1
|
Rinaldi G, Loukas A, Sotillo J. Trematode Genomics and Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:507-539. [PMID: 39008274 DOI: 10.1007/978-3-031-60121-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Trematode infections stand out as one of the frequently overlooked tropical diseases, despite their wide global prevalence and remarkable capacity to parasitize diverse host species and tissues. Furthermore, these parasites hold significant socio-economic, medical, veterinary and agricultural implications. Over the past decades, substantial strides have been taken to bridge the information gap concerning various "omic" tools, such as proteomics and genomics, in this field. In this edition of the book, we highlight recent progress in genomics and proteomics concerning trematodes with a particular focus on the advances made in the past 5 years. Additionally, we present insights into cutting-edge technologies employed in studying trematode biology and shed light on the available resources for exploring the molecular facets of this particular group of parasitic helminths.
Collapse
Affiliation(s)
- Gabriel Rinaldi
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Javier Sotillo
- Laboratorio de Referencia e Investigación en Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain.
| |
Collapse
|
2
|
Trichuris trichiura egg extract proteome reveals potential diagnostic targets and immunomodulators. PLoS Negl Trop Dis 2021; 15:e0009221. [PMID: 33760829 PMCID: PMC8021180 DOI: 10.1371/journal.pntd.0009221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 04/05/2021] [Accepted: 02/08/2021] [Indexed: 12/25/2022] Open
Abstract
Embryonated eggs are the infectious developmental stage of Trichuris trichiura and are the primary stimulus for the immune system of the definitive host. The intestinal-dwelling T. trichiura affects an estimated 465 million people worldwide with an estimated global burden of disease of 640 000 DALYs (Disability Adjusted Life Years). In Latin America and the Caribbean, trichuriasis is the most prevalent soil transmitted helminthiasis in the region (12.3%; 95% CI). The adverse health consequences impair childhood school performance and reduce school attendance resulting in lower future wage-earning capacity. The accumulation of the long-term effects translates into poverty promoting sequelae and a cycle of impoverishment. Each infective T. trichiura egg carries the antigens needed to face the immune system with a wide variety of proteins present in the shell, larvae’s surface, and the accompanying fluid that contains their excretions/secretions. We used a proteomic approach with tandem mass spectrometry to investigate the proteome of soluble non-embryonated egg extracts of T. trichiura obtained from naturally infected African green monkeys (Chlorocebus sabaeus). A total of 231 proteins were identified, 168 of them with known molecular functions. The proteome revealed common proteins families which are known to play roles in energy and metabolism; the cytoskeleton, muscle and motility; proteolysis; signaling; the stress response and detoxification; transcription and translation; and lipid binding and transport. In addition to the study of the T. trichiura non-embryonated egg proteome, the antigenic profile of the T. trichiura non-embryonated egg and female soluble proteins against serum antibodies from C. sabaeus naturally infected with trichuriasis was investigated. We used an immunoproteomic approach by Western blot and tandem mass spectrometry from the corresponding SDS-PAGE gels. Vitellogenin N and VWD and DUF1943 domain containing protein, poly-cysteine and histidine tailed protein isoform 2, heat shock protein 70, glyceraldehyde-3-phosphate dehydrogenase, actin, and enolase, were among the potential immunoactive proteins. To our knowledge, this is the first study on the T. trichiura non-embryonated egg proteome as a novel source of information on potential targets for immunodiagnostics and immunomodulators from a neglected tropical disease. This initial list of T. trichiura non-embryonated egg proteins (proteome and antigenic profile) can be used in future research on the immunobiology and pathogenesis of human trichuriasis and the treatment of human intestinal immune-related diseases. Who came first the worm or its egg? In the case of whipworm, we know it is the egg. The infective life cycle stage of the human whipworm (Trichuris trichiura) is the primary stimulus for the immune system of the definitive host. Each infective whipworm egg carries the information needed to face the immune system of the host with a wide variety of proteins present in the shell, larvae’s surface, and the accompanying fluid that contains their excretions/secretions. We investigated the soluble proteins of the non-embryonated egg using an immunoproteomic approach and then selected the top five proteins using a series of bioinformatic analysis. We used these top five proteins to recognize potential targets for immunodiagnostics and immunomodulation while comparing them to known female worm proteins. We found that the proteins we selected were involved in lipid transport, energy and metabolism, and muscle and motility. One protein has unknown function.
Collapse
|
3
|
miRNA profile of extracellular vesicles isolated from saliva of Haemaphysalis longicornis tick. Acta Trop 2020; 212:105718. [PMID: 32971070 DOI: 10.1016/j.actatropica.2020.105718] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/19/2020] [Accepted: 09/19/2020] [Indexed: 12/19/2022]
Abstract
Extracellular vesicles (EVs) play a key role in host-parasite interactions. Previous studies have shown that parasites can release microRNA (miRNA) containing EVs, which can transfer their contents to host cells and regulate gene expression in recipient cells. However, a little is known about the secretion of EVs by the ticks. This study was therefore, carried out to examine the saliva of ticks for the presence of miRNA containing EVs. Vesicles were purified from saliva of partially engorged Haemaphysalis longicornis ticks. Transmission electron microscopy (TEM) was carried out to confirm that vesicles within saliva were EVs based on size and morphology. Total RNA was extracted from EVs and was analyzed by deep sequencing to determine miRNA profile. TEM analysis confirmed the presence of extracellular vesicle-like structures within tick saliva. RNA-seq analysis showed that tick-derived EVs contained small non-coding RNA populations including miRNAs. The analysis of tick-derived EVs identified 36 known miRNAs, 34 novel miRNAs and 842 novel Piwi-interacting RNAs (piRNA). The results of this study provide evidence that EVs containing miRNAs can be secreted by the ticks and suggest that vesicles could transfer these miRNAs to modulate host cell functions.
Collapse
|
4
|
Nawaz M, Malik MI, Zhang H, Hassan IA, Cao J, Zhou Y, Hameed M, Hussain Kuthu Z, Zhou J. Proteomic Analysis of Exosome-Like Vesicles Isolated From Saliva of the Tick Haemaphysalis longicornis. Front Cell Infect Microbiol 2020; 10:542319. [PMID: 33194791 PMCID: PMC7642894 DOI: 10.3389/fcimb.2020.542319] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/11/2020] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs), are considered as vehicles of cellular communication. Parasites usually release EVs in their excretory-secretory products to modulate host environment. However, little is known about the secretion of EVs by ticks. In this study, we show for the first time that the tick Haemaphysalis longicornis secretes EVs in saliva that resembles exosomes. EVs were purified from pilocarpine induced saliva of partially engorged H. longicornis ticks. Electron microscopy analysis revealed the presence of exosome-like vesicles with a size of 100 nm. Proteomic analysis by LC-MS/MS identified a total of 356 proteins in tick-derived EVs. Proteome data of tick-derived EVs was validated by Western blot analysis. Immunodetection of Hsp70 and GAPDH proteins indicated that the proteomics data of tick-derived EVs were highly reliable. Bioinformatics analysis (Gene Ontology) indicated association of certain biological and molecular functions with proteins which may be helpful during tick development. Likewise, KEGG database revealed involvement of vesicular proteins in proton transport, detoxification, ECM-receptor interaction, ribosome, RNA transport, ABC transporters, and oxidative phosphorylation. The results of this study provide evidence that EVs are being secreted in tick saliva and suggest that tick saliva-derived EVs could play important roles in host-parasite relationships. Moreover, EVs could be a useful tool in development of vaccines or therapeutics against ticks.
