1
|
Sun X, Zhang J, Dong B, Xiong Q, Wang X, Gu Y, Wang Z, Liu H, Zhang J, He X, Liu H, Zhong Y, Yi C, Chi X, Liu Z, Pang X, Cui Y. Targeting SLITRK4 Restrains Proliferation and Liver Metastasis in Colorectal Cancer via Regulating PI3K/AKT/NFκB Pathway and Tumor-Associated Macrophage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2400367. [PMID: 39499724 DOI: 10.1002/advs.202400367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 10/28/2024] [Indexed: 11/07/2024]
Abstract
Liver metastasis is the major cause of death in colorectal cancer (CRC) due to the lack of effective treatment. To explore novel drivers of CRC liver metastasis, the transcriptomes of primary paracancerous, colorectal tumors and metastases from human patients are profiled. It is found that SLIT- and NTRK-like family member 4 (SLITRK4) is the top upregulated gene in liver metastases and is associated with worse overall survival of CRC patients. Multiple in vitro and in vivo models suggested SLITRK4 promoted CRC tumorigenesis, invasion, migration, and angiogenesis, and inhibition of it restrained CRC tumor growth and liver metastasis with a more profound effect on the tumor microenvironment (TME). Mechanistically, SLITRK4 overexpression significantly activated the PI3K/AKT/NFκB pathway, regulated extracellular matrix organization, and multiple cytokines expression. Furthermore, the results from coculture models and single-cell RNA sequencing analyses suggested SLITRK4 promoted tumor-associated macrophages (TAMs) infiltration and polarization. In addition, macrophage depletion significantly inhibited SLITRK4-induced liver metastasis in CRC. Finally, pharmacological inhibition of SLITRK4 by using lipid-polymer hybrid nanoparticles (NPs) for systemic siRNA delivery can effectively inhibit CRC liver metastasis. Taken together, these results pinpoint that SLITRK4 regulates CRC tumorigenesis and liver metastasis, and siRNA delivering NPs agents validate the therapeutic potential of targeting SLITRK4 in CRC.
Collapse
Affiliation(s)
- Xiaojiao Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Junling Zhang
- Department of General Surgery, Peking University First Hospital, Xishiku Street, Beijing, Xicheng, 100034, China
| | - Bingqi Dong
- Department of General Surgery, Peking University First Hospital, Xishiku Street, Beijing, Xicheng, 100034, China
| | - Qingqing Xiong
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute, Tianjin, 300060, China
| | - Xin Wang
- Department of General Surgery, Peking University First Hospital, Xishiku Street, Beijing, Xicheng, 100034, China
| | - Yanlun Gu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Beijing, Xicheng, 100034, China
- Institute of Clinical Pharmacology, Peking University, Xueyuan Road 38, Beijing, Haidian, 100191, China
| | - Zhiqi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Huiyu Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jixin Zhang
- Department of Pathology, Peking University First Hospital, Xishiku Street, Beijing, Xicheng, 100034, China
| | - Xu He
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Beijing, Xicheng, 100034, China
- Institute of Clinical Pharmacology, Peking University, Xueyuan Road 38, Beijing, Haidian, 100191, China
| | - Hongjin Liu
- Department of General Surgery, Peking University First Hospital, Xishiku Street, Beijing, Xicheng, 100034, China
| | - Yi Zhong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Chuxiao Yi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaowei Chi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaocong Pang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Beijing, Xicheng, 100034, China
- Institute of Clinical Pharmacology, Peking University, Xueyuan Road 38, Beijing, Haidian, 100191, China
| | - Yimin Cui
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Beijing, Xicheng, 100034, China
- Institute of Clinical Pharmacology, Peking University, Xueyuan Road 38, Beijing, Haidian, 100191, China
| |
Collapse
|
2
|
Bettariga F, Taaffe DR, Galvão DA, Newton RU. Effects of short- and long-term exercise training on cancer cells in vitro: Insights into the mechanistic associations. JOURNAL OF SPORT AND HEALTH SCIENCE 2024:100994. [PMID: 39370102 DOI: 10.1016/j.jshs.2024.100994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024]
Abstract
