposons using the Illumina Infinium Human Methylation 450K microarray platform, which we applied to publicly-available datasets from CLL and other haematological malignancies. We identified 9,797 microarray probes mapping to 117 LINE-1 subfamilies and 13,130 mapping to 37 Alu subfamilies. Of these, 10,782 were differentially methylated (PFDR<0.05) in CLL patients (n=139) compared with healthy individuals (n=14), with enrichment at enhancers (P=0.002). Differential methylation was associated with evolutionary age of LINE-1 (r2=0.31, P=0.003) and Alu (r2=0.74, P=0.002) elements, with greater hypomethylation of older subfamilies (L1M, AluJ). Locus-specific hypomethylation was associated with differential expression of proximal genes, including DCLK2, HK1, ILRUN, TANK, TBCD, TNFRSF1B and TXNRD2, with higher expression of DCLK2 and TNFRSF1B associated with reduced patient survival. Hypomethylation at nine loci was highly frequent in CLL (>90% patients) but not observed in healthy individuals or other leukaemias, and was detectable in blood samples taken prior to CLL diagnosis in 9 of 82 individuals from the Melbourne Collaborative Cohort Study. Our results demonstrate differential methylation of retrotransposons in CLL by their evolutionary heritage that modulates expression of proximal genes.
Collapse
Affiliation(s)
- Timothy M Barrow
- Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, United Kingdom
| | - Nicole Wong Doo
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
| | - Elaine Willmore
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gordon Strathdee
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hyang-Min Byun
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
32
|
Lorenzo N, Sabina DM, Guido C, Ilaria Grazia Z, Samira S, Valeria A, Daniele C, Diletta O, Antonella G, Marco M, Daniela B, Valerio DP, Andrea O, Agostino Maria DR, Fabio M, Maria Consiglia B, Jessica F, Sara M, Gian Luca G, Pierluigi Benedetti P, Paquale Bartomeo B, Felice G, Vincenzo C, Pietro I, Giuseppina C, Eugenio G, Domenico A. DCLK1, a Putative Stem Cell Marker in Human Cholangiocarcinoma. Hepatology 2021; 73:144-159. [PMID: 32978808 PMCID: PMC8243252 DOI: 10.1002/hep.31571] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/20/2020] [Accepted: 09/02/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS Cholangiocarcinoma (CCA) is a very aggressive cancer showing the presence of high cancer stem cells (CSCs). Doublecortin-like kinase1 (DCLK1) has been demonstrated as a CSC marker in different gastroenterological solid tumors. Our aim was to evaluate in vitro the expression and the biological function of DCLK1 in intrahepatic CCA (iCCA) and perihilar CCA (pCCA). APPROACH AND RESULTS Specimens surgically resected of human CCA were enzymatically digested, submitted to immunosorting for specific CSC markers (LGR5 [leucine-rich repeat-containing G protein-coupled receptor], CD [clusters of differentiation] 90, EpCAM [epithelial cell adhesion molecule], CD133, and CD13), and primary cell cultures were prepared. DCLK1 expression was analyzed in CCA cell cultures by real-time quantitative PCR, western blot, and immunofluorescence. Functional studies have been performed by evaluating the effects of selective DCLK1 inhibitor (LRRK2-IN-1) on cell proliferation (MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay, cell population doubling time), apoptosis, and colony formation capacity. DCLK1 was investigated in situ by immunohistochemistry and real-time quantitative PCR. DCLK1 serum concentration was analyzed by enzyme-linked immunosorbent assay. We describe DCLK1 in CCA with an increased gene and protein DCLK1 expression in pCCALGR5+ and in iCCACD133+ cells compared with unsorted cells. LRRK2-IN-1 showed an anti-proliferative effect in a dose-dependent manner. LRRK2-IN-1 markedly impaired cell proliferation, induced apoptosis, and decreased colony formation capacity and colony size in both iCCA and pCCA compared with the untreated cells. In situ analysis confirmed that DCLK1 is present only in tumors, and not in healthy tissue. Interestingly, DCLK1 was detected in the human serum samples of patients with iCCA (high), pCCA (high), HCC (low), and cirrhosis (low), but it was almost undetectable in healthy controls. CONCLUSIONS DCLK1 characterizes a specific CSC subpopulation of iCCACD133+ and pCCALGR5+ , and its inhibition exerts anti-neoplastic effects in primary CCA cell cultures. Human DCLK1 serum might represent a serum biomarker for the early CCA diagnosis.
Collapse
Affiliation(s)
- Nevi Lorenzo
- Department of BiosciencesUniversity of MilanMilanItaly,Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Di Matteo Sabina
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly,Department of ImmunologyBambino Gesù Children’s Hospital, IRCCSRomeItaly
| | - Carpino Guido
- Department of MovementHuman and Health SciencesUniversity of Rome “Foro Italico”RomeItaly
| | | | - Safarikia Samira
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Ambrosino Valeria
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Costantini Daniele
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Overi Diletta
- Department of AnatomicalHistological, Forensic Medicine and Orthopedics SciencesSapienza University of RomeRomeItaly
| | - Giancotti Antonella
- Department of Maternal and Child Health and Urologic SciencesUmberto I HospitalSapienza University of RomeRomeItaly
| | - Monti Marco
- Department of Maternal and Child Health and Urologic SciencesUmberto I HospitalSapienza University of RomeRomeItaly
| | - Bosco Daniela
- Department of Pathological Anatomy and CytodiagnosticSapienza University of RomeRomeItaly
| | - De Peppo Valerio
- Hepatobiliary and Pancreatic Surgery IRCCSRegina Elena National Cancer InstituteRomeItaly
| | - Oddi Andrea
- Hepatobiliary and Pancreatic Surgery IRCCSRegina Elena National Cancer InstituteRomeItaly
| | - De Rose Agostino Maria
- Surgery, Hepatobiliary UnitCatholic University of the Sacred Heart School of Medicine and SurgeryRomeItaly
| | - Melandro Fabio
- Department of General Surgery and Organ TransplantationSapienza University of RomeRomeItaly
| | | | - Faccioli Jessica
- Department of Medico‐Surgical Sciences and BiotechnologiesSapienza University of RomeRomeItaly
| | - Massironi Sara
- Division of Gastroenterology and Center for Autoimmune Liver DiseasesDepartment of Medicine and SurgeryUniversity of Milan‐BicoccaMonzaItaly,European Reference Network on Hepatological Diseases (ERN RARE‐LIVER)San Gerardo HospitalMonzaItaly
| | - Grazi Gian Luca
- Hepatobiliary and Pancreatic Surgery IRCCSRegina Elena National Cancer InstituteRomeItaly
| | - Panici Pierluigi Benedetti
- Department of Maternal and Child Health and Urologic SciencesUmberto I HospitalSapienza University of RomeRomeItaly
| | | | - Giuliante Felice
- Surgery, Hepatobiliary UnitCatholic University of the Sacred Heart School of Medicine and SurgeryRomeItaly
| | - Cardinale Vincenzo
- Department of Medico‐Surgical Sciences and BiotechnologiesSapienza University of RomeRomeItaly
| | - Invernizzi Pietro
- Division of Gastroenterology and Center for Autoimmune Liver DiseasesDepartment of Medicine and SurgeryUniversity of Milan‐BicoccaMonzaItaly,European Reference Network on Hepatological Diseases (ERN RARE‐LIVER)San Gerardo HospitalMonzaItaly
| | | | - Gaudio Eugenio
- Department of AnatomicalHistological, Forensic Medicine and Orthopedics SciencesSapienza University of RomeRomeItaly
| | - Alvaro Domenico
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| |
Collapse
|
33
|
Kang XL, He LR, Chen YL, Wang SB. Role of doublecortin-like kinase 1 and leucine-rich repeat-containing G-protein-coupled receptor 5 in patients with stage II/III colorectal cancer: Cancer progression and prognosis. World J Gastroenterol 2020; 26:6853-6866. [PMID: 33268966 PMCID: PMC7684452 DOI: 10.3748/wjg.v26.i43.6853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/29/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are a subpopulation of cancer cells with the potential of self-renewal and differentiation. CSCs play critical roles in tumorigenesis, recurrence, metastasis, radiation tolerance and chemoresistance.
