1
|
Ohtsuka H, Ohara K, Shimasaki T, Hatta Y, Maekawa Y, Aiba H. A novel transcription factor Sdr1 involving sulfur depletion response in fission yeast. Genes Cells 2024; 29:667-680. [PMID: 39105351 DOI: 10.1111/gtc.13136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 08/07/2024]
Abstract
In the fission yeast Schizosaccharomyces pombe, the response to sulfur depletion has been less studied compared to the response to nitrogen depletion. Our study reveals that the fission yeast gene, SPCC417.09c, plays a significant role in the sulfur depletion response. This gene encodes a protein with a Zn2Cys6 fungal-type DNA-binding domain and a transcription factor domain, and we have named it sdr1+ (sulfur depletion response 1). Interestingly, while sulfur depletion typically induces autophagy akin to nitrogen depletion, we found that autophagy was not induced under sulfur depletion in the absence of sdr1+. This suggests that sdr1+ is necessary for the induction of autophagy under conditions of sulfur depletion. Although sdr1+ is not essential for the growth of fission yeast, its overexpression, driven by the nmt1 promoter, inhibits growth. This implies that Sdr1 may possess cell growth-inhibitory capabilities. In addition, our analysis of Δsdr1 cells revealed that sdr1+ also plays a role in regulating the expression of genes associated with the phosphate depletion response. In conclusion, our study introduces Sdr1 as a novel transcription factor that contributes to an appropriate cellular nutrient starvation response. It does so by inhibiting inappropriate cell growth and inducing autophagy in response to sulfur depletion.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Kotaro Ohara
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Yoshiko Hatta
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Yasukichi Maekawa
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
2
|
Xie CY, Su RR, Wu B, Sun ZY, Tang YQ. Response mechanisms of different Saccharomyces cerevisiae strains to succinic acid. BMC Microbiol 2024; 24:158. [PMID: 38720268 PMCID: PMC11077785 DOI: 10.1186/s12866-024-03314-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND The production of succinic acid (SA) from biomass has attracted worldwide interest. Saccharomyces cerevisiae is preferred for SA production due to its strong tolerance to low pH conditions, ease of genetic manipulation, and extensive application in industrial processes. However, when compared with bacterial producers, the SA titers and productivities achieved by engineered S. cerevisiae strains were relatively low. To develop efficient SA-producing strains, it's necessary to clearly understand how S. cerevisiae cells respond to SA. RESULTS In this study, we cultivated five S. cerevisiae strains with different genetic backgrounds under different concentrations of SA. Among them, KF7 and NBRC1958 demonstrated high tolerance to SA, whereas NBRC2018 displayed the least tolerance. Therefore, these three strains were chosen to study how S. cerevisiae responds to SA. Under a concentration of 20 g/L SA, only a few differentially expressed genes were observed in three strains. At the higher concentration of 60 g/L SA, the response mechanisms of the three strains diverged notably. For KF7, genes involved in the glyoxylate cycle were significantly downregulated, whereas genes involved in gluconeogenesis, the pentose phosphate pathway, protein folding, and meiosis were significantly upregulated. For NBRC1958, genes related to the biosynthesis of vitamin B6, thiamin, and purine were significantly downregulated, whereas genes related to protein folding, toxin efflux, and cell wall remodeling were significantly upregulated. For NBRC2018, there was a significant upregulation of genes connected to the pentose phosphate pathway, gluconeogenesis, fatty acid utilization, and protein folding, except for the small heat shock protein gene HSP26. Overexpression of HSP26 and HSP42 notably enhanced the cell growth of NBRC1958 both in the presence and absence of SA. CONCLUSIONS The inherent activities of small heat shock proteins, the levels of acetyl-CoA and the strains' potential capacity to consume SA all seem to affect the responses and tolerances of S. cerevisiae strains to SA. These factors should be taken into consideration when choosing host strains for SA production. This study provides a theoretical basis and identifies potential host strains for the development of robust and efficient SA-producing strains.
Collapse
Affiliation(s)
- Cai-Yun Xie
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China
| | - Ran-Ran Su
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China
| | - Bo Wu
- Biogas Institute of Ministry of Agriculture, Renmin Rd. 4-13, Chengdu, 610041, Sichuan, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China.
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China.
