1
|
Tang CL, Lian Z, Ding FR, Liang J, Li XY. Schistosoma-related molecules as a new strategy to combat type 1 diabetes through immune regulation. Parasitol Int 2024; 98:102818. [PMID: 37848126 DOI: 10.1016/j.parint.2023.102818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/08/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
The study of immune regulation mechanisms induced by parasites may help develop new treatment methods for inflammatory diseases including type 1 diabetes, which is related to type 1 immune responses. The negative correlation between schistosomiasis infection and type 1 diabetes has been confirmed, and the mechanism of Schistosoma-mediated prevention of type 1 diabetes may be related to the adaptive and innate immune systems. Schistosoma-related molecules affect immune cell composition and macrophage polarization and stimulate an increase in natural killer T cells. Furthermore, Schistosoma-related molecules can regulate the adaptive immune responses related to the prevention of type 1 diabetes and change the Th1/Th2 and Th17/Treg axis. Our previous review showed the role of regulatory T cells in the protective of type 1 diabetes mediated by Schistosoma. Here, we aim to review the other mechanisms of schistosomiasis infection and Schistosoma-related products in regulating the immune response associated with the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Chun-Lian Tang
- Wuchang Hospital, Wuhan University of Science and Technology, Wuhan 430063, China
| | - Zhan Lian
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan 430030, China
| | - Fan-Rong Ding
- Wuchang Hospital, Wuhan University of Science and Technology, Wuhan 430063, China
| | - Jun Liang
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan 430030, China.
| | - Xiang-You Li
- Wuchang Hospital, Wuhan University of Science and Technology, Wuhan 430063, China.
| |
Collapse
|
2
|
Zhang QZ, Liu JH, Gao YR, Liang J, Tang CL. Effect of macrophage polarization on parasitic protection against type 1 diabetes mellitus. Exp Parasitol 2024; 256:108649. [PMID: 37914152 DOI: 10.1016/j.exppara.2023.108649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/06/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
Type 1 diabetes mellitus is a chronic disease caused by the destruction of pancreatic beta cells. Based on the hygiene hypothesis, a growing body of evidence suggests a negative association between parasitic infections and diabetes in humans and animal models. The mechanism of parasite-mediated prevention of type 1 diabetes mellitus may be related to the adaptive and innate immune systems. Macrophage polarization is a new paradigm for the treatment of type 1 diabetes mellitus, and different host macrophage subsets play various roles during parasite infection. Proinflammatory cytokines are released by M1 macrophages, which are important in the development of type 1 diabetes mellitus. Parasite-activated M2 macrophages prevent the development of type 1 diabetes mellitus and can influence the development of adaptive immune responses through several mechanisms, including Th2 cells and regulatory T cells. Here, we review the role and mechanism of macrophage polarization in parasitic protection against type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Qi-Zhi Zhang
- Wuchang Hospital Affiliated with Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Jun-Hui Liu
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, 430030, China
| | - Yan-Ru Gao
- Basic Medical Science Teaching Center, Medical Department, Wuhan City College, Wuhan, 430083, China
| | - Jun Liang
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, 430030, China.
| | - Chun-Lian Tang
- Wuchang Hospital Affiliated with Wuhan University of Science and Technology, Wuhan, 430063, China.
| |
Collapse
|
3
|
Sung Y, Yu YC, Han JM. Nutrient sensors and their crosstalk. Exp Mol Med 2023; 55:1076-1089. [PMID: 37258576 PMCID: PMC10318010 DOI: 10.1038/s12276-023-01006-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 06/02/2023] Open
Abstract
The macronutrients glucose, lipids, and amino acids are the major components that maintain life. The ability of cells to sense and respond to fluctuations in these nutrients is a crucial feature for survival. Nutrient-sensing pathways are thus developed to govern cellular energy and metabolic homeostasis and regulate diverse biological processes. Accordingly, perturbations in these sensing pathways are associated with a wide variety of pathologies, especially metabolic diseases. Molecular sensors are the core within these sensing pathways and have a certain degree of specificity and affinity to sense the intracellular fluctuation of each nutrient either by directly binding to that nutrient or indirectly binding to its surrogate molecules. Once the changes in nutrient levels are detected, sensors trigger signaling cascades to fine-tune cellular processes for energy and metabolic homeostasis, for example, by controlling uptake, de novo synthesis or catabolism of that nutrient. In this review, we summarize the major discoveries on nutrient-sensing pathways and explain how those sensors associated with each pathway respond to intracellular nutrient availability and how these mechanisms control metabolic processes. Later, we further discuss the crosstalk between these sensing pathways for each nutrient, which are intertwined to regulate overall intracellular nutrient/metabolic homeostasis.
