1
|
Hassan ZR, El-Sayed S, Zekry KM, Ahmed SG, Hassan Abd Elhamid A, Salama DEA, Taha AK, Mahmoud NA, Mohammed SF, Amin MM, Mohamed RE, Eraque AMS, Mohamed SA, Abdelgalil RM, Atta SA, Fahmy NT, Badr MS. Evaluation of muscular apoptotic changes and myogenin gene expression in experimental trichinosis after stem cells and atorvastatin added to ivermectin treatment. Exp Parasitol 2024; 265:108823. [PMID: 39187057 DOI: 10.1016/j.exppara.2024.108823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/20/2024] [Accepted: 08/08/2024] [Indexed: 08/28/2024]
Abstract
Trichinosis is a common parasitic disease that affects the striated skeletal muscles, causing apoptotic and degenerative changes associated with myogenin expression in the affected myocytes. Hence, this study aimed to assess the ameliorative effects of stem cells and atorvastatin added to ivermectin on the infected myocytes during the muscular phase of murine trichinosis. 120 laboratory Swiss albino male mice were divided into 10 groups, and each group was subdivided into intestinal and muscular phases (each n = 6); uninfected control; untreated infected control; infected received ivermectin monotherapy; infected received atorvastatin monotherapy; infected received stem cells monotherapy; infected received ivermectin and atorvastatin dual therapy; infected received ivermectin and stem cells dual therapy; infected received atorvastatin and stem cells dual therapy; infected received ivermectin 0.2, atorvastatin 40, and stem cells triple therapy; and infected received ivermectin 0.1, atorvastatin 20, and stem cells triple therapy. Intestinal phase mice were sacrificed on the 5th day post-infection, while those of the muscular phase were sacrificed on the 35th day post-infection. Parasitological, histopathological, ultrastructural, histochemical, biochemical, and myogenin gene expression assessments were performed. The results revealed that mice that received ivermectin, atorvastatin, and stem cell triple therapies showed the maximum reduction in the adult worm and larvae burden, marked improvement in the underlying muscular degenerative changes (as was noticed by histopathological, ultrastructural, and histochemical Feulgen stain assessment), lower biochemical levels of serum NK-κB and tissue NO, and lower myogenin expression. Accordingly, the combination of stem cells, atorvastatin, and ivermectin affords a potential synergistic activity against trichinosis with considerable healing of the underlying degenerative sequel.
Collapse
Affiliation(s)
- Zeinab R Hassan
- Departments of Parasitology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt; Departments of Parasitology, Benha National University (BNU), Qalyubia, Egypt.
| | - Samar El-Sayed
- Departments of Parasitology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Kareman M Zekry
- Departments of Parasitology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Samah G Ahmed
- Histology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | | | - Doaa E A Salama
- Pathology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt; Departments of Pathology, School of Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Azza Kamal Taha
- Pathology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Nihal A Mahmoud
- Physiology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | | | - Mona M Amin
- Pharmacology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | | | - Ayat M S Eraque
- Biochemestry, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Shimaa A Mohamed
- Biochemestry, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Ranya M Abdelgalil
- Anatomy, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | | | - Nermeen Talaat Fahmy
- Molecular Biology and Genomics, Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Mohamed S Badr
- Molecular Biology and Genetic-Bioinformatics Nano-Robot Diagnostics, Medical Research Centre, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Marques-Santos F, Faria RX, Amendoeira MRR. The Search for Drugs Derived from Natural Products for Toxoplasma gondii Infection Treatment in the Last 20 Years - A Systematic Review. Curr Top Med Chem 2024; 24:1960-1999. [PMID: 38952156 DOI: 10.2174/0115680266299409240606062235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 07/03/2024]
Abstract
INTRODUCTION Toxoplasmosis is a worldwide distributed zoonosis caused by Toxoplasma gondii (T. gondii), an obligate intracellular protozoan. The infection in immunocompetent hosts usually progresses with mild or no symptoms. However, in immunocompromised individuals, this disease can cause severe or fatal symptoms. METHOD Sulfadiazine and pyrimethamine are two drugs used as standard therapies for human toxoplasmosis. Although they do not cause chronic infection, they may cause hematological toxicity, hypersensitivity, intolerance, teratogenic effects, gastrointestinal disorders, and bone marrow suppression. RESULTS The limited effect, significant toxicity, and emerging resistance to current drugs available to treat T. gondii infections require investigating other effective, nontoxic, and well-tolerated alternatives. Medicinal plants are, traditionally, the most promising sources used to treat infectious diseases Conclusion: This review provides data on new therapeutic and prophylactic methods for T. gondii infection based on the use of extracts and/or compounds derived from natural products, which have been reported to be useful as alternative treatment options in the last 20 years.