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
3
|
Møller-Hansen I, Sáez-Sáez J, van der Hoek SA, Dyekjær JD, Christensen HB, Wright Muelas M, O’Hagan S, Kell DB, Borodina I. Deorphanizing solute carriers in Saccharomyces cerevisiae for secondary uptake of xenobiotic compounds. Front Microbiol 2024; 15:1376653. [PMID: 38680917 PMCID: PMC11045925 DOI: 10.3389/fmicb.2024.1376653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
The exchange of small molecules between the cell and the environment happens through transporter proteins. Besides nutrients and native metabolic products, xenobiotic molecules are also transported, however it is not well understood which transporters are involved. In this study, by combining exo-metabolome screening in yeast with transporter characterization in Xenopus oocytes, we mapped the activity of 30 yeast transporters toward six small non-toxic substrates. Firstly, using LC-MS, we determined 385 compounds from a chemical library that were imported and exported by S. cerevisiae. Of the 385 compounds transported by yeast, we selected six compounds (viz. sn-glycero-3-phosphocholine, 2,5-furandicarboxylic acid, 2-methylpyrazine, cefadroxil, acrylic acid, 2-benzoxazolol) for characterization against 30 S. cerevisiae xenobiotic transport proteins expressed in Xenopus oocytes. The compounds were selected to represent a diverse set of chemicals with a broad interest in applied microbiology. Twenty transporters showed activity toward one or more of the compounds. The tested transporter proteins were mostly promiscuous in equilibrative transport (i.e., facilitated diffusion). The compounds 2,5-furandicarboxylic acid, 2-methylpyrazine, cefadroxil, and sn-glycero-3-phosphocholine were transported equilibratively by transporters that could transport up to three of the compounds. In contrast, the compounds acrylic acid and 2-benzoxazolol, were strictly transported by dedicated transporters. The prevalence of promiscuous equilibrative transporters of non-native substrates has significant implications for strain development in biotechnology and offers an explanation as to why transporter engineering has been a challenge in metabolic engineering. The method described here can be generally applied to study the transport of other small non-toxic molecules. The yeast transporter library is available at AddGene (ID 79999).
Collapse
Affiliation(s)
- Iben Møller-Hansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| | - Javier Sáez-Sáez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| | - Steven A. van der Hoek
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| | - Jane D. Dyekjær
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| | - Hanne B. Christensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| | - Marina Wright Muelas
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Steve O’Hagan
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| |
Collapse
|
4
|
Ehrmann AK, Wronska AK, Perli T, de Hulster EAF, Luttik MAH, van den Broek M, Carqueija Cardoso C, Pronk JT, Daran JM. Engineering Saccharomyces cerevisiae for fast vitamin-independent aerobic growth. Metab Eng 2024; 82:201-215. [PMID: 38364997 DOI: 10.1016/j.ymben.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/08/2024] [Accepted: 01/26/2024] [Indexed: 02/18/2024]
Abstract
Chemically defined media for cultivation of Saccharomyces cerevisiae strains are commonly supplemented with a mixture of multiple Class-B vitamins, whose omission leads to strongly reduced growth rates. Fast growth without vitamin supplementation is interesting for industrial applications, as it reduces costs and complexity of medium preparation and may decrease susceptibility to contamination by auxotrophic microbes. In this study, suboptimal growth rates of S. cerevisiae CEN.PK113-7D in the absence of pantothenic acid, para-aminobenzoic acid (pABA), pyridoxine, inositol and/or biotin were corrected by single or combined overexpression of ScFMS1, ScABZ1/ScABZ2, ScSNZ1/ScSNO1, ScINO1 and Cyberlindnera fabianii BIO1, respectively. Several strategies were explored to improve growth of S. cerevisiae CEN.PK113-7D in thiamine-free medium. Overexpression of ScTHI4 and/or ScTHI5 enabled thiamine-independent growth at 83% of the maximum specific growth rate of the reference strain in vitamin-supplemented medium. Combined overexpression of seven native S. cerevisiae genes and CfBIO1 enabled a maximum specific growth rate of 0.33 ± 0.01 h-1 in vitamin-free synthetic medium. This growth rate was only 17 % lower than that of a congenic reference strain in vitamin-supplemented medium. Physiological parameters of the engineered vitamin-independent strain in aerobic glucose-limited chemostat cultures (dilution rate 0.10 h-1) grown on vitamin-free synthetic medium were similar to those of similar cultures of the parental strain grown on vitamin-supplemented medium. Transcriptome analysis revealed only few differences in gene expression between these cultures, which primarily involved genes with roles in Class-B vitamin metabolism. These results pave the way for development of fast-growing vitamin-independent industrial strains of S. cerevisiae.