Collapse
Affiliation(s)
- Yulseung Sung
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Ya Chun Yu
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Jung Min Han
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea.
- Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul, 03722, South Korea.
- POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| |
Collapse
|
4
|
Chakraborty P, Aravindhan V, Mukherjee S. Helminth-derived biomacromolecules as therapeutic agents for treating inflammatory and infectious diseases: What lessons do we get from recent findings? Int J Biol Macromol 2023; 241:124649. [PMID: 37119907 DOI: 10.1016/j.ijbiomac.2023.124649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Despite the tremendous progress in healthcare sectors, a number of life-threatening infectious, inflammatory, and autoimmune diseases are continuously challenging mankind throughout the globe. In this context, recent successes in utilizing helminth parasite-derived bioactive macromolecules viz. glycoproteins, enzymes, polysaccharides, lipids/lipoproteins, nucleic acids/nucleotides, and small organic molecules for treating various disorders primarily resulted from inflammation. Among the several parasites that infect humans, helminths (cestodes, nematodes, and trematodes) are known as efficient immune manipulators owing to their explicit ability to modulate and modify the innate and adaptive immune responses of humans. These molecules selectively bind to immune receptors on innate and adaptive immune cells and trigger multiple signaling pathways to elicit anti-inflammatory cytokines, expansion of alternatively activated macrophages, T-helper 2, and immunoregulatory T regulatory cell types to induce an anti-inflammatory milieu. Reduction of pro-inflammatory responses and repair of tissue damage by these anti-inflammatory mediators have been exploited for treating a number of autoimmune, allergic, and metabolic diseases. Herein, the potential and promises of different helminths/helminth-derived products as therapeutic agents in ameliorating immunopathology of different human diseases and their mechanistic insights of function at cell and molecular level alongside the molecular signaling cross-talks have been reviewed by incorporating up-to-date findings achieved in the field.
Collapse
Affiliation(s)
- Pritha Chakraborty
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713340, India
| | | | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713340, India.
| |
Collapse
|
5
|
Lyu M, Su CC, Miyagi M, Yu EW. Simultaneous solving high-resolution structures of various enzymes from human kidney microsomes. Life Sci Alliance 2023; 6:6/2/e202201580. [PMID: 36450445 PMCID: PMC9713302 DOI: 10.26508/lsa.202201580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/02/2022] Open
Abstract
The ability to investigate tissues and organs through an integrated systems biology approach has been thought to be unobtainable in the field of structural biology, where the techniques mainly focus on a particular biomacromolecule of interest. Here we report the use of cryo-electron microscopy (cryo-EM) to define the composition of a raw human kidney microsomal lysate. We simultaneously identify and solve cryo-EM structures of four distinct kidney enzymes whose functions have been linked to protein biosynthesis and quality control, biosynthesis of retinoic acid, gluconeogenesis and glycolysis, and the regulation and metabolism of amino acids. Interestingly, all four of these enzymes are directly linked to cellular processes that, when disrupted, can contribute to the onset and progression of diabetes. This work underscores the potential of cryo-EM to facilitate tissue and organ proteomics at the atomic level.
Collapse
Affiliation(s)
- Meinan Lyu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Chih-Chia Su
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Edward W Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
6
|
Pham K, Mertelsmann A, Mages K, Kingery JR, Mazigo HD, Jaka H, Kalokola F, Changalucha JM, Kapiga S, Peck RN, Downs JA. Effects of helminths and anthelmintic treatment on cardiometabolic diseases and risk factors: A systematic review. PLoS Negl Trop Dis 2023; 17:e0011022. [PMID: 36827239 PMCID: PMC9956023 DOI: 10.1371/journal.pntd.0011022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/12/2022] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Globally, helminth infections and cardiometabolic diseases often overlap in populations and individuals. Neither the causal relationship between helminth infections and cardiometabolic diseases nor the effect of helminth eradication on cardiometabolic risk have been reviewed systematically in a large number of human and animal studies. METHODS We conducted a systematic review assessing the reported effects of helminth infections and anthelmintic treatment on the development and/or severity of cardiometabolic diseases and risk factors. The search was limited to the most prevalent human helminths worldwide. This study followed PRISMA guidelines and was registered prospectively in PROSPERO (CRD42021228610). Searches were performed on December 10, 2020 and rerun on March 2, 2022 using Ovid MEDLINE ALL (1946 to March 2, 2022), Web of Science, Cochrane Library, Global Index Medicus, and Ovid Embase (1974 to March 2, 2022). Randomized clinical trials, cohort, cross-sectional, case-control, and animal studies were included. Two reviewers performed screening independently. RESULTS Eighty-four animal and human studies were included in the final analysis. Most studies reported on lipids (45), metabolic syndrome (38), and diabetes (30), with fewer on blood pressure (18), atherosclerotic cardiovascular disease (11), high-sensitivity C-reactive protein (hsCRP, 5), and non-atherosclerotic cardiovascular disease (4). Fifteen different helminth infections were represented. On average, helminth-infected participants had less dyslipidemia, metabolic syndrome, diabetes, and atherosclerotic cardiovascular disease. Eleven studies examined anthelmintic treatment, of which 9 (82%) reported post-treatment increases in dyslipidemia, metabolic syndrome, and diabetes or glucose levels. Results from animal and human studies were generally consistent. No consistent effects of helminth infections on blood pressure, hsCRP, or cardiac function were reported except some trends towards association of schistosome infection with lower blood pressure. The vast majority of evidence linking helminth infections to lower cardiometabolic diseases was reported in those with schistosome infections. CONCLUSIONS Helminth infections may offer protection against dyslipidemia, metabolic syndrome, diabetes, and atherosclerotic cardiovascular disease. This protection may lessen after anthelmintic treatment. Our findings highlight the need for mechanistic trials to determine the pathways linking helminth infections with cardiometabolic diseases. Such studies could have implications for helminth eradication campaigns and could generate new strategies to address the global challenge of cardiometabolic diseases.