Collapse
Affiliation(s)
- Fabielle Marques-Santos
- FundaçãoOswaldo Cruz - Fiocruz, Instituto Oswaldo Cruz, Laboratório de Toxoplasmose e outras Protozooses, Rio de Janeiro, RJ, Brasil
| | - Robson Xavier Faria
- Fundação Oswaldo Cruz, Fiocruz, Instituto Oswaldo Cruz, Laboratório de Avaliação e Promoção da Saúde Ambiental, Rio de Janeiro, RJ, Brasil
| | - Maria Regina Reis Amendoeira
- FundaçãoOswaldo Cruz - Fiocruz, Instituto Oswaldo Cruz, Laboratório de Toxoplasmose e outras Protozooses, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
3
|
Mohammad OS, El Naggar HM, Abdelmaksoud HF, Barakat AM, Abdelhameed RM, Shehata MAS. The effect of Nigella sativa oil- and wheat germ oil-loaded metal organic frameworks on chronic murine toxoplasmosis. Acta Trop 2023; 239:106823. [PMID: 36608751 DOI: 10.1016/j.actatropica.2023.106823] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/02/2023] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Treatment of chronic toxoplasmosis is challenging as the available drugs are effective only in the acute stage. Therefore, the current study aimed to investigate Nigella sativa oil (NSO) and wheat germ oil (WGO) loaded on copper-benzene tricarboxylic acid metal organic framework (Cu-BTC MOF) for treating chronic toxoplasmosis in a murine model. Eighty mice were divided into 8 groups (G); uninfected untreated negative control (GI), infected untreated positive control (GII), infected and treated with: Spiramycin (GIII), Spiramycin@Cu-BTC (GIV), Cu-BTC (GV), WGO@Cu-BTC (GVI), NSO@Cu-BTC (GVII) and combined WGO+NSO@Cu-BTC (GVIII). The infected groups were orally inoculated with 10 Toxoplasma gondii Me49 strain cysts/mouse. All drugs were orally administered for 14 consecutive days starting 8 weeks post-infection (wpi). The therapeutic efficacy was evaluated by parasitological (survival rate of mice and brain cyst burden) and histopathological (brain, liver, kidney, eye) parameters. At the end of 2-weeks therapy, the highest therapeutic outcome was achieved with GVII and GVIII exhibiting 100% survival, 64.3% and 51.4% reduction of brain cysts, and an apparent amendment of pathological insults. In the next place was GVI with 90% survival, 49.5% reduction of cysts and marked amelioration of pathological lesions. Meanwhile, GIII and GIV showed 80% survival, 42.4% and 41.8% reduction of cysts as well as minimal to moderate alleviation of tissue damage. The lowest effect was obtained with GV resulting in 70% survival and 24.4% reduction of cysts. The current results support the assertion that the new metal-based nanocomposites can be promising remedies of chronic toxoplasmosis particularly if conjugated with natural herbal extracts as NSO and WGO.
Collapse
Affiliation(s)
- Omnia Sobhi Mohammad
- Medical Parasitology Department, Faculty of Medicine, Ain Shams University, Cairo, Abbasya, Egypt.