Exercise is a therapeutic approach in cancer treatment, providing several benefits. Moreover, exercise is associated with a reduced risk for developing a range of cancers and for their recurrence, as well as with improving survival, even though the underlying mechanisms remain unclear. Preclinical and clinical evidence shows that the acute effects of a single exercise session can suppress the growth of various cancer cell lines in vitro. This suppression is potentially due to altered concentrations of hormones (e.g., insulin) and cytokines (e.g., tumor necrosis factor alpha and interleukin 6) after exercise. These factors, known to be involved in tumorigenesis, may explain why exercise is associated with reduced cancer incidence, recurrence, and mortality. However, the effects of short- (<8 weeks) and long-term (≥8 weeks) exercise programs on cancer cells have been reported with mixed results. Although more research is needed, it appears that interventions incorporating both exercise and diet seem to have greater inhibitory effects on cancer cell growth in both apparently healthy subjects as well as in cancer patients. Although speculative, these suppressive effects on cancer cells may be driven by changes in body weight and composition as well as by a reduction in low-grade inflammation often associated with sedentary behavior, low muscle mass, and excess fat mass in cancer patients. Taken together, such interventions could alter the systemic levels of suppressive circulating factors, leading to a less favorable environment for tumorigenesis. While regular exercise and a healthy diet may establish a more cancer-suppressive environment, each acute bout of exercise provides a further "dose" of anticancer medicine. Therefore, integrating regular exercise could potentially play a significant role in cancer management, highlighting the need for future investigations in this promising area of research.
Collapse
Affiliation(s)
- Francesco Bettariga
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Dennis R Taaffe
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Daniel A Galvão
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Robert U Newton
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, QLD 4067, Australia.
| |
Collapse
|
3
|
Yi Q, Zhu G, Zhu W, Wang J, Ouyang X, Yang K, Fan Y, Zhong J. LINC01094: A key long non-coding RNA in the regulation of cancer progression and therapeutic targets. Heliyon 2024; 10:e37527. [PMID: 39309878 PMCID: PMC11415682 DOI: 10.1016/j.heliyon.2024.e37527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/25/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
LINC01094 is a long non-coding RNA that plays a crucial role in cancer progression by modulating key signaling pathways, such as PI3K/AKT, Wnt/β-catenin and TGF-β Signaling Pathway Feedback Loop. In this review we summarize the recent research on the functional mechanisms of LINC01094 in various cancers, including its impact on tumor growth, metastasis, and resistance to therapy. We also discuss the therapeutic potential of targeting LINC01094 and highlight the current strategies and challenges in this area. Perspectives on future development of LINC01094-based therapies are also provided.
Collapse
Affiliation(s)
- Qiang Yi
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Gangfeng Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Weijian Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Jiaqi Wang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Xinting Ouyang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Kuan Yang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Yu Fan
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Jinghua Zhong
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| |
Collapse
|
4
|
Sun W, Li H, Shi W, Lv Q, Zhang W. Associations between genetically predicted concentrations of plasma proteins and the risk of prostate cancer. BMC Cancer 2024; 24:905. [PMID: 39068416 PMCID: PMC11282778 DOI: 10.1186/s12885-024-12659-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a leading cause of cancer-related death in men. Understanding the proteomic landscape associated with PCa risk can provide insights into its molecular mechanisms and pave the way for potential therapeutic interventions. METHODS A proteome-wide Mendelian randomization (MR) analysis was employed to determine associations between genetically predicted protein concentrations in plasma and PCa risk. From an initial list of 4,364 proteins, significant associations were identified and validated. Multiple sensitivity analyses were also conducted to enhance the robustness of our findings. RESULTS Of the 4,364 genetically predicted proteins, 308 exhibited preliminary associations with PCa risk. After rigorous statistical refinement, genetically predicted concentrations of 14 proteins showed positive associations with PCa risk, with odds ratios spanning from 1.55 (95% CI 1.28-1.87) for ATG4B to 2.67 (95% CI 1.94-3.67) for HCN1. In contrast, genetically predicted concentrations of ATG7, B2M, MSMB, and TMEM108 demonstrated inverse associations with PCa. The replication analysis further substantiated positive associations for MDH1 and LSM1, and a negative one for MSMB with PCa. A meta-analysis harmonizing primary and replication data mirrored these findings. Furthermore, the MVMR analysis pinpointed B2M and MSMB as having significant associations with PCa risk. CONCLUSION The genetic evidence unveils a refined set of proteins associated with PCa risk. The findings underscore the potential of these proteins as molecular markers or therapeutic targets for PCa, calling for deeper mechanistic studies and exploration into their translational relevance.