Collapse
Affiliation(s)
- Khanh Pham
- Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, United States of America
- Center for Global Health, Weill Cornell Medical College, New York, New York, United States of America
| | - Anna Mertelsmann
- Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, United States of America
| | - Keith Mages
- Samuel J. Wood Library, Weill Cornell Medicine, New York, New York, United States of America
| | - Justin R. Kingery
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Humphrey D. Mazigo
- Department of Parasitology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Hyasinta Jaka
- Department of Internal Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
- Department of Internal Medicine, Mwanza College of Health and Allied Sciences, Mwanza, Tanzania
| | - Fredrick Kalokola
- Department of Internal Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
- Department of Medicine, Weill Bugando School of Medicine, Mwanza, Tanzania
| | | | - Saidi Kapiga
- Mwanza Intervention Trials Unit, Mwanza, Tanzania
| | - Robert N. Peck
- Center for Global Health, Weill Cornell Medical College, New York, New York, United States of America
- Department of Medicine, Weill Bugando School of Medicine, Mwanza, Tanzania
- Mwanza Intervention Trials Unit, Mwanza, Tanzania
| | - Jennifer A. Downs
- Center for Global Health, Weill Cornell Medical College, New York, New York, United States of America
- Department of Medicine, Weill Bugando School of Medicine, Mwanza, Tanzania
| |
Collapse
|
7
|
Zhong H, Jin Y. Single-sex schistosomiasis: a mini review. Front Immunol 2023; 14:1158805. [PMID: 37153566 PMCID: PMC10154636 DOI: 10.3389/fimmu.2023.1158805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Schistosomiasis is a neglected tropical disease caused by dioecious blood flukes of the genus Schistosoma and second to malaria as a parasitic disease with significant socio-economic impacts. Mating is essential for maturation of male and female schistosomes and for females to lay of eggs, which are responsible for the pathogenesis and propagation of the life cycle beyond the mammalian host. Single-sex schistosomes, which do not produce viable eggs without mating, have been overlooked given the symptomatic paucity of the single-sex schistosomiasis and limited diagnostic toolkit. Besides, single-sex schistosomes are less sensitive to praziquantel. Therefore, these issues should be considered to achieve the elimination of this infection disease. The aim of this review is to summarize current progress in research of single-sex schistosomes and host-parasite interactions.
Collapse
Affiliation(s)
- Haoran Zhong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yamei Jin
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Yamei Jin,
| |
Collapse
|
8
|
Xia J, Xin W, Wang F, Xie W, Liu Y, Xu J. Cloning and Characterization of Fructose-1,6-Bisphosphate Aldolase from Euphausia superba. Int J Mol Sci 2022; 23:ijms231810478. [PMID: 36142390 PMCID: PMC9499490 DOI: 10.3390/ijms231810478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Fructose-1,6-bisphosphate aldolase (EC 4.1.2.13) is a highly conserved enzyme that is involved in glycolysis and gluconeogenesis. In this study, we cloned the fructose-1,6-bisphosphate aldolase gene from Euphausia superba (EsFBA). The full-length cDNA sequence of EsFBA is 1098 bp long and encodes a 365-amino-acid protein. The fructose-1,6-bisphosphate aldolase gene was expressed in Escherichia coli (E. coli). A highly purified protein was obtained using HisTrap HP affinity chromatography and size-exclusion chromatography. The predicted three-dimensional structure of EsFBA showed a 65.66% homology with human aldolase, whereas it had the highest homology (84.38%) with the FBA of Penaeus vannamei. Recombinant EsFBA had the highest activity at 45 °C and pH 7.0 in phosphate buffer. By examining the activity of metal ions and EDTA, we found that the effect of metal ions and EDTA on EsFBA's enzyme activity was not significant, while the presence of borohydride severely reduced the enzymatic activity; thus, EsFBA was confirmed to be a class I aldolase. Furthermore, targeted mutations at positions 34, 147, 188, and 230 confirmed that they are key amino acid residues for EsFBA.