| | - Heba Mohamed El Naggar
- Medical Parasitology Department, Faculty of Medicine, Ain Shams University, Cairo, Abbasya, Egypt
| | | | - Ashraf Mohamed Barakat
- Zoonotic Diseases Department, Veterinary Research Institute, National Research Centre, Giza, Egypt
| | - Reda Mohamed Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Giza, Egypt
| | - Mai Abdel Sameaa Shehata
- Medical Parasitology Department, Faculty of Medicine, Ain Shams University, Cairo, Abbasya, Egypt
| |
Collapse
|
4
|
Abdelhamid Elgendy WM, Haggag YA, El-Nouby KA, El-Kowrany SI, El Marhoumy SM. Evaluation of the effect of guanabenz-loaded nanoparticles on chronic toxoplasmosis in mice. Exp Parasitol 2023; 246:108460. [PMID: 36642299 DOI: 10.1016/j.exppara.2023.108460] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 10/06/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023]
Abstract
Chronic toxoplasmosis which is positively correlated with many neuropsychiatric problems has no curative treatment till now; due to the resistant tissue cysts especially in the brain. In search of an effective treatment, guanabenz-loaded polyethylene glycol poly lactic-co-glycolic acid (PEG-PLGA) nanoparticles was evaluated against chronic experimental toxoplasmosis. For this purpose, each mouse was infected with 10 cysts of Toxoplasma gondii (ME 49 strain). Treated mice received either guanabenz alone (5 mg/kg/day) in subgroup IIa or guanabenz-loaded nanoparticles by full dose in subgroup IIb or guanabenz-loaded nanoparticles by the half dose (2.5 mg/kg/day) in subgroup IIc. Subgroup Ie was treated by pyrimethamine and sulfadiazine. The treatment started on day 25 post-infection for 19 successive days. Then Parasitological, histopathological, immunohistochemical, immunological and ultrastructural morphological studies were performed. The results showed that: subgroup IIb showed the highest statistically significant reduction in the neuroinflammation and brain tissue cysts (77%) with a significant higher efficacy in comparison with pyrimethamine and sulfadiazine and showed the highest level of IFN-γ, while the lowest level was in subgroup IIa. All group II mice showed similar changes of depression and compression of the wall of the cyst. This is marked in subgroup IIb with release of crescent shaped bradyzoite outside the cyst. PEG-PLGA nanoparticles had no toxic effect on the liver or the kidney of the mice. It could be concluded that guanabenz-loaded PEG-PLGA nanoparticles could be promising and safe for treatment of chronic toxoplasmosis.
Collapse
Affiliation(s)
| | - Yusuf A Haggag
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Egypt
| | - Kholoud A El-Nouby
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Egypt
| | - Samy I El-Kowrany
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Egypt
| | | |
Collapse
|
5
|
Tan S, Tong WH, Vyas A. Impact of Plant-Based Foods and Nutraceuticals on Toxoplasma gondii Cysts: Nutritional Therapy as a Viable Approach for Managing Chronic Brain Toxoplasmosis. Front Nutr 2022; 9:827286. [PMID: 35284438 PMCID: PMC8914227 DOI: 10.3389/fnut.2022.827286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that mainly infects warm-blooded animals including humans. T. gondii can encyst and persist chronically in the brain, leading to a broad spectrum of neurological sequelae. Despite the associated health threats, no clinical drug is currently available to eliminate T. gondii cysts. In a continuous effort to uncover novel therapeutic agents for these cysts, the potential of nutritional products has been explored. Herein, we describe findings from in vitro and in vivo studies that support the efficacy of plant-based foods and nutraceuticals against brain cyst burden and cerebral pathologies associated with chronic toxoplasmosis. Finally, we discuss strategies to increase the translatability of preclinical studies and nutritional products to address whether nutritional therapy can be beneficial for coping with chronic T. gondii infections in humans.
Collapse
|
6
|
Raghu SV, Kudva AK, Rao S, Prasad K, Mudgal J, Baliga MS. Dietary agents in mitigating chemotherapy-related cognitive impairment (chemobrain or chemofog): first review addressing the benefits, gaps, challenges and ways forward. Food Funct 2021; 12:11132-11153. [PMID: 34704580 DOI: 10.1039/d1fo02391h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemobrain or chemofog is one of the important but less investigated side effects, where the cancer survivors treated with chemotherapy develop long-term cognitive impairments, affecting their quality of life. The biological mechanisms triggering the development of chemobrain are largely unknown. However, a literature study suggests the generation of free radicals, oxidative stress, inflammatory cytokines, epigenetic chromatin remodeling, decreased neurogenesis, secretion of brain-derived neurotropic factor (BDNF), dendritic branching, and neurotransmitter release to be the cumulative contributions to the ailment. Unfortunately, there is no means to prevent/mitigate the development and intensity of chemobrain. Given the lack of effective prevention strategies or treatments, preclinical studies have been underway to ascertain the usefulness of natural products in mitigating chemobrain in the recent past. Natural products used in diets have been shown to provide beneficial effects by inhibition of free radicals, oxidative stress, inflammatory processes, and/or concomitant upregulation of various cell survival proteins. For the first time, this review focuses on the published effects of astaxanthin, omega-3 fatty acids, ginsenoside, cotinine, resveratrol, polydatin, catechin, rutin, naringin, curcumin, dehydrozingerone, berberine, C-phycocyanin, the higher fungi Cordyceps militaris, thyme (Thymus vulgaris) and polyherbal formulation Mulmina™ in mitigating cognitive impairments in preclinical models of study, and also addresses their potential neuro-therapeutic mechanisms and applications in preventing/ameliorating chemobrain.