AIM To assess the expression patterns and clinical potential of doublecortin-like kinase 1 (DCLK1) and leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5), as prognostic CSC markers of colorectal cancer (CRC).
METHODS The expression of DCLK1 and Lgr5 in CRC tissue sections from 92 patients was determined by immunohistochemistry. Each case was evaluated using a combined scoring method based on signal intensity staining (scored 0-3) and the proportion of positively stained cancer cells (scored 0-3). The final staining score was calculated as the intensity score multiplied by the proportion score. Low expression of DCLK1 and Lgr5 was defined as a score of 0-3; high expression of DCLK1 and Lgr5 was defined as a score of ≥ 4. Specimens were categorized as either high or low expression, and the correlation between the expression of DCLK1 or Lgr5 and clinicopathological factors was investigated.
RESULTS DCLK1 and Lgr5 expression levels were significantly positively correlated. CRC patients with high DCLK1, Lgr5 and DCLK1/Lgr5 expressions had poorer progression-free survival and overall survival. Moreover, high expression of DCLK1 was an independent prognostic factor for recurrence and overall survival in patients with CRC by multivariate analysis (P = 0.026 and P = 0.049, respectively).
CONCLUSION DCLK1 may be a potential CSC marker for the recurrence and survival of CRC patients.
Collapse
Affiliation(s)
- Xue-Ling Kang
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong Province, China
| | - Li-Rui He
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Yao-Li Chen
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Shu-Bin Wang
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, China Cancer Institute of Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong Province, China
| |
Collapse
|
34
|
Parisi E, Sorolla A, Montal R, González-Resina R, Novell A, Salud A, Sorolla MA. Prognostic Factors Involved in the Epithelial-Mesenchymal Transition Process in Colorectal Cancer Have a Preponderant Role in Oxidative Stress: A Systematic Review and Meta-Analysis. Cancers (Basel) 2020; 12:E3330. [PMID: 33187205 PMCID: PMC7697515 DOI: 10.3390/cancers12113330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is one of the most accepted mechanisms leading to metastasis, which is responsible for most of the cancer-related deaths. In order to identify EMT-related biomarkers able to predict clinical outcomes in colorectal cancer (CRC), a systematic review and meta-analysis of prognostic factors associated to overall survival (OS) and progression free survival (PFS) was conducted. The systematic literature search included studies from June 2014 to June 2019 available at PubMed and Scopus databases. Meta-analysis was performed for those markers appearing in minimum three works with a total number of 8656 participants. The rest were enlisted and subjected to functional enrichment. We identified nine clinical biomarkers and 73 EMT-related molecular biomarkers associated to OS and/or PFS in CRC. The significant enrichment of biomarkers found involved in cellular oxidoreductase activity suggests that ROS generation plays an active role in the EMT process. Clinical practice needs new biomarkers with a reliable prognostic value able to predict clinical outcomes in CRC. Our integrative work supports the role of oxidative stress in tumorigenesis and EMT progress highlighting the importance of deciphering this specific mechanism to get a better understanding of metastasis.
Collapse
Affiliation(s)
- Eva Parisi
- Research Group of Cancer Biomarkers, Biomedical Research Institute (IRBLleida), 25198 Lleida, Spain; (E.P.); (R.M.); (R.G.-R.); (A.N.); (A.S.)
| | - Anabel Sorolla
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia;
- Centre for Medical Research, The University of Western Australia, Crawley, WA 6009, Australia
| | - Robert Montal
- Research Group of Cancer Biomarkers, Biomedical Research Institute (IRBLleida), 25198 Lleida, Spain; (E.P.); (R.M.); (R.G.-R.); (A.N.); (A.S.)
- Department of Medical Oncology, Arnau de Vilanova University Hospital, 25198 Lleida, Spain
| | - Rita González-Resina
- Research Group of Cancer Biomarkers, Biomedical Research Institute (IRBLleida), 25198 Lleida, Spain; (E.P.); (R.M.); (R.G.-R.); (A.N.); (A.S.)
| | - Anna Novell
- Research Group of Cancer Biomarkers, Biomedical Research Institute (IRBLleida), 25198 Lleida, Spain; (E.P.); (R.M.); (R.G.-R.); (A.N.); (A.S.)
| | - Antonieta Salud
- Research Group of Cancer Biomarkers, Biomedical Research Institute (IRBLleida), 25198 Lleida, Spain; (E.P.); (R.M.); (R.G.-R.); (A.N.); (A.S.)