Collapse
Affiliation(s)
- Jikun Xia
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China
| | - Wanmeng Xin
- State Key Laboratory of Biocatalysts and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Fang Wang
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China
| | - Wancui Xie
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yi Liu
- State Key Laboratory of Biocatalysts and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
- Correspondence: (Y.L.); (J.X.)
| | - Jiakun Xu
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China
- Correspondence: (Y.L.); (J.X.)
| |
Collapse
|
9
|
Huang H, Hu D, Chen Z, Xu J, Xu R, Gong Y, Fang Z, Wang T, Chen W. Immunotherapy for type 1 diabetes mellitus by adjuvant-free Schistosoma japonicum-egg tip-loaded asymmetric microneedle patch (STAMP). J Nanobiotechnology 2022; 20:377. [PMID: 35964125 PMCID: PMC9375265 DOI: 10.1186/s12951-022-01581-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background Type 1 diabetes mellitus (T1DM) is an autoimmune disease mediated by autoreactive T cells and dominated by Th1 response polarization. Insulin replacement therapy faces great challenges to this autoimmune disease, requiring highly frequent daily administration. Intriguingly, the progression of T1DM has proven to be prevented or attenuated by helminth infection or worm antigens for a relatively long term. However, the inevitable problems of low safety and poor compliance arise from infection with live worms or direct injection of antigens. Microneedles would be a promising candidate for local delivery of intact antigens, thus providing an opportunity for the clinical immunotherapy of parasitic products. Methods We developed a Schistosoma japonicum-egg tip-loaded asymmetric microneedle patch (STAMP) system, which serves as a new strategy to combat TIDM. In order to improve retention time and reduce contamination risk, a specific imperfection was introduced on the STAMP (asymmetric structure), which allows the tip to quickly separate from the base layer, improving reaction time and patient’s comfort. After loading Schistosoma japonicum-egg as the immune regulator, the effects of STAMP on blood glucose control and pancreatic pathological progression improvement were evaluated in vivo. Meanwhile, the immunoregulatory mechanism and biosafety of STAMP were confirmed by histopathology, qRT-PCR, ELISA and Flow cytometric analysis. Results Here, the newly developed STAMP was able to significantly reduce blood glucose and attenuate the pancreatic injury in T1DM mice independent of the adjuvants. The isolated Schistosoma japonicum-eggs micron slowly degraded in the skin and continuously released egg antigen for at least 2 weeks, ensuring localization and safety of antigen stimulation. This phenomenon should be attributed to the shift of Th2 immune response to reduce Th1 polarization. Conclusion Our results exhibited that STAMP could significantly regulate the blood glucose level and attenuate pancreatic pathological injury in T1DM mice by balancing the Th1/Th2 immune responses, which is independent of adjuvants. This technology opens a new window for the application of parasite products in clinical immunotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01581-9.
Collapse
Affiliation(s)
- Haoming Huang
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Dian Hu
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhuo Chen
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jiarong Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Rengui Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yusheng Gong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhengming Fang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ting Wang
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. .,Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Wei Chen
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. .,Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. .,Hubei Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
10
|
Protective effect and mechanism of Schistosoma japonicum soluble egg antigen against type 1 diabetes in NOD mice. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-021-00970-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
11
|
Yang H, Li H, Chen W, Mei Z, Yuan Y, Wang X, Chu L, Xu Y, Sun Y, Li D, Gao H, Zhan B, Li H, Yang X. Therapeutic Effect of Schistosoma japonicum Cystatin on Atherosclerotic Renal Damage. Front Cell Dev Biol 2021; 9:760980. [PMID: 34901005 PMCID: PMC8656285 DOI: 10.3389/fcell.2021.760980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/11/2021] [Indexed: 01/15/2023] Open
Abstract
Atherosclerosis is a chronic inflammation of the arterial vessel wall driven by lipid metabolism disorders. Although helminthic infection and their derivatives have been identified to attenuate the chronic inflammatory diseases, the immunomodulatory effect of recombinant Schistosoma japonicum cystatin (rSj-Cys) on metabolic diseases and atherosclerosis has not been reported. In this study, we investigated the therapeutic efficacy of rSj-Cys on atherosclerotic renal damage and explored the related immunological mechanism. The results demonstrated that treatment with rSj-Cys significantly reduced body weight gain, hyperlipidemia, and atherosclerosis induced by the high-fat diet in apoE–/– mice. The treatment of rSj-Cys also significantly improved kidney functions through promoting macrophage polarization from M1 to M2, therefore inhibiting M1 macrophage–induced inflammation. The possible mechanism underlying the regulatory effect of rSj-Cys on reducing atherosclerosis and atherosclerotic renal damage is that rSj-Cys stimulates regulatory T cell and M2 macrophage polarization that produce regulatory cytokines, such as interleukin 10 and transforming growth factor β. The therapeutic effect of rSj-Cys on atherosclerotic renal damage is possibly through inhibiting the activation of TLR2/Myd88 signaling pathway. The results in this study provide evidence for the first time that Schistosoma-derived cystatin could be developed as a therapeutic agent to treat lipid metabolism disorder and atherosclerosis that threats million lives around the world.