Collapse
Affiliation(s)
- Shamprasad Varija Raghu
- Neurogenetics Laboratory, Department of Applied Zoology, Mangalore University, Mangalagangotri, Karnataka 574199, India
| | - Avinash Kundadka Kudva
- Department of Biochemistry, Mangalore University, Mangalagangotri, Karnataka 574199, India
| | - Suresh Rao
- Radiation Oncology, Mangalore Institute of Oncology, Mangalore, Karnataka 575002, India
| | - Krishna Prasad
- Medical Oncology, Mangalore Institute of Oncology, Mangalore, Karnataka 575002, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | | |
Collapse
|
7
|
Hamed EFA, Mostafa NE, Fawzy EM, Ibrahim MN, Attia R, Salama MA. The delayed death-causing nature of Rosmarinus officinalis leaf extracts and their mixture within experimental chronic toxoplasmosis: Therapeutic and prophylactic implications. Acta Trop 2021; 221:105992. [PMID: 34089696 DOI: 10.1016/j.actatropica.2021.105992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND The restricted effect, significant toxicity, and emerging resistance of anti-toxoplasmosis synthetic agents impose the search for alternatives. The current research aimed to evaluate the prophylactic and therapeutic efficacy of Rosmarinus officinalis extracts and their mixtures against chronic murine toxoplasmosis and to clarify the phenomenon of delayed death. METHODS This research included two experimental designs, the first to test the preventive and curative efficacy of the extracts and the second to assess delayed death in mice infected with the ME49 strain of Toxoplasma gondii. The essential oils of the plant were analyzed by gas chromatography/mass spectrometry. RESULTS Treatment with a mixture of rosemary extracts displayed reduction rates of 81% for T. gondii cyst burden and 23% for cyst viability. The reinfected group with the pretreated cysts reported 93.4% reduction in cyst burden and 95.4% in cyst viability. Moreover, 90% reduction of the infectivity rate was obtained. The therapeutic efficacy of this mixture was superior to its valuable prophylactic effect. Histopathological examination of liver and brain tissue exhibited marked improvement. Both extracts possess free radical scavenging and antioxidant activities evidenced by high expression of iNOS stain. Our results were signified by low BAG-1 gene expression and massive mutilation of T. gondii cyst in the targeted group using scanning electron microscopy. Analysis of R. officinalis revealed the presence of isobornylformate as a novel ingredient. CONCLUSIONS R. officinalis displays a therapeutic rather than prophylactic potential, indicating the emergence of an effective safe alternative therapy.
Collapse
|
8
|
The Experimental Role of Medicinal Plants in Treatment of Toxoplasma gondii Infection: A Systematic Review. Acta Parasitol 2021; 66:303-328. [PMID: 33159263 DOI: 10.1007/s11686-020-00300-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/12/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Toxoplasma gondii is the global protozoa that could cause contamination in warm-blooded animals and is considered among the opportunistic pathogens in immunocompromised patients. Among the people at risk, toxoplasmosis infection can lead to the incidence of severe clinical manifestations, encephalitis, chorioretinitis, and even death. PURPOSE The present research is focused on the new research for the treatment of toxoplasmosis parasitic disease using medicinal herbs. METHODS The search was performed in five English databases, including Scopus, PubMed, Web of Science, EMBASE, and Google Scholar up from 2010 to December 2019. Studies in any language were entered in the searching step if they had an English abstract. The words and terms were used as a syntax with specific tags of each database. RESULTS Out of 1832 studies, 36 were eligible to be reviewed. The findings showed that 17 studies (47%) were performed in vitro, 14 studies (39%) in vivo, and 5 studies (14%) both in vivo and in vitro. CONCLUSION The studies showed that the plant extracts can be a good alternative in reducing the toxoplasmosis effects in the host and the herbal extracts can be used to produce natural product-based drugs affecting toxoplasmosis with fewer side-effects than synthetic drugs.