Collapse
Affiliation(s)
- Mohsin Nawaz
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Muhammad Irfan Malik
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ibrahim A Hassan
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Mudassar Hameed
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zulfiqar Hussain Kuthu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
5
|
Kosanović M, Cvetković J, Gruden-Movsesijan A, Vasilev S, Svetlana M, Ilić N, Sofronić-Milosavljević L. Trichinella spiralis muscle larvae release extracellular vesicles with immunomodulatory properties. Parasite Immunol 2019; 41:e12665. [PMID: 31356691 DOI: 10.1111/pim.12665] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/16/2022]
Abstract
AIMS Extracellular vesicles (EVs) represent a newly discovered but universal communication tool between cells or organisms. However, few data exist on nematode EVs and none for Trichinella spiralis. Here, we aimed to investigate whether T spiralis muscle larvae produce EVs, whether they carry immunomodulatory proteins and whether they have a role in immunomodulation as a component of excretory-secretory muscle larvae products (ES L1). METHODS AND RESULTS EVs were enriched from conditioned medium of T spiralis muscle larvae. Transmission electron microscopy images showed T spiralis EVs to be 30-80 nm in size, and Western blot confirmed the presence of two out of three glycoproteins with the immunodominant epitope characteristic for muscle larvae of the genus Trichinella. Using a peripheral blood mononuclear cell (PBMC) stimulation assay, it was shown that these EVs elevated production of IL10 and IL6. CONCLUSION T spiralis muscle larvae produce EVs. Those EVs carry immunomodulatory proteins and have the capacity independently to induce regulatory responses in the same way as the T spiralis excretory-secretory muscle larvae products from which they were isolated.
Collapse
Affiliation(s)
- Maja Kosanović
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Belgrade, Serbia
| | - Jelena Cvetković
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Belgrade, Serbia
| | - Alisa Gruden-Movsesijan
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Belgrade, Serbia
| | - Saša Vasilev
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Belgrade, Serbia
| | - Milanović Svetlana
- Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Nataša Ilić
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
6
|
Nawaz M, Malik MI, Hameed M, Zhou J. Research progress on the composition and function of parasite-derived exosomes. Acta Trop 2019; 196:30-36. [PMID: 31071298 DOI: 10.1016/j.actatropica.2019.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/04/2019] [Accepted: 05/04/2019] [Indexed: 12/20/2022]
Abstract
Parasites use excretory-secretory pathways to communicate with the host. Characterization of exosomes within the excretory-secretory products reveal by which parasites manipulate their hosts. Parasite derived exosomes provide a mechanistic framework for protein and miRNAs transfer. Transcriptomics and proteomics of parasite exosomes identified a large number of miRNAs and proteins being utilized by parasites in their survival, reproduction and development. Characterization of proteins and miRNAs in parasite secreted exosomes provide important information on host-parasite communication and forms the basis for future studies. In this review, we summarize recent advances in isolation and molecular characterization (protein and miRNAs) of parasite derived exosomes.
Collapse
Affiliation(s)
- Mohsin Nawaz
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Muhammad Irfan Malik
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Muddassar Hameed
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
7
|
Sotillo J, Pearson MS, Loukas A. Trematode Genomics and Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1154:411-436. [PMID: 31297769 DOI: 10.1007/978-3-030-18616-6_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Trematode infections are among the most neglected tropical diseases despite their worldwide distribution and extraordinary ability to parasitise many different host species and host tissues. Furthermore, these parasites are of great socioeconomic, medical, veterinary and agricultural importance. During the last 10 years, there have been increasing efforts to overcome the lack of information on different "omic" resources such as proteomics and genomics. Herein, we focus on the recent advances in genomics and proteomics from trematodes of human importance, including liver, blood, intestinal and lung flukes. We also provide information on the latest technologies applied to study the biology of trematodes as well as on the resources available for the study of the molecular aspects of this group of helminths.
Collapse
Affiliation(s)
- Javier Sotillo
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.
| | - Mark S Pearson
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
8
|
da Silva MB, Urrego A JR, Oviedo Y, Cooper PJ, Pacheco LGC, Pinheiro CS, Ferreira F, Briza P, Alcantara-Neves NM. The somatic proteins of Toxocara canis larvae and excretory-secretory products revealed by proteomics. Vet Parasitol 2018; 259:25-34. [PMID: 30056980 DOI: 10.1016/j.vetpar.2018.06.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/02/2018] [Accepted: 06/23/2018] [Indexed: 12/31/2022]
Abstract
Toxocariasis is a widespread helminth infection of dogs and cats, caused by Toxocara canis and Toxocara cati larvae, respectively. Toxocara spp. can cause zoonotic infections in humans by invading tissues and organs causing pathology. Toxocara spp. larvae release excretory-secretory molecules (TES) into the body of their host that are fundamental to the host-parasite interaction and could be used as targets for novel diagnostics and vaccines. In the present study, we identified 646 T. canis proteins from TES and larval extract using 1D-SDS PAGE followed by mass spectrometry. A wide range of proteins was identified that may play a role both in the induction of the host immune response and host pathology, and in parasite metabolism and survival. Among these proteins there are potential candidates for novel diagnostics and vaccines for dogs and cats toxocariases.
Collapse
Affiliation(s)
- Márcia B da Silva
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil.
| | - Juan R Urrego A
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil; Department of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia.
| | - Yisela Oviedo
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil.
| | - Philip J Cooper
- Facultad de Ciencias Médicas, de la Salud y la Vida, Universidad Internacional del Ecuador, Quito, Ecuador; Insitute of Infection and Immunity, St George's University of London, London, United Kingdom.
| | - Luis G C Pacheco
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil.
| | - Carina S Pinheiro
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil.
| | - Fátima Ferreira
- Department of Biosciences, University of Salzburg, Salzburg, Austria.
| | - Peter Briza
- Department of Biosciences, University of Salzburg, Salzburg, Austria.
| | | |
Collapse
|
9
|
Ranasinghe SL, McManus DP. Protease Inhibitors of Parasitic Flukes: Emerging Roles in Parasite Survival and Immune Defence. Trends Parasitol 2017; 33:400-413. [PMID: 28089171 DOI: 10.1016/j.pt.2016.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 12/14/2022]
Abstract
Protease inhibitors play crucial roles in parasite development and survival, counteracting the potentially damaging immune responses of their vertebrate hosts. However, limited information is currently available on protease inhibitors from schistosomes and food-borne trematodes. Future characterization of these molecules is important not only to expand knowledge on parasitic fluke biology but also to determine whether they represent novel vaccine and/or drug targets. Moreover, protease inhibitors from flukes may represent lead compounds for the development of a new range of therapeutic agents against inflammatory disorders and cancer. This review discusses already identified protease inhibitors of fluke origin, emphasizing their biological function and their possible future development as new intervention targets.