Collapse
Affiliation(s)
- Huijuan Yang
- Department of Nephrology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Hongqi Li
- Department of Gerontology, Anhui Provincial Hospital, First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Weidong Chen
- Department of Nephrology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhijie Mei
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yuan Yuan
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Basic Medical College of Bengbu Medical College, Bengbu, China
| | - Xiaoli Wang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Basic Medical College of Bengbu Medical College, Bengbu, China
| | - Liang Chu
- Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yu Xu
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Basic Medical College of Bengbu Medical College, Bengbu, China
| | - Yan Sun
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Basic Medical College of Bengbu Medical College, Bengbu, China
| | - Dingru Li
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Basic Medical College of Bengbu Medical College, Bengbu, China
| | - Hongyu Gao
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Basic Medical College of Bengbu Medical College, Bengbu, China
| | - Bin Zhan
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Huihui Li
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Basic Medical College of Bengbu Medical College, Bengbu, China
| | - Xiaodi Yang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Basic Medical College of Bengbu Medical College, Bengbu, China
| |
Collapse
|
12
|
Gao YR, Sun XZ, Li R, Tang CL, Zhang RH, Zhu YW, Li XR, Pan Q. The effect of regulatory T cells in Schistosoma-mediated protection against type 2 diabetes. Acta Trop 2021; 224:106073. [PMID: 34487719 DOI: 10.1016/j.actatropica.2021.106073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022]
Abstract
In western societies, the prevalence of type 2 diabetes (T2D) is related to the hygiene hypothesis, which implies that reduced exposure to infectious factors results in a loss of the immune stimulation necessary to form the immune system during development. In fact, it has been reported that parasites, such as Schistosoma, can improve or prevent the development of T2D, which may be related to the activity of immune cells, including regulatory T cells (Tregs). Hence, Schistosoma, Tregs, and T2D share a close relationship. Schistosoma infection and the molecules released can lead to an increase in Tregs, which play an important role in the suppression of T2D. In this review, we provide an overview of the role of Tregs in the response to Schistosoma infection and the protective mechanism of Schistosoma-related molecular products against T2D.
Collapse
Affiliation(s)
- Yan-Ru Gao
- Medical Department, Wuhan City College, Wuhan, 430083, China
| | - Xue-Zhi Sun
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan 430030, China
| | - Ru Li
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Chun-Lian Tang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Rong-Hui Zhang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Ya-Wen Zhu
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Xiu-Rong Li
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430063, China.
| | - Qun Pan
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430063, China.
| |
Collapse
|
13
|
Integrated Metabolomics and Proteomics Analyses in the Local Milieu of Islet Allografts in Rejection versus Tolerance. Int J Mol Sci 2021; 22:ijms22168754. [PMID: 34445459 PMCID: PMC8395897 DOI: 10.3390/ijms22168754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
An understanding of the immune mechanisms that lead to rejection versus tolerance of allogeneic pancreatic islet grafts is of paramount importance, as it facilitates the development of innovative methods to improve the transplant outcome. Here, we used our established intraocular islet transplant model to gain novel insight into changes in the local metabolome and proteome within the islet allograft’s immediate microenvironment in association with immune-mediated rejection or tolerance. We performed integrated metabolomics and proteomics analyses in aqueous humor samples representative of the graft’s microenvironment under each transplant outcome. The results showed that several free amino acids, small primary amines, and soluble proteins related to the Warburg effect were upregulated or downregulated in association with either outcome. In general, the observed shifts in the local metabolite and protein profiles in association with rejection were consistent with established pro-inflammatory metabolic pathways and those observed in association with tolerance were immune regulatory. Taken together, the current findings further support the potential of metabolic reprogramming of immune cells towards immune regulation through targeted pharmacological and dietary interventions against specific metabolic pathways that promote the Warburg effect to prevent the rejection of transplanted islets and promote their immune tolerance.