Collapse
Affiliation(s)
- Wenguo Sun
- Department of Urology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haoming Li
- Department of Urology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Wenjie Shi
- Molecular and Experimental Surgery, University Clinic for General-, Visceral-, Vascular- and Trans-Plantation Surgery, Medical Faculty University Hospital Magdeburg, Otto-Von Guericke University, Magdeburg, 39120, Germany
| | - Quanlong Lv
- Department of Urology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Weili Zhang
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Gunasekara N, Clauss D, Bloch W. Effects of Exercise-Induced Changes in Myokine Expression on the Tumor Microenvironment. Sports Med Int Open 2024; 8:a22831663. [PMID: 38933599 PMCID: PMC11204211 DOI: 10.1055/a-2283-1663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/26/2024] [Indexed: 06/28/2024] Open
Abstract
In this narrative review, we summarize the direct and indirect effects that myokines have on the tumor microenvironment. We took studies of various cancer types and species into account. Systematic reviews and meta-analyses that matched the search terms were also considered. We searched databases for six months. As a narrative approach was chosen, no data was analyzed or reanalyzed. The goal of this narrative review is to create an overview on the topic to identify research gaps and answer the questions as to whether myokine expression may be relevant in cancer research in regard to the tumor microenvironment. Six commonly known myokines were chosen. We found strong links between the influence exercise has on interleukin-6, oncostatin M, secreted protein acidic and rich in cysteine, and irisin in the context of tumor progression and inhibition via interactions with the tumor microenvironment. It became clear that the effects of myokines on the tumor microenvironment can vary and contribute to disease progression or regression. Interactions among myokines and immune cells must also be considered and require further investigation. To date, no study has shown a clear connection, while multiple studies suggest further investigation of the topic, similar to the effects of exercise on myokine expression.
Collapse
Affiliation(s)
- Nadira Gunasekara
- Institute of Cardiology and Sports Medicine, German Sport University
Cologne, Cologne, Germany
| | - Dorothea Clauss
- Institute of Cardiology and Sports Medicine, German Sport University
Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Institute of Cardiology and Sports Medicine, German Sport University
Cologne, Cologne, Germany
| |
Collapse
|
6
|
Liu S, Wang Y, Duan L, Cui D, Deng K, Dong Z, Wei S. Whole transcriptome sequencing identifies a competitive endogenous RNA network that regulates the immunity of bladder cancer. Heliyon 2024; 10:e29344. [PMID: 38681584 PMCID: PMC11053192 DOI: 10.1016/j.heliyon.2024.e29344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/01/2024] Open
Abstract
Several types of non-coding RNAs such as circRNAs, lncRNAs, and miRNAs have been identified to regulate mRNAs through the mechanism known as the competitive endogenous RNA (ceRNA) network. To explore the role of the ceRNA regulatory network in the immune microenvironment of bladder cancer, whole-transcriptome sequencing of bladder tumor and its peritumoral tissues from 38 bladder cancer patients, with a total of 63 samples, was performed to screen differentially expressed circ-, lnc-, mi-, and mRNAs to construct a circ/lnc-mi-mRNA regulatory network with pruning algorithms. We excavated a key immune-related gene BDNF to build the final ceRNA network as hsa-miR-107 sponged by hsa-circ-000211, AC108488.1, and LINC00163. Finally, a meta-analysis of 7 public datasets demonstrated that low expression of BDNF and high expression of hsa-miR-107 were associated with longer survival. Our study identified a ceRNA regulatory network as a potentially new prognostic marker and molecular therapeutic target of bladder cancer.