Collapse
|
10
|
The omic approach to parasitic trematode research—a review of techniques and developments within the past 5 years. Parasitol Res 2016; 115:2523-43. [DOI: 10.1007/s00436-016-5079-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 12/26/2022]
|
11
|
Cortés A, Sotillo J, Muñoz-Antolí C, Trelis M, Esteban JG, Toledo R. Definitive host influences the proteomic profile of excretory/secretory products of the trematode Echinostoma caproni. Parasit Vectors 2016; 9:185. [PMID: 27036527 PMCID: PMC4815245 DOI: 10.1186/s13071-016-1465-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/21/2016] [Indexed: 12/18/2022] Open
Abstract
Background Echinostoma caproni is an intestinal trematode extensively used as experimental model for the study of factors that determine the course of intestinal helminth infections, since this markedly depends on the host species. Although the host-dependent mechanisms for either chronic establishment or early parasite rejection have been broadly studied, little is known regarding the parasite response against different host environments. Methods To identify host-dependent differentially expressed proteins, a comparative proteomic analysis of the excretory/secretory products released from E. caproni adults, isolated from hosts displaying different compatibility with this trematode, was performed. Results A total of 19 differential protein spots were identified (14 overexpressed in mice and 5 overexpressed in rats). The establishment of chronic infections in mice is mainly associated with the overexpression by adult worms of antioxidant and detoxifying enzymes (e.g. glutathione S-transferase, hydroxyacylglutathione hydrolase, thiopurine S-transferase, etc.) and metabolic enzymes like enolase, leucine aminopeptidase or malate dehydrogenase. However, the overexpression of cathepsin L and the structural protein actin observed in worms isolated from rats seems not to be effective for the colonization of the intestinal mucosa of this host. Conclusions The observed differences suggest that protein expression and/or release is modulated by the local environment generated inside the host and provide useful insights in regards to the resistance mechanisms developed by parasites to ensure their long-term survival. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1465-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alba Cortés
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | - Javier Sotillo
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.,Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Carla Muñoz-Antolí
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - María Trelis
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - J Guillermo Esteban
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Rafael Toledo
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| |
Collapse
|
12
|
Cao X, Fu Z, Zhang M, Han Y, Han Q, Lu K, Li H, Zhu C, Hong Y, Lin J. Excretory/secretory proteome of 14-day schistosomula, Schistosoma japonicum. J Proteomics 2015; 130:221-30. [PMID: 26453986 DOI: 10.1016/j.jprot.2015.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/21/2015] [Accepted: 10/04/2015] [Indexed: 01/09/2023]
Abstract
Schistosomiasis remains a serious public health problem, with 200 million people infected and 779 million people at risk worldwide. The schistosomulum is the early stage of the complex lifecycle of Schistosoma japonicum in their vertebrate hosts, and is the main target of vaccine-induced protective immunity. Excretory/secretory (ES) proteins play a major role in host-parasite interactions and ES protein compositions of schistosomula of S. japonicum have not been characterized to date. In the present study, the proteome of ES proteins from 14 day schistosomula of S. japonicum was analyzed by liquid chromatography/tandem mass spectrometry and 713 unique proteins were finally identified. Gene ontology and pathway analysis revealed that identified proteins were mainly involved in carbohydrate metabolism, degradation, response to stimulus, oxidation-reduction, biological regulation and binding. Flow cytometry analysis demonstrated that thioredoxin peroxidase identified in this study had the effect on inhibiting MHCII and CD86 expression on LPS-activated macrophages. The present study provides insight into the growth and development of the schistosome in the final host and valuable information for screening vaccine candidates for schistosomiasis.
Collapse
Affiliation(s)
- Xiaodan Cao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, China
| | - Zhiqiang Fu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, China
| | - Min Zhang
- College of Animal Science and Technology, Henran University of Science and Technology, Luoyang, China
| | - Yanhui Han
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Qian Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, China
| | - Ke Lu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, China
| | - Hao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, China
| | - Chuangang Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, China
| | - Yang Hong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, China.
| | - Jiaojiao Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
13
|
Marcilla A, Martin-Jaular L, Trelis M, de Menezes-Neto A, Osuna A, Bernal D, Fernandez-Becerra C, Almeida IC, Del Portillo HA. Extracellular vesicles in parasitic diseases. J Extracell Vesicles 2014; 3:25040. [PMID: 25536932 PMCID: PMC4275648 DOI: 10.3402/jev.v3.25040] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/29/2014] [Accepted: 10/21/2014] [Indexed: 12/31/2022] Open
Abstract
Parasitic diseases affect billions of people and are considered a major public health issue. Close to 400 species are estimated to parasitize humans, of which around 90 are responsible for great clinical burden and mortality rates. Unfortunately, they are largely neglected as they are mainly endemic to poor regions. Of relevance to this review, there is accumulating evidence of the release of extracellular vesicles (EVs) in parasitic diseases, acting both in parasite–parasite inter-communication as well as in parasite–host interactions. EVs participate in the dissemination of the pathogen and play a role in the regulation of the host immune systems. Production of EVs from parasites or parasitized cells has been described for a number of parasitic infections. In this review, we provide the most relevant findings of the involvement of EVs in intercellular communication, modulation of immune responses, involvement in pathology, and their potential as new diagnostic tools and therapeutic agents in some of the major human parasitic pathogens.
Collapse
Affiliation(s)
- Antonio Marcilla
- Departament de Biologia Cel.lular i Parasitologia, Universitat de València, Valencia, Spain;
| | - Lorena Martin-Jaular
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Maria Trelis
- Departament de Biologia Cel.lular i Parasitologia, Universitat de València, Valencia, Spain
| | - Armando de Menezes-Neto
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Antonio Osuna
- Institute of Biotechnology, Biochemistry and Molecular Parasitology, University of Granada, Granada, Spain
| | - Dolores Bernal
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Valencia, Spain
| | - Carmen Fernandez-Becerra
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Igor C Almeida
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - Hernando A Del Portillo
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
14
|
Proteomic profiling of the infective trophozoite stage of Acanthamoeba polyphaga. Acta Trop 2014; 140:166-72. [PMID: 25149354 DOI: 10.1016/j.actatropica.2014.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/31/2014] [Accepted: 08/08/2014] [Indexed: 01/12/2023]
Abstract
Acanthamoeba polyphaga is a free-living protozoan pathogen, whose infective trophozoite form is capable of causing a blinding keratitis and fatal granulomatous encephalitis in humans. The damage caused by A. polyphaga trophozoites in human corneal or brain infections is the result of several different pathogenic mechanisms that have not yet been elucidated at the molecular level. We performed a comprehensive analysis of the proteins expressed by A. polyphaga trophozoites, based on complementary 2-DE MS/MS and gel-free LC-MS/MS approaches. Overall, 202 non-redundant proteins were identified. An A. polyphaga proteomic map in the pH range 3-10 was produced, with protein identification for 184 of 370 resolved spots, corresponding to 142 proteins. Additionally, 94 proteins were identified by gel-free LC-MS/MS. Functional classification revealed several proteins with potential importance for pathogen survival and infection of mammalian hosts, including surface proteins and proteins related to defense mechanisms. Our study provided the first comprehensive proteomic survey of the trophozoite infective stage of an Acanthamoeba species, and established foundations for prospective, comparative and functional studies of proteins involved in mechanisms of survival, development, and pathogenicity in A. polyphaga and other pathogenic amoebae.