Collapse
|
14
|
Pirovich DB, Da’dara AA, Skelly PJ. Multifunctional Fructose 1,6-Bisphosphate Aldolase as a Therapeutic Target. Front Mol Biosci 2021; 8:719678. [PMID: 34458323 PMCID: PMC8385298 DOI: 10.3389/fmolb.2021.719678] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/31/2021] [Indexed: 01/01/2023] Open
Abstract
Fructose 1,6-bisphosphate aldolase is a ubiquitous cytosolic enzyme that catalyzes the fourth step of glycolysis. Aldolases are classified into three groups: Class-I, Class-IA, and Class-II; all classes share similar structural features but low amino acid identity. Apart from their conserved role in carbohydrate metabolism, aldolases have been reported to perform numerous non-enzymatic functions. Here we review the myriad "moonlighting" functions of this classical enzyme, many of which are centered on its ability to bind to an array of partner proteins that impact cellular scaffolding, signaling, transcription, and motility. In addition to the cytosolic location, aldolase has been found the extracellular surface of several pathogenic bacteria, fungi, protozoans, and metazoans. In the extracellular space, the enzyme has been reported to perform virulence-enhancing moonlighting functions e.g., plasminogen binding, host cell adhesion, and immunomodulation. Aldolase's importance has made it both a drug target and vaccine candidate. In this review, we note the several inhibitors that have been synthesized with high specificity for the aldolases of pathogens and cancer cells and have been shown to inhibit classical enzyme activity and moonlighting functions. We also review the many trials in which recombinant aldolases have been used as vaccine targets against a wide variety of pathogenic organisms including bacteria, fungi, and metazoan parasites. Most of such trials generated significant protection from challenge infection, correlated with antigen-specific cellular and humoral immune responses. We argue that refinement of aldolase antigen preparations and expansion of immunization trials should be encouraged to promote the advancement of promising, protective aldolase vaccines.
Collapse
Affiliation(s)
- David B. Pirovich
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States
| | | | | |
Collapse
|
15
|
von Bülow V, Lichtenberger J, Grevelding CG, Falcone FH, Roeb E, Roderfeld M. Does Schistosoma Mansoni Facilitate Carcinogenesis? Cells 2021; 10:1982. [PMID: 34440754 PMCID: PMC8393187 DOI: 10.3390/cells10081982] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/21/2021] [Accepted: 08/01/2021] [Indexed: 12/24/2022] Open
Abstract
Schistosomiasis is one of the most prominent parasite-induced infectious diseases, causing tremendous medical and socioeconomic problems. Current studies have reported on the spread of endemic regions and the fear of development of resistance against praziquantel, the only effective drug available. Among the Schistosoma species, only S. haematobium is classified as a Group 1 carcinogen (definitely cancerogenic to humans), causing squamous cell carcinoma of the bladder, whereas infection with S. mansoni is included in Group 3 of carcinogenic hazards to humans by the International Agency for Research on Cancer (IARC), indicating insufficient evidence to determine its carcinogenicity. Nevertheless, although S. mansoni has not been discussed as an organic carcinogen, the multiplicity of case reports, together with recent data from animal models and cell culture experiments, suggests that this parasite can predispose patients to or promote hepatic and colorectal cancer. In this review, we discuss the current data, with a focus on new developments regarding the association of S. mansoni infection with human cancer and the recently discovered biomolecular mechanisms by which S. mansoni may predispose patients to cancer development and carcinogenesis.
Collapse
Affiliation(s)
- Verena von Bülow
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany; (V.v.B.); (J.L.); (E.R.)
| | - Jakob Lichtenberger
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany; (V.v.B.); (J.L.); (E.R.)
| | - Christoph G. Grevelding
- Institute of Parasitology, BFS, Justus Liebig University, 35392 Giessen, Germany; (C.G.G.); (F.H.F.)
| | - Franco H. Falcone
- Institute of Parasitology, BFS, Justus Liebig University, 35392 Giessen, Germany; (C.G.G.); (F.H.F.)
| | - Elke Roeb
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany; (V.v.B.); (J.L.); (E.R.)
| | - Martin Roderfeld
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany; (V.v.B.); (J.L.); (E.R.)
