1
|
Shen R, Yao Q, Zhong D, Zhang X, Li X, Cao X, Dong C, Tian Y, Zhu JK, Lu Y. Targeted insertion of regulatory elements enables translational enhancement in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1134209. [PMID: 37063194 PMCID: PMC10102426 DOI: 10.3389/fpls.2023.1134209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
In-locus editing of agronomically-important genes to optimize their spatiotemporal expression is becoming an important breeding approach. Compared to intensive studies on mRNA transcription, manipulating protein translation by genome editing has not been well exploited. Here, we found that precise knock-in of a regulating element into the 5'UTR of a target gene could efficiently increase its protein abundance in rice. We firstly screened a translational enhancer (AMVE) from alfalfa mosaic virus using protoplast-based luciferase assays with an 8.5-folds enhancement. Then the chemically modified donor of AMVE was synthesized and targeted inserted into the 5'UTRs of two genes (WRKY71 and SKC1) using CRISPR/Cas9. Following the in-locus AMVE knock-in, we observed up to a 2.8-fold increase in the amount of WRKY71 protein. Notably, editing of SKC1, a sodium transporter, significantly increased salt tolerance in T2 seedlings, indicating the expected regulation of AMVE knock-in. These data demonstrated the feasibility of such in-locus editing to enhance protein expression, providing a new approach to manipulating protein translation for crop breeding.
Collapse
Affiliation(s)
- Rundong Shen
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Center for Advanced Bioindustry Technologies, and Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan, China
| | - Qi Yao
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Dating Zhong
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuening Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinbo Li
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Center for Advanced Bioindustry Technologies, and Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan, China
| | - Xuesong Cao
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chao Dong
- Center for Advanced Bioindustry Technologies, and Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan, China
| | - Yifu Tian
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Center for Advanced Bioindustry Technologies, and Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan, China
| | - Jian-Kang Zhu
- Center for Advanced Bioindustry Technologies, and Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Advanced Biotechnology, and School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuming Lu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Ruhlman TA. Biolistic Plastid Transformation in Lettuce (Lactuca sativa) for Oral Delivery of Biopharmaceuticals. Methods Mol Biol 2021; 2317:267-281. [PMID: 34028775 DOI: 10.1007/978-1-0716-1472-3_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The interest in producing pharmaceutical proteins in a nontoxic plant host has led to the development of an approach to express such proteins in transplastomic lettuce (Lactuca sativa). A number of therapeutic proteins and vaccine antigen candidates have been stably integrated into the lettuce plastid genome using biolistic DNA delivery. High levels of accumulation and retention of biological activity suggest that lettuce may provide and ideal platform for the production of biopharmaceuticals.
Collapse
Affiliation(s)
- Tracey A Ruhlman
- Integrative Biology, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
3
|
Díaz AH, Koop HU. Nicotiana tabacum: An Update on PEG-Mediated Plastid Transformation. Methods Mol Biol 2021; 2317:155-166. [PMID: 34028767 DOI: 10.1007/978-1-0716-1472-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Stable plastid transformation in Nicotiana tabacum has been achieved by using two different methods, the biolistic method, using a particle gun, and the polyethylene glycol (PEG)-mediated transformation. PEG-mediated plastid transformation involves the treatment of isolated protoplasts (plant cells without cell wall) with PEG in the presence of DNA. We have previously shown that in Nicotiana tabacum both methods are equally efficient. The PEG-mediated transformation efficiencies range between 20 and 50 plastid transformants per experiment (106 viable treated protoplasts). One advantage of the PEG method is that no expensive equipment such as a particle gun is required. The only crucial points are the handling and the cultivation of protoplasts. Furthermore, markers for the selection of transformed plastids are required. One of the most often used selection markers is the aadA gene which encodes for spectinomycin and streptomycin resistance. Here we describe a simplified and inexpensive protocol for the transformation of plastids in Nicotiana tabacum using an optimized protoplast culture protocol. PEG-mediated plastid transformation has the potential to be developed into a high-throughput, automated pipeline.
Collapse
Affiliation(s)
- Areli Herrera Díaz
- Department of Biology I - Botany, Ludwig-Maximillians-University of Munich, Planegg-Martinsried, Germany
| | - Hans-Ulrich Koop
- Department of Biology I - Botany, Ludwig-Maximillians-University of Munich, Planegg-Martinsried, Germany.
- , Munich, Germany.
| |
Collapse
|
4
|
Milán-Noris EM, Monreal-Escalante E, Rosales-Mendoza S, Soria-Guerra RE, Radwan O, Juvik JA, Korban SS. An AMA1/MSP1 19 Adjuvanted Malaria Transplastomic Plant-Based Vaccine Induces Immune Responses in Test Animals. Mol Biotechnol 2020; 62:534-545. [PMID: 32870446 DOI: 10.1007/s12033-020-00271-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2020] [Indexed: 01/12/2023]
Abstract
Malaria is a tropical human disease, caused by protozoan parasites, wherein a significant number of the world's population is at risk. Annually, more than 219 million new cases are reported. Although there are prevention treatments, there are no highly and widely effective licensed anti-malarial vaccines available for use. Opportunities for utilization of plant-based vaccines as novel platforms for developing safe, reliable, and affordable treatments offer promise for developing such a vaccine against malaria. In this study, a Malchloroplast candidate vaccine was designed, composed of segments of AMA1 and MSP1 proteins, two epitopes of Plasmodium falciparum, along with a GK1 peptide from Taenia solium as adjuvant, and this was expressed in tobacco chloroplasts. Transplastomic tobacco lines were generated using biolistic transformation, and these were confirmed to carry the synthetic gene construct. Expression of the synthetic GK1 peptide was confirmed using RT-PCR and Western blots. Furthermore, the GK1 peptide was detected by HPLC at levels of up to 6 µg g-1 dry weight of tobacco leaf tissue. The plant-derived Malchloroplast candidate vaccine was subsequently tested in BALB/c female mice following subcutaneous administration, and was found to elicit specific humoral responses. Furthermore, components of this candidate vaccine were recognized by antibodies in Plasmodium falciparum malaria patients and were immunogenic in test mice. Thus, this study provided a 'proof of concept' for a promising plant-based candidate subunit vaccine against malaria.
Collapse
Affiliation(s)
- Evelia M Milán-Noris
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | - Elizabeth Monreal-Escalante
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis Potosi, SLP, Mexico
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis Potosi, SLP, Mexico.
| | - Ruth E Soria-Guerra
- Laboratorio de Ingeniería de Biorreactores, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis Potosi, SLP, Mexico
| | - Osman Radwan
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Environmental Microbiology Group, University of Dayton, Dayton, OH, 45469, USA
| | - John A Juvik
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Schuyler S Korban
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
5
|
Liu S, Li L, Meng J, Song K, Huang B, Wang W, Zhang G. Association and Functional Analyses Revealed That PPP1R3B Plays an Important Role in the Regulation of Glycogen Content in the Pacific Oyster Crassostrea gigas. Front Genet 2019; 10:106. [PMID: 30853975 PMCID: PMC6396720 DOI: 10.3389/fgene.2019.00106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/30/2019] [Indexed: 12/15/2022] Open
Abstract
The Pacific oyster (Crassostrea gigas) is one of the most important aquaculture species worldwide. Glycogen contributes greatly to the special taste and creamy white color of oysters. Previous genome-wide association studies (GWAS) identified several single nucleotide polymorphism (SNP) sites that were strongly related to glycogen content. Genes within 100 kb upstream and downstream of the associated SNPs were screened. One gene annotated as protein phosphatase 1 regulatory subunit 3B (PPP1R3B), which can promote glycogen synthesis together with protein phosphatase 1 catalytic subunit (PPP1C) in mammals, was selected as a candidate gene in this study. First, full-length CgPPP1R3B was cloned and its function was characterized. The gene expression profiles of CgPPP1R3B in different tissues and seasons showed a close relationship to glycogen content. RNA interference (RNAi) experiments of this gene in vivo showed that decreased CgPPP1R3B levels resulted in lower glycogen contents in the experimental group than in the control group. Co-immunoprecipitation (Co-IP) and yeast two-hybrid (Y2H) assays indicated that CgPPP1R3B can interact with CgPPP1C, glycogen synthase (CgGS) and glycogen phosphorylase (CgGP), thus participating in glycogen metabolism. Co-sedimentation analysis in vitro demonstrated that the CgPPP1R3B protein can bind to glycogen molecules directly, and these results indicated the conserved function of the CgPPP1R3B protein compared to that of mammals. In addition, thirteen SNPs were precisely mapped in this gene. Ten of the thirteen SNPs were confirmed to be significantly (p < 0.05) related to glycogen content in an independent wild population (n = 288). The CgPPP1R3B levels in oysters with high glycogen content were significantly higher than those of oysters with low glycogen content, and gene expression levels were significantly associated with various genotypes of four associated SNPs (p < 0.05). The data indicated that the associated SNPs may control glycogen content by regulating CgPPP1R3B expression. These results suggest that CgPPP1R3B is an important gene for glycogen metabolic regulation and that the associated SNPs of this gene are potential markers for oyster molecular breeding for increased glycogen content.
