1
|
Wang M, Zhang Z, Dong X, Zhu B. Targeting β-glucans, vital components of the Pneumocystis cell wall. Front Immunol 2023; 14:1094464. [PMID: 36845149 PMCID: PMC9947646 DOI: 10.3389/fimmu.2023.1094464] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
β-glucan is the most abundant polysaccharide in the cell wall of Pneumocystis jirovecii, which has attracted extensive attention because of its unique immunobiological characteristics. β-glucan binds to various cell surface receptors, which produces an inflammatory response and accounts for its immune effects. A deeper comprehension of the processes by Pneumocystis β-glucan recognizes its receptors, activates related signaling pathways, and regulates immunity as required. Such understanding will provide a basis for developing new therapies against Pneumocystis. Herein, we briefly review the structural composition of β-glucans as a vital component of the Pneumocystis cell wall, the host immunity mediated by β-glucans after their recognition, and discuss opportunities for the development of new strategies to combat Pneumocystis.
Collapse
Affiliation(s)
- Mengyan Wang
- Department II of Infectious Diseases, Xixi Hospital of Hangzhou, Hangzhou, China,Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhongdong Zhang
- Department II of Infectious Diseases, Xixi Hospital of Hangzhou, Hangzhou, China
| | - Xiaotian Dong
- Department of Clinical Laboratory, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Biao Zhu
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Biao Zhu,
| |
Collapse
|
2
|
CD4 + T Cell Regulation of Antibodies Cross-Reactive with Fungal Cell Wall-Associated Carbohydrates after Pneumocystis murina Infection. Infect Immun 2019; 87:IAI.00158-19. [PMID: 31010812 DOI: 10.1128/iai.00158-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/13/2019] [Indexed: 01/02/2023] Open
Abstract
Pneumocystis pneumonia is a life-threatening opportunistic fungal infection observed in individuals with severe immunodeficiencies, such as AIDS. Molecules with the ability to bind β-glucan and signal at Fcγ receptors enhance defense against Pneumocystis f. sp. murina, though it is unclear whether antibodies reactive with fungal cell wall carbohydrates are induced during Pneumocystis infection. We observed that systemic and lung mucosal immunoglobulins cross-reactive with β-glucan and chitosan/chitin are generated after Pneumocystis infection, with increased quantities within the lung mucosal fluid after challenge. While IgG responses against Pneumocystis protein antigens are markedly CD4+ T cell dependent, CD4+ T cell depletion did not impact quantities of IgG cross-reactive with β-glucan or chitosan/chitin in the serum or mucosa after challenge. Notably, lung mucosal quantities of IgA cross-reactive with β-glucan or chitosan/chitin are decreased in the setting of CD4+ T cell deficiency, occurring in the setting of concurrent reduced quantities of active transforming growth factor β, while mucosal IgM is significantly increased in the setting of CD4+ T cell deficiency. Interleukin-21 receptor deficiency does not lead to reduction in mucosal IgA reactive with fungal carbohydrate antigens after Pneumocystis challenge. These studies demonstrate differential CD4+ T cell-dependent regulation of mucosal antibody responses against β-glucan and chitosan/chitin after Pneumocystis challenge, suggesting that different B cell subsets may be responsible for the generation of these antibody responses, and suggest a potential immune response against fungi that may be operative in the setting of CD4+ T cell-related immunodeficiency.
Collapse
|
3
|
Skalski JH, Kottom TJ, Limper AH. Pathobiology of Pneumocystis pneumonia: life cycle, cell wall and cell signal transduction. FEMS Yeast Res 2015; 15:fov046. [PMID: 26071598 DOI: 10.1093/femsyr/fov046] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2015] [Indexed: 12/28/2022] Open
Abstract
Pneumocystis is a genus of ascomycetous fungi that are highly morbid pathogens in immunosuppressed humans and other mammals. Pneumocystis cannot easily be propagated in culture, which has greatly hindered understanding of its pathobiology. The Pneumocystis life cycle is intimately associated with its mammalian host lung environment, and life cycle progression is dependent on complex interactions with host alveolar epithelial cells and the extracellular matrix. The Pneumocystis cell wall is a varied and dynamic structure containing a dominant major surface glycoprotein, β-glucans and chitins that are important for evasion of host defenses and stimulation of the host immune system. Understanding of Pneumocystis cell signaling pathways is incomplete, but much has been deduced by comparison of the Pneumocystis genome with homologous genes and proteins in related fungi. In this mini-review, the pathobiology of Pneumocystis is reviewed, with particular focus on the life cycle, cell wall components and cell signal transduction.
Collapse
Affiliation(s)
- Joseph H Skalski
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Theodore J Kottom
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Andrew H Limper
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
4
|
|
5
|
Chitinases in Pneumocystis carinii pneumonia. Med Microbiol Immunol 2012; 201:337-48. [PMID: 22535444 DOI: 10.1007/s00430-012-0239-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 04/09/2012] [Indexed: 01/15/2023]
Abstract
Pneumocystis pneumonia remains an important complication of immune suppression. The cell wall of Pneumocystis has been demonstrated to potently stimulate host inflammatory responses, with most studies focusing on β-glucan components of the Pneumocystis cell wall. In the current study, we have elaborated the potential role of chitins and chitinases in Pneumocystis pneumonia. We demonstrated differential host mammalian chitinase expression during Pneumocystis pneumonia. We further characterized a chitin synthase gene in Pneumocystis carinii termed Pcchs5, a gene with considerable homolog to the fungal chitin biosynthesis protein Chs5. We also observed the impact of chitinase digestion on Pneumocystis-induced host inflammatory responses by measuring TNFα release and mammalian chitinase expression by cultured lung epithelial and macrophage cells stimulated with Pneumocystis cell wall isolates in the presence and absence of exogenous chitinase digestion. These findings provide evidence supporting a chitin biosynthetic pathway in Pneumocystis organisms and that chitinases modulate inflammatory responses in lung cells. We further demonstrate lung expression of chitinase molecules during Pneumocystis pneumonia.
Collapse
|
6
|
Rapaka RR, Ricks DM, Alcorn JF, Chen K, Khader SA, Zheng M, Plevy S, Bengtén E, Kolls JK. Conserved natural IgM antibodies mediate innate and adaptive immunity against the opportunistic fungus Pneumocystis murina. ACTA ACUST UNITED AC 2010; 207:2907-19. [PMID: 21149550 PMCID: PMC3005228 DOI: 10.1084/jem.20100034] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Natural IgM antibodies in diverse species recognize conserved carbohydrates in fungal cell walls and influence early host defense against Pneumocystis in mice. Host defense against opportunistic fungi requires coordination between innate and adaptive immunity for resolution of infection. Antibodies generated in mice vaccinated with the fungus Pneumocystis prevent growth of Pneumocystis organisms within the lungs, but the mechanisms whereby antibodies enhance antifungal host defense are poorly defined. Nearly all species of fungi contain the conserved carbohydrates β-glucan and chitin within their cell walls, which may be targets of innate and adaptive immunity. In this study, we show that natural IgM antibodies targeting these fungal cell wall carbohydrates are conserved across many species, including fish and mammals. Natural antibodies bind fungal organisms and enhance host defense against Pneumocystis in early stages of infection. IgM antibodies influence recognition of fungal antigen by dendritic cells, increasing their migration to draining pulmonary lymph nodes. IgM antibodies are required for adaptive T helper type 2 (Th2) and Th17 cell differentiation and guide B cell isotype class-switch recombination during host defense against Pneumocystis. These experiments suggest a novel role for the IgM isotype in shaping the earliest steps in recognition and clearance of this fungus. We outline a mechanism whereby serum IgM, containing ancient specificities against conserved fungal antigens, bridges innate and adaptive immunity against fungal organisms.
Collapse
Affiliation(s)
- Rekha R Rapaka
- Division of Pediatric Pulmonary Medicine, Allergy, and Immunology, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Rapaka RR, Goetzman ES, Zheng M, Vockley J, McKinley L, Kolls JK, Steele C. Enhanced defense against Pneumocystis carinii mediated by a novel dectin-1 receptor Fc fusion protein. THE JOURNAL OF IMMUNOLOGY 2007; 178:3702-12. [PMID: 17339468 DOI: 10.4049/jimmunol.178.6.3702] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pneumocystis carinii (PC) pneumonia is a leading opportunistic infection found among HIV-infected individuals worldwide. Although CD4(+) T cell deficiency clearly correlates with susceptibility to PC pneumonia, murine models of disease indicate that PC-directed Abs may prevent infection and/or inhibit growth of existing PC within the lungs. Recognition of PC by alveolar macrophages involves the beta-glucan receptor Dectin-1 and macrophage effector function against PC is enhanced by Abs derived from PC-vaccinated hosts. We developed a fusion protein consisting of the extracellular domain of Dectin-1 linked to the Fc portion of murine IgG1, which we hypothesized would enhance host recognition and opsonic phagocytosis of PC. The recombinant protein, Dectin-Fc, is dimeric and the Ag recognition site identifies beta-1,3 glucan linkages specifically and with high affinity (K(D) = 2.03 x 10(-7) M). Dectin-Fc enhances RAW264.7 macrophage recognition of the beta-glucan containing particulate zymosan in an FcgammaRII- and FcgammaRIII-dependent manner and preopsonization of PC organisms with Dectin-Fc increased alveolar and peritoneal macrophage-dependent killing of PC. SCID mice treated with a replication incompetent adenoviral vector expressing Dectin-Fc had attenuated growth of PC within the lungs, overall decreased PC lung burden, and diminished correlates of PC-related lung damage relative to SCID mice receiving a control vector. These findings demonstrate that targeting PC beta-glucan with Dectin-Fc enhances host recognition and clearance of PC in the absence of B and T cells, and suggest that FcgammaR-based targeting of PC, via cell wall carbohydrate recognition, may promote resistance against PC pneumonia in the immunodeficient host.
Collapse
Affiliation(s)
- Rekha R Rapaka
- Department of Pediatrics, Division of Pulmonary Medicine, Allergy, and Immunology, Children's Hospital of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Pneumocystis jiroveci (P. carinii) is an opportunistic pathogen that has gained particular prominence since the onset of the AIDS epidemic. Among several important advances in diagnosis and management, appropriately targeting chemoprophylaxis to HIV-infected patients at high clinical risk for P. jiroveci pneumonia and the introduction of effective combination anti-retroviral therapy (including highly active antiretroviral therapy [HAART]) have contributed to the reduced incidence of P. jiroveci pneumonia. Despite the success of these clinical interventions, P. jiroveci pneumonia remains the most common opportunistic pneumonia and the most common life-threatening infectious complication in HIV-infected patients. Trimethoprim/sulfamethoxazole (cotrimoxazole) remains the first-line agent for effective therapy and chemoprophylaxis, and corticosteroids represent an important adjunctive agent in the treatment of moderate-to-severe P. jiroveci pneumonia. However, problems of chemoprophylaxis and treatment failures, high rates of adverse drug reactions and drug intolerance to first-line antimicrobials, high rates of relapse or recurrence with second-line agents, and newer concerns about the development of P. jiroveci drug resistance represent formidable challenges to the management and treatment of AIDS-related P. jiroveci pneumonia. With the expanding global problem of HIV infection, the intolerance or unavailability of HAART to many individuals and limited access to healthcare for HIV-infected patients, P. jiroveci pneumonia will remain a major worldwide problem in the HIV-infected population. New drugs under development as anti-Pneumocystis agents such as echinocandins and pneumocandins, which inhibit beta-glucan synthesis, or sordarins, which inhibit fungal protein synthesis, show promise as effective agents. Continued basic research into the biology and genetics of P. jiroveci and host defense response to P. jiroveci will allow the development of newer antimicrobials and immunomodulatory therapeutic agents to more effectively treat life-threatening pneumonia caused by this organism.
Collapse
Affiliation(s)
- Naimish Patel
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, 330 Brookline Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
9
|
Martínez de Velasco G, Cuéllar C. Humoral immune responses induced by Kudoa sp. (Myxosporea: Multivalvulida) in BALB/c mice: oral administration, immunization and cross-reactions with Myxobolus aeglefini (Myxosporea: Bivalvulida). Parasite Immunol 2003; 25:449-56. [PMID: 14651592 DOI: 10.1111/j.1365-3024.2003.00653.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The majority of Kudoa species infect the somatic muscle of fish, establishing cysts. Because there is no effective method to detect infected fish without destroying them, these parasitized fish reach the consumer. The elevated humoral responses detected previously by us in BALB/c mice immunized with Kudoa sp. pseudocyst extracts showed the possible immunopathological effects in man from the ingestion of Kudoa-infected fish. In this work, the high IgG1 and IgE levels induced by the oral administration of Kudoa pseudocysts to BALB/c mice confirmed the allergenic nature of some of their components. An alternative way of preparing the soluble extract by using a FastPrep' shaker indicated the inconvenience of using sonication to prepare the Kudoa sp. extract. IgG+M, IgG, IgG3 and IgA cross-reactions of Kudoa sp. with another myxosporean, Myxobolus aeglefini, were found.
Collapse
|
10
|
Thomas CF, Vohra PK, Park JG, Puri V, Limper AH, Kottom TJ. Pneumocystis carinii BCK1 functions in a mitogen-activated protein kinase cascade regulating fungal cell-wall assembly. FEBS Lett 2003; 548:59-68. [PMID: 12885408 DOI: 10.1016/s0014-5793(03)00730-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pneumocystis pneumonia remains the most common AIDS-defining opportunistic infection in people with HIV. The process by which Pneumocystis carinii constructs its cell wall is not well known, although recent studies reveal that molecules such as beta-1-3-glucan synthetase (GSC1) and environmental pH-responsive genes such as PHR1 are important for cell-wall integrity. In closely related fungi, a specific mitogen-activated protein kinase (MAPK) cascade regulates cell-wall assembly in response to elevated temperature. The upstream mitogen-activated protein kinase kinase kinase (MAPKKK, or MEKK), BCK1, is an essential component in this pathway for maintaining cell-wall integrity and preventing fungal cell lysis. We have identified a P. carinii MEKK gene and have expressed it in Saccharomyces cerevisiae to gain insights into its function. The P. carinii MEKK, PCBCK1, corrects the temperature-sensitive cell lysis defect of bck1Delta yeast. Further, at elevated temperature PCBCK1 restored the signaling defect in bck1Delta yeast to maintain expression of the temperature-inducible beta-1-3-glucan synthetase gene, FKS2. PCBCK1, as a functional kinase, is capable of autophosphorylation and substrate phosphorylation. Since glucan machinery is not present in mammals, a better understanding of this pathway in P. carinii might aid in the development of novel medications which interfere with the integrity of the Pneumocystis cell wall.
Collapse
Affiliation(s)
- Charles F Thomas
- Thoracic Diseases Research Unit, Division of Pulmonary, Critical Care and Internal Medicine, Department of Medicine, 826 Stabile Building, Mayo Clinic and Foundation, Rochester, MN 55905, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Pneumocystis organisms can cause pneumonia in mammals that lack a strong immune defense. The genus Pneumocystis contains many different organisms that can be distinguished by DNA sequence analysis. These different organisms are different species of yeast-like fungi that are most closely related to the ascomycete, Schizosaccharomyces pombe. Each species of Pneumocystis appears to be specific for the mammal in which it is found. The species that infects humans is Pneumocystis jiroveci. P. jiroveci has not been found in any other mammal and the species of Pneumocystis found in other mammals have not been seen in humans. Genetic variation among P. jiroveci samples is common, suggesting that there are many strains. Strain analysis shows that adults can be infected by more than one strain, and suggests that pneumonia can be the result of infection occurring proximal to the time of disease, rather than to reactivation of dormant organisms acquired in early childhood. Nevertheless, long-term colonisation may be occurring. A large fraction of normal children and animals show evidence of infection. A Pneumocystis species that grows in rats has been shown to possess a complex genetic system for surface antigen variation, a strategy employed by other microbes that dwell in immunocompetent hosts. These findings, together with strong host specificity, suggest that Pneumocystis species may be obligate parasites. The source of infection is not clear. Pneumocystis DNA is detectable in the air, but is scarce except in environments occupied by individuals with Pneumocystis pneumonia. In a few cases, there is direct evidence of person to person transmission. In general, however, patients and their contacts have been found to have different strains of P. jiroveci.
Collapse
Affiliation(s)
- James R Stringer
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, OH 45220-0524, USA.
| |
Collapse
|
12
|
Kottom TJ, Limper AH. Cell wall assembly by Pneumocystis carinii. Evidence for a unique gsc-1 subunit mediating beta -1,3-glucan deposition. J Biol Chem 2000; 275:40628-34. [PMID: 11013231 DOI: 10.1074/jbc.m002103200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pneumocystis carinii remains a persistent cause of severe pneumonia in immune compromised patients. Recent studies indicate that P. carinii is a fungal species possessing a glucan-rich cyst wall. Pneumocandin antagonists of beta-1,3-glucan synthesis rapidly suppress infection in animal models of P. carinii pneumonia. We, therefore, sought to define the molecular mechanisms of beta-glucan cell wall assembly by P. carinii. Membrane extracts derived from freshly purified P. carinii incorporate uridine 5'-diphosphoglucose into insoluble carbohydrate, in a manner that was completely inhibited by the pneumocandin L733-560, an antagonist of Gsc-1-type beta-glucan synthetases. Using degenerative polymerase chain reaction and library screening, the P. carinii Gsc-1 catalytic subunit of beta-1,3-glucan synthetase was cloned and characterized. P. carinii gsc1 exhibited homology to phylogenetically related fungal beta-1,3-glucan synthetases, encoding a predicted 214-kDa integral membrane protein with 12 transmembrane domain structure. Immunoprecipitation of P. carinii extracts, with a synthetic peptide anti-Gsc-1 antibody, specifically yielded a protein of 219.4 kDa, which was also capable of incorporating 5'-diphosphoglucose into insoluble glucan carbohydrate. As opposed to other fungi, the expression of gsc-1 mRNA is uniquely regulated over P. carinii's life cycle, having minimal expression in trophic forms, but substantial expression in the thick-walled cystic form of the organism. These results indicate that P. carinii contains a unique catalytic subunit of beta-1,3-glucan synthetase utilized in cyst wall formation. Because synthesis of beta-1,3-glucan is absent in mammalian cells, inhibition of the P. carinii Gsc-1 represents an attractive molecular target for therapeutic exploitation.
Collapse
Affiliation(s)
- T J Kottom
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | |
Collapse
|