Collapse
|
15
|
Sotillo J, Sanchez-Flores A, Cantacessi C, Harcus Y, Pickering D, Bouchery T, Camberis M, Tang SC, Giacomin P, Mulvenna J, Mitreva M, Berriman M, LeGros G, Maizels RM, Loukas A. Secreted proteomes of different developmental stages of the gastrointestinal nematode Nippostrongylus brasiliensis. Mol Cell Proteomics 2014; 13:2736-51. [PMID: 24994561 PMCID: PMC4188999 DOI: 10.1074/mcp.m114.038950] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/26/2014] [Indexed: 11/06/2022] Open
Abstract
Hookworms infect more than 700 million people worldwide and cause more morbidity than most other human parasitic infections. Nippostrongylus brasiliensis (the rat hookworm) has been used as an experimental model for human hookworm because of its similar life cycle and ease of maintenance in laboratory rodents. Adult N. brasiliensis, like the human hookworm, lives in the intestine of the host and releases excretory/secretory products (ESP), which represent the major host-parasite interface. We performed a comparative proteomic analysis of infective larval (L3) and adult worm stages of N. brasiliensis to gain insights into the molecular bases of host-parasite relationships and determine whether N. brasiliensis could indeed serve as an appropriate model for studying human hookworm infections. Proteomic data were matched to a transcriptomic database assembled from 245,874,892 Illumina reads from different developmental stages (eggs, L3, L4, and adult) of N. brasiliensis yielding∼18,426 unigenes with 39,063 possible isoform transcripts. From this analysis, 313 proteins were identified from ESPs by LC-MS/MS-52 in the L3 and 261 in the adult worm. Most of the proteins identified in the study were stage-specific (only 13 proteins were shared by both stages); in particular, two families of proteins-astacin metalloproteases and CAP-domain containing SCP/TAPS-were highly represented in both L3 and adult ESP. These protein families are present in most nematode groups, and where studied, appear to play roles in larval migration and evasion of the host's immune response. Phylogenetic analyses of defined protein families and global gene similarity analyses showed that N. brasiliensis has a greater degree of conservation with human hookworm than other model nematodes examined. These findings validate the use of N. brasiliensis as a suitable parasite for the study of human hookworm infections in a tractable animal model.
Collapse
Affiliation(s)
- Javier Sotillo
- From the ‡Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | | | - Cinzia Cantacessi
- From the ‡Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia; ¶Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Yvonne Harcus
- ‖Institute of Immunology and Infection Research, University of Edinburgh, Ashworth Laboratories, West Mains Road, Edinburgh EH9 3JT, UK
| | - Darren Pickering
- From the ‡Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Tiffany Bouchery
- From the ‡Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Mali Camberis
- From the ‡Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Shiau-Choot Tang
- From the ‡Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Paul Giacomin
- From the ‡Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Jason Mulvenna
- From the ‡Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia; ‡‡Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Makedonka Mitreva
- §§The Genome Institute, Washington University School of Medicine, St. Louis, Missouri; ¶¶Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Matthew Berriman
- §Parasite Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Graham LeGros
- From the ‡Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Rick M Maizels
- ‖Institute of Immunology and Infection Research, University of Edinburgh, Ashworth Laboratories, West Mains Road, Edinburgh EH9 3JT, UK
| | - Alex Loukas
- From the ‡Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia;
| |
Collapse
|
16
|
Stein K, Chiang HL. Exocytosis and Endocytosis of Small Vesicles across the Plasma Membrane in Saccharomyces cerevisiae. MEMBRANES 2014; 4:608-29. [PMID: 25192542 PMCID: PMC4194051 DOI: 10.3390/membranes4030608] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/02/2014] [Accepted: 08/18/2014] [Indexed: 12/14/2022]
Abstract
When Saccharomyces cerevisiae is starved of glucose, the gluconeogenic enzymes fructose-1,6-bisphosphatase (FBPase), phosphoenolpyruvate carboxykinase, isocitrate lyase, and malate dehydrogenase, as well as the non-gluconeogenic enzymes glyceraldehyde-3-phosphate dehydrogenase and cyclophilin A, are secreted into the periplasm. In the extracellular fraction, these secreted proteins are associated with small vesicles that account for more than 90% of the total number of extracellular structures observed. When glucose is added to glucose-starved cells, FBPase is internalized and associated with clusters of small vesicles in the cytoplasm. Specifically, the internalization of FBPase results in the decline of FBPase and vesicles in the extracellular fraction and their appearance in the cytoplasm. The clearance of extracellular vesicles and vesicle-associated proteins from the extracellular fraction is dependent on the endocytosis gene END3. This internalization is regulated when cells are transferred from low to high glucose. It is rapidly occurring and is a high capacity process, as clusters of vesicles occupy 10%–20% of the total volume in the cytoplasm in glucose re-fed cells. FBPase internalization also requires the VPS34 gene encoding PI3K. Following internalization, FBPase is delivered to the vacuole for degradation, whereas proteins that are not degraded may be recycled.
Collapse
Affiliation(s)
- Kathryn Stein
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Hui-Ling Chiang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
17
|
Chen KY, Cheng CJ, Yen CM, Tang P, Wang LC. Comparative studies on the proteomic expression patterns in the third- and fifth-stage larvae of Angiostrongylus cantonensis. Parasitol Res 2014; 113:3591-600. [PMID: 25028210 DOI: 10.1007/s00436-014-4024-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/04/2014] [Indexed: 12/19/2022]
Abstract
Angiostrongylus cantonensis is an important zoonotic parasite causing eosinophilic meningitis and eosinophilic meningoencephalitis in humans. In this study, the protein expression profiles of the infective third- and pathogenic fifth-stage larvae (L3 and L5) of this parasite were compared by proteomic techniques. Isolated protein samples were separated by two-dimensional gel electrophoresis (2-DE), stained with silver nitrate, and analyzed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Proteins from L5 were mainly at pH 5-7 and with molecular weight (MW) 40-100 kDa, whereas those from L3 were at pH 5-6 and with 5-35 kDa. Of 100 protein spots identified, 33 were from L3 whereas 67 from L5 and 63 had known identities, whereas 37 were hypothetical proteins. There were 15 spots of stress proteins, and HSP60 was the most frequently found heat stress proteins in L5. More binding and protein transport-related proteins were found in L5 including peptidylprolyl isomerase (cyclophilin)-like 2, serum albumin, preproalbumin precursor, and dilute class unconventional myosin. L3 had a higher expression of cytoskeleton and membrane proteins than L5. In addition, four protein spots were identified in the sera of the rat host by Western blot analysis. The present proteomic study revealed different protein expression profiles in L3 and L5 of A. cantonensis. These changes may reflect the development of L3 from the poikilothermic snails to L5 in the homoeothemic rats. This information may be useful for the finding of stage-specific proteins and biomarker for diagnosis of angiostrongyliasis.