Collapse
Affiliation(s)
- Sanhe Liu
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Urology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China
- Division of Infection and Immunity, Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, CF14 4XN, United Kingdom
| | - Yiqi Wang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Liqun Duan
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China
| | - Diansheng Cui
- Department of Urology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China
| | - Kangli Deng
- Department of Urology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China
| | - Zhiqiang Dong
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Shaozhong Wei
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Urology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China
| |
Collapse
|
7
|
Raleigh SM, Orchard KJA. Sarcopenia as a Risk Factor for Alzheimer's Disease: Genetic and Epigenetic Perspectives. Genes (Basel) 2024; 15:561. [PMID: 38790190 PMCID: PMC11121242 DOI: 10.3390/genes15050561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Sarcopenia, defined as the age-associated loss of muscle mass and increased fragility with age, is increasing worldwide. The condition often precedes the development of Alzheimer's disease, thereby decreasing the levels of mobility and physical activity in those affected. Indeed, the loss of muscle mass has, in some studies, been associated with an increased risk of Alzheimer's disease and other dementias. However, a detailed understanding of the interplay between both conditions is not available and needs to be thoroughly addressed. In the following review, we focus on several genes, specifically APOE, BDNF, ACE, FTO, and FNDC5, that have been associated with both conditions. We also discuss the epigenetic regulation of each of these genes along with non-coding RNAs (ncRNAs) that may have a role in the development of both the sarcopenic and Alzheimer's disease phenotypes. Finally, we assert that the application of systems biology will unravel the relationship between sarcopenia and Alzheimer's disease and believe that the prevention of muscle loss in older age will reduce the incidence of debilitating cognitive decline.
Collapse
Affiliation(s)
- Stuart M. Raleigh
- Centre for Health and Life Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Kayleigh J. A. Orchard
- School of Life, Health and Chemical Sciences, Open University, Milton Keynes MK7 6AA, UK;
| |
Collapse
|
8
|
He YQ, Zhou CC, Jiang SG, Lan WQ, Zhang F, Tao X, Chen WS. Natural products for the treatment of chemotherapy-related cognitive impairment and prospects of nose-to-brain drug delivery. Front Pharmacol 2024; 15:1292807. [PMID: 38348396 PMCID: PMC10859466 DOI: 10.3389/fphar.2024.1292807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Chemotherapy-related cognitive deficits (CRCI) as one of the common adverse drug reactions during chemotherapy that manifest as memory, attention, and executive function impairments. However, there are still no effective pharmacological therapies for the treatment of CRCI. Natural compounds have always inspired drug development and numerous natural products have shown potential therapeutic effects on CRCI. Nevertheless, improving the brain targeting of natural compounds in the treatment of CRCI is still a problem to be overcome at present and in the future. Accumulated evidence shows that nose-to-brain drug delivery may be an excellent carrier for natural compounds. Therefore, we reviewed natural products with potential anti-CRCI, focusing on the signaling pathway of these drugs' anti-CRCI effects, as well as the possibility and prospect of treating CRCI with natural compounds based on nose-to-brain drug delivery in the future. In conclusion, this review provides new insights to further explore natural products in the treatment of CRCI.