| |
Collapse
|
16
|
Pearson MS, Tedla BA, Becker L, Nakajima R, Jasinskas A, Mduluza T, Mutapi F, Oeuvray C, Greco B, Sotillo J, Felgner PL, Loukas A. Immunomics-Guided Antigen Discovery for Praziquantel-Induced Vaccination in Urogenital Human Schistosomiasis. Front Immunol 2021; 12:663041. [PMID: 34113343 PMCID: PMC8186320 DOI: 10.3389/fimmu.2021.663041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/22/2021] [Indexed: 12/25/2022] Open
Abstract
Despite the enormous morbidity attributed to schistosomiasis, there is still no vaccine to combat the disease for the hundreds of millions of infected people. The anthelmintic drug, praziquantel, is the mainstay treatment option, although its molecular mechanism of action remains poorly defined. Praziquantel treatment damages the outermost surface of the parasite, the tegument, liberating surface antigens from dying worms that invoke a robust immune response which in some subjects results in immunologic resistance to reinfection. Herein we term this phenomenon Drug-Induced Vaccination (DIV). To identify the antigenic targets of DIV antibodies in urogenital schistosomiasis, we constructed a recombinant proteome array consisting of approximately 1,000 proteins informed by various secretome datasets including validated proteomes and bioinformatic predictions. Arrays were screened with sera from human subjects treated with praziquantel and shown 18 months later to be either reinfected (chronically infected subjects, CI) or resistant to reinfection (DIV). IgG responses to numerous antigens were significantly elevated in DIV compared to CI subjects, and indeed IgG responses to some antigens were completely undetectable in CI subjects but robustly recognized by DIV subjects. One antigen in particular, a cystatin cysteine protease inhibitor stood out as a unique target of DIV IgG, so recombinant cystatin was produced, and its vaccine efficacy assessed in a heterologous Schistosoma mansoni mouse challenge model. While there was no significant impact of vaccination with adjuvanted cystatin on adult worm numbers, highly significant reductions in liver egg burdens (45-55%, P<0.0001) and intestinal egg burdens (50-54%, P<0.0003) were achieved in mice vaccinated with cystatin in two independent trials. This study has revealed numerous antigens that are targets of DIV antibodies in urogenital schistosomiasis and offer promise as subunit vaccine targets for a drug-linked vaccination approach to controlling schistosomiasis.
Collapse
Affiliation(s)
- Mark S. Pearson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Bemnet A. Tedla
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Luke Becker
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Rie Nakajima
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, United States
| | - Al Jasinskas
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, United States
| | - Takafira Mduluza
- Department of Biotechnology and Biochemistry, University of Zimbabwe, Harare, Zimbabwe
- TIBA Partnership, NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA) at the University of Edinburgh based in Harare (TIBA Zimbabwe), Harare, Zimbabwe
| | - Francisca Mutapi
- Institute of Immunology and infection Research, Ashworth Laboratories, Edinburgh, United Kingdom
- TIBA Partnership, NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA) at the University of Edinburgh, Edinburgh, United Kingdom
| | - Claude Oeuvray
- TIBA Partnership, NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA) at the University of Edinburgh, Edinburgh, United Kingdom
| | - Beatrice Greco
- Global Health Institute of Merck, Ares Trading S.A., a subsidiary of Merck KGaA (Darmstadt, Germany), Eysins, Switzerland
| | - Javier Sotillo
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Philip L. Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, United States
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
17
|
Xie H, Wu L, Chen X, Gao S, Li H, Yuan Y, Liang J, Wang X, Wang S, Xu C, Chu L, Zhan B, Zhou R, Yang X. Schistosoma japonicum Cystatin Alleviates Sepsis Through Activating Regulatory Macrophages. Front Cell Infect Microbiol 2021; 11:617461. [PMID: 33718268 PMCID: PMC7943722 DOI: 10.3389/fcimb.2021.617461] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
Multi-organ failure caused by the inflammatory cytokine storm induced by severe infection is the major cause of death for sepsis. Sj-Cys is a cysteine protease inhibitor secreted by Schistosoma japonicum with strong immunomodulatory functions on host immune system. Our previous studies have shown that treatment with Sj-Cys recombinant protein (rSj-Cys) attenuated inflammation caused by sepsis. However, the immunological mechanism underlying the immunomodulation of Sj-Cys for regulating inflammatory diseases is not yet known. In this study, we investigated the effect of Sj-Cys on the macrophage M2 polarization and subsequent therapeutic effect on sepsis. The rSj-Cys was expressed in yeast Pichia pastoris. Incubation of mouse bone marrow-derived macrophages (BMDMs) with yeast-expressed rSj-Cys significantly activated the polarization of macrophages to M2 subtype characterized by the expression of F4/80+ CD206+ with the elated secretion of IL-10 and TGF-β. Adoptive transfer of rSj-Cys treated BMDMs to mice with sepsis induced by cecal ligation and puncture (CLP) significantly improved their survival rates and the systemic clinical manifestations of sepsis compared with mice receiving non-treated normal BMDMs. The therapeutic effect of Sj-Cys-induced M2 macrophages on sepsis was also reflected by the reduced pathological damages in organs of heart, lung, liver and kidney and reduced serological levels of tissue damage-related ALT, AST, BUN and Cr, associated with downregulated pro-inflammatory cytokines (IFN-gamma and IL-6) and upregulated regulatory anti-inflammatory cytokines (IL-10 and TGF-β). Our results demonstrated that Sj-Cys is a strong immunomodulatory protein with anti-inflammatory features through activating M2 macrophage polarization. The findings of this study suggested that Sj-Cys itself or Sj-Cys-induced M2 macrophages could be used as therapeutic agents in the treatment of sepsis or other inflammatory diseases.