Collapse
Affiliation(s)
- Anja K Ehrmann
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs, Lyngby, Denmark
| | - Anna K Wronska
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| | - Thomas Perli
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| | - Erik A F de Hulster
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| | - Marijke A H Luttik
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| | - Clara Carqueija Cardoso
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands.
| |
Collapse
|
5
|
Kobashi Y, Yoshizaki Y, Okutsu K, Futagami T, Tamaki H, Takamine K. THI3 contributes to isoamyl alcohol biosynthesis through thiamine diphosphate homeostasis. J Biosci Bioeng 2024; 137:108-114. [PMID: 38102023 DOI: 10.1016/j.jbiosc.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Isoamyl alcohol is a precursor of isoamyl acetate, an aromatic compound that imparts the ginjo aroma to sake. The isoamyl alcohol biosynthesis pathway in yeasts involves the genes PDC1, PDC5, PDC6, ARO10, and THI3 encoding enzymes that decarboxylate α-ketoisocaproic acid to isovaleraldehyde. Among these genes, THI3 is the main gene involved in isoamyl alcohol biosynthesis. Decreased production of isoamyl alcohol has been reported in yeast strains with disrupted THI3 (Δthi3). However, it has also been reported that high THI3 expression did not enhance decarboxylase activity. Therefore, the involvement of THI3 in isoamyl alcohol biosynthesis remains unclear. In this study, we investigated the role of THI3 in isoamyl alcohol biosynthesis. While reproducing previous reports of reduced isoamyl alcohol production by the Δthi3 strain, we observed that the decrease in isoamyl alcohol production occurred only at low yeast nitrogen base concentrations in the medium. Upon investigating individual yeast nitrogen base components, we found that the isoamyl alcohol production by the Δthi3 strain reduced when thiamine concentrations in the medium were low. Under low-thiamine conditions, both thiamine and thiamine diphosphate (TPP) levels decreased in Δthi3 cells. We also found that the decarboxylase activity of cell-free extracts of the Δthi3 strain cultured in a low-thiamine medium was lower than that of the wild-type strain, but was restored to the level of the wild-type strain when TPP was added. These results indicate that the loss of THI3 lowers the supply of TPP, a cofactor for decarboxylases, resulting in decreased isoamyl alcohol production.
Collapse
Affiliation(s)
- Yuki Kobashi
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Yumiko Yoshizaki
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Kayu Okutsu
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Taiki Futagami
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Hisanori Tamaki
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Kazunori Takamine
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|
6
|
Rocchi R, Wolkers-Rooijackers JCM, Liao Z, Tempelaars MH, Smid EJ. Strain diversity in Saccharomyces cerevisiae thiamine production capacity. Yeast 2023; 40:628-639. [PMID: 37930115 DOI: 10.1002/yea.3906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/08/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Vitamin B1 , also known as thiamine, is an important vitamin that, besides its role in human health, is converted to meat aromas upon exposure to high temperatures. Therefore, it is relevant for the production of vegan meat-like flavours. In this study, we investigated 48 Saccharomyces cerevisiae strains for their thiamine production capacity by measuring the intracellular and extracellular vitamins produced in the thiamine-free minimal medium after 72 h of growth. We found approximately an 8.2-fold difference in overall thiamine yield between the highest and lowest-producing strains. While the highest thiamine yield was 254.6 nmol/L, the highest thiamine-specific productivity was 160.9 nmol/g DW. To assess whether extracellular thiamine was due to leakage caused by cell damage, we monitored membrane permeabilization using propidium iodide (PI) staining and flow cytometry. We found a good correlation between the percentage of extracellular thiamine and PI-stained cells (Spearman's ρ = 0.85). Finally, we compared S. cerevisiae CEN.PK113-7D (wild type [WT]) to three strains evolved in a thiamine-free medium for their thiamine production capacity. On average, we saw an increase in the amount of thiamine produced. One of the evolved strains had a 49% increase in intracellular thiamine-specific productivity and a biomass increase of 20% compared with the WT. This led to a total increase in thiamine yield of 60% in this strain, reaching 208 nmol/L. This study demonstrated that it is possible to achieve thiamine overproduction in S. cerevisiae via strain selection and adaptive laboratory evolution.