Collapse
Affiliation(s)
- Yu-Qiong He
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Can-Can Zhou
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sheng-Gui Jiang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wen-Qian Lan
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xia Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wan-Sheng Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
9
|
Ferraguti G, Terracina S, Tarani L, Fanfarillo F, Allushi S, Caronti B, Tirassa P, Polimeni A, Lucarelli M, Cavalcanti L, Greco A, Fiore M. Nerve Growth Factor and the Role of Inflammation in Tumor Development. Curr Issues Mol Biol 2024; 46:965-989. [PMID: 38392180 PMCID: PMC10888178 DOI: 10.3390/cimb46020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Nerve growth factor (NGF) plays a dual role both in inflammatory states and cancer, acting both as a pro-inflammatory and oncogenic factor and as an anti-inflammatory and pro-apoptotic mediator in a context-dependent way based on the signaling networks and its interaction with diverse cellular components within the microenvironment. This report aims to provide a summary and subsequent review of the literature on the role of NGF in regulating the inflammatory microenvironment and tumor cell growth, survival, and death. The role of NGF in inflammation and tumorigenesis as a component of the inflammatory system, its interaction with the various components of the respective microenvironments, its ability to cause epigenetic changes, and its role in the treatment of cancer have been highlighted in this paper.
Collapse
Affiliation(s)
- Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Fanfarillo
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Allushi
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Brunella Caronti
- Department of Human Neurosciences, Sapienza University Hospital of Rome, 00185 Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| | - Luca Cavalcanti
- Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Greco
- Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
10
|
Xu J, Gao F, Liu W, Guan X. Cell-cell communication characteristics in breast cancer metastasis. Cell Commun Signal 2024; 22:55. [PMID: 38243240 PMCID: PMC10799417 DOI: 10.1186/s12964-023-01418-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/02/2023] [Indexed: 01/21/2024] Open
Abstract
Breast cancer, a highly fatal disease due to its tendency to metastasize, is the most prevalent form of malignant tumors among women worldwide. Numerous studies indicate that breast cancer exhibits a unique predilection for metastasis to specific organs including the bone, liver, lung, and brain. However, different types of, The understanding of the heterogeneity of metastatic breast cancer has notably improved with the recent advances in high-throughput sequencing techniques. Focusing on the modification in the microenvironment of the metastatic organs and the crosstalk between tumor cells and in situ cells, noteworthy research points include the identification of two distinct modes of tumor growth in bone metastases, the influence of type II pneumocyte on lung metastases, the paradoxical role of Kupffer cells in liver metastases, and the breakthrough of the blood-brain barrier (BBB) breach in brain metastases. Overall, this review provides a comprehensive overview of the characteristics of breast cancer metastases, shedding light on the pivotal roles of immune and resident cells in the development of distinct metastatic foci.
Collapse
Affiliation(s)
- Jingtong Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Fangyan Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Weici Liu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
11
|
Li H, Hou J, Fu Y, Zhao Y, Liu J, Guo D, Lei R, Wu Y, Tang L, Fan S. miR-603 promotes cell proliferation and differentiation by targeting TrkB in acute promyelocytic leukemia. Ann Hematol 2023; 102:3357-3367. [PMID: 37726492 DOI: 10.1007/s00277-023-05441-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 09/04/2023] [Indexed: 09/21/2023]
Abstract
Arsenic trioxide (ATO) treatment effectively prolongs the overall survival of patients with acute promyelocytic leukemia (APL). Mutations in the oncogene PML::RARA were found in patients with ATO-resistant and relapsed APL. However, some relapsed patients do not have such mutations. Here, we performed microarray analysis of samples from newly diagnosed and relapsed APL, and found different microRNA (miRNA) expression patterns between these two groups. Among the differentially expressed miRNAs, miR-603 was expressed at the lowest level in relapsed patients. The expression of miR-603 and its predicted target tropomyosin-related kinase B (TrkB) were determined by PCR and Western blot. Proliferation was measured using an MTT assay, while apoptosis, cell cycle and CD11b expression were analyzed using flow cytometry. In APL patients, the expression of miR-603 was negatively correlated with that of TrkB. miR-603 directly targeted TrkB and downregulated TrkB expression in the APL cell line NB4. miR-603 increased cell proliferation by promoting the differentiation and inhibiting the apoptosis of NB4 cells. This study shows that the miR-603/ TrkB axis may be a potent therapeutic target for relapsed APL.