Collapse
Affiliation(s)
- Hong Xie
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Basic Medical College, Bengbu Medical College, Bengbu, China
| | - Lingqin Wu
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Pediatric, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xingzhi Chen
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Basic Medical College, Bengbu Medical College, Bengbu, China
| | - Shifang Gao
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Huihui Li
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Basic Medical College, Bengbu Medical College, Bengbu, China
| | - Yuan Yuan
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Basic Medical College, Bengbu Medical College, Bengbu, China
| | - Jinbao Liang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Xiaoli Wang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Basic Medical College, Bengbu Medical College, Bengbu, China
| | - Shuying Wang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Pediatric, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Changyan Xu
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Basic Medical College, Bengbu Medical College, Bengbu, China
| | - Liang Chu
- Department of General Surgery, Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Bin Zhan
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Rui Zhou
- Department of Pediatric, First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases of Bengbu Medical College, Bengbu, China
| | - Xiaodi Yang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Basic Medical College, Bengbu Medical College, Bengbu, China
| |
Collapse
|
18
|
Mu Y, McManus DP, Hou N, Cai P. Schistosome Infection and Schistosome-Derived Products as Modulators for the Prevention and Alleviation of Immunological Disorders. Front Immunol 2021; 12:619776. [PMID: 33692793 PMCID: PMC7937812 DOI: 10.3389/fimmu.2021.619776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/08/2021] [Indexed: 12/22/2022] Open
Abstract
Parasitic helminths, comprising the flatworms (tapeworms and flukes) and nematodes (roundworms), have plagued humans persistently over a considerable period of time. It is now known that the degree of exposure to these and other pathogens inversely correlates with the incidence of both T helper 1 (Th1)-mediated autoimmunity and Th2-mediated allergy. Accordingly, there has been recent increased interest in utilizing active helminth worm infections and helminth-derived products for the treatment of human autoimmune and inflammatory diseases and to alleviate disease severity. Indeed, there is an accumulating list of novel helminth derived molecules, including proteins, peptides, and microRNAs, that have been shown to exhibit therapeutic potential in a variety of disease models. Here we consider the blood-dwelling schistosome flukes, which have evolved subtle immune regulatory mechanisms that promote parasite survival but at the same time minimize host tissue immunopathology. We review and discuss the recent advances in using schistosome infection and schistosome-derived products as therapeutics to treat or mitigate human immune-related disorders, including allergic asthma, arthritis, colitis, diabetes, sepsis, cystitis, and cancer.
Collapse
Affiliation(s)
- Yi Mu
- Molecular Parasitology Laboratory, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Nan Hou
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Pengfei Cai
- Molecular Parasitology Laboratory, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
19
|
Khatri V, Chauhan N, Kalyanasundaram R. Parasite Cystatin: Immunomodulatory Molecule with Therapeutic Activity against Immune Mediated Disorders. Pathogens 2020; 9:E431. [PMID: 32486220 PMCID: PMC7350340 DOI: 10.3390/pathogens9060431] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Abstract
The use of parasites or their products for treating chronic inflammation associated diseases (CIADs) has generated significant attention recently. Findings from basic and clinical research have provided valuable information on strengthening the notion that parasites' molecules can be developed as biotherapeutic agents. Completion of the genome, secreotome, and proteome of the parasites has provided an excellent platform for screening and identifying several host immunomodulatory molecules from the parasites and evaluate their therapeutic potential for CIADs. One of the widely studied host immunomodulatory molecules of the parasites is the cysteine protease inhibitor (cystatin), which is primarily secreted by the parasites to evade host immune responses. In this review, we have attempted to summarize the findings to date on the use of helminth parasite-derived cystatin as a therapeutic agent against CIADs. Although several studies suggest a role for alternatively activated macrophages, other regulatory cells, and immunosuppressive molecules, in this immunoregulatory activity of the parasite-derived cystatin, there is still no clear demonstration as to how cystatin induces its anti-inflammatory effect in suppressing CIADs.
Collapse
Affiliation(s)
- Vishal Khatri
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL 61107, USA; (N.C.); (R.K.)
| | | | | |
Collapse
|