- Department of Medical Oncology, Arnau de Vilanova University Hospital, 25198 Lleida, Spain
| | - Maria Alba Sorolla
- Research Group of Cancer Biomarkers, Biomedical Research Institute (IRBLleida), 25198 Lleida, Spain; (E.P.); (R.M.); (R.G.-R.); (A.N.); (A.S.)
| |
Collapse
|
35
|
Liu Y, Ferguson FM, Li L, Kuljanin M, Mills CE, Subramanian K, Harshbarger W, Gondi S, Wang J, Sorger PK, Mancias JD, Gray NS, Westover KD. Chemical Biology Toolkit for DCLK1 Reveals Connection to RNA Processing. Cell Chem Biol 2020; 27:1229-1240.e4. [PMID: 32755567 PMCID: PMC8053042 DOI: 10.1016/j.chembiol.2020.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/02/2020] [Accepted: 06/24/2020] [Indexed: 12/27/2022]
Abstract
Doublecortin-like kinase 1 (DCLK1) is critical for neurogenesis, but overexpression is also observed in multiple cancers and is associated with poor prognosis. Nevertheless, the function of DCLK1 in cancer, especially the context-dependent functions, are poorly understood. We present a "toolkit" that includes the DCLK1 inhibitor DCLK1-IN-1, a complementary DCLK1-IN-1-resistant mutation G532A, and kinase dead mutants D511N and D533N, which can be used to investigate signaling pathways regulated by DCLK1. Using a cancer cell line engineered to be DCLK1 dependent for growth and cell migration, we show that this toolkit can be used to discover associations between DCLK1 kinase activity and biological processes. In particular, we show an association between DCLK1 and RNA processing, including the identification of CDK11 as a potential substrate of DCLK1 using phosphoproteomics.
Collapse
Affiliation(s)
- Yan Liu
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA; Department of Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Fleur M Ferguson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Lianbo Li
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA; Department of Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Miljan Kuljanin
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Caitlin E Mills
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA
| | - Kartik Subramanian
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA
| | - Wayne Harshbarger
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA; Department of Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Sudershan Gondi
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA; Department of Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph D Mancias
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kenneth D Westover
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA; Department of Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.
| |
Collapse
|
36
|
Razi S, Sadeghi A, Asadi-Lari Z, Tam KJ, Kalantari E, Madjd Z. DCLK1, a promising colorectal cancer stem cell marker, regulates tumor progression and invasion through miR-137 and miR-15a dependent manner. Clin Exp Med 2020; 21:139-147. [PMID: 32965580 DOI: 10.1007/s10238-020-00665-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022]
Abstract
Cancer stem cells (CSCs) are thought to be a major player in tumor initiation, progression, and metastasis. Targeting CSCs for elimination presents a promising therapeutic strategy; however, this approach will require a stronger understanding of CSC biology and identification of CSC-specific markers. The present study was conducted to examine the correlation between DCLK1 and miR-137 and miR-15a levels in colorectal cancer. A total of 222 samples, including 181 colorectal cancer specimens, 24 adenomatosis, and 17 non-adenomatosis colonic polyps, were stained for DCLK1 expression using immunohistochemistry. Also, expression of miR-137 and miR-15a was assessed in colorectal cancer with high and low DCLK1 expression levels. Most colorectal cancer specimens (76%) showed strong expression of DCLK1, whereas only 21% of adenomatous and none of non-adenomatous colonic polyps showed strong DCLK1 expression. A significant difference in DCLK1 expression was found between colorectal cancer, adenomatous, and non-adenomatous colonic polyps (P < 0.001). Higher expression of DCLK1 was more frequently detected in colorectal cases with larger tumor size (P = 0.03), poor differentiation (P = 0.03), and lymph node involvement (P = 0.04). Comparison of miR-137 and miR-15a in colorectal cancer cases revealed a significant inverse correlation with DCLK1 expression (P = 0.03 and P = 0.04, respectively). DCLK1 may act as a candidate marker for colorectal cancer stem cells. The critical role of DCLK1 in colorectal cancer suggests that it may represent an early diagnostic marker and therapeutic target; however, further investigation is warranted.
Collapse
Affiliation(s)
- Sepideh Razi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Asieh Sadeghi
- Department of Pathology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Kevin J Tam
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Elham Kalantari
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Department of Pathology, Iran University of Medical Sciences, Tehran, Iran. .,Department of Molecular Medicine, Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Güllü N, Kobelt D, Brim H, Rahman S, Timm L, Smith J, Soleimani A, Di Marco S, Bisti S, Ashktorab H, Stein U. Saffron Crudes and Compounds Restrict MACC1-Dependent Cell Proliferation and Migration of Colorectal Cancer Cells. Cells 2020; 9:cells9081829. [PMID: 32756469 PMCID: PMC7463853 DOI: 10.3390/cells9081829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/12/2022] Open
Abstract
The high mortality rate of colorectal cancer (CRC) patients is directly associated with metastatic dissemination. However, therapeutic options specifically for metastasis are still limited. We previously identified Metastasis-Associated in Colon Cancer 1 (MACC1) as a major causal metastasis-inducing gene. Numerous studies confirmed its value as a biomarker for metastasis risk. We investigated the inhibitory impact of saffron on MACC1-induced cancer cell growth and motility. Saffron crudes restricted the proliferation and migration of MACC1-expressing CRC cells in a concentration- and MACC1-dependent manner. Saffron delays cell cycle progression at G2/M-phase and does not induce apoptosis. Rescue experiments showed that these effects are reversible. Analysis of active saffron compounds elucidated that crocin was the main compound that reproduced total saffron crudes effects. We showed the interaction of MACC1 with the cancer stem cell (CSC) marker DCLK1, which contributes to metastasis formation in different tumor entities. Saffron extracts reduced DCLK1 with crocin being responsible for this reduction. Saffron's anti-proliferative and anti-migratory effects in MACC1-expressing cells are mediated by crocin through DCLK1 down-regulation. This research is the first identification of saffron-based compounds restricting cancer cell proliferation and motility progression via the novel target MACC1.
Collapse
Affiliation(s)
- Nazli Güllü
- Experimental and Clinical Research Center, Charité—Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany; (N.G.); (D.K.); (S.R.); (L.T.); (J.S.)
- German Cancer Consortium (DKTK), Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Dennis Kobelt
- Experimental and Clinical Research Center, Charité—Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany; (N.G.); (D.K.); (S.R.); (L.T.); (J.S.)