Collapse
Affiliation(s)
- Rebecca Rocchi
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | | | - Zhuotong Liao
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Marcel H Tempelaars
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Eddy J Smid
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
7
|
Muller G, de Godoy VR, Dário MG, Duval EH, Alves-Jr SL, Bücker A, Rosa CA, Dunn B, Sherlock G, Stambuk BU. Improved Sugarcane-Based Fermentation Processes by an Industrial Fuel-Ethanol Yeast Strain. J Fungi (Basel) 2023; 9:803. [PMID: 37623574 PMCID: PMC10456111 DOI: 10.3390/jof9080803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
In Brazil, sucrose-rich broths (cane juice and/or molasses) are used to produce billions of liters of both fuel ethanol and cachaça per year using selected Saccharomyces cerevisiae industrial strains. Considering the important role of feedstock (sugar) prices in the overall process economics, to improve sucrose fermentation the genetic characteristics of a group of eight fuel-ethanol and five cachaça industrial yeasts that tend to dominate the fermentors during the production season were determined by array comparative genomic hybridization. The widespread presence of genes encoding invertase at multiple telomeres has been shown to be a common feature of both baker's and distillers' yeast strains, and is postulated to be an adaptation to sucrose-rich broths. Our results show that only two strains (one fuel-ethanol and one cachaça yeast) have amplification of genes encoding invertase, with high specific activity. The other industrial yeast strains had a single locus (SUC2) in their genome, with different patterns of invertase activity. These results indicate that invertase activity probably does not limit sucrose fermentation during fuel-ethanol and cachaça production by these industrial strains. Using this knowledge, we changed the mode of sucrose metabolism of an industrial strain by avoiding extracellular invertase activity, overexpressing the intracellular invertase, and increasing its transport through the AGT1 permease. This approach allowed the direct consumption of the disaccharide by the cells, without releasing glucose or fructose into the medium, and a 11% higher ethanol production from sucrose by the modified industrial yeast, when compared to its parental strain.
Collapse
Affiliation(s)
- Gabriela Muller
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; (G.M.); (V.R.d.G.); (M.G.D.); (E.H.D.); (S.L.A.-J.); (A.B.)
| | - Victor R. de Godoy
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; (G.M.); (V.R.d.G.); (M.G.D.); (E.H.D.); (S.L.A.-J.); (A.B.)
| | - Marcelo G. Dário
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; (G.M.); (V.R.d.G.); (M.G.D.); (E.H.D.); (S.L.A.-J.); (A.B.)
| | - Eduarda H. Duval
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; (G.M.); (V.R.d.G.); (M.G.D.); (E.H.D.); (S.L.A.-J.); (A.B.)
| | - Sergio L. Alves-Jr
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; (G.M.); (V.R.d.G.); (M.G.D.); (E.H.D.); (S.L.A.-J.); (A.B.)
| | - Augusto Bücker
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; (G.M.); (V.R.d.G.); (M.G.D.); (E.H.D.); (S.L.A.-J.); (A.B.)
| | - Carlos A. Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil;
| | - Barbara Dunn
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; (B.D.); (G.S.)
| | - Gavin Sherlock
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; (B.D.); (G.S.)
| | - Boris U. Stambuk
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; (G.M.); (V.R.d.G.); (M.G.D.); (E.H.D.); (S.L.A.-J.); (A.B.)