Collapse
Affiliation(s)
- Kuang-Yao Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | | | | | | | | |
Collapse
|
18
|
Giardina BJ, Stein K, Chiang HL. The endocytosis gene END3 is essential for the glucose-induced rapid decline of small vesicles in the extracellular fraction in Saccharomyces cerevisiae. J Extracell Vesicles 2014; 3:23497. [PMID: 24665361 PMCID: PMC3963178 DOI: 10.3402/jev.v3.23497] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/28/2014] [Accepted: 02/17/2014] [Indexed: 12/21/2022] Open
Abstract
Background Protein secretion is a fundamental process in all living cells. Gluconeogenic enzymes are secreted when Saccharomyces cerevisiae are grown in media containing low glucose. However, when cells are transferred to media containing high glucose, they are internalized. We investigated whether or not gluconeogenic enzymes were associated with extracellular vesicles in glucose-starved cells. We also examined the role that the endocytosis gene END3 plays in the internalization of extracellular proteins/vesicles in response to glucose addition. Methods Transmission electron microscopy was performed to determine the presence of extracellular vesicles in glucose-starved wild-type cells and the dynamics of vesicle transport in cells lacking the END3 gene. Proteomics was used to identify extracellular proteins that associated with these vesicles. Results Total extracts prepared from glucose-starved cells consisted of about 95% small vesicles (30–50 nm) and 5% large structures (100–300 nm). The addition of glucose caused a rapid decline in small extracellular vesicles in wild-type cells. However, most of the extracellular vesicles were still observed in cells lacking the END3 gene following glucose replenishment. Proteomics was used to identify 72 extracellular proteins that may be associated with these vesicles. Gluconeogenic enzymes fructose-1,6-bisphosphatase, malate dehydrogenase, isocitrate lyase, and phosphoenolpyruvate carboxykinase, as well as non-gluconeogenic enzymes glyceraldehyde-3-phosphate dehydrogenase and cyclophilin A, were distributed in the vesicle-enriched fraction in total extracts prepared from cells grown in low glucose. Distribution of these proteins in the vesicle-enriched fraction required the integrity of the membranes. When glucose was added to glucose-starved wild-type cells, levels of extracellular fructose-1,6-bisphosphatase, malate dehydrogenase, isocitrate lyase, phosphoenolpyruvate carboxykinase, glyceraldehyde-3-phosphate dehydrogenase, and cyclophilin A were reduced. In contrast, in cells lacking the END3 gene, levels of these proteins in the extracellular fraction remained high. Conclusion The END3 gene is required for the rapid decline of extracellular proteins and vesicles in response to glucose addition.
Collapse
Affiliation(s)
- Bennett J Giardina
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Kathryn Stein
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Hui-Ling Chiang
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
19
|
Bernal D, Trelis M, Montaner S, Cantalapiedra F, Galiano A, Hackenberg M, Marcilla A. Surface analysis of Dicrocoelium dendriticum. The molecular characterization of exosomes reveals the presence of miRNAs. J Proteomics 2014; 105:232-41. [PMID: 24561797 DOI: 10.1016/j.jprot.2014.02.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/08/2014] [Accepted: 02/12/2014] [Indexed: 12/31/2022]
Abstract
UNLABELLED With the aim of characterizing the molecules involved in the interaction of Dicrocoelium dendriticum adults and the host, we have performed proteomic analyses of the external surface of the parasite using the currently available datasets including the transcriptome of the related species Echinostoma caproni. We have identified 182 parasite proteins on the outermost surface of D. dendriticum. The presence of exosome-like vesicles in the ESP of D. dendriticum and their components has also been characterized. Using proteomic approaches, we have characterized 84 proteins in these vesicles. Interestingly, we have detected miRNA in D. dendriticum exosomes, thus representing the first report of miRNA in helminth exosomes. BIOLOGICAL SIGNIFICANCE In order to identify potential targets for intervention against parasitic helminths, we have analyzed the surface of the parasitic helminth Dicrocoelium dendriticum. Along with the proteomic analyses of the outermost layer of the parasite, our work describes the molecular characterization of the exosomes of D. dendriticum. Our proteomic data confirm the improvement of protein identification from "non-model organisms" like helminths, when using different search engines against a combination of available databases. In addition, this work represents the first report of miRNAs in parasitic helminth exosomes. These vesicles can pack specific proteins and RNAs providing stability and resistance to RNAse digestion in body fluids, and provide a way to regulate host-parasite interplay. The present data should provide a solid foundation for the development of novel methods to control this non-model organism and related parasites. This article is part of a Special Issue entitled: Proteomics of non-model organisms.