Collapse
Affiliation(s)
- Huibo Li
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Jinxiao Hou
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
- Hematology Department, the Second Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China
| | - Yueyue Fu
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Yanqiu Zhao
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Jie Liu
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Dan Guo
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Ruiqi Lei
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Yiting Wu
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Linqing Tang
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Shengjin Fan
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.
- NHC Key Laboratory of Cell Transplantation, the First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
12
|
Naiyer S, Dwivedi L, Singh N, Phulera S, Mohan V, Kamran M. Role of Transcription Factor BEND3 and Its Potential Effect on Cancer Progression. Cancers (Basel) 2023; 15:3685. [PMID: 37509346 PMCID: PMC10377563 DOI: 10.3390/cancers15143685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
BEND3 is a transcription factor that plays a critical role in the regulation of gene expression in mammals. While there is limited research on the role of BEND3 as a tumor suppressor or an oncogene and its potential role in cancer therapy is still emerging, several studies suggest that it may be involved in both the processes. Its interaction and regulation with multiple other factors via p21 have already been reported to play a significant role in cancer development, which serves as an indication of its potential role in oncogenesis. Its interaction with chromatin modifiers such as NuRD and NoRC and its role in the recruitment of polycomb repressive complex 2 (PRC2) are some of the additional events indicative of its potential role in cancer development. Moreover, a few recent studies indicate BEND3 as a potential target for cancer therapy. Since the specific mechanisms by which BEND3 may contribute to cancer progression are not yet fully elucidated, in this review, we have discussed the possible pathways BEND3 may take to serve as an oncogenic driver or suppressor.
Collapse
Affiliation(s)
- Sarah Naiyer
- Department of Biomedical Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lalita Dwivedi
- Faculty of Science, Department of Biotechnology, Invertis University, Bareilly 243122, UP, India
| | - Nishant Singh
- Cell and Gene Therapy Division Absorption System, Exton, PA 19341, USA
| | - Swastik Phulera
- Initium Therapeutics, 22 Strathmore Rd., STE 453, Natick, MA 01760, USA
| | - Vijay Mohan
- Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida 203201, UP, India
| | - Mohammad Kamran
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
13
|
Pisani A, Paciello F, Del Vecchio V, Malesci R, De Corso E, Cantone E, Fetoni AR. The Role of BDNF as a Biomarker in Cognitive and Sensory Neurodegeneration. J Pers Med 2023; 13:jpm13040652. [PMID: 37109038 PMCID: PMC10140880 DOI: 10.3390/jpm13040652] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has a crucial function in the central nervous system and in sensory structures including olfactory and auditory systems. Many studies have highlighted the protective effects of BDNF in the brain, showing how it can promote neuronal growth and survival and modulate synaptic plasticity. On the other hand, conflicting data about BDNF expression and functions in the cochlear and in olfactory structures have been reported. Several clinical and experimental research studies showed alterations in BDNF levels in neurodegenerative diseases affecting the central and peripheral nervous system, suggesting that BDNF can be a promising biomarker in most neurodegenerative conditions, including Alzheimer's disease, shearing loss, or olfactory impairment. Here, we summarize current research concerning BDNF functions in brain and in sensory domains (olfaction and hearing), focusing on the effects of the BDNF/TrkB signalling pathway activation in both physiological and pathological conditions. Finally, we review significant studies highlighting the possibility to target BDNF as a biomarker in early diagnosis of sensory and cognitive neurodegeneration, opening new opportunities to develop effective therapeutic strategies aimed to counteract neurodegeneration.