| |
Collapse
|
8
|
Iosue CL, Ugras JM, Bajgain Y, Dottor CA, Stauffer PL, Hopkins RA, Lang EC, Wykoff DD. Pyruvate decarboxylase and thiamine biosynthetic genes are regulated differently by Pdc2 in S. cerevisiae and C. glabrata. PLoS One 2023; 18:e0286744. [PMID: 37285346 DOI: 10.1371/journal.pone.0286744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
Understanding metabolism in the pathogen Candida glabrata is key to identifying new targets for antifungals. The thiamine biosynthetic (THI) pathway is partially defective in C. glabrata, but the transcription factor CgPdc2 upregulates some thiamine biosynthetic and transport genes. One of these genes encodes a recently evolved thiamine pyrophosphatase (CgPMU3) that is critical for accessing external thiamine. Here, we demonstrate that CgPdc2 primarily regulates THI genes. In Saccharomyces cerevisiae, Pdc2 regulates both THI and pyruvate decarboxylase (PDC) genes, with PDC proteins being a major thiamine sink. Deletion of PDC2 is lethal in S. cerevisiae in standard growth conditions, but not in C. glabrata. We uncover cryptic cis elements in C. glabrata PDC promoters that still allow for regulation by ScPdc2, even when that regulation is not apparent in C. glabrata. C. glabrata lacks Thi2, and it is likely that inclusion of Thi2 into transcriptional regulation in S. cerevisiae allows for a more complex regulation pattern and regulation of THI and PDC genes. We present evidence that Pdc2 functions independent of Thi2 and Thi3 in both species. The C-terminal activation domain of Pdc2 is intrinsically disordered and critical for species differences. Truncation of the disordered domains leads to a gradual loss of activity. Through a series of cross species complementation assays of transcription, we suggest that there are multiple Pdc2-containing complexes, and C. glabrata appears to have the simplest requirement set for THI genes, except for CgPMU3. CgPMU3 has different cis requirements, but still requires Pdc2 and Thi3 to be upregulated by thiamine starvation. We identify the minimal region sufficient for thiamine regulation in CgTHI20, CgPMU3, and ScPDC5 promoters. Defining the cis and trans requirements for THI promoters should lead to an understanding of how to interrupt their upregulation and provide targets in metabolism for antifungals.
Collapse
Affiliation(s)
- Christine L Iosue
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Julia M Ugras
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Yakendra Bajgain
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Cory A Dottor
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Peyton L Stauffer
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Rachael A Hopkins
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Emma C Lang
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Dennis D Wykoff
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| |
Collapse
|
9
|
Wu Y, Li B, Miao B, Xie C, Tang YQ. Saccharomyces cerevisiae employs complex regulation strategies to tolerate low pH stress during ethanol production. Microb Cell Fact 2022; 21:247. [DOI: 10.1186/s12934-022-01974-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Abstract
Background
Industrial bioethanol production may involve a low pH environment caused by inorganic acids, improving the tolerance of Saccharomyces cerevisiae to a low pH environment is of industrial importance to increase ethanol yield, control bacterial contamination, and reduce production cost. In our previous study, acid tolerance of a diploid industrial Saccharomyces cerevisiae strain KF-7 was chronically acclimatized by continuous ethanol fermentation under gradually increasing low-pH stress conditions. Two haploid strains B3 and C3 having excellent low pH tolerance were derived through the sporulation of an isolated mutant. Diploid strain BC3 was obtained by mating these two haploids. In this study, B3, C3, BC3, and the original strain KF-7 were subjected to comparison transcriptome analysis to investigate the molecular mechanism of the enhanced phenotype.
Result
The comparison transcriptome analysis results suggested that the upregulated vitamin B1 and B6 biosynthesis contributed to the low pH tolerance. Amino acid metabolism, DNA repairment, and general stress response might also alleviate low pH stress.
Conclusion
Saccharomyces cerevisiae seems to employ complex regulation strategies to tolerate low pH during ethanol production. The findings provide guides for the construction of low pH-tolerant industrial strains that can be used in industrial fermentation processes.