- German Cancer Consortium (DKTK), Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Hassan Brim
- College of Medicine & Cancer Center, Howard University 2041 Georgia Av. NW, Washington, DC 20059, USA;
- Correspondence: (H.B.); (H.A.); (U.S.); Tel.: +1-202-806-4198 (H.B.); +1-202-806-6121 (H.A.); +49-30-9406-3432 (U.S.); Fax: +1-202-667-1686 (H.B.); +1-202-667-1686 (H.A.); +49-30-9406-3432 (U.S.)
| | - Shaman Rahman
- Experimental and Clinical Research Center, Charité—Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany; (N.G.); (D.K.); (S.R.); (L.T.); (J.S.)
| | - Lena Timm
- Experimental and Clinical Research Center, Charité—Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany; (N.G.); (D.K.); (S.R.); (L.T.); (J.S.)
| | - Janice Smith
- Experimental and Clinical Research Center, Charité—Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany; (N.G.); (D.K.); (S.R.); (L.T.); (J.S.)
| | - Akbar Soleimani
- College of Medicine & Cancer Center, Howard University 2041 Georgia Av. NW, Washington, DC 20059, USA;
| | - Stefano Di Marco
- Center for Synaptic Neuroscience and Technology, The Italian Institute of Technology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Silvia Bisti
- NetS3 Laboratory Neuroscience and Brain Technologies (NBT), The Italian Institute of Technology (IIT), Via Morego 30, 16128 Genova, Italy;
- Consorzio Interuniversitario INBB Istituto Nazionale Biostrutture e Biosistemi, V.le Medaglie D’Oro, 305, 00136 Roma, Italy
| | - Hassan Ashktorab
- College of Medicine & Cancer Center, Howard University 2041 Georgia Av. NW, Washington, DC 20059, USA;
- Correspondence: (H.B.); (H.A.); (U.S.); Tel.: +1-202-806-4198 (H.B.); +1-202-806-6121 (H.A.); +49-30-9406-3432 (U.S.); Fax: +1-202-667-1686 (H.B.); +1-202-667-1686 (H.A.); +49-30-9406-3432 (U.S.)
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité—Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany; (N.G.); (D.K.); (S.R.); (L.T.); (J.S.)
- German Cancer Consortium (DKTK), Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Correspondence: (H.B.); (H.A.); (U.S.); Tel.: +1-202-806-4198 (H.B.); +1-202-806-6121 (H.A.); +49-30-9406-3432 (U.S.); Fax: +1-202-667-1686 (H.B.); +1-202-667-1686 (H.A.); +49-30-9406-3432 (U.S.)
| |
Collapse
|
38
|
Zhang L, Zhou S, Guo E, Chen X, Yang J, Li X. DCLK1 inhibition attenuates tumorigenesis and improves chemosensitivity in esophageal squamous cell carcinoma by inhibiting β-catenin/c-Myc signaling. Pflugers Arch 2020; 472:1041-1049. [PMID: 32533239 DOI: 10.1007/s00424-020-02415-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/31/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022]
Abstract
Doublecortin-like kinase 1 (DCLK1) is involved in tumorigenesis, tumor growth and metastasis, and epithelial-to-mesenchymal transition in many digestive tract tumors. It is reportedly highly expressed in Barrett's esophagus and esophageal adenocarcinoma, but its effects on the occurrence and progression of esophageal squamous cell carcinoma (ESCC) remain unclear. In this study, real-time PCR and western blot analysis confirmed significant upregulation of DCLK1 expression in human ESCC tissues and cell lines. CCK-8 assay showed that transfection with siRNA against DCLK1 (si-DCLK1) markedly inhibited cell proliferation and colony formation in the ESCC cell lines Eca109 and TE1. Transwell assay revealed that si-DCLK1 transfection inhibited the migratory and invasive capacities of Eca109 and TE1 cells. Moreover, si-DCLK1 increased the chemosensitivity of these cells to cisplatin, as indicated by inhibited cell viability and colony formation, and increased ROS and apoptosis in cisplatin-treated cells. Western blot assay revealed that expression of nuclear β-catenin and c-Myc was significantly increased in ESCC tissues and that si-DCLK1 markedly downregulated nuclear β-catenin and c-Myc in Eca109 cells. Treatment with lithium chloride, an activator of β-catenin signaling, partially abolished the si-DCLK1-induced inhibition of proliferation, migration, invasion, and chemoresistance of ESCC cells. These findings suggest that knockdown of DCLK1 may inhibit the progression of ESCC by regulating proliferation, migration, invasion, and chemosensitivity via suppressing the β-catenin/c-Myc pathway, supporting a promising therapeutic target against ESCC.
Collapse
Affiliation(s)
- Lianqun Zhang
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Shengli Zhou
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, 450003, Henan, China
| | - Ertao Guo
- Department of Gastroenterology, The First Affiliated Hospital of Henan University, Kaifeng, 475000, Henan, China
| | - Xiaoqi Chen
- Department of Digestive Oncology, The First Affiliated Hospital of Henan University of TCM, Zhengzhou, 450003, Henan, China
| | - Jun Yang
- Anyang Tumor Hospital, The Fourth Affiliated Hospital of Henan University of Science and Technology, Anyang, 455000, Henan, China
| | - Xiuling Li
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
39
|
Di Stazio M, Morgan A, Brumat M, Bassani S, Dell'Orco D, Marino V, Garagnani P, Giuliani C, Gasparini P, Girotto G. New age-related hearing loss candidate genes in humans: an ongoing challenge. Gene 2020; 742:144561. [PMID: 32173538 DOI: 10.1016/j.gene.2020.144561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/08/2020] [Indexed: 01/18/2023]
Abstract
Age-related hearing loss (ARHL) is the most frequent sensory disorder in the elderly, affecting approximately one-third of people aged more than 65 years. Despite a large number of people affected, ARHL is still an area of unmet clinical needs, and only a few ARHL susceptibility genes have been detected so far. In order to further investigate the genetics of ARHL, we analyzed a series of 46 ARHL candidate genes, selected according to previous Genome Wide Association Studies (GWAS) data, literature updates and animal models, in a large cohort of 464 Italian ARHL patients. We have filtered the variants according to a) pathogenicity prediction, b) allele frequency in public databases, c) allele frequency in an internal cohort of 113 healthy matched controls, and 81 healthy semi-supercentenarians. After data analysis, all the variants of interest have been tested by functional "in silico" or "in vitro" experiments (i.e., molecular dynamics simulations and protein translation analysis) to assess their pathogenic role, and the expression of the mutated genes have been checked in mouse or zebrafish inner ear. This multi-step approach led to the characterization of a series of ultra-rare likely pathogenic variants in DCLK1, SLC28A3, CEP104, and PCDH20 genes, contributing to describe the first association of these genes with ARHL in humans. These results provide essential insights on the understanding of the molecular bases of such a complex, heterogeneous and frequent disorder, unveiling new possible targets for the future development of innovative therapeutic and preventive approaches that could improve the quality of life of the millions of people affected worldwide.