Collapse
Affiliation(s)
- Anna Pisani
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Valeria Del Vecchio
- Department of Neuroscience, Reproductive Sciences and Dentistry-Audiology Section, University of Naples Federico II, 80131 Naples, Italy
| | - Rita Malesci
- Department of Neuroscience, Reproductive Sciences and Dentistry-Audiology Section, University of Naples Federico II, 80131 Naples, Italy
| | - Eugenio De Corso
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Elena Cantone
- Department of Neuroscience, Reproductive Sciences and Dentistry-ENT Section, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Rita Fetoni
- Department of Neuroscience, Reproductive Sciences and Dentistry-Audiology Section, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
14
|
Nepali PR, Kyprianou N. Anoikis in phenotypic reprogramming of the prostate tumor microenvironment. Front Endocrinol (Lausanne) 2023; 14:1160267. [PMID: 37091854 PMCID: PMC10113530 DOI: 10.3389/fendo.2023.1160267] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/09/2023] [Indexed: 04/25/2023] Open
Abstract
Prostate cancer is one of the most common malignancies in males wherein 1 in 8 men are diagnosed with this disease in their lifetime. The urgency to find novel therapeutic interventions is associated with high treatment resistance and mortality rates associated with castration-resistant prostate cancer. Anoikis is an apoptotic phenomenon for normal epithelial or endothelial cells that have lost their attachment to the extracellular matrix (ECM). Tumor cells that lose their connection to the ECM can die via apoptosis or survive via anoikis resistance and thus escaping to distant organs for metastatic progression. This review discusses the recent advances made in our understanding of the signaling effectors of anoikis in prostate cancer and the approaches to translate these mechanistic insights into therapeutic benefits for reducing lethal disease outcomes (by overcoming anoikis resistance). The prostate tumor microenvironment is a highly dynamic landscape wherein the balance between androgen signaling, cell lineage changes, epithelial-mesenchymal transition (EMT), extracellular matrix interactions, actin cytoskeleton remodeling as well as metabolic changes, confer anoikis resistance and metastatic spread. Thus, these mechanisms also offer unique molecular treatment signatures, exploitation of which can prime prostate tumors to anoikis induction with a high translational significance.
Collapse
Affiliation(s)
- Prerna R. Nepali
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
15
|
Nerve growth factor causes epinephrine release dysfunction by regulating phenotype alterations and the function of adrenal medullary chromaffin cells in mice with allergic rhinitis. Mol Med Rep 2023; 27:39. [PMID: 36601769 PMCID: PMC9835056 DOI: 10.3892/mmr.2023.12926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/06/2022] [Indexed: 01/04/2023] Open
Abstract
The presence of allergic rhinitis (AR) is an increased risk factor for the occurrence of bronchial asthma (BA). Nerve growth factor (NGF), in addition to its key role in the development and differentiation of neurons, may also be an important inflammatory factor in AR and BA. However, the pathogenesis of the progression of AR to BA remains to be elucidated. The present study aimed to investigate the ability of NGF to mediate nasobronchial interactions and explore possible underlying molecular mechanisms. In the present study, an AR mouse model was established and histology of nasal mucosa tissue injury was determined. The level of phenylethanolamine N‑methyl transferase in adrenal medulla was determined by immunofluorescence. Primary adrenal medullary chromaffin cells (AMCCs) were isolated and cultured from the adrenal medulla of mice. The expression levels of synaptophysin (SYP), STAT1, JAK1, p38 and ERK in NGF‑treated and untreated AMCCs were detected by reverse‑transcription‑quantitative PCR and western blotting. The epinephrine (EPI) and norepinephrine (NE) concentrations were measured by ELISA. It was found that the expression of SYP in AMCCs was enhanced in the presence of NGF, whereas, the concentration of EPI decreased significantly under the same conditions. Furthermore, NGF mediated the phenotypic and functional changes of AMCCs, resulting in decreased EPI secretion via JAK1/STAT1, p38 and ERK signaling. In conclusion, these findings could provide novel evidence for the role of NGF in regulating neuroendocrine mechanisms.