Collapse
|
10
|
Cui D, Liu L, Zhang X, Lin L, Li X, Cheng T, Wei C, Zhang Y, Zhou Z, Li W, Zhang C. Using transcriptomics to reveal the molecular mechanism of higher alcohol metabolism in Saccharomyces cerevisiae. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Elimination of aromatic fusel alcohols as by-products of Saccharomyces cerevisiae strains engineered for phenylpropanoid production by 2-oxo-acid decarboxylase replacement. Metab Eng Commun 2021; 13:e00183. [PMID: 34584841 PMCID: PMC8450241 DOI: 10.1016/j.mec.2021.e00183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 11/24/2022] Open
Abstract
Engineered strains of the yeast Saccharomyces cerevisiae are intensively studied as production platforms for aromatic compounds such as hydroxycinnamic acids, stilbenoids and flavonoids. Heterologous pathways for production of these compounds use l-phenylalanine and/or l-tyrosine, generated by the yeast shikimate pathway, as aromatic precursors. The Ehrlich pathway converts these precursors to aromatic fusel alcohols and acids, which are undesirable by-products of yeast strains engineered for production of high-value aromatic compounds. Activity of the Ehrlich pathway requires any of four S. cerevisiae 2-oxo-acid decarboxylases (2-OADCs): Aro10 or the pyruvate-decarboxylase isoenzymes Pdc1, Pdc5, and Pdc6. Elimination of pyruvate-decarboxylase activity from S. cerevisiae is not straightforward as it plays a key role in cytosolic acetyl-CoA biosynthesis during growth on glucose. In a search for pyruvate decarboxylases that do not decarboxylate aromatic 2-oxo acids, eleven yeast and bacterial 2-OADC-encoding genes were investigated. Homologs from Kluyveromyces lactis (KlPDC1), Kluyveromyces marxianus (KmPDC1), Yarrowia lipolytica (YlPDC1), Zymomonas mobilis (Zmpdc1) and Gluconacetobacter diazotrophicus (Gdpdc1.2 and Gdpdc1.3) complemented a Pdc− strain of S. cerevisiae for growth on glucose. Enzyme-activity assays in cell extracts showed that these genes encoded active pyruvate decarboxylases with different substrate specificities. In these in vitro assays, ZmPdc1, GdPdc1.2 or GdPdc1.3 had no substrate specificity towards phenylpyruvate. Replacing Aro10 and Pdc1,5,6 by these bacterial decarboxylases completely eliminated aromatic fusel-alcohol production in glucose-grown batch cultures of an engineered coumaric acid-producing S. cerevisiae strain. These results outline a strategy to prevent formation of an important class of by-products in ‘chassis’ yeast strains for production of non-native aromatic compounds. Identification of pyruvate decarboxylases active with pyruvate but not with aromatic 2-oxo acids. Zymomonas mobilis pyruvate decarboxylase can replace the native yeast enzymes. Expression of Z. mobilis pyruvate decarboxylase removes formation of fusel alcohols. Elimination of fusel alcohol by products improves formation of coumaric acid. Decarboxylase swapping is a beneficial strategy for production of non-native aromatics.
Collapse
|
12
|
Evers MS, Roullier-Gall C, Morge C, Sparrow C, Gobert A, Alexandre H. Vitamins in wine: Which, what for, and how much? Compr Rev Food Sci Food Saf 2021; 20:2991-3035. [PMID: 33884746 DOI: 10.1111/1541-4337.12743] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 12/01/2022]
Abstract
Vitamins are essential compounds to yeasts, and notably in winemaking contexts. Vitamins are involved in numerous yeast metabolic pathways, including those of amino acids, fatty acids, and alcohols, which suggests their notable implication in fermentation courses, as well as in the development of aromatic compounds in wines. Although they are major components in the course of those microbial processes, their significance and impact have not been extensively studied in the context of winemaking and wine products, as most of the studies focusing on the subject in the past decades have relied on relatively insensitive and imprecise analytical methods. Therefore, this review provides an extensive overview of the current knowledge regarding the impacts of vitamins on grape must fermentations, wine-related yeast metabolisms, and requirements, as well as on the profile of wine sensory characteristics. We also highlight the methodologies and techniques developed over time to perform vitamin analysis in wines, and assess the importance of precisely defining the role played by vitamins in winemaking processes, to ensure finer control of the fermentation courses and product characteristics in a highly complex matrix.
Collapse
Affiliation(s)
- Marie Sarah Evers
- Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France.,SAS Sofralab, Magenta, France
| | - Chloé Roullier-Gall
- Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France
| | | | | | | | - Hervé Alexandre
- Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France
| |
Collapse
|
13
|
Minebois R, Lairón-Peris M, Barrio E, Pérez-Torrado R, Querol A. Metabolic differences between a wild and a wine strain of Saccharomyces cerevisiae during fermentation unveiled by multi-omic analysis. Environ Microbiol 2021; 23:3059-3076. [PMID: 33848053 DOI: 10.1111/1462-2920.15523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/30/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022]
Abstract
Saccharomyces cerevisiae, a widespread yeast present both in the wild and in fermentative processes, like winemaking. During the colonization of these human-associated fermentative environments, certain strains of S. cerevisiae acquired differential adaptive traits that enhanced their physiological properties to cope with the challenges imposed by these new ecological niches. The advent of omics technologies allowed unveiling some details of the molecular bases responsible for the peculiar traits of S. cerevisiae wine strains. However, the metabolic diversity within yeasts remained poorly explored, in particular that existing between wine and wild strains of S. cerevisiae. For this purpose, we performed a dual transcriptomic and metabolomic comparative analysis between a wild and a wine S. cerevisiae strains during wine fermentations performed at high and low temperatures. By using this approach, we could correlate the differential expression of genes involved in metabolic pathways, such as sulfur, arginine and thiamine metabolisms, with differences in the amounts of key metabolites that can explain some important differences in the fermentation performance between the wine and wild strains.