Collapse
Affiliation(s)
- Dolores Bernal
- Departament de Bioquímica i Biologia Molecular, Universitat de València, C/Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - Maria Trelis
- Àrea de Parasitologia, Departament de Biologia Cel.lular i Parasitologia, Universitat de València, Av. V.A. Estellès, s/n, 46100 Burjassot, Valencia, Spain
| | - Sergio Montaner
- Àrea de Parasitologia, Departament de Biologia Cel.lular i Parasitologia, Universitat de València, Av. V.A. Estellès, s/n, 46100 Burjassot, Valencia, Spain
| | - Fernando Cantalapiedra
- Àrea de Parasitologia, Departament de Biologia Cel.lular i Parasitologia, Universitat de València, Av. V.A. Estellès, s/n, 46100 Burjassot, Valencia, Spain
| | - Alicia Galiano
- Àrea de Parasitologia, Departament de Biologia Cel.lular i Parasitologia, Universitat de València, Av. V.A. Estellès, s/n, 46100 Burjassot, Valencia, Spain
| | - Michael Hackenberg
- Facultad de Ciencias, Departamento de Genética, Universidad de Granada, 18071 Granada, Spain; Laboratorio de Bioinformática, Instituto de Biotecnología, Centro de Investigación Biomédica, 18100 Granada, Spain
| | - Antonio Marcilla
- Àrea de Parasitologia, Departament de Biologia Cel.lular i Parasitologia, Universitat de València, Av. V.A. Estellès, s/n, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
20
|
Giardina BJ, Stanley BA, Chiang HL. Glucose induces rapid changes in the secretome of Saccharomyces cerevisiae. Proteome Sci 2014; 12:9. [PMID: 24520859 PMCID: PMC3927832 DOI: 10.1186/1477-5956-12-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/31/2014] [Indexed: 12/14/2022] Open
Abstract
Background Protein secretion is a fundamental process in all living cells. Proteins can either be secreted via the classical or non-classical pathways. In Saccharomyces cerevisiae, gluconeogenic enzymes are in the extracellular fraction/periplasm when cells are grown in media containing low glucose. Following a transfer of cells to high glucose media, their levels in the extracellular fraction are reduced rapidly. We hypothesized that changes in the secretome were not restricted to gluconeogenic enzymes. The goal of the current study was to use a proteomic approach to identify extracellular proteins whose levels changed when cells were transferred from low to high glucose media. Results We performed two iTRAQ experiments and identified 347 proteins that were present in the extracellular fraction including metabolic enzymes, proteins involved in oxidative stress, protein folding, and proteins with unknown functions. Most of these proteins did not contain typical ER-Golgi signal sequences. Moreover, levels of many of these proteins decreased upon a transfer of cells from media containing low to high glucose media. Using an extraction procedure and Western blotting, we confirmed that the metabolic enzymes (glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, glucose-6-phosphate dehydrogenase, pyruvate decarboxylase), proteins involved in oxidative stress (superoxide dismutase and thioredoxin), and heat shock proteins (Ssa1p, Hsc82p, and Hsp104p) were in the extracellular fraction during growth in low glucose and that the levels of these extracellular proteins were reduced when cells were transferred to media containing high glucose. These proteins were associated with membranes in vesicle-enriched fraction. We also showed that small vesicles were present in the extracellular fraction in cells grown in low glucose. Following a transfer from low to high glucose media for 30 minutes, 98% of these vesicles disappeared from the extracellular fraction. Conclusions Our data indicate that transferring cells from low to high glucose media induces a rapid decline in levels of a large number of extracellular proteins and the disappearance of small vesicles from the extracellular fraction. Therefore, we conclude that the secretome undergoes dynamic changes during transition from glucose-deficient to glucose-rich media. Most of these extracellular proteins do not contain typical ER signal sequences, suggesting that they are secreted via the non-classical pathway.
Collapse
Affiliation(s)
| | | | - Hui-Ling Chiang
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
21
|
In silico approach for the identification of immunological properties of enolase from Trypanosoma cruzi and its possible usefulness as vaccine in Chagas disease. Parasitol Res 2014; 113:1029-39. [PMID: 24442239 DOI: 10.1007/s00436-013-3737-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
Abstract
Nowadays, Chagas disease is a major health problem in Latin America that has been disseminated also into non-endemic countries. Currently, a vaccine against Chagas disease does not exist. In the present study, the gene encoding Trypanosoma cruzi enolase (TcENO) was amplified, cloned, and sequenced and the recombinant protein was purified. We used in silico and an experimental assay to investigate the immunological role of TcENO. The in silico assays showed that TcENO sequence contains characteristic motifs of enolase; additionally, a transmembranal region was identified, and this could indicate the potential membrane localization of TcENO. Moreover, both B lymphocyte and cytotoxic T lymphocytes (CTL) predicted epitopes were localized; these results suggest the possibility that TcENO can develop both humoral and cellular immune responses. Furthermore, the presence of antibodies was verified by western blot assays, showing that the purified recombinant protein was detected by sera from experimentally infected mice and sera of patients with Chagas disease. These results indicate that TcENO is immunogenic and could be used as a vaccine candidate.
Collapse
|
22
|
Figuera L, Gómez-Arreaza A, Avilán L. Parasitism in optima forma: exploiting the host fibrinolytic system for invasion. Acta Trop 2013; 128:116-23. [PMID: 23850506 DOI: 10.1016/j.actatropica.2013.06.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 06/20/2013] [Accepted: 06/30/2013] [Indexed: 02/08/2023]
Abstract
The interaction of pathogenic bacteria with the host fibrinolytic system through the plasminogen molecule has been well documented. It has been shown, using animal models, to be important in invasion into the host and establishment of the infection. From a number of recent observations with parasitic protists and helminths, emerges evidence that also in these organisms the interaction with plasminogen may be important for infection and virulence. A group of molecules that act as plasminogen receptors have been identified in parasites. This group comprises the glycolytic enzymes enolase, glyceraldehyde-3-phosphate dehydrogenase and fructose-1,6-biphosphate aldolase, in common with the plasminogen receptors known in prokaryotic pathogens. The interaction with the fibrinolytic system may arm the parasites with the host protease plasmin, thus helping them to migrate and cross barriers, infect cells and avoid clot formation. In this context, plasminogen receptors on the parasite surface or as secreted molecules, may be considered virulence factors. A possible evolutionary scenario for the recruitment of glycolytic enzymes as plasminogen receptors by widely different pathogens is discussed.
Collapse
|
23
|
Barteneva NS, Maltsev N, Vorobjev IA. Microvesicles and intercellular communication in the context of parasitism. Front Cell Infect Microbiol 2013; 3:49. [PMID: 24032108 PMCID: PMC3764926 DOI: 10.3389/fcimb.2013.00049] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/20/2013] [Indexed: 01/18/2023] Open
Abstract
There is a rapidly growing body of evidence that production of microvesicles (MVs) is a universal feature of cellular life. MVs can incorporate microRNA (miRNA), mRNA, mtDNA, DNA and retrotransposons, camouflage viruses/viral components from immune surveillance, and transfer cargo between cells. These properties make MVs an essential player in intercellular communication. Increasing evidence supports the notion that MVs can also act as long-distance vehicles for RNA molecules and participate in metabolic synchronization and reprogramming eukaryotic cells including stem and germinal cells. MV ability to carry on DNA and their general distribution makes them attractive candidates for horizontal gene transfer, particularly between multi-cellular organisms and their parasites; this suggests important implications for the co-evolution of parasites and their hosts. In this review, we provide current understanding of the roles played by MVs in intracellular pathogens and parasitic infections. We also discuss the possible role of MVs in co-infection and host shifting.