Collapse
|
9
|
Abdullahi SA, Unyah NZ, Nordin N, Basir R, Nasir WM, Alapid AA, Hassan Y, Mustapha T, Majid RA. Phytochemicals and Potential Therapeutic Targets on Toxoplasma gondii Parasite. Mini Rev Med Chem 2021; 20:739-753. [PMID: 31660810 DOI: 10.2174/1389557519666191029105736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/26/2019] [Accepted: 10/16/2019] [Indexed: 11/22/2022]
Abstract
Identification of drug target in protozoan T. gondii is an important step in the development of chemotherapeutic agents. Likewise, exploring phytochemical compounds effective against the parasite can lead to the development of new drug agent that can be useful for prophylaxis and treatment of toxoplasmosis. In this review, we searched for the relevant literature on the herbs that were tested against T. gondii either in vitro or in vivo, as well as different phytochemicals and their potential activities on T. gondii. Potential activities of major phytochemicals, such as alkaloid, flavonoid, terpenoids and tannins on various target sites on T. gondii as well as other related parasites was discussed. It is believed that the phytochemicals from natural sources are potential drug candidates for the treatment of toxoplasmosis with little or no toxicity to humans.
Collapse
Affiliation(s)
- Sharif Alhassan Abdullahi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, University Putra, Selangor, Malaysia.,Faculty of Clinical Sciences, Bayero University, Kano, Nigeria
| | - Ngah Zasmy Unyah
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, University Putra, Selangor, Malaysia
| | - Noshariza Nordin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Putra, Selangor, Malaysia
| | - Rusliza Basir
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra, Selangor, Malaysia
| | - Wana Mohammed Nasir
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, University Putra, Selangor, Malaysia.,Department of Biological Sciences, Faculty of Sciences, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - Ashraf Ahmad Alapid
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, University Putra, Selangor, Malaysia.,Department of Zoology, Faculty of Science-Alassaba, University of Gharyan, Gharyan, Libya
| | - Yahaya Hassan
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, University Putra, Selangor, Malaysia.,Department of Medical Laboratory Sciences, Bayero University Kano, Nigeria
| | - Tijjani Mustapha
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, University Putra, Selangor, Malaysia.,Department of Biological Sciences, Faculty of Science, Yobe State University, Damaturi, Nigeria
| | - Roslaini Abd Majid
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, University Putra, Selangor, Malaysia
| |
Collapse
|
10
|
Tan S, Tong WH, Vyas A. Urolithin-A attenuates neurotoxoplasmosis and alters innate response towards predator odor. Brain Behav Immun Health 2020; 8:100128. [PMID: 34589880 PMCID: PMC8474456 DOI: 10.1016/j.bbih.2020.100128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/29/2022] Open
Abstract
Neurotoxoplasmosis, also known as cerebral toxoplasmosis, is an opportunistic chronic infection caused by the persistence of parasite Toxoplasma gondii cysts in the brain. In wild animals, chronic infection is associated with behavioral manipulation evident by an altered risk perception towards predators. In humans, reactivation of cysts and conversion of quiescent parasites into highly invasive tachyzoites is a significant cause of mortality in immunocompromised patients. However, the current standard therapy for toxoplasmosis is not well tolerated and is ineffective against the parasite cysts. In recent years, the concept of dietary supplementation with natural products derived from plants has gained popularity as a natural remedy for brain disorders. Notably, urolithin-A, a metabolite produced in the gut following consumption of ellagitannins-enriched food such as pomegranate, is reported to be blood-brain barrier permeable and exhibits neuroprotective effects in-vivo. In this study, we investigated the potential of pomegranate extract and urolithin-A as anti-neurotoxoplasmosis agents in-vitro and in-vivo. Treatment with pomegranate extract and urolithin-A reduced the parasite tachyzoite load and interfered with cyst development in differentiated human neural culture. Administration of urolithin-A also resulted in the formation of smaller brain cysts in chronically infected mice. Interestingly, this phenomenon was mirrored by an enhanced risk perception of the UA-treated infected mice towards predatory cues. Together, our findings demonstrate the potential of dietary supplementation with urolithin-A-enriched food as a novel natural remedy for the treatment of acute and chronic neurotoxoplasmosis. Pomegranate extract reduces T. gondii tachyzoite load and cyst formation in-vitro. Urolithin-A, in part, underlies the anti-T. gondii effect of pomegranate extract. Urolithin-A perturbs cyst development in the brain of chronically infected mice. The reduction in brain cyst burden associates with enhanced fear of infected mice towards cat odor. Dietary supplementation with urolithin-A is a potential therapy for neurotoxoplasmosis.