Collapse
Affiliation(s)
- Romain Minebois
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, E-46980, Spain
| | - María Lairón-Peris
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, E-46980, Spain
| | - Eladio Barrio
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, E-46980, Spain.,Departament de Genètica, Universitat de València, C/Doctor Moliner, 50, Burjassot, Valencia, E-46100, Spain
| | - Roberto Pérez-Torrado
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, E-46980, Spain
| | - Amparo Querol
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, E-46980, Spain
| |
Collapse
|
14
|
Labuschagne P, Divol B. Thiamine: a key nutrient for yeasts during wine alcoholic fermentation. Appl Microbiol Biotechnol 2021; 105:953-973. [PMID: 33404836 DOI: 10.1007/s00253-020-11080-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/18/2020] [Accepted: 12/27/2020] [Indexed: 12/27/2022]
Abstract
Alcoholic fermentation is a crucial step of winemaking, during which yeasts convert sugars to alcohol and also produce or biotransform numerous flavour compounds. In this context, nutrients are essential compounds to support yeast growth and ultimately ensure complete fermentation, as well as optimized production of flavour compounds over that of off-flavour compounds. In particular, the vitamin thiamine not only plays an essential cofactor role for several enzymes involved in various metabolic pathways, including those leading to the production of wine-relevant flavour compounds, but also aids yeast survival via thiamine-dependent stress protection functions. Most yeast species are able to both assimilate exogenous thiamine into the cell and synthesize thiamine de novo. However, the mechanism and level of thiamine accumulation depend on several factors. This review provides an in-depth overview of thiamine utilization and metabolism in the model yeast species Saccharomyces cerevisiae, as well as the current knowledge on (1) the intracellular functions of thiamine, (2) the balance between and regulation of uptake and synthesis of thiamine and (3) the multitude of factors influencing thiamine availability and utilization. For the latter, a particular emphasis is placed on conditions occurring during wine fermentation. The adequacy of thiamine concentration in grape must to ensure successful fermentation is discussed together with the effect of thiamine concentration on fermentation kinetics and on wine sensory properties. This knowledge may serve as a resource to optimise thiamine concentrations for optimal industrial application of yeasts. KEY POINTS: • Thiamine uptake is preferred over biosynthesis and is transcriptionally repressed. • Multiple factors affect thiamine synthesis, availability and uptake for wine yeast. • Thiamine availability impacts fermentation kinetics and wine's sensory properties.
Collapse
Affiliation(s)
- Pwj Labuschagne
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Private Bag X1, Matieland, 7602, South Africa
| | - B Divol
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
15
|
van Tatenhove-Pel RJ, Zwering E, Boreel DF, Falk M, van Heerden JH, Kes MBMJ, Kranenburg CI, Botman D, Teusink B, Bachmann H. Serial propagation in water-in-oil emulsions selects for Saccharomyces cerevisiae strains with a reduced cell size or an increased biomass yield on glucose. Metab Eng 2021; 64:1-14. [PMID: 33418011 DOI: 10.1016/j.ymben.2020.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/26/2020] [Accepted: 12/15/2020] [Indexed: 11/19/2022]
Abstract
In S. cerevisiae and many other micro-organisms an increase in metabolic efficiency (i.e. ATP yield on carbon) is accompanied by a decrease in growth rate. From a fundamental point of view, studying these yield-rate trade-offs provides insight in for example microbial evolution and cellular regulation. From a biotechnological point of view, increasing the ATP yield on carbon might increase the yield of anabolic products. We here aimed to select S. cerevisiae mutants with an increased biomass yield. Serial propagation of individual cells in water-in-oil emulsions previously enabled the selection of lactococci with increased biomass yields, and adapting this protocol for yeast allowed us to enrich an engineered Crabtree-negative S. cerevisiae strain