Collapse
Affiliation(s)
- Natasha S Barteneva
- Program in Cellular and Molecular Medicine, Children's Hospital Boston and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA. Natasha.Barteneva@ childrens.harvard.edu
| | | | | |
Collapse
|
24
|
Garg G, Bernal D, Trelis M, Forment J, Ortiz J, Valero ML, Pedrola L, Martinez-Blanch J, Esteban JG, Ranganathan S, Toledo R, Marcilla A. The transcriptome of Echinostoma caproni adults: Further characterization of the secretome and identification of new potential drug targets. J Proteomics 2013; 89:202-14. [DOI: 10.1016/j.jprot.2013.06.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 06/04/2013] [Accepted: 06/09/2013] [Indexed: 02/01/2023]
|
25
|
Tian F, Hou M, Chen L, Gao Y, Zhang X, Ji M, Wu G. Proteomic analysis of schistosomiasis japonica vaccine candidate antigens recognized by UV-attenuated cercariae-immunized porcine serum IgG2. Parasitol Res 2013; 112:2791-803. [PMID: 23715679 DOI: 10.1007/s00436-013-3447-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/29/2013] [Indexed: 12/24/2022]
Abstract
Many studies have showed that the radiation-attenuated cercariae (RAC) vaccine could induce the high protection of laboratory animals to resist the schistosoma infection by cellular and humoral mechanism. Here, we aimed to identify possible vaccine antigens by using specific IgG2 antibody from RAC-vaccinated pigs or vaccination and challenge pigs. The antigens from the schistosomal soluble worm antigen preparation (SWAP) recognized by the porcine IgG2 antibody were obtained using immunoprecipitation technique. These antigens were separated by 2-D electrophoresis, and 116 spots were successfully identified by MALDI-TOF MS from about 400 putative spots in gels. Among these spots, 113 spots could match to the Schistosoma japonicum. These identified proteins in four groups were classified by Gene Ontology (Go) database, and the mainly functions of these proteins were involved in binding, catalytic activity (thioredoxin peroxidase-2, et al.), signal transduction class (MAP Kinase, et al.), cell process (the heat shock 70-kDa protein 9B, et al.), and the intracellular component (tektin, et al.). Our methods suggested that it was possible to pull-down the interesting proteins recognized by specific antibodies. Our results may provide new clues for exploring the mechanism of high protection induced by RAC and shed some light on the research for anti-schistosomiasis japonica vaccine.
Collapse
Affiliation(s)
- Fang Tian
- Department of Pathogen Biology& Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Martínez-Ibeas A, González-Lanza C, Manga-González M. Proteomic analysis of the tegument and excretory–secretory products of Dicrocoelium dendriticum (Digenea) adult worms. Exp Parasitol 2013; 133:411-20. [DOI: 10.1016/j.exppara.2013.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/20/2012] [Accepted: 01/10/2013] [Indexed: 11/29/2022]
|
27
|
Proteomic analysis of different period excretory secretory products from Clonorchis sinensis adult worms: molecular characterization, immunolocalization, and serological reactivity of two excretory secretory antigens-methionine aminopeptidase 2 and acid phosphatase. Parasitol Res 2012; 112:1287-97. [PMID: 23274491 DOI: 10.1007/s00436-012-3264-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 12/19/2012] [Indexed: 12/16/2022]
Abstract
The excretory secretory products (ESP) of Clonorchis sinensis are the causative agents of clonorchiasis and biliary diseases. The parasites' ESP play important roles in host-parasite interactions. The protein compositions of ESP at different secretory times are different and have not been systemically investigated so far. In this study, we collected ESP from six different periods (0-3 h, 3-6 h, 6-12 h, 12-24 h, 24-36 h, and 36-48 h) from C. sinensis adults. Using a shotgun LC-MS/MS analysis, we found 187, 80, 103, 58, 248, and 383 proteins, respectively. Among these proteins, we selected methionine aminopeptidase 2 (MAP-2, presented in 24-36 h and 36-48 h ESP) and acid phosphatase (AP, presented in 3-6 h, 12-24 h, 24-36 h, and 36-48 h ESP) for further study. Bioinformatics analysis showed that CsMAP-2 has metallopeptidase family M24, unique lysine residue-rich and acidic residue-rich domain, SGTS motif, and auto-cleavage point; and that CsAP has possible signal sequence cleavage site, acid phosphate domain, and two histidine acid phosphatases active regions. CsMAP-2 and CsAP's cDNA have 1,425 bp and1,410 bp ORF, encoding 475 and 470 amino acid proteins and weighing 55.3840 kDa and 55.2875 kDa, respectively. MAP-2 and AP were identified as antigens present in the ESP and circulating antigens by immunoblot analysis, which were also found expressing in the eggs, metacercaria, and adult stages of C. sinensis. Immunofluorescence analysis showed that they were located in tegument and intestinal cecum of adult. MTT assay showed that they could inhibit hepatic stellate cell line (LX-2) proliferation. These findings presented the compositions of different period excretory secretary products from C. sinensis adults.
Collapse
|
28
|
Evaluation and characterization of Fasciola hepatica tegument protein extract for serodiagnosis of human fascioliasis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1870-8. [PMID: 23015645 DOI: 10.1128/cvi.00487-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tegument protein extract from Fasciola hepatica adult flukes (FhTA) was obtained and assessed for its potential as a diagnostic agent for the serological detection of human fascioliasis using an indirect enzyme-linked immunosorbent assay (ELISA). In an analysis of sera from 45 patients infected with F. hepatica, sera from 41 patients with other parasitic infections, and sera from 33 healthy controls, the FhTA-ELISA showed sensitivity, specificity, and accuracy of 91.1%, 97.3%, and 95%, respectively. Specific IgG1 and IgG4 were the antibody isotypes mainly detected in sera from patients with fascioliasis. Polypeptides of 52, 38, 24 to 26, and 12 to 14 kDa were identified by Western blotting as the most immunoreactive components of the FhTA. A proteomic approach led us to identify enolase, aldolase, glutathione S-transferase, and fatty acid binding protein as the major immunoreactive components of the FhTA.
Collapse
|
29
|
Extracellular vesicles from parasitic helminths contain specific excretory/secretory proteins and are internalized in intestinal host cells. PLoS One 2012; 7:e45974. [PMID: 23029346 PMCID: PMC3454434 DOI: 10.1371/journal.pone.0045974] [Citation(s) in RCA: 264] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 08/23/2012] [Indexed: 11/30/2022] Open
Abstract
The study of host-parasite interactions has increased considerably in the last decades, with many studies focusing on the identification of parasite molecules (i.e. surface or excretory/secretory proteins (ESP)) as potential targets for new specific treatments and/or diagnostic tools. In parallel, in the last few years there have been significant advances in the field of extracellular vesicles research. Among these vesicles, exosomes of endocytic origin, with a characteristic size ranging from 30–100 nm, carry several atypical secreted proteins in different organisms, including parasitic protozoa. Here, we present experimental evidence for the existence of exosome-like vesicles in parasitic helminths, specifically the trematodes Echinostoma caproni and Fasciola hepatica. These microvesicles are actively released by the parasites and are taken up by host cells. Trematode extracellular vesicles contain most of the proteins previously identified as components of ESP, as confirmed by proteomic, immunogold labeling and electron microscopy studies. In addition to parasitic proteins, we also identify host proteins in these structures. The existence of extracellular vesicles explains the secretion of atypical proteins in trematodes, and the demonstration of their uptake by host cells suggests an important role for these structures in host-parasite communication, as described for other infectious agents.