Collapse
Affiliation(s)
- M Di Stazio
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy.
| | - A Morgan
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy; Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - M Brumat
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - S Bassani
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - D Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - V Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - P Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Italy; Interdepartimental Centre L. Galvani (CIG), University of Bologna, Italy; Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
| | - C Giuliani
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Italy; School of Anthropology and Museum Ethnography, University of Oxford, United Kingdom
| | - P Gasparini
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy; Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - G Girotto
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy; Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
40
|
Wu X, Qu D, Weygant N, Peng J, Houchen CW. Cancer Stem Cell Marker DCLK1 Correlates with Tumorigenic Immune Infiltrates in the Colon and Gastric Adenocarcinoma Microenvironments. Cancers (Basel) 2020; 12:cancers12020274. [PMID: 31979136 PMCID: PMC7073156 DOI: 10.3390/cancers12020274] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 12/19/2022] Open
Abstract
Immunotherapy that has proven efficacy in several solid cancers plays a partial role in improving clinical outcomes of advanced gastrointestinal (GI) cancers. There is an unmet need to find new immune-related therapeutic targets. Doublecortin-like kinase 1 (DCLK1) marks tuft cells which are recognized as cancer-initiating cells and regulators of the type II immune response, and has been studied for its role in many cancers including colon and gastric cancers, but its role in tumor immunity remains unexplored. In the current study, we analyzed colon and gastric cancer RNA sequencing data from 283 and 415 patients, respectively, from The Cancer Genome Atlas (TCGA). High DCLK1 expression predicted the worse clinical outcomes in colon and gastric cancer patients and correlated with increased immune and stromal components. Further analysis indicated that DCLK1 was strongly linked to infiltration of multiple immune cell types, especially TAMs and Treg, and strongly correlated with increased CD8+ T cell inhibitors TGFB1 and CXCL12 and their receptors, suggesting it may contribute to TAM-mediated inhibition of CD8+ T cells. Interestingly, we found that DCLK1 was a prognostic biomarker in left-sided colon cancer, which has worse outcomes and demonstrates a reduced response to existing immunotherapies. In conclusion, our results demonstrate that DCLK1 is linked with functional regulation of the tumor microenvironment and may have potential as a prognostic biomarker and adjuvant target to promote immunotherapy sensitivity in colon and gastric cancer patients.
Collapse
Affiliation(s)
- Xiangyan Wu
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (X.W.); (D.Q.)
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
| | - Dongfeng Qu
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (X.W.); (D.Q.)
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| | - Nathaniel Weygant
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Correspondence: (J.P.); (C.W.H.); Tel.: +1-0591-2286-1303 (J.P.); +86-405-271-2175 (C.W.H.); Fax: +1-0591-2286-1157 (J.P.); +86-405-271-5450 (C.W.H.)
| | - Courtney W. Houchen
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (X.W.); (D.Q.)
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK 73104, USA
- Correspondence: (J.P.); (C.W.H.); Tel.: +1-0591-2286-1303 (J.P.); +86-405-271-2175 (C.W.H.); Fax: +1-0591-2286-1157 (J.P.); +86-405-271-5450 (C.W.H.)
| |
Collapse
|
41
|
Kadletz L, Kenner L, Wiebringhaus R, Jank B, Mayer C, Gurnhofer E, Konrad S, Heiduschka G. Evaluation of the cancer stem cell marker DCLK1 in patients with lymph node metastases of head and neck cancer. Pathol Res Pract 2019; 215:152698. [PMID: 31706685 DOI: 10.1016/j.prp.2019.152698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Lymph node metastases are frequently detected in head and neck squamous cell carcinoma (HNSCC) patients. Little is known about biomarkers expressed in lymph node metastases or their influence on clinical outcome. Doublecortin-like kinase 1 (DCLK1) is one marker that might be associated with outcome, owing to its correlation with stem cell-like characteristics. METHODS We assessed the expression of DCLK1 in 74 postoperatively irradiated patients in histologically confirmed HNSCC lymph node metastases. Statistical analysis of the association with DCLK1 on clinical outcomes was performed. RESULTS DCLK1 was expressed in 63.5% of our patient cohort. DCLK1(+) HNSCC patients, compared with those without DCLK1 expression, showed a significantly poorer time to recurrence. Moreover, we observed a significantly poorer time to recurrence in HPV(-) HNSCC patients, and significantly shorter overall and disease-free survival rates in HPV(-) oropharyngeal cancer patients, compared with HPV(+) patients with these cancers. HPV(+) patients showed no significant differences in survival time according to DCLK1 expression. However, recurrent disease occurred in only DCLK1(+) patients. Mulitivariate analysis showed that DCLK1 expression in lymph node metastases is an independent marker for recurrence. CONCLUSION DCLK1 expression might be associated with poorer clinical outcomes in HNSCC patients, specifically in HPV(-) move patients. However, larger studies are required to verify our results.
Collapse
Affiliation(s)
- Lorenz Kadletz
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria.
| | - Lukas Kenner
- Institute of Pathology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria; Department of Experimental Pathology and Laboratory Animal Pathology, University of Veterinary Medicine, Vienna, Austria.
| | | | - Bernhard Jank
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Christina Mayer
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Stefan Konrad
- Department of Radiotherapy and -Oncology, Medical University of Vienna, Vienna, Austria
| | - Gregor Heiduschka
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
42
|
Narayanankutty A. PI3K/ Akt/ mTOR Pathway as a Therapeutic Target for Colorectal Cancer: A Review of Preclinical and Clinical Evidence. Curr Drug Targets 2019; 20:1217-1226. [DOI: 10.2174/1389450120666190618123846] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
Background:
Phosphoinositide 3-kinase (PI3Ks) is a member of intracellular lipid kinases
and involved in the regulation of cellular proliferation, differentiation and survival. Overexpression of
the PI3K/Akt/mTOR signalling has been reported in various forms of cancers, especially in colorectal
cancers (CRC). Due to their significant roles in the initiation and progression events of colorectal cancer,
they are recognized as a striking therapeutic target.
Objective:
The present review is aimed to provide a detailed outline on the role of PI3K/Akt/mTOR
pathway in the initiation and progression events of colorectal cancers as well as its function in drug
resistance. Further, the role of PI3K/Akt/mTOR inhibitors alone and in combination with other chemotherapeutic
drugs, in alleviating colorectal cancer is also discussed. The review contains preclinical
and clinical evidence as well as patent literature of the pathway inhibitors which are natural
and synthetic in origin.
Methods:
The data were obtained from PubMed/Medline databases, Scopus and Google patent literature.
Results:
PI3K/Akt/mTOR signalling is an important event in colorectal carcinogenesis. In addition, it
plays significant roles in acquiring drug resistance as well as metastatic initiation events of CRCs.
Several small molecules of natural and synthetic origin have been found to be potent inhibitors of
CRCs by effectively downregulating the pathway. Data from various clinical studies also support
these pathway inhibitors and several among them are patented.
Conclusion:
Inhibitors of the PI3K/mTOR pathway have been successful for the treatment of primary
and metastatic colorectal cancers, rendering the pathway as a promising clinical cancer therapeutic target.