Collapse
|
16
|
Tan X, Zhao L, Tang Y. The Function of BDNF and Its Receptor in the Male Genitourinary System and Its Potential Clinical Application. Curr Issues Mol Biol 2022; 45:110-121. [PMID: 36661494 PMCID: PMC9856797 DOI: 10.3390/cimb45010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/04/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Background: Brain-derived neurotrophic factor (BDNF), as a member of the nerve growth factor family, has been mentioned more and more frequently in recent literature reports. Among them, content about the male genitourinary system is also increasing. Objective and Rationale: BDNF plays an important role in the male genitourinary system. At the same time, the literature in this field is constantly increasing. Therefore, we systematically summarized the literature in order to more intuitively show the function of BDNF and its receptor in the male genitourinary system and its potential clinical application. Search Methods: An electronic search of, e.g., PubMed, scholar.google and Scopus, for articles relating to BDNF and its receptor in the male genitourinary system. Outcomes: In the male genitourinary system, BDNF and its receptors TrkB and p75 participate in a series of normal physiological activities, such as the maturation and morphogenesis of testes and epididymis and maintenance of isolated sperm motility. Similarly, an imbalance of the circulating concentration of BDNF also mediates the pathophysiological process of many diseases, such as prostate cancer, benign prostatic hyperplasia, male infertility, diabetes erectile dysfunction, penile sclerosis, and bladder fibrosis. As a consequence, we conclude that BDNF and its receptor are key regulatory proteins in the male genitourinary system, which can be used as potential therapeutic targets and markers for disease diagnosis.
Collapse
Affiliation(s)
- Xiaoli Tan
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 510275, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 510275, China
| | - Liangyu Zhao
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 510275, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 510275, China
| | - Yuxin Tang
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 510275, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 510275, China
| |
Collapse
|
17
|
Tumor Microenvironment and Metabolism: Role of the Mitochondrial Melatonergic Pathway in Determining Intercellular Interactions in a New Dynamic Homeostasis. Int J Mol Sci 2022; 24:ijms24010311. [PMID: 36613754 PMCID: PMC9820362 DOI: 10.3390/ijms24010311] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
There is a growing interest in the role of alterations in mitochondrial metabolism in the pathoetiology and pathophysiology of cancers, including within the array of diverse cells that can form a given tumor microenvironment. The 'exhaustion' in natural killer cells and CD8+ t cells as well as the tolerogenic nature of dendritic cells in the tumor microenvironment seems determined by variations in mitochondrial function. Recent work has highlighted the important role played by the melatonergic pathway in optimizing mitochondrial function, limiting ROS production, endogenous antioxidants upregulation and consequent impacts of mitochondrial ROS on ROS-dependent microRNAs, thereby impacting on patterned gene expression. Within the tumor microenvironment, the tumor, in a quest for survival, seeks to 'dominate' the dynamic intercellular interactions by limiting the capacity of cells to optimally function, via the regulation of their mitochondrial melatonergic pathway. One aspect of this is the tumor's upregulation of kynurenine and the activation of the aryl hydrocarbon receptor, which acts to metabolize melatonin and increase the N-acetylserotonin/melatonin ratio, with effluxed N-acetylserotonin acting as a brain-derived neurotrophic factor (BDNF) mimic via its activation of the BDNF receptor, TrkB, thereby increasing the survival and proliferation of tumors and cancer stem-like cells. This article highlights how many of the known regulators of cells in the tumor microenvironment can be downstream of the mitochondrial melatonergic pathway regulation. Future research and treatment implications are indicated.
Collapse
|