Collapse
|
30
|
Abstract
SUMMARYAnthelmintics are the cornerstone of parasitic helminth control. Surprisingly, understanding of the biochemical pathways used by parasitic helminths to detoxify anthelmintics is fragmented, despite the increasing global threat of anthelmintic resistance within the ruminant and equine industries. Reductionist biochemistry has likely over-estimated the enzymatic role of glutathione transferases in anthelmintic metabolism and neglected the potential role of the cytochrome P-450 superfamily (CYPs). Proteomic technologies offers the opportunity to support genomics, reverse genetics and pharmacokinetics, and provide an integrated insight into both the cellular mechanisms underpinning response to anthelmintics and also the identification of biomarker panels for monitoring the development of anthelmintic resistance. To date, there have been limited attempts to include proteomics in anthelmintic metabolism studies. Optimisations of membrane, post-translational modification and interaction proteomic technologies in helminths are needed to especially study Phase I CYPs and Phase III ABC transporter pumps for anthelmintics and their metabolites.
Collapse
|
31
|
Proteomic analysis of the pinworm Syphacia muris (Nematoda: Oxyuridae), a parasite of laboratory rats. Parasitol Int 2012; 61:561-4. [PMID: 22583759 DOI: 10.1016/j.parint.2012.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 04/30/2012] [Accepted: 05/03/2012] [Indexed: 11/22/2022]
Abstract
Syphacia muris (Nematoda: Oxyuridae) is a ubiquitous nematode that commonly infects rats in the laboratory which can interfere in the development of biological assays. The somatic extract of S. muris adults collected from infected rats was investigated using a proteomic approach. A shot-gun liquid chromatography/tandem mass spectrometry procedure was used. We used the MASCOT search engine (Matrix-Science) and ProteinPilot software v2.0 (Applied Biosystems) for the database search. A total of 359 proteins were accurately identified from the worms. The largest protein families consisted of metabolic enzymes and those involved in the nucleic metabolism and cell cycle. Proteins of transmembrane receptors and those involved in protein metabolism, chaperones, structural and motor, signalling and calcium-binding proteins also were identified in the proteome of S. muris. Proteome array of S. muris may contribute to further elucidation of biological system of S. muris as well as host-parasite relationships.
Collapse
|
32
|
Virginio VG, Monteiro KM, Drumond F, de Carvalho MO, Vargas DM, Zaha A, Ferreira HB. Excretory/secretory products from in vitro-cultured Echinococcus granulosus protoscoleces. Mol Biochem Parasitol 2012; 183:15-22. [PMID: 22261090 DOI: 10.1016/j.molbiopara.2012.01.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/22/2011] [Accepted: 01/04/2012] [Indexed: 01/07/2023]
Abstract
Cystic hydatid disease (CHD) is caused by infection with Echinococcus granulosus metacestodes and affects humans and livestock. Proteins secreted or excreted by protoscoleces, pre-adult worms found in the metacestode, are thought to play fundamental roles in the host-parasite relationship. In this work, we performed an LC-MS/MS proteomic analysis of the excretory-secretory products obtained from the first 48 h of an in vitro culture of the protoscoleces. We identified 32 proteins, including 18 that were never detected previously in metacestode proteomic studies. Among the novel identified excretory-secretory products are antigenic proteins, such as EG19 and P-29 and a calpain protease. We also identified other important protoscolex excretory-secretory products, such as thioredoxin peroxidase and 14-3-3 proteins, which are potentially involved in evasion mechanisms adopted by parasites to establish infection. Several intracellular proteins were found in the excretory-secretory products, revealing a set of identified proteins not previously thought to be exposed at the host-parasite interface. Additionally, immunological analyses established the antigenic profiles of the newly identified excretory-secretory products and revealed, for the first time, the in vitro secretion of the B antigen by protoscoleces. Considering that the excretory-secretory products obtained in vitro might reflect the products released and exposed to the host in vivo, our results provide valuable information on parasite survival strategies in adverse host environments and on the molecular mechanisms underpinning CHD immunopathology.
Collapse
Affiliation(s)
- Veridiana G Virginio
- Laboratório de Biologia Molecular de Cestódeos e Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
33
|
Toledo R, Bernal MD, Marcilla A. Proteomics of foodborne trematodes. J Proteomics 2011; 74:1485-503. [DOI: 10.1016/j.jprot.2011.03.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 03/25/2011] [Accepted: 03/26/2011] [Indexed: 01/19/2023]
|
34
|
Screening trematodes for novel intervention targets: a proteomic and immunological comparison of Schistosoma haematobium, Schistosoma bovis and Echinostoma caproni. Parasitology 2011; 138:1607-19. [PMID: 21729355 PMCID: PMC3179331 DOI: 10.1017/s0031182011000412] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
With the current paucity of vaccine targets for parasitic diseases, particularly those in
childhood, the aim of this study was to compare protein expression and immune
cross-reactivity between the trematodes Schistosoma haematobium, S. bovis
and Echinostoma caproni in the hope of identifying novel intervention
targets. Native adult parasite proteins were separated by 2-dimensional gel
electrophoresis and identified through electrospray ionisation tandem mass spectrometry to
produce a reference gel. Proteins from differential gel electrophoresis analyses of the
three parasite proteomes were compared and screened against sera from hamsters infected
with S. haematobium and E. caproni following
2-dimensional Western blotting. Differential protein expression between the three species
was observed with circa 5% of proteins from S.
haematobium showing expression up-regulation compared to the other two species.
There was 91% similarity between the proteomes of the two Schistosoma
species and 81% and 78·6% similarity between S. haematobium and
S. bovis versus E. caproni, respectively. Although
there were some common cross-species antigens, species-species targets were revealed
which, despite evolutionary homology, could be due to phenotypic plasticity arising from
different host-parasite relationships. Nevertheless, this approach helps to identify novel
intervention targets which could be used as broad-spectrum candidates for future use in
human and veterinary vaccines.
Collapse
|
35
|
Zygocotyle lunata: proteomic analysis of the adult stage. Exp Parasitol 2011; 128:133-7. [PMID: 21334327 DOI: 10.1016/j.exppara.2011.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/10/2011] [Accepted: 02/14/2011] [Indexed: 11/22/2022]
Abstract
The somatic extract of Zygocotyle lunata (Trematoda: Paramphistomidae) adults collected from experimentally infected mice was investigated using a proteomic approach to separate and identify tryptic peptides from the somatic extract of Z. lunata adult worms. A shot-gun liquid chromatography/tandem mass spectrometry procedure was used. We used the MASCOT search engine (Matrix-Science) and ProteinPilot software v2.0 (Applied Biosystems) for the database search. A total of 36 proteins were accurately identified from the worms. The largest protein family consisted of metabolic enzymes. Structural, motor and receptor binding proteins and proteins related to oxygen transport were identified in the somatic extract of Z. lunata. This is the first study that attempts to identify the proteome of Z. lunata. However, more work is needed to improve our knowledge of trematodiasis in general and more specifically to have a better understanding about host-parasite relationships in infections with paramphistomes.
Collapse
|