Collapse
Affiliation(s)
- Arunaksharan Narayanankutty
- Post Graduate & Research Department of Zoologyid1, St. Joseph's College (Autonomous), Devagiri, Calicut, Kerala, 673008, India
| |
Collapse
|
43
|
DCLK1 Plays a Metastatic-Promoting Role in Human Breast Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1061979. [PMID: 31223610 PMCID: PMC6541964 DOI: 10.1155/2019/1061979] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 04/16/2019] [Indexed: 01/10/2023]
Abstract
Background Doublecortin-like kinase 1 (DCLK1) has been universally identified as a cancer stem cell (CSC) marker and is found to be overexpressed in many types of cancers including breast cancer. However, there is little data regarding the functional role of DCLK1 in breast cancer metastasis. In the present study, we sought to investigate whether and how DCLK1 plays a metastatic-promoting role in human breast cancer cells. Methods We used Crispr/Cas9 technology to knock out DCLK1 in breast cancer cell line BT474, which basically possesses DCLK1 at a higher level, and stably overexpressed DCLK1 in another breast cancer cell line, T47D, that basically expresses DCLK1 at a lower level. We further analyzed the alterations of metastatic characteristics and the underlying mechanisms in these cells. Results It was shown that, compared with the corresponding control cells, DCLK1 overexpression led to an increase in metastatic behaviors including enhanced migration and invasion of T47D cells. By contrast, forced depletion of DCLK1 drastically inhibited these metastatic characteristics in BT474 cells. Mechanistically, the epithelial-mesenchymal transition (EMT) program, which is critical for cancer metastasis, was prominently activated in DCLK1-overexpressing cancer cells, evidenced by a decrease in an epithelial marker ZO-1 and an enhancement in several mesenchymal markers including ZEB1 and Vimentin. In addition, DCLK1 overexpression induced the ERK MAPK pathway, which resultantly enhanced the expression of MT1-MMP that is also involved in cancer metastasis. Knockout of DCLK1 could reverse these events, further supporting a metastatic-promoting role for DCLK1. Conclusions Collectively, our data suggested that DCLK1 overexpression may be responsible for the increased metastatic features in breast cancer cells. Targeting DCLK1 may become a therapeutic option for breast cancer metastasis.
Collapse
|
44
|
Khodadadi Kohlan A, Saidijam M, Amini R, Samadi P, Najafi R. Induction of let-7e gene expression attenuates oncogenic phenotype in HCT-116 colorectal cancer cells through targeting of DCLK1 regulation. Life Sci 2019; 228:221-227. [PMID: 31075231 DOI: 10.1016/j.lfs.2019.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 12/30/2022]
Abstract
AIMS MicroRNAs (miRNAs) are small noncoding RNAs that negatively control gene expression at the translational level. There are compelling evidences indicating that the expression of let-7e is downregulated in various cancers, however, the role of let-7e in colorectal cancer (CRC) and its mechanism has been remained unknown. Here, we investigated the potential role of let-7e in regulating CRC cells phenotypes. MAIN METHODS Let-7e and DCLK1 siRNA were transfected in HCT-116 cells. Colony formation assay, scratch test, Annexin V/PI flow cytometry, and sphere formation assay were performed to examine the cell proliferation, migration, apoptosis, and stemness, respectively. The expression of let-7e, epithelial-mesenchymal transition (EMT)-related genes, Doublecortin like kinase protein 1 (DCLK1), and cancer stem cells (CSCs) were assessed using RT-qPCR while the protein level of DCLK1 was determined by western blotting. KEY FINDINGS Overexpression of let-7e effectively inhibited cell proliferation, suppressed migration, reduced sphere formation, and precluded EMT process as well as stemness factors. Furthermore, let-7e suppressed DCLK1 expression. Additionally, we found that the expression of let-7e was negatively correlated with DCLK1 expression in CRC cells. SIGNIFICANCE Let-7e plays an important role as tumor suppressor miRNA in CRC probably through inhibition of DCLK1 expression.
Collapse
Affiliation(s)
- Alisa Khodadadi Kohlan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pouria Samadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
45
|
Shafiei S, Kalantari E, Saeednejad Zanjani L, Abolhasani M, Asadi Lari MH, Madjd Z. Increased expression of DCLK1, a novel putative CSC maker, is associated with tumor aggressiveness and worse disease-specific survival in patients with bladder carcinomas. Exp Mol Pathol 2019; 108:164-172. [PMID: 31028726 DOI: 10.1016/j.yexmp.2019.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/13/2019] [Accepted: 04/24/2019] [Indexed: 01/06/2023]
Abstract
Doublecortin-like kinase 1 (DCLK1) has been characterized as a novel potential cancer stem cell (CSC) marker in several types of cancer. It is considered as one of the most specific markers for distinguishing colorectal CSCs from normal stem cells. Yet, there are limited reports on the role of DCLK1 as a putative CSC marker in bladder cancer. Using immunohistochemistry, DCLK1 expression was examined in a well-defined tissue microarray series of 472 bladder cancer tissues. The association between DCLK1 protein expression and clinicopathological features, as well as survival outcomes, was assessed. Our findings showed strong, moderate, and weak DCLK1 expression in 123 (26.1%), 230 (48.7%), and 119 (25.2%) of the bladder cancer specimens, respectively. Higher expression of DCLK1 was significantly associated with increase in histological grade (P ≤ .001), pT stage (P = .014), lamina propria (P = .006), and lamina propria/muscularis (L/M) involvement (P = .014). On multivariate analysis, pT stage (P < .001), histological grade (P = .021), and lamina propria involvement (P = .001) were independent prognostic factors in DCLK1 expression. Moreover, the expression of DCLK1 was found to be an independent marker of poor prognosis for disease- specific survival (DSS) (P = .048) in bladder carcinomas. Our observations showed that DCLK1 expression was associated with more aggressive tumor behavior, more advanced disease, and poorer DSS in patients with bladder carcinomas. However, any potential clinical applications of DCLK1 as a novel target molecule in bladder cancer patients would require further investigations.