Collapse
Affiliation(s)
- Sijie Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Wen Han Tong
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Ajai Vyas
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| |
Collapse
|
11
|
Alajmi RA, Al-Megrin WA, Metwally D, Al-Subaie H, Altamrah N, Barakat AM, Abdel Moneim AE, Al-Otaibi TT, El-Khadragy M. Anti- Toxoplasma activity of silver nanoparticles green synthesized with Phoenix dactylifera and Ziziphus spina-christi extracts which inhibits inflammation through liver regulation of cytokines in Balb/c mice. Biosci Rep 2019; 39:BSR20190379. [PMID: 30992387 PMCID: PMC6522717 DOI: 10.1042/bsr20190379] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 12/11/2022] Open
Abstract
Toxoplasmosis constitutes a global infection caused by oblige intracellular apicomplexan protozoan parasite Toxoplasma gondii Although often asymptomatic, infection can result in more severe, potentially life threatening symptoms particularly in immunocompromised individuals. The present study evaluated the anti-Toxoplasma effects in experimental animals of silver nanoparticles synthesized in combination with extracts of natural plants (Phoenix dactylifera and Ziziphus spina-christi) as an alternative method to standard sulfadiazine drug therapy. Liver functions estimated by and AST and ALT were significantly increased in T. gondii-infected mice compared with the control group as well as hepatic nitric oxide (NO), lipid peroxidation (LPO) levels and caused significant decrease in superoxide dismutase (SOD), catalase (CAT) and glutathione activities in the liver homogenates. Nanoparticles pretreatment prevented liver damage as determined by enzyme activity inhibition, in addition to significant inhibition of hepatic NO levels and significant elevation in liver SOD and CAT activities. Moreover, nanoparticle treatment significantly decreased hepatic LPO and NO concentrations and proinflammatory cytokines but significantly boosted the antioxidant enzyme activity of liver homogenate. In addition, histological examinations showed distinct alterations in the infected compared with untreated control groups. Conversely, nanoparticles pretreatment showed improvement in the histological features indicated by slight infiltration and fibrosis, minimal pleomorphism and less hepatocyte and degeneration. Furthermore, nanoparticles treatment induced a reduction in immunoreactivity to TGF-β and NF-κB in hepatic tissues. Therefore, the present study provides new insights into various natural plants that are used traditionally for the treatment of toxoplasmosis and other parasitic infections, which may be useful as alternative treatment option for T. gondii infections.
Collapse
Affiliation(s)
- Reem A Alajmi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wafa A Al-Megrin
- Department of Biology, Faculty of Science, Princess Nourah bint Abdulrahman University, Saudi Arabia
| | - Dina Metwally
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Hind Al-Subaie
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nourah Altamrah
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ashraf M Barakat
- Department of Zoonotic Diseases, National Research Centre, Dokki, Giza, Egypt
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Tahani T Al-Otaibi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Manal El-Khadragy
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
|
13
|
Benarba B. Medicinal plants used by traditional healers from South-West Algeria: An ethnobotanical study. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2016; 5:320-330. [PMID: 27757260 PMCID: PMC5061473 DOI: 10.5455/jice.20160814115725] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/20/2016] [Indexed: 11/29/2022]
Abstract
Background/Aim: This study aimed to document and analyzes the local knowledge of medicinal plants’ use by traditional healers in South-west Algeria. Methods: The ethnobotanical survey was conducted in two Saharian regions of South-west of Algeria: Adrar and Bechar. In total, 22 local traditional healers were interviewed using semi-structured questionnaire and open questions. Use value (UV), fidelity level (FL), and informant consensus factor (FIC) were used to analyze the obtained data. Results: Our results showed that 83 medicinal plants species belonging to 38 families are used by traditional healers from South-west of Algeria to treat several ailments. Lamiaceae, Asteraceae, Apiaceae, and Fabaceae were the most dominant families with 13, 8, 6, and 4 species, respectively. Leaves were the plant parts mostly used (36%), followed by seeds (18%), aerial parts (17%) and roots (12%). Furthermore, a decoction was the major mode of preparation (49%), and oral administration was the most preferred (80%). Thymus vulgaris L. (UV = 1.045), Zingiber officinale Roscoe (UV = 0.863), Trigonella foenum-graecum L. (UV=0.590), Rosmarinus officinalis L. (UV = 0.545), and Ruta chalepensis L. (UV = 0.5) were the most frequently species used by local healers. A great informant consensus has been demonstrated for kidney (0.727), cancer (0.687), digestive (0.603), and respiratory diseases. Conclusion: This study revealed rich ethnomedicinal knowledge in South-west Algeria. The reported species with high UV, FL, and FIC could be of great interest for further pharmacological studies.
Collapse
Affiliation(s)
- Bachir Benarba
- Department of Biology, Laboratory Research on Biological Systems and Geomatics, Faculty of Nature and Life, University of Mascara, Algeria
| |
Collapse
|