Collapse
Affiliation(s)
- Sheng Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jie Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Kai Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Baoyu Huang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Wei Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
6
|
Schindel HS, Piatek AA, Stewart CN, Lenaghan SC. The plastid genome as a chassis for synthetic biology-enabled metabolic engineering: players in gene expression. PLANT CELL REPORTS 2018; 37:1419-1429. [PMID: 30039465 DOI: 10.1007/s00299-018-2323-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/10/2018] [Indexed: 05/21/2023]
Abstract
Owing to its small size, prokaryotic-like molecular genetics, and potential for very high transgene expression, the plastid genome (plastome) is an attractive plant synthetic biology chassis for metabolic engineering. The plastome exists as a homogenous, compact, multicopy genome within multiple-specialized differentiated plastid compartments. Because of this multiplicity, transgenes can be highly expressed. For coordinated gene expression, it is the prokaryotic molecular genetics that is an especially attractive feature. Multiple genes in a metabolic pathway can be expressed in a series of operons, which are regulated at the transcriptional and translational levels with cross talk from the plant's nuclear genome. Key features of each regulatory level are reviewed, as well as some examples of plastome-enabled metabolic engineering. We also speculate about the transformative future of plastid-based synthetic biology to enable metabolic engineering in plants as well as the problems that must be solved before routine plastome-enabled synthetic circuits can be installed.
Collapse
Affiliation(s)
- Heidi S Schindel
- Department of Food Science, University of Tennessee, 2600 River Dr., Knoxville, TN, 37996-4561, USA
| | - Agnieszka A Piatek
- Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Dr., Knoxville, TN, 37996-4561, USA
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Dr., Knoxville, TN, 37996-4561, USA.
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA.
| | - Scott C Lenaghan
- Department of Food Science, University of Tennessee, 2600 River Dr., Knoxville, TN, 37996-4561, USA.
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA.
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
7
|
Rosales-Mendoza S, Monreal-Escalante E, González-Ortega O, Hernández M, Fragoso G, Garate T, Sciutto E. Transplastomic plants yield a multicomponent vaccine against cysticercosis. J Biotechnol 2018; 266:124-132. [PMID: 29253519 DOI: 10.1016/j.jbiotec.2017.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 11/30/2022]
Abstract
Low cost vaccines against cysticercosis are needed to fight this parasitosis, especially in developing countries. Herein polycistron arrangements were designed to accomplish the simultaneous expression of multiple protective antigens from Taenia solium in the plant cell as an attractive biofactory and delivery vehicle of vaccines. Transplastomic plants carrying synthetic polycistrons were able to simultaneously express the KETc1, KETc7, KETc12, GK1, and TSOL18/HP6-Tsol antigens; which retained their antigenicity and ability to induce humoral responses in BALB/c mice. These clones may be useful for the production of low-cost cysticercosis vaccine prototypes.
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, SLP. San Luis Potosí. México.
| | - Elizabeth Monreal-Escalante
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, SLP. San Luis Potosí. México
| | - Omar González-Ortega
- Laboratorio de Bioseparaciones, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, SLP. San Luis Potosí, México
| | - Marisela Hernández
- Dpto. Inmunología. Instituto De Investigaciones Biomédicas, Universidad Nacional Autónoma De México. Circuito Escolar. Ciudad Universitaria, C.p. 04510. Ciudad De México, México
| | - Gladis Fragoso
- Dpto. Inmunología. Instituto De Investigaciones Biomédicas, Universidad Nacional Autónoma De México. Circuito Escolar. Ciudad Universitaria, C.p. 04510. Ciudad De México, México
| | - Teresa Garate
- Dpto. De Parasitología, Centro Nacional De Microbiología, Instituto De Salud Carlos Iii, Majadahonda, 28220, Madrid, Spain
| | - Edda Sciutto
- Dpto. Inmunología. Instituto De Investigaciones Biomédicas, Universidad Nacional Autónoma De México. Circuito Escolar. Ciudad Universitaria, C.p. 04510. Ciudad De México, México.
| |
Collapse
|
8
|
Abstract
Ribonucleic acid (RNA) homeostasis is dynamically modulated in response to changing physiological conditions. Tight regulation of RNA abundance through both transcription and degradation determines the amount, timing, and location of protein translation. This balance is of particular importance in neurons, which are among the most metabolically active and morphologically complex cells in the body. As a result, any disruptions in RNA degradation can have dramatic consequences for neuronal health. In this chapter, we will first discuss mechanisms of RNA stabilization and decay. We will then explore how the disruption of these pathways can lead to neurodegenerative disease.
Collapse
|
9
|
Liu H, Qin J, Fan H, Cheng J, Li L, Liu Z. Genome-wide identification, phylogeny and expression analyses of SCARECROW- LIKE( SCL) genes in millet ( Setaria italica). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:629-640. [PMID: 28878501 PMCID: PMC5567716 DOI: 10.1007/s12298-017-0455-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/13/2017] [Accepted: 05/29/2017] [Indexed: 06/04/2023]
Abstract
As a member of the GRAS gene family, SCARECROW-LIKE (SCL) genes encode transcriptional regulators that are involved in plant information transmission and signal transduction. In this study, 44 SCL genes including two SCARECROW genes in millet were identified to be distributed on eight chromosomes, except chromosome 6. All the millet genes contain motifs 6-8, indicating that these motifs are conserved during the evolution. SCL genes of millet were divided into eight groups based on the phylogenetic relationship and classification of Arabidopsis SCL genes. Several putative millet orthologous genes in Arabidopsis, maize and rice were identified. High throughput RNA sequencing revealed that the expressions of millet SCL genes in root, stem, leaf, spica, and along leaf gradient varied greatly. Analyses combining the gene expression patterns, gene structures, motif compositions, promoter cis-elements identification, alternative splicing of transcripts and phylogenetic relationship of SCL genes indicate that the these genes may play diverse functions. Functionally characterized SCL genes in maize, rice and Arabidopsis would provide us some clues for future characterization of their homologues in millet. To the best of our knowledge, this is the first study of millet SCL genes at the genome wide level. Our work provides a useful platform for functional analysis of SCL genes in millet, a model crop for C4 photosynthesis and bioenergy studies.
Collapse
Affiliation(s)
- Hongyun Liu
- College of Life Sciences, Hebei University, Baoding, 071002 People’s Republic of China
| | - Jiajia Qin
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Hui Fan
- College of Life Sciences, Hebei University, Baoding, 071002 People’s Republic of China
| | - Jinjin Cheng
- College of Life Sciences, Hebei University, Baoding, 071002 People’s Republic of China
| | - Lin Li
- College of Biology, Hunan University, Changsha, 410082 People’s Republic of China
| | - Zheng Liu
- College of Life Sciences, Hebei University, Baoding, 071002 People’s Republic of China
| |
Collapse
|
10
|
Han J, Li J, Ho JC, Chia GS, Kato H, Jha S, Yang H, Poellinger L, Lee KL. Hypoxia is a Key Driver of Alternative Splicing in Human Breast Cancer Cells. Sci Rep 2017. [PMID: 28642487 PMCID: PMC5481333 DOI: 10.1038/s41598-017-04333-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Adaptation to hypoxia, a hallmark feature of many tumors, is an important driver of cancer cell survival, proliferation and the development of resistance to chemotherapy. Hypoxia-induced stabilization of hypoxia-inducible factors (HIFs) leads to transcriptional activation of a network of hypoxia target genes involved in angiogenesis, cell growth, glycolysis, DNA damage repair and apoptosis. Although the transcriptional targets of hypoxia have been characterized, the alternative splicing of transcripts that occurs during hypoxia and the roles they play in oncogenesis are much less understood. To identify and quantify hypoxia-induced alternative splicing events in human cancer cells, we performed whole transcriptome RNA-Seq in breast cancer cells that are known to provide robust transcriptional response to hypoxia. We found 2005 and 1684 alternative splicing events including intron retention, exon skipping and alternative first exon usage that were regulated by acute and chronic hypoxia where intron retention was the most dominant type of hypoxia-induced alternative splicing. Many of these genes are involved in cellular metabolism, transcriptional regulation, actin cytoskeleton organisation, cancer cell proliferation, migration and invasion, suggesting they may modulate or be involved in additional features of tumorigenic development that extend beyond the known functions of canonical full-length transcripts.
Collapse
Affiliation(s)
- Jian Han
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Jia Li
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Jolene Caifeng Ho
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Grace Sushin Chia
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Hiroyuki Kato
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Sudhakar Jha
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Lorenz Poellinger
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Kian Leong Lee
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore.
| |
Collapse
|
11
|
Tabatabaei I, Ruf S, Bock R. A bifunctional aminoglycoside acetyltransferase/phosphotransferase conferring tobramycin resistance provides an efficient selectable marker for plastid transformation. PLANT MOLECULAR BIOLOGY 2017; 93:269-281. [PMID: 27858324 PMCID: PMC5306187 DOI: 10.1007/s11103-016-0560-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/10/2016] [Indexed: 05/22/2023]
Abstract
KEY MESSAGE A new selectable marker gene for stable transformation of the plastid genome was developed that is similarly efficient as the aadA, and produces no background of spontaneous resistance mutants. More than 25 years after its development for Chlamydomonas and tobacco, the transformation of the chloroplast genome still represents a challenging technology that is available only in a handful of species. The vast majority of chloroplast transformation experiments conducted thus far have relied on a single selectable marker gene, the spectinomycin resistance gene aadA. Although a few alternative markers have been reported, the aadA has remained unrivalled in efficiency and is, therefore, nearly exclusively used. The development of new marker genes for plastid transformation is of crucial importance to all efforts towards extending the species range of the technology as well as to those applications in basic research, biotechnology and synthetic biology that involve the multistep engineering of plastid genomes. Here, we have tested a bifunctional resistance gene for its suitability as a selectable marker for chloroplast transformation. The bacterial enzyme aminoglycoside acetyltransferase(6')-Ie/aminoglycoside phosphotransferase(2″)-Ia possesses an N-terminal acetyltransferase domain and a C-terminal phosphotransferase domain that can act synergistically and detoxify aminoglycoside antibiotics highly efficiently. We report that, in combination with selection for resistance to the aminoglycoside tobramycin, the aac(6')-Ie/aph(2″)-Ia gene represents an efficient marker for plastid transformation in that it produces similar numbers of transplastomic lines as the spectinomycin resistance gene aadA. Importantly, no spontaneous antibiotic resistance mutants appear under tobramycin selection.
Collapse
Affiliation(s)
- Iman Tabatabaei
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Stephanie Ruf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
12
|
Daniell H, Chan HT, Pasoreck EK. Vaccination via Chloroplast Genetics: Affordable Protein Drugs for the Prevention and Treatment of Inherited or Infectious Human Diseases. Annu Rev Genet 2016; 50:595-618. [PMID: 27893966 PMCID: PMC5496655 DOI: 10.1146/annurev-genet-120215-035349] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Plastid-made biopharmaceuticals treat major metabolic or genetic disorders, including Alzheimer's, diabetes, hypertension, hemophilia, and retinopathy. Booster vaccines made in chloroplasts prevent global infectious diseases, such as tuberculosis, malaria, cholera, and polio, and biological threats, such as anthrax and plague. Recent advances in this field include commercial-scale production of human therapeutic proteins in FDA-approved cGMP facilities, development of tags to deliver protein drugs to targeted human cells or tissues, methods to deliver precise doses, and long-term stability of protein drugs at ambient temperature, maintaining their efficacy. Codon optimization utilizing valuable information from sequenced chloroplast genomes enhanced expression of eukaryotic human or viral genes in chloroplasts and offered unique insights into translation in chloroplasts. Support from major biopharmaceutical companies, development of hydroponic production systems, and evaluation by regulatory agencies, including the CDC, FDA, and USDA, augur well for advancing this novel concept to the clinic and revolutionizing affordable healthcare.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Hui-Ting Chan
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Elise K Pasoreck
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
13
|
Muralikrishna N, Srinivas K, Kumar KB, Sadanandam A. Stable plastid transformation in Scoparia dulcis L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2016; 22:575-581. [PMID: 27924130 PMCID: PMC5120043 DOI: 10.1007/s12298-016-0386-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/28/2016] [Accepted: 10/10/2016] [Indexed: 05/16/2023]
Abstract
In the present investigation we report stable plastid transformation in Scoparia dulcis L., a versatile medicinal herb via particle gun method. The vector KNTc, harbouring aadA as a selectable marker and egfp as a reporter gene which were under the control of synthetic promoter pNG1014a, targets inverted repeats, trnR/trnN of the plastid genome. By use of this heterologous vector, recovery of transplastomic lines with suitable selection protocol have been successfully established with overall efficiency of two transgenic lines for 25 bombarded leaf explants. PCR and Southern blot analysis demonstrated stable integration of foreign gene into the target sequences. The results represent a significant advancement of the plastid transformation technology in medicinal plants, which relevantly implements a change over in enhancing and regulating of certain metabolic pathways.
Collapse
Affiliation(s)
| | - Kota Srinivas
- Department of Biotechnology, Kakatiya University, Warangal, 506009 India
| | | | | |
Collapse
|
14
|
Gottschamel J, Lössl A. Chloroplast-Based Expression of Recombinant Proteins by Gateway® Cloning Technology. Methods Mol Biol 2016; 1385:3-27. [PMID: 26614278 DOI: 10.1007/978-1-4939-3289-4_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Plastid transformation for the expression of recombinant proteins and entire enzymatic pathways has become a promising tool for plant biotechnology in the past decade. Several improvements of the technology have turned plant plastids into robust and dependable expression platforms for multiple high value compounds. In this chapter, we describe our current methodology based on Gateway(®) recombinant cloning, which we have adapted for plastid transformation. We describe the steps required for cloning, biolistic transformation, identification, and regeneration of transplastomic plant lines and Western blot analysis.
Collapse
Affiliation(s)
- Johanna Gottschamel
- Department of Crop Sciences, University of Natural Resources and Life Sciences, Konrad Lorenz Str. 24, A - 3430, Tulln a. d. Donau, Austria
| | - Andreas Lössl
- Department of Crop Sciences, University of Natural Resources and Life Sciences, Konrad Lorenz Str. 24, A - 3430, Tulln a. d. Donau, Austria.
| |
Collapse
|
15
|
Jin S, Singh ND, Li L, Zhang X, Daniell H. Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa zea larval development and pupation. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:435-46. [PMID: 25782349 PMCID: PMC4522700 DOI: 10.1111/pbi.12355] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 12/23/2014] [Accepted: 02/03/2015] [Indexed: 05/03/2023]
Abstract
In the past two decades, chloroplast genetic engineering has been advanced to achieve high-level protein accumulation but not for down-regulation of targeted genes. Therefore, in this report, lepidopteran chitin synthase (Chi), cytochrome P450 monooxygenase (P450) and V-ATPase dsRNAs were expressed via the chloroplast genome to study RNA interference (RNAi) of target genes in intended hosts. PCR and Southern blot analysis confirmed homoplasmy and site-specific integration of transgene cassettes into the chloroplast genomes. Northern blots and real-time qRT-PCR confirmed abundant processed and unprocessed dsRNA transcripts (up to 3.45 million copies of P450 dsRNAs/μg total RNA); the abundance of cleaved dsRNA was greater than the endogenous psbA transcript. Feeding of leaves expressing P450, Chi and V-ATPase dsRNA decreased transcription of the targeted gene to almost undetectable levels in the insect midgut, likely after further processing of dsRNA in their gut. Consequently, the net weight of larvae, growth and pupation rates were significantly reduced by chloroplast-derived dsRNAs. Taken together, successful expression of dsRNAs via the chloroplast genome for the first time opens the door to study RNA interference/processing within plastids. Most importantly, dsRNA expressed in chloroplasts can be utilized for gene inactivation to confer desired agronomic traits or for various biomedical applications, including down-regulation of dysfunctional genes in cancer or autoimmune disorders, after oral delivery of dsRNA bioencapsulated within plant cells.
Collapse
Affiliation(s)
- Shuangxia Jin
- Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | | | | | | | | |
Collapse
|
16
|
Zhang J, Khan SA, Hasse C, Ruf S, Heckel DG, Bock R. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science 2015; 347:991-4. [DOI: 10.1126/science.1261680] [Citation(s) in RCA: 291] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Yarbakht M, Jalali-Javaran M, Nikkhah M, Mohebodini M. Dicistronic expression of human proinsulin-protein A fusion in tobacco chloroplast. Biotechnol Appl Biochem 2015; 62:55-63. [PMID: 24716841 DOI: 10.1002/bab.1230] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/01/2014] [Indexed: 11/10/2022]
Abstract
Different expression systems such as bacteria and mammalian cells have been used to produce pharmaceutical proteins. In recent years, the use of plants as bioreactors offers efficient and economical systems in recombinant protein production. Furthermore, because of the large number of plastid copies in plants, chloroplast engineering functions as an effective method to increase recombinant protein expression. Because the commercially available insulin for treatment does not contain C-peptide, which is of great importance for type 1 diabetic patients, the current study introduces the human proinsulin gene fused with protein A into the tobacco chloroplast genome using the biolistic method. To achieve homoplasmy, three rounds of selection and regeneration of transforming cells were performed on the medium that contained spectinomycin antibiotic and hormones. The PCR analysis indicated the presence of the proinsulin gene in transplastomic plants. The reverse-transcription PCR analysis confirmed the expression of the proinsulin-protein A fusion at the transcription level. Immunoblot assays of leaf-derived protein extracts confirmed that the target gene expression is up to 0.2% of the total soluble protein. Our study showed that protein A fusion is not as efficient as other reported fusions. The transplastomic plants were also confirmed for homoplasmy using Southern blot analysis.
Collapse
Affiliation(s)
- Melina Yarbakht
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | | | | | |
Collapse
|
18
|
Bock R. Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:211-41. [PMID: 25494465 DOI: 10.1146/annurev-arplant-050213-040212] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The small bacterial-type genome of the plastid (chloroplast) can be engineered by genetic transformation, generating cells and plants with transgenic plastid genomes, also referred to as transplastomic plants. The transformation process relies on homologous recombination, thereby facilitating the site-specific alteration of endogenous plastid genes as well as the precisely targeted insertion of foreign genes into the plastid DNA. The technology has been used extensively to analyze chloroplast gene functions and study plastid gene expression at all levels in vivo. Over the years, a large toolbox has been assembled that is now nearly comparable to the techniques available for plant nuclear transformation and that has enabled new applications of transplastomic technology in basic and applied research. This review describes the state of the art in engineering the plastid genomes of algae and land plants (Embryophyta). It provides an overview of the existing tools for plastid genome engineering, discusses current technological limitations, and highlights selected applications that demonstrate the immense potential of chloroplast transformation in several key areas of plant biotechnology.
Collapse
Affiliation(s)
- Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany;
| |
Collapse
|
19
|
Ruhlman TA, Rajasekaran K, Cary JW. Expression of chloroperoxidase from Pseudomonas pyrrocinia in tobacco plastids for fungal resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:98-106. [PMID: 25438790 DOI: 10.1016/j.plantsci.2014.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/31/2014] [Accepted: 02/19/2014] [Indexed: 06/04/2023]
Abstract
The chloroperoxidase (cpo) gene from Pseudomonas pyrrocinia was transformed into the plastid genome (plastome) of Nicotiana tabacum var. Petit Havana and transplastomic lines were compared with a nuclear transformant for the same gene. Southern analysis confirmed integration in the plastome and western blotting confirmed the presence of the chloroperoxidase protein (CPO) in higher abundance in transplastomic plants than in cpo nuclear transformants. Northern analysis of primary plastome transformants for cpo showed 15-fold higher transcript abundance than in the nuclear transformant, yet this extent of enhancement was not observed in western blot, enzyme or bioassay, indicating a bottleneck at the post-transcriptional level. Representative plants from the two transplastomic lines showed resistance to fungal pathogens in vitro (Aspergillus flavus, Fusarium verticillioides, and Verticillium dahliae) and in planta (Alternaria alternata).
Collapse
Affiliation(s)
- Tracey A Ruhlman
- USDA, ARS, Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124-4305, United States.
| | - Kanniah Rajasekaran
- USDA, ARS, Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124-4305, United States.
| | - Jeffrey W Cary
- USDA, ARS, Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124-4305, United States.
| |
Collapse
|
20
|
Low frequency paternal transmission of plastid genes in Brassicaceae. Transgenic Res 2014; 24:267-77. [PMID: 25343875 DOI: 10.1007/s11248-014-9842-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 10/14/2014] [Indexed: 11/25/2022]
Abstract
Plastid-encoded genes are maternally inherited in most plant species. Transgenes located on the plastid genome are thus within a natural confinement system, preventing their distribution via pollen. However, a low-frequency leakage of plastids via pollen seems to be universal in plants. Here we report that a very low-level paternal inheritance in Arabidopsis thaliana occurs under field conditions. As pollen donor an Arabidopsis accession (Ler-Ely) was used, which carried a plastid-localized atrazine resistance due to a point mutation in the psbA gene. The frequency of pollen transmission into F1 plants, based on their ability to express the atrazine resistance was 1.9 × 10(-5). We extended our analysis to another cruciferous species, the world-wide cultivated crop Brassica napus. First, we isolated a fertile and stable plastid transformant (T36) in a commercial cultivar of B. napus (cv Drakkar). In T36 the aadA and the bar genes were integrated in the inverted repeat region of the B. napus plastid DNA following particle bombardment of hypocotyl segments. Southern blot analysis confirmed transgene integration and homoplasmy of plastid DNA. Line T36 expressed Basta resistance from the inserted bar gene and this trait was used to estimate the frequency of pollen transmission into F1 plants. A frequency of <2.6 × 10(-5) was determined in the greenhouse. Taken together, our data show a very low rate of paternal plastid transmission in Brassicacea. Moreover, the establishment of plastid transformation in B. napus facilitates a safe use of this important crop plant for plant biotechnology.
Collapse
|
21
|
Wu CS, Chen DY, Chang CF, Li MJ, Hung KY, Chen LJ, Chen PW. The promoter and the 5'-untranslated region of rice metallothionein OsMT2b gene are capable of directing high-level gene expression in germinated rice embryos. PLANT CELL REPORTS 2014; 33:793-806. [PMID: 24381099 DOI: 10.1007/s00299-013-1555-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/18/2013] [Indexed: 06/03/2023]
Abstract
Critical regions within the rice metallothionein OsMT2b gene promoter are identified and the 5'-untranslated region (5'-UTR) is found essential for the high-level promoter activity in germinated transgenic rice embryos. Many metallothionein (MT) genes are highly expressed in plant tissues. A rice subfamily p2 (type 2) MT gene, OsMT2b, has been shown previously to exhibit the most abundant gene expression in young rice seedling. In the present study, transient expression assays and a transgenic approach were employed to characterize the expression of the OsMT2b gene in rice. We found that the OsMT2b gene is strongly and differentially expressed in germinated rice embryos during seed germination and seedling development. Histochemical staining analysis of transgenic rice carrying OsMT2b::GUS chimeric gene showed that high-level GUS activity was detected in germinated embryos and at the meristematic part of other tissues during germination. Deletion analysis of the OsMT2b promoter revealed that the 5'-flanking region of the OsMT2b between nucleotides -351 and -121 relative to the transcriptional initiation site is important for promoter activity in rice embryos, and this region contains the consensus sequences of G box and TA box. Our study demonstrates that the 5'-untranslated region (5'-UTR) of OsMT2b gene is not only necessary for the OsMT2b promoter activity, but also sufficient to augment the activity of a minimal promoter in both transformed cell cultures and germinated transgenic embryos in rice. We also found that addition of the maize Ubi intron 1 significantly enhanced the OsMT2b promoter activity in rice embryos. Our studies reveal that OsMT2b351-ubi(In) promoter can be applied in plant transformation and represents potential for driving high-level production of foreign proteins in transgenic rice.
Collapse
Affiliation(s)
- Chung-Shen Wu
- Department of Bioagricultural Science, National Chiayi University, Chiayi, 60004, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The interest in producing pharmaceutical proteins in a nontoxic plant host has led to the development of an approach to express such proteins in transplastomic lettuce (Lactuca sativa L.). A number of therapeutic proteins and vaccine antigen candidates have been stably integrated into the lettuce plastid genome using biolistic DNA delivery. High levels of accumulation and retention of biological activity suggest that lettuce may provide an ideal platform for the production of biopharmaceuticals.
Collapse
Affiliation(s)
- Tracey A Ruhlman
- Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
23
|
Abstract
Overall translational machinery in plastids is similar to that of E. coli. Initiation is the crucial step for translation and this step in plastids is somewhat different from that of E. coli. Unlike the Shine-Dalgarno sequence in E. coli, cis-elements for translation initiation are not well conserved in plastid mRNAs. Specific trans-acting factors are generally required for translation initiation and its regulation in plastids. During translation elongation, ribosomes pause sometimes on photosynthesis-related mRNAs due probably to proper insertion of nascent polypeptides into membrane complexes. Codon usage of plastid mRNAs is different from that of E. coli and mammalian cells. Plastid mRNAs do not have the so-called rare codons. Translation efficiencies of several synonymous codons are not always correlated with codon usage in plastid mRNAs.
Collapse
|
24
|
Abstract
Stable plastid transformation in Nicotiana tabacum has been achieved by using two different methods, the biolistic method, using a particle gun, and the polyethylene glycol (PEG)-mediated transformation. PEG-mediated plastid transformation involves the treatment of isolated protoplasts (plant cells without cell wall) with PEG in the presence of DNA. We have previously shown that in Nicotiana tabacum both methods are equally efficient. The PEG-mediated transformation efficiencies range between 20 and 50 plastid transformants per experiment (10(6) viable treated protoplasts). One advantage of the PEG method is that no expensive equipment such as a particle gun is required. The only crucial points are the handling and the cultivation of protoplasts. Furthermore, markers for the selection of transformed chloroplasts are required. One of the most often used selection markers is the aadA gene which encodes for spectinomycin and streptomycin resistance. Here we describe a simplified and inexpensive protocol for the transformation of chloroplasts in Nicotiana tabacum using an optimized protoplast culture protocol.
Collapse
Affiliation(s)
- Areli Herrera Díaz
- Department of Biology I - Botany, Ludwig-Maximilians-University of Munich, Planegg-Martinsried, Germany
| | | |
Collapse
|
25
|
Gottschamel J, Waheed MT, Clarke JL, Lössl AG. A novel chloroplast transformation vector compatible with the Gateway(®) recombination cloning technology. Transgenic Res 2013; 22:1273-8. [PMID: 23813058 DOI: 10.1007/s11248-013-9726-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/13/2013] [Indexed: 12/24/2022]
Abstract
To analyze the suitability of Gateway(®) vectors for transformation of chloroplasts, we converted a standard plastid transformation vector into a Gateway(®) destination vector containing the necessary recombination sites attR1 and attR2. Insertion of the green fluorescent protein (GFP) coding sequence with associated T7g10 ribosome binding site into this destination vector created the expression vector for transformation of tobacco chloroplasts with the biolistic method. Correct integration of the transgene into the plastid genome was verified by PCR and the homoplasmic nature of the transformed plants was confirmed by Southern Blot analysis. Expression of the GFP reporter protein was monitored by confocal laser scanning microscopy (CLSM) and quantification by western blot analysis showed a GFP accumulation level of 3% total soluble protein (TSP). The presented results clearly demonstrate that the Gateway(®) recombination sites are compatible with all steps of plastid transformation, from generation of transplastomic plants to expression of GFP. This is the first report of a plastid transformation vector made by the Gateway(®) recombinant cloning technology, which proves the suitability of this system for use in chloroplasts.
Collapse
Affiliation(s)
- Johanna Gottschamel
- Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Street 24, 3430, Tulln, Austria
| | | | | | | |
Collapse
|
26
|
Sanz-Barrio R, Corral-Martinez P, Ancin M, Segui-Simarro JM, Farran I. Overexpression of plastidial thioredoxin f leads to enhanced starch accumulation in tobacco leaves. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:618-27. [PMID: 23398733 DOI: 10.1111/pbi.12052] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/10/2013] [Accepted: 01/12/2013] [Indexed: 05/08/2023]
Abstract
Starch, the most abundant storage carbohydrate in plants, has been a major feedstock for first-generation biofuels. Growing fuel demands require, however, that the starch yields of energy crops be improved. Leaf starch is synthesised during the day and degraded at night to power nonphotosynthetic metabolism. Redox regulation has been associated with the coordination of the enzymes involved in starch metabolism, but neither the signals nor mechanisms that regulate this metabolism are entirely clear. In this work, the thioredoxin (Trx) f and m genes, which code for key enzymes in plastid redox regulation, were overexpressed from the plastid genome. Tobacco plants overexpressing Trx f, but not Trx m, showed an increase of up to 700% in leaf starch accumulation, accompanied by an increase in leaf sugars, specific leaf weight (SLW), and leaf biomass yield. To test the potential of these plants as a nonfood energy crop, tobacco leaves overexpressing Trx f were subjected to enzymatic hydrolysis, and around a 500% increase in the release of fermentable sugars was recorded. The results show that Trx f is a more effective regulator of photosynthetic carbon metabolism in planta than Trx m. The overexpression of Trx f might therefore provide a means of increasing the carbohydrate content of plants destined for use in biofuel production. It might also provide a means of improving the nutritional properties of staple food crops.
Collapse
Affiliation(s)
- Ruth Sanz-Barrio
- Instituto de Agrobiotecnología-IdAB, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Pamplona, Spain
| | | | | | | | | |
Collapse
|
27
|
Fan Q, He JF, Wang QR, Cai HB, Sun XG, Zhou XX, Qin HD, Shugart YY, Jia WH. Functional polymorphism in the 5'-UTR of CR2 is associated with susceptibility to nasopharyngeal carcinoma. Oncol Rep 2013; 30:11-6. [PMID: 23612877 PMCID: PMC3729234 DOI: 10.3892/or.2013.2421] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/18/2013] [Indexed: 12/27/2022] Open
Abstract
Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC) is a squamous cell cancer endemic in Southern China and Southeast Asia. It has been shown that inflammatory and immune responses during EBV infection contribute to the development of NPC. The complement receptor 2 (CR2) gene plays central roles during inflammatory and immune responses and, therefore, is a good candidate susceptibility gene for NPC. We performed PCR-based sequencing to identify multiple single-nucleotide polymorphisms (SNPs) within the exon regions of the CR2 gene in a Cantonese population. Two SNPs were screened in 528 NPC patients and 408 normal individuals to perform a case-control study matched according to age, gender and residence. Furthermore, we cloned the entire 5′-UTR and entire CR2 promoter into a luciferase report system and compared the luciferase activities between the different allelic constructs. A SNP in the 5′-UTR of CR2 (24 T/C, rs3813946) showed a significant association (P<0.01) with NPC in the Cantonese population studied. The subjects were categorized into 2 age groups: group 1, age ≤45 years and group 2, age >45 years. In group 1, the allelic frequencies of 24 T/C in the patients were significantly different from those of the controls (P=0.0034). The odds ratio (OR=1.81) also indicated a higher risk of NPC in individuals who carried the minor allele C. All constructs exerted allelic differences on luciferase activities, but only the susceptible allele +24C construct showed increased activity. Our findings implicate CR2 as a susceptibility gene for NPC and suggest that enhanced CR2 expression may be involved in the oncogenesis and development of NPC.
Collapse
Affiliation(s)
- Qin Fan
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Assessment of Chloroplast Expression Factors in Escherichia coli. Jundishapur J Microbiol 2013. [DOI: 10.5812/jjm.4704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
29
|
Ortega JL, Wilson OL, Sengupta-Gopalan C. The 5' untranslated region of the soybean cytosolic glutamine synthetase β(1) gene contains prokaryotic translation initiation signals and acts as a translational enhancer in plants. Mol Genet Genomics 2012; 287:881-93. [PMID: 23080263 PMCID: PMC3881598 DOI: 10.1007/s00438-012-0724-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 10/04/2012] [Indexed: 01/03/2023]
Abstract
Glutamine synthetase (GS) catalyzes the synthesis of glutamine from glutamate and ammonia. In plants, it occurs as two major isoforms, a cytosolic form (GS(1)) and a nuclear encoded chloroplastic form. The focus of this paper is to determine the role of the 5'UTR of a GS(1) gene. GS(1) gene constructs with and without its 5' and 3' UTRs, driven by a constitutive promoter, were agroinfiltrated into tobacco leaves and the tissues were analyzed for both transgene transcript and protein accumulation. The constructs were also tested in an in vitro transcription/translation system and in Escherichia coli. Our results showed that while the 3'UTR functioned in the destabilization of the transcript, the 5'UTR acted as a translation enhancer in plant cells but not in the in vitro translation system. The 5'UTR of the GS(1) gene when placed in front of a reporter gene (uidA), showed a 20-fold increase in the level of GUS expression in agroinfiltrated leaves when compared to the same gene construct without the 5'UTR. The 5'UTR-mediated translational enhancement is probably another step in the regulation of GS in plants. The presence of the GS(1) 5'UTR in front of the GS(1) coding region allowed for its translation in E. coli suggesting the commonality of the translation initiation mechanism for this gene between plants and bacteria.
Collapse
Affiliation(s)
- Jose Luis Ortega
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| | - Olivia L. Wilson
- Molecular Biology Graduate Program, New Mexico State University, Las Cruces, NM 88003, USA
| | - Champa Sengupta-Gopalan
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA,
| |
Collapse
|
30
|
Extreme conservation of the psaA/psaB intercistronic spacer reveals a translational motif coincident with the evolution of land plants. J Mol Evol 2012. [PMID: 23192453 DOI: 10.1007/s00239-012-9526-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Although chloroplast transcriptional and translational mechanisms were derived originally from prokaryote endosymbionts, chloroplasts retain comparatively few genes as a consequence of the overall transfer to the nucleus of functions associated formerly with prokaryotic genomes. Various modifications reflect other evolutionary shifts toward eukaryotic regulation such as posttranscriptional transcript cleavage with individually processed cistrons in operons and gene expression regulated by nuclear-encoded sigma factors. We report a notable exception for the psaA-psaB-rps14 operon of land plant (embryophyte) chloroplasts, where the first two cistrons are separated by a spacer region to which no significant role had been attributed. We infer an important function of this region, as indicated by the conservation of identical, structurally significant sequences across embryophytes and their ancestral protist lineages, which diverged some 0.5 billion years ago. The psaA/psaB spacers of embryophytes and their progenitors exhibit few sequence and length variants, with most modeled transcripts resolving the same secondary structure: a loop with projecting Shine-Dalgarno site and well-defined stem that interacts with adjacent coding regions to sequester the psaB start codon. Although many functions of the original endosymbiont have been usurped by nuclear genes or interactions, conserved functional elements of embryophyte psaA/psaB spacers provide compelling evidence that translation of psaB is regulated here by a cis-acting mechanism comparable to those common in prokaryotes. Modeled transcripts also indicate that spacer variants in some plants (e.g., aquatic genus Najas) potentially reflect ecological adaptations to facilitate temperature-regulated translation of psaB.
Collapse
|
31
|
De Marchis F, Pompa A, Bellucci M. Plastid proteostasis and heterologous protein accumulation in transplastomic plants. PLANT PHYSIOLOGY 2012; 160:571-81. [PMID: 22872774 PMCID: PMC3461539 DOI: 10.1104/pp.112.203778] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
|
32
|
Inka Borchers AM, Gonzalez-Rabade N, Gray JC. Increased accumulation and stability of rotavirus VP6 protein in tobacco chloroplasts following changes to the 5' untranslated region and the 5' end of the coding region. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:422-34. [PMID: 22257338 DOI: 10.1111/j.1467-7652.2011.00675.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Rotavirus is the main cause of gastroenteritis in children worldwide, and the World Health Organisation has recommended that a rotavirus vaccine should be included in all infant immunization programmes. VP6 is the most immunogenic rotavirus subunit and is a potential target for an oral subunit vaccine. VP6 accumulated at up to 3% of total soluble protein in the young leaves of transplastomic tobacco plants, but the protein was unstable and was lost as the leaves aged. The aim of this study was to alter the 5'-untranslated region (5'-UTR) and the 5' end of the coding region of VP6 cDNA in an attempt to increase the expression and stability of VP6 protein in tobacco chloroplasts. The inclusion of the 5'-UTR from gene 10 of bacteriophage T7 (T7g10) and the addition of 15 nucleotides, encoding five additional amino acid residues, at the 5' end of the coding region increased the expression to >15% of total leaf protein and stabilized the protein in ageing leaves. Plants containing VP6 expression constructs with the rbcL 5'-UTR and with the native VP6 5' end of the coding region produced VP6 protein at only 1.9% of total leaf protein. Both the T7g10 5'-UTR and the additional 15 nucleotides increased transcript accumulation and translational efficiency compared with VP6 constructs containing the rbcL 5'-UTR. The VP6 protein produced from all gene constructs appeared to be susceptible to proteolytic processing at its N-terminal region. However, in all transplastomic lines, VP6 proteins assembled into the trimeric form found in the rotavirus capsid.
Collapse
Affiliation(s)
- A-M Inka Borchers
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
33
|
|
34
|
Light-dependent attenuation of phycoerythrin gene expression reveals convergent evolution of green light sensing in cyanobacteria. Proc Natl Acad Sci U S A 2011; 108:18542-7. [PMID: 22042852 DOI: 10.1073/pnas.1107427108] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The colorful process of chromatic acclimation allows many cyanobacteria to change their pigmentation in response to ambient light color changes. In red light, cells produce red-absorbing phycocyanin (PC), whereas in green light, green-absorbing phycoerythrin (PE) is made. Controlling these pigment levels increases fitness by optimizing photosynthetic activity in different light color environments. The light color sensory system controlling PC expression is well understood, but PE regulation has not been resolved. In the filamentous cyanobacterium Fremyella diplosiphon UTEX 481, two systems control PE synthesis in response to light color. The first is the Rca pathway, a two-component system controlled by a phytochrome-class photoreceptor, which transcriptionally represses cpeCDESTR (cpeC) expression during growth in red light. The second is the Cgi pathway, which has not been characterized. We determined that the Cgi system also regulates PE synthesis by repressing cpeC expression in red light, but acts posttranscriptionally, requiring the region upstream of the CpeC translation start codon. cpeC RNA stability was comparable in F. diplosiphon cells grown in red and green light, and a short transcript that included the 5' region of cpeC was detected, suggesting that the Cgi system operates by transcription attenuation. The roles of four predicted stem-loop structures within the 5' region of cpeC RNA were analyzed. The putative stem-loop 31 nucleotides upstream of the translation start site was required for Cgi system function. Thus, the Cgi system appears to be a unique type of signal transduction pathway in which the attenuation of cpeC transcription is regulated by light color.
Collapse
|
35
|
Fleischmann TT, Scharff LB, Alkatib S, Hasdorf S, Schöttler MA, Bock R. Nonessential plastid-encoded ribosomal proteins in tobacco: a developmental role for plastid translation and implications for reductive genome evolution. THE PLANT CELL 2011; 23:3137-55. [PMID: 21934145 PMCID: PMC3203423 DOI: 10.1105/tpc.111.088906] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/18/2011] [Accepted: 09/03/2011] [Indexed: 05/20/2023]
Abstract
Plastid genomes of higher plants contain a conserved set of ribosomal protein genes. Although plastid translational activity is essential for cell survival in tobacco (Nicotiana tabacum), individual plastid ribosomal proteins can be nonessential. Candidates for nonessential plastid ribosomal proteins are ribosomal proteins identified as nonessential in bacteria and those whose genes were lost from the highly reduced plastid genomes of nonphotosynthetic plastid-bearing lineages (parasitic plants, apicomplexan protozoa). Here we report the reverse genetic analysis of seven plastid-encoded ribosomal proteins that meet these criteria. We have introduced knockout alleles for the corresponding genes into the tobacco plastid genome. Five of the targeted genes (ribosomal protein of the large subunit22 [rpl22], rpl23, rpl32, ribosomal protein of the small subunit3 [rps3], and rps16) were shown to be essential even under heterotrophic conditions, despite their loss in at least some parasitic plastid-bearing lineages. This suggests that nonphotosynthetic plastids show elevated rates of gene transfer to the nuclear genome. Knockout of two ribosomal protein genes, rps15 and rpl36, yielded homoplasmic transplastomic mutants, thus indicating nonessentiality. Whereas Δrps15 plants showed only a mild phenotype, Δrpl36 plants were severely impaired in photosynthesis and growth and, moreover, displayed greatly altered leaf morphology. This finding provides strong genetic evidence that chloroplast translational activity influences leaf development, presumably via a retrograde signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
36
|
Michelet L, Lefebvre-Legendre L, Burr SE, Rochaix JD, Goldschmidt-Clermont M. Enhanced chloroplast transgene expression in a nuclear mutant of Chlamydomonas. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:565-74. [PMID: 20809927 DOI: 10.1111/j.1467-7652.2010.00564.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chloroplast transformation in microalgae offers great promise for the production of proteins of pharmaceutical interest or for the development of novel biofuels. For many applications, high level expression of transgenes is desirable. We have transformed the chloroplast of Chlamydomonas reinhardtii with two genes, acrV and vapA, which encode antigens from the fish pathogen Aeromonas salmonicida. The promoters and 5' untranslated regions of four chloroplast genes were compared for their ability to drive expression of the bacterial genes. The highest levels of expression were obtained when they were placed under the control of the cis-acting elements from the psaA-exon1 gene. The expression of these chimeric genes was further increased when a nuclear mutation that affects a factor involved in psaA splicing was introduced in the genetic background of the chloroplast transformants. Accumulation of both the chimeric mRNAs and the recombinant proteins was dramatically increased, indicating that negative feedback loops limit the expression of chloroplast transgenes. Our results demonstrate the potential of manipulating anterograde signalling to alter negative regulatory feedback loops in the chloroplast and improve transgene expression.
Collapse
Affiliation(s)
- Laure Michelet
- Department of Plant Biology, University of Geneva, Genève, Switzerland
| | | | | | | | | |
Collapse
|
37
|
Gao L, Zhou Y, Wang ZW, Su YJ, Wang T. Evolution of the rpoB-psbZ region in fern plastid genomes: notable structural rearrangements and highly variable intergenic spacers. BMC PLANT BIOLOGY 2011; 11:64. [PMID: 21486489 PMCID: PMC3098776 DOI: 10.1186/1471-2229-11-64] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 04/13/2011] [Indexed: 05/12/2023]
Abstract
BACKGROUND The rpoB-psbZ (BZ) region of some fern plastid genomes (plastomes) has been noted to go through considerable genomic changes. Unraveling its evolutionary dynamics across all fern lineages will lead to clarify the fundamental process shaping fern plastome structure and organization. RESULTS A total of 24 fern BZ sequences were investigated with taxon sampling covering all the extant fern orders. We found that: (i) a tree fern Plagiogyria japonica contained a novel gene order that can be generated from either the ancestral Angiopteris type or the derived Adiantum type via a single inversion; (ii) the trnY-trnE intergenic spacer (IGS) of the filmy fern Vandenboschia radicans was expanded 3-fold due to the tandem 27-bp repeats which showed strong sequence similarity with the anticodon domain of trnY; (iii) the trnY-trnE IGSs of two horsetail ferns Equisetum ramosissimum and E. arvense underwent an unprecedented 5-kb long expansion, more than a quarter of which was consisted of a single type of direct repeats also relevant to the trnY anticodon domain; and (iv) ycf66 has independently lost at least four times in ferns. CONCLUSIONS Our results provided fresh insights into the evolutionary process of fern BZ regions. The intermediate BZ gene order was not detected, supporting that the Adiantum type was generated by two inversions occurring in pairs. The occurrence of Vandenboschia 27-bp repeats represents the first evidence of partial tRNA gene duplication in fern plastomes. Repeats potentially forming a stem-loop structure play major roles in the expansion of the trnY-trnE IGS.
Collapse
Affiliation(s)
- Lei Gao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yuan Zhou
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zhi-Wei Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Ying-Juan Su
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ting Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
38
|
Jacobs J, Kück U. Function of chloroplast RNA-binding proteins. Cell Mol Life Sci 2011; 68:735-48. [PMID: 20848156 PMCID: PMC11115000 DOI: 10.1007/s00018-010-0523-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/25/2010] [Accepted: 08/30/2010] [Indexed: 12/18/2022]
Abstract
Chloroplasts are eukaryotic organelles which represent evolutionary chimera with proteins that have been derived from either a prokaryotic endosymbiont or a eukaryotic host. Chloroplast gene expression starts with transcription of RNA and is followed by multiple post-transcriptional processes which are mediated mainly by an as yet unknown number of RNA-binding proteins. Here, we review the literature to date on the structure and function of these chloroplast RNA-binding proteins. For example, the functional protein domains involved in RNA binding, such as the RNA-recognition motifs, the chloroplast RNA-splicing and ribosome maturation domains, and the pentatricopeptide-repeat motifs, are summarized. We also describe biochemical and forward genetic approaches that led to the identification of proteins modifying RNA stability or carrying out RNA splicing or editing. Such data will greatly contribute to a better understanding of the biogenesis of a unique organelle found in all photosynthetic organisms.
Collapse
Affiliation(s)
- Jessica Jacobs
- Department for General and Molecular Biology, Ruhr-University Bochum, Universitätsstraße 150, Bochum, Germany.
| | | |
Collapse
|
39
|
Liu WX, Liu HL, Chai ZJ, Xu XP, Song YR, Qu LQ. Evaluation of seed storage-protein gene 5' untranslated regions in enhancing gene expression in transgenic rice seed. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:1267-74. [PMID: 20563548 DOI: 10.1007/s00122-010-1386-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 06/03/2010] [Indexed: 05/10/2023]
Abstract
5' untranslated regions (UTRs) are important sequence elements that modulate the expression of genes. Using the β-glucuronidase (GUS) reporter gene driven by the GluC promoter for the rice-seed storage-protein glutelin, we evaluated the potential of the 5'-UTRs of six seed storage-protein genes in enhancing the expression levels of the foreign gene in stable transgenic rice lines. All of the 5'-UTRs significantly enhanced the expression level of the GluC promoter without altering its expression pattern. The 5'-UTRs of Glb-1 and GluA-1 increased the expression of GUS by about 3.36- and 3.11-fold, respectively. The two 5'-UTRs downstream of the Glb-1, OsAct2 and CMV35S promoters also increased GUS expression level in stable transgenic rice lines or in transient expression protoplasts. Therefore, the enhancements were independent of the promoter sequence. Real-time quantitative RT-PCR analysis showed that the increase in protein production was not accompanied by alteration in mRNA levels, which suggests that the enhancements were due to increasing the translational efficiencies of the mRNA. The 5'-UTRs of Glb-1 and GluA-1, when combined with strong promoters, might be ideal candidates for high production of recombinant proteins in rice seeds.
Collapse
Affiliation(s)
- Wen Xian Liu
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Advances in chloroplast engineering. J Genet Genomics 2009; 36:387-98. [PMID: 19631913 DOI: 10.1016/s1673-8527(08)60128-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 04/30/2009] [Accepted: 05/04/2009] [Indexed: 11/21/2022]
Abstract
The chloroplast is a pivotal organelle in plant cells and eukaryotic algae to carry out photosynthesis, which provides the primary source of the world's food. The expression of foreign genes in chloroplasts offers several advantages over their expression in the nucleus: high-level expression, transgene stacking in operons and a lack of epigenetic interference allowing stable transgene expression. In addition, transgenic chloroplasts are generally not transmitted through pollen grains because of the cytoplasmic localization. In the past two decades, great progress in chloroplast engineering has been made. In this paper, we review and highlight recent studies of chloroplast engineering, including chloroplast transformation procedures, controlled expression of plastid transgenes in plants, the expression of foreign genes for improvement of plant traits, the production of biopharmaceuticals, metabolic pathway engineering in plants, plastid transformation to study RNA editing, and marker gene excision system.
Collapse
|
42
|
Keene FR, Smith JA, Collins JG. Metal complexes as structure-selective binding agents for nucleic acids. Coord Chem Rev 2009. [DOI: 10.1016/j.ccr.2009.01.004] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Ziegelhoffer T, Raasch JA, Austin-Phillips S. Expression of Acidothermus cellulolyticus E1 endo-beta-1,4-glucanase catalytic domain in transplastomic tobacco. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:527-36. [PMID: 19500296 DOI: 10.1111/j.1467-7652.2009.00421.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As part of an effort to develop transgenic plants as a system for the production of lignocellulose-degrading enzymes, we evaluated the production of the endo-beta-1,4-glucanase E1 catalytic domain (E1cd) of Acidothermus cellulolyticus in transplastomic tobacco. In an attempt to increase the translation efficiency of the E1cd cassette, various lengths of the N-terminus of the psbA gene product were fused to the E1cd protein. The psbA gene of the plastid genome encodes the D1 polypeptide of photosystem II and is known to encode an efficiently translated mRNA. Experiments in an Escherichia coli expression system indicated that the fusion of short (10-22 amino acid) segments of D1 to E1cd resulted in modest increases in E1cd abundance and were compatible with E1cd activity. Plastid expression cassettes encoding unmodified E1cd and a 10-amino-acid D1 fusion (10nE1cd) were used to generate transplastomic tobacco plants. Expression of the E1cd open reading frame in transplastomic tobacco resulted in very low levels of the enzyme. The transplastomic plants accumulated a high level of E1cd mRNA, however, indicating that post-transcriptional processes were probably limiting the production of recombinant protein. The accumulation of 10nE1cd in transplastomic tobacco was approximately 200-fold higher than that of unmodified E1cd, yielding 10nE1cd in excess of 12% of total soluble protein in the extracts of the lower leaves. Most importantly, the active recombinant enzyme was recovered very easily and efficiently from dried plant material and constituted as much as 0.3% of the dry weight of leaf tissue.
Collapse
Affiliation(s)
- Thomas Ziegelhoffer
- Biotechnology Center, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706, USA.
| | | | | |
Collapse
|
44
|
Soria-Guerra RE, Alpuche-Solís AG, Rosales-Mendoza S, Moreno-Fierros L, Bendik EM, Martínez-González L, Korban SS. Expression of a multi-epitope DPT fusion protein in transplastomic tobacco plants retains both antigenicity and immunogenicity of all three components of the functional oligomer. PLANTA 2009; 229:1293-302. [PMID: 19306020 PMCID: PMC7087907 DOI: 10.1007/s00425-009-0918-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 03/04/2009] [Indexed: 05/08/2023]
Abstract
Expression of genes in plant chloroplasts provides an opportunity for enhanced production of target proteins. We report the introduction and expression of a fusion DPT protein containing immunoprotective exotoxin epitopes of Corynebacterium diphtheriae, Bordetella pertussis, and Clostridium tetani in tobacco chloroplasts. Using biolistic-mediated transformation, a plant-optimized synthetic DPT gene was successfully transferred to tobacco plastomes. Putative transplastomic T0 plants were identified by PCR, and Southern blot analysis confirmed homoplasmy in T1 progeny. ELISA assays demonstrated that the DPT protein retained antigenicity of the three components of the fusion protein. The highest level of expression in these transplastomic plants reached 0.8% of total soluble protein. To assess whether the functional recombinant protein expressed in tobacco plants would induce specific antibodies in test animals, a mice feeding experiment was conducted. For mice orally immunized with freeze-dried transplastomic leaves, production of IgG and IgA antibodies specific to each toxin were detected in serum and mucosal tissues.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/analysis
- Antibodies, Bacterial/blood
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Blotting, Southern
- Blotting, Western
- Chloroplasts/genetics
- Chloroplasts/immunology
- Chloroplasts/metabolism
- Diphtheria Toxin/genetics
- Diphtheria Toxin/immunology
- Diphtheria Toxin/metabolism
- Enzyme-Linked Immunosorbent Assay
- Epitopes/genetics
- Epitopes/immunology
- Epitopes/metabolism
- Gene Expression
- Genetic Vectors/genetics
- Immunization/methods
- Intestines/immunology
- Male
- Mice
- Mice, Inbred BALB C
- Pertussis Toxin/genetics
- Pertussis Toxin/immunology
- Pertussis Toxin/metabolism
- Plant Leaves/genetics
- Plant Leaves/immunology
- Plant Leaves/metabolism
- Plants, Genetically Modified
- Polymerase Chain Reaction
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- Tetanus Toxin/genetics
- Tetanus Toxin/immunology
- Tetanus Toxin/metabolism
- Nicotiana/genetics
- Nicotiana/immunology
- Nicotiana/metabolism
Collapse
Affiliation(s)
- Ruth Elena Soria-Guerra
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61821 USA
| | - Angel G. Alpuche-Solís
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, 78216 San Luis Potosí, Mexico
| | - Sergio Rosales-Mendoza
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61821 USA
| | - Leticia Moreno-Fierros
- Inmunidad en Mucosas, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, 54090 Tlalnepantla, Mexico
| | - Elise M. Bendik
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61821 USA
| | - Luzmila Martínez-González
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, 78216 San Luis Potosí, Mexico
| | - Schuyler S. Korban
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61821 USA
- University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| |
Collapse
|
45
|
del Campo EM. Post-transcriptional control of chloroplast gene expression. GENE REGULATION AND SYSTEMS BIOLOGY 2009; 3:31-47. [PMID: 19838333 PMCID: PMC2758277 DOI: 10.4137/grsb.s2080] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chloroplasts contain their own genome, organized as operons, which are generally transcribed as polycistronic transcriptional units. These primary transcripts are processed into smaller RNAs, which are further modified to produce functional RNAs. The RNA processing mechanisms remain largely unknown and represent an important step in the control of chloroplast gene expression. Such mechanisms include RNA cleavage of pre-existing RNAs, RNA stabilization, intron splicing, and RNA editing. Recently, several nuclear-encoded proteins that participate in diverse plastid RNA processing events have been characterised. Many of them seem to belong to the pentatricopeptide repeat (PPR) protein family that is implicated in many crucial functions including organelle biogenesis and plant development. This review will provide an overview of current knowledge of the post-transcriptional processing in chloroplasts.
Collapse
Affiliation(s)
- Eva M del Campo
- Department of Plant Biology, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain.
| |
Collapse
|
46
|
Abstract
Myopia, or nearsightedness, is the most common human eye disorder in the world, and is a significant global public health concern. Along with cataract, macular degeneration, infectious disease, and vitamin A deficiency, myopia is one of the most important causes of visual impairment worldwide. Severe or high-grade myopia is a leading cause of blindness because of its associated ocular morbidities of retinal detachment, macular choroidal degeneration, premature cataract, and glaucoma. Ample evidence documents the heritability of the non-syndromic forms of this condition, especially for high-grade myopia, commonly referred to as myopic spherical refractive power of 5 to 6 diopters or higher. Multiple high-grade myopia genetic loci have been identified, and confirmatory studies identifying high-grade and moderate myopia loci have also occurred. In general, myopia susceptibility genes are unknown with few association studies performed, and without confirmation in other research laboratories or testing of separate patient cohorts.
Collapse
Affiliation(s)
- Terri L Young
- Department of Ophthalmology and Pediatrics, The Duke Eye Center and the Center for Human Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|
47
|
Rosales-Mendoza S, Alpuche-Solís AG, Soria-Guerra RE, Moreno-Fierros L, Martínez-González L, Herrera-Díaz A, Korban SS. Expression of an Escherichia coli antigenic fusion protein comprising the heat labile toxin B subunit and the heat stable toxin, and its assembly as a functional oligomer in transplastomic tobacco plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:45-54. [PMID: 18764920 DOI: 10.1111/j.1365-313x.2008.03666.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) strains are important pathogens in developing countries. Some vaccine formulations containing the heat labile toxin B subunit (LTB) have been used in clinical trials; however, the induction of neutralizing antibodies against the heat-stable toxin (ST), a poor immunogenic peptide, is necessary, as most ETEC strains can produce both toxins. In this study, a plant optimized synthetic gene encoding for the LTB-ST fusion protein has been introduced into plastids of tobacco leaf tissues, using biolistic microprojectile bombardment, in an effort to develop a single plant-based candidate vaccine against both toxins. Transplastomic tobacco plants carrying the LTB-ST transgene have been recovered. Transgene insertion into the plastid was confirmed by both PCR and Southern blot analysis. GM1-ELISA revealed that the LTB-ST fusion protein retained its oligomeric structure, and displayed antigenic determinants for both LTB and ST. Western blot analysis, using LTB antisera, confirmed the presence of a 17-KDa protein in transplastomic lines, with the correct antigenicity of the fusion protein. Expression levels of this fusion protein in different lines reached up to 2.3% total soluble protein. Oral immunization of mice with freeze-dried transplastomic tobacco leaves led to the induction of both serum and mucosal LTB-ST specific antibodies. Following cholera toxin challenge, a decrease of intestinal fluid accumulation was observed in mice immunized with LTB-ST-containing tobacco. These findings suggest that tobacco plants expressing LTB-ST could serve as a plant-based candidate vaccine model providing broad-spectrum protection against ETEC-induced diarrhoeal disease.
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Zhao X, Chen J, Lei L, Hu G, Xiong Y, Xu J, Li Q, Yang X, Chang CC, Song B, Chang T, Li B. The optional long 5'-untranslated region of human ACAT1 mRNAs impairs the production of ACAT1 protein by promoting its mRNA decay. Acta Biochim Biophys Sin (Shanghai) 2009; 41:30-41. [PMID: 19129948 DOI: 10.1093/abbs/gmn004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have previously reported that human ACAT1 mRNAs produce the 50 kDa protein using the AUG(11397-1399) initiation codon, and also a minor 56 kDa isoform using the upstream in-frame GGC(1274-1276) initiation codon. The GGC(1274-1276) codon is located at the optional long 5'-untranslated region (5'-UTR, nt 1-1396) of the mRNAs. The DNA sequences corresponding to this 5'-UTR are located in two different chromosomes, 7 and 1. In the current work, we report that the optional long 5'-UTR significantly impairs the production of human ACAT1 protein initiated from the AUG(1397-1399)codon, mainly by promoting its mRNA decay. The western blot analyses indicated that the optional long 5'-UTR potently impaired the production of different proteins initiated from the AUG(1397-1399) codon, meaning that this impairing effect was not influenced by the 3'-UTR or the coding sequence of ACAT1 mRNA. The results of reverse transcription-quantitative polymerase chain reaction demonstrated that this 5'- UTR dramatically reduced the contents of its linked mRNAs. Analyses of the protein to mRNA ratios showed that this 5'-UTR mainly decreased its mRNA stability rather than altering its translational efficiency. We next performed the plasmid transfection experiments and used actinomycin D to inhibit transcription. The results showed that this 5'-UTR promoted its mRNA decay. Additional transfection and nucleofection experiments using RNAs prepared in vitro illustrated that, in both the cytoplasm and the nucleus of cells, the optional long 5'-UTR-linked mRNAs decayed faster than those without the link. Overall, our study brings new insight to the regulation of the human ACAT1 gene expression at the post-transcription level.
Collapse
Affiliation(s)
- Xiaonan Zhao
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Farran I, Río-Manterola F, Iñiguez M, Gárate S, Prieto J, Mingo-Castel AM. High-density seedling expression system for the production of bioactive human cardiotrophin-1, a potential therapeutic cytokine, in transgenic tobacco chloroplasts. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:516-27. [PMID: 18384506 DOI: 10.1111/j.1467-7652.2008.00334.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Histidine-tagged human cardiotrophin-1 (hCT-1), a recently discovered cytokine with excellent therapeutic potential, was expressed in tobacco chloroplasts under the transcriptional and translational control of two different promoters (rrn and psbA) and 5'-untranslated regions (5'-UTRs) (psbA and phage T7 gene 10). The psbA 5'-UTR promotes recombinant hCT-1 (rhCT-1) accumulation in chloroplasts at higher levels (eight-fold) than those obtained for the phage T7 gene 10 5'-UTR, regardless of the promoter used, indicating that the correct choice of translational control element is most important for protein production in chloroplasts. The maximum level of rhCT-1 achieved was 1.14 mg/g fresh weight (equivalent to 5% of total soluble protein) with the psbA promoter and 5'-UTR in young leaves harvested after 32 h of continuous light, although the bioactivity was significantly lower (approximately 35%) than that of commercial hCT-1. However, harvesting in the dark or after 12 h of light did not result in a significant decrease in the bioactivity of rhCT-1, suggesting that 32 h of over-lighting affects the biological activity of rhCT-1. Because high levels of rhCT-1 accumulation took place mainly in young leaves, it is proposed that seedlings should be used in a 'closed system' unit, yielding up to 3.2 kg per year of rhCT-1. This amount would be sufficient to meet the estimated annual worldwide needs of hCT-1 for liver transplantation surgery in a cost-effective manner. Furthermore, our strategy is an environmentally friendly method for the production of plant-based biopharmaceuticals.
Collapse
Affiliation(s)
- Imma Farran
- Instituto de Agrobiotecnología, UPNA-CSIC-Gobierno de Navarra, Campus Arrosadía, 31006 Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
50
|
Mudd EA, Sullivan S, Gisby MF, Mironov A, Kwon CS, Chung WI, Day A. A 125 kDa RNase E/G-like protein is present in plastids and is essential for chloroplast development and autotrophic growth in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:2597-610. [PMID: 18515828 PMCID: PMC2486463 DOI: 10.1093/jxb/ern126] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 03/28/2008] [Accepted: 03/31/2008] [Indexed: 05/20/2023]
Abstract
Endoribonuclease E (RNase E) is a regulator of global gene expression in Escherichia coli and is the best studied member of the RNase E/G ribonuclease family. Homologues are present in other bacteria but the roles of plant RNase E/G-like proteins are not known. Arabidopsis thaliana contains a single nuclear gene (At2g04270) encoding a product with the conserved catalytic domain of RNase E/G-like proteins. At2g04270 and the adjacent At2g04280 gene form converging transcription units with a approximately 40 base overlap at their 3' ends. Several translation products were predicted from the analyses of At2g04270 cDNAs. An antibody raised against a recombinant A. thaliana RNase E/G-like protein recognized a 125 kDa protein band in purified chloroplast preparations fractionated by SDS-PAGE. The 125 kDa RNase E/G-like protein was detected in cotyledons, rosette and cauline leaves. T-DNA insertions in exon 6 or intron 11 of At2g04270 result in loss of the 125 kDa band or truncation to a 110 kDa band. Loss of At2g04270 function resulted in the arrest of chloroplast development, loss of autotrophic growth, and reduced plastid ribosomal, psbA and rbcL RNA levels. Homozygous mutant plants were pale-green, contained smaller plastids with fewer thylakoids and shorter granal stacks than wild-type chloroplasts, and required sucrose at all growth stages following germination right up to flowering and setting seeds. Recombinant A. thaliana RNase E/G-like proteins rescued an E. coli RNase E mutant and cleaved an rbcL RNA substrate. Expression of At2g04270 was highly correlated with genes encoding plastid polyribonucleotide phosphorylase, S1 RNA-binding, and CRS1/YhbY domain proteins.
Collapse
Affiliation(s)
- Elisabeth A. Mudd
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Stuart Sullivan
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Martin F. Gisby
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Aleksandr Mironov
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Chang Seob Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejon, Republic of Korea 305-701
| | - Won-Il Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejon, Republic of Korea 305-701
| | - Anil Day
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|