Collapse
Affiliation(s)
- Somayeh Shafiei
- Dep of Pathology, Iran University of Medical Sciences, (IUMS), Tehran, Iran
| | - Elham Kalantari
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Maryam Abolhasani
- Dep of Pathology, Iran University of Medical Sciences, (IUMS), Tehran, Iran; Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Hasheminejad Kidney, Iran University of Medical Sciences, (IUMS), Tehran, Iran
| | | | - Zahra Madjd
- Dep of Pathology, Iran University of Medical Sciences, (IUMS), Tehran, Iran; Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada..
| |
Collapse
|
46
|
Liang TS, Zheng YJ, Wang J, Zhao JY, Yang DK, Liu ZS. MicroRNA-506 inhibits tumor growth and metastasis in nasopharyngeal carcinoma through the inactivation of the Wnt/β-catenin signaling pathway by down-regulating LHX2. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:97. [PMID: 30791932 PMCID: PMC6385449 DOI: 10.1186/s13046-019-1023-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 01/06/2019] [Indexed: 12/22/2022]
Abstract
Background Epithelial-mesenchymal transition (EMT)-associated proteins play key roles in cancer progression and metastasis with the involvement of microRNAs (miRNAs). This study aims to assess the role of miR-506 working in tandem with LIM Homeobox 2 (LHX2) in EMT and metastasis through the Wnt/β-catenin signaling pathway in nasopharyngeal carcinoma (NPC). Methods Differentially expressed genes associated with NPC were screened using microarray analyses, from which LHX2 was identified. Next, the potential relationship between miR-506 and LHX2 was analyzed. In order to explore the effect of miR-506 or LHX2 on NPC cell proliferation, migration, invasion and apoptosis, serials of mimics, inhibitors or siRNA against LHX2 were transfected into NPC cells. Then, the expression patterns of LHX2, Wnt1, β-catenin, E-cadherin, Vimentin, TCF4 and Twist were determined to assess the influence of miR-506 or LHX2 on EMT as well as the relationship between the Wnt/β-catenin signaling pathway and TCF4. The tumorigenicity and lymph node metastasis (LNM) in xenograft tumors of nude mice were observed. Results The has-miR-506-3p was identified as the down-regulated gene in NPC based on the microarray data while LHX2 was negatively regulated by miR-506. Over-expression of miR-506 or silencing of LHK2 inhibited NPC cell proliferation, migration, invasion, tumorigenicity and LNM but promoted apoptosis indicated by decreased Wnt1, β-catenin, Vimentin, TCF4 and Twist expressions along with increased E-cadherin expressions. Conclusions miR-506 inhibits tumor growth and metastasis in NPC via inhibition of Wnt/β-catenin signaling by down-regulating LHX2, accompanied by decreased TCF4. Taken together, miR-506 targeted-inhibition LHX2 presents a promising therapeutic strategy for the treatment of NPC. Trial registration ChiCTR1800018889. Registered 15 October 2018. Electronic supplementary material The online version of this article (10.1186/s13046-019-1023-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tian-Song Liang
- Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, Zhengdong Branch, Zhengzhou, 475000, Henan Province, People's Republic of China
| | - Ying-Juan Zheng
- Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, Zhengdong Branch, Zhengzhou, 475000, Henan Province, People's Republic of China
| | - Juan Wang
- Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, Zhengdong Branch, Zhengzhou, 475000, Henan Province, People's Republic of China
| | - Jing-Yi Zhao
- Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, Zhengdong Branch, Zhengzhou, 475000, Henan Province, People's Republic of China
| | - Dao-Ke Yang
- Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, Zhengdong Branch, Zhengzhou, 475000, Henan Province, People's Republic of China.
| | - Zhang-Suo Liu
- Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, Zhengdong Branch, Zhengzhou, 475000, Henan Province, People's Republic of China.
| |
Collapse
|
47
|
Zhang X, Yao J, Shi H, Gao B, Zhang L. LncRNA TINCR/microRNA-107/CD36 regulates cell proliferation and apoptosis in colorectal cancer via PPAR signaling pathway based on bioinformatics analysis. Biol Chem 2019; 400:663-675. [PMID: 30521471 DOI: 10.1515/hsz-2018-0236] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 11/23/2018] [Indexed: 12/21/2022]
Abstract
Abstract
The present study aims to determine the potential biomarkers and uncover the regulatory mechanisms of the long-noncoding RNA (lncRNA) TINCR/miR-107/CD36 axis in colorectal cancer (CRC). Aberrantly-expressed lncRNAs and differential-expressed genes were identified by analyzing the dataset GSE40967. Gene set enrichment analysis was employed, and Cytoscape software helped in establishing the co-expression network between lncRNAs and genes. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis contributes to examining the expression levels of lncRNA TINCR, miR-107 and CD36. The dual luciferase assay was used to validate the association between miR-107 and lncRNA TINCR or CD36. The EdU incorporation assay was employed, and flow cytometry was employed to detect cell apoptosis with the tumor xenograft model being utilized. Significantly dysregulated lncRNAs and mRNAs were identified. The peroxisome proliferator-activated receptor (PPAR) signaling pathway in CRC tissues was down-regulated. The loss of TINCR expression was associated with CRC progression. The expression levels of the TINCR and CD36 were down-regulated. We identified miR-107 as an inhibitory target of TINCR and CD36. Overexpression of TINCR could inhibit cell proliferation and promote apoptosis. MiR-107 overexpression in CRC cells induced proliferation and impeded apoptosis. A regulatory function of the lncRNA TINCR/miR-107/CD36 axis in CRC was revealed. LncRNA TINCR overexpression exerted suppressive influence on CRC progression through modulating the PPAR signaling pathway via the miR-107/CD36 axis.
Collapse
Affiliation(s)
- Xuexiu Zhang
- Department of Gastroenterology , The First Affiliated Hospital of Zhengzhou University , No. 1 Jianshe East Road of Erqi District , Zhengzhou 450052, Henan , China
| | - Jianning Yao
- Department of Gastroenterology , The First Affiliated Hospital of Zhengzhou University , No. 1 Jianshe East Road of Erqi District , Zhengzhou 450052, Henan , China
| | - Haoling Shi
- Department of General Surgery , The First People Hospital of Zhengzhou , Zhengzhou 450004, Henan , China
| | - Bing Gao
- Department of Gastroenterology , The First Affiliated Hospital of Zhengzhou University , No. 1 Jianshe East Road of Erqi District , Zhengzhou 450052, Henan , China
| | - Lianfeng Zhang
- Department of Gastroenterology , The First Affiliated Hospital of Zhengzhou University , No. 1 Jianshe East Road of Erqi District , Zhengzhou 450052, Henan , China
| |
Collapse
|
48
|
Takeda K, Mizushima T, Yokoyama Y, Hirose H, Wu X, Qian Y, Ikehata K, Miyoshi N, Takahashi H, Haraguchi N, Hata T, Matsuda C, Doki Y, Mori M, Yamamoto H. Sox2 is associated with cancer stem-like properties in colorectal cancer. Sci Rep 2018; 8:17639. [PMID: 30518951 PMCID: PMC6281572 DOI: 10.1038/s41598-018-36251-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/13/2018] [Indexed: 01/28/2023] Open
Abstract
Sox2 is known as the undifferentiated cell marker. Recent studies have shown that Sox2 may also be involved in the maintenance of cancer stem cells (CSCs) in skin and bladder cancers. In this study, we aimed to clarify the role of Sox2 in colorectal CSCs. Sox2 expression was measured in colon cancer cells and colorectal clinical samples by qRT-PCR and western blot analysis. To visualize the active Sox2 mRNA production, we generated a Sox2 promoter-dependent DsRed fluorescence emission system. Colon cancer cell lines and colorectal tumor tissues generally expressed the Sox2 protein. Knockdown of Sox2 by siRNA led to increased proliferative activity in Caco2 cells. Kaplan-Meier survival curves showed that the group with high Sox2 mRNA expression had a worse prognosis for relapse-free survival (RFS) than the low expression group (P = 0.045, median follow-up 60.0 months). Time-lapse image analysis revealed that most DsRed+ cells exhibited typical asymmetric cell division and had higher CSC marker expressions. The DsRed+ cells exhibited chemoresistance and they grew slower in vitro, yet they established rather larger tumors in vivo. Our data suggest that Sox2 may be a potential biomarker for colorectal CSCs.
Collapse
Affiliation(s)
- Koki Takeda
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Tsunekazu Mizushima
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Yuhki Yokoyama
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Haruka Hirose
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Xin Wu
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Yamin Qian
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Katsuya Ikehata
- Department of Medical Physics and Engineering, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Norikatsu Miyoshi
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Hidekazu Takahashi
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Naotsugu Haraguchi
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Taishi Hata
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Chu Matsuda
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Yuichiro Doki
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Masaki Mori
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Hirofumi Yamamoto
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan. .,Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
49
|
Takiyama A, Tanaka T, Kazama S, Nagata H, Kawai K, Hata K, Otani K, Nishikawa T, Sasaki K, Kaneko M, Emoto S, Murono K, Takiyama H, Nozawa H. DCLK1 Expression in Colorectal Polyps Increases with the Severity of Dysplasia. ACTA ACUST UNITED AC 2018; 32:365-371. [PMID: 29475922 DOI: 10.21873/invivo.11247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND The expression of doublecortin-like kinase 1 (DCLK1) has been investigated in cancer; however not in precancerous adenomatous polyps. MATERIALS AND METHODS Immunohistological expression of DCLK1 was evaluated in various grades of adenomas, cancerous polyps, and hyperplastic polyps in resected human tissue specimens. RESULTS Ninety-two specimens were positive for DCLK1 and 134 were negative. Cancerous polyps showed a high DCLK1 positivity rate compared to adenomas (68.4% vs. 36.8%; p<0.01). The rate of DCLK1 positivity was not significantly different among the three grades of adenomas (mild, moderate, and severe). DCLK1 was highly positive in advanced adenomas than low risk adenomas (49.6% vs. 29.3%; p<0.01). CONCLUSION The expression of DCLK1 was found in low-grade adenomas and increased with worsening severity of dysplasia. DCLK1 expression was highly observed in advanced adenomas, which had a clinically higher malignant potential.
Collapse
Affiliation(s)
- Aki Takiyama
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Toshiaki Tanaka
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Shinsuke Kazama
- Division of Gastroenterological Surgery, Saitama Cancer Center, Saitama, Japan
| | - Hiroshi Nagata
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Kazushige Kawai
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Keisuke Hata
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Kensuke Otani
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Takeshi Nishikawa
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Kazuhito Sasaki
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Manabu Kaneko
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Shigenobu Emoto
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Koji Murono
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | | | - Hiroaki Nozawa
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
50
|
Harada Y, Kazama S, Morikawa T, Emoto S, Murono K, Kaneko M, Sasaki K, Otani K, Nishikawa T, Tanaka T, Kiyomatsu T, Kawai K, Hata K, Nozawa H, Ishihara S, Watanabe T. Prognostic impact of doublecortin-like kinase 1 expression in locally advanced rectal cancer treated with preoperative chemoradiotherapy. APMIS 2018; 126:486-493. [DOI: 10.1111/apm.12852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 04/30/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Yuzo Harada
- Division of Surgical Oncology; Department of Surgery; Faculty of Medicine; The University of Tokyo; Tokyo Japan
| | - Shinsuke Kazama
- Division of Surgical Oncology; Department of Surgery; Faculty of Medicine; The University of Tokyo; Tokyo Japan
- Department of Gastroenterological Surgery; Saitama Cancer Center; Saitama Japan
| | - Teppei Morikawa
- Department of Pathology; The University of Tokyo; Tokyo Japan
| | - Shigenobu Emoto
- Division of Surgical Oncology; Department of Surgery; Faculty of Medicine; The University of Tokyo; Tokyo Japan
| | - Koji Murono
- Division of Surgical Oncology; Department of Surgery; Faculty of Medicine; The University of Tokyo; Tokyo Japan
| | - Manabu Kaneko
- Division of Surgical Oncology; Department of Surgery; Faculty of Medicine; The University of Tokyo; Tokyo Japan
| | - Kazuhito Sasaki
- Division of Surgical Oncology; Department of Surgery; Faculty of Medicine; The University of Tokyo; Tokyo Japan
| | - Kensuke Otani
- Division of Surgical Oncology; Department of Surgery; Faculty of Medicine; The University of Tokyo; Tokyo Japan
| | - Takeshi Nishikawa
- Division of Surgical Oncology; Department of Surgery; Faculty of Medicine; The University of Tokyo; Tokyo Japan
| | - Toshiaki Tanaka
- Division of Surgical Oncology; Department of Surgery; Faculty of Medicine; The University of Tokyo; Tokyo Japan
| | - Tomomichi Kiyomatsu
- Division of Surgical Oncology; Department of Surgery; Faculty of Medicine; The University of Tokyo; Tokyo Japan
| | - Kazushige Kawai
- Division of Surgical Oncology; Department of Surgery; Faculty of Medicine; The University of Tokyo; Tokyo Japan
| | - Keisuke Hata
- Division of Surgical Oncology; Department of Surgery; Faculty of Medicine; The University of Tokyo; Tokyo Japan
| | - Hiroaki Nozawa
- Division of Surgical Oncology; Department of Surgery; Faculty of Medicine; The University of Tokyo; Tokyo Japan
| | - Soichiro Ishihara
- Division of Surgical Oncology; Department of Surgery; Faculty of Medicine; The University of Tokyo; Tokyo Japan
- Surgery Department; Sanno Hospital; International University of Health and Welfare; Tokyo Japan
| | - Toshiaki Watanabe
- Division of Surgical Oncology; Department of Surgery; Faculty of Medicine; The University of Tokyo; Tokyo Japan
| |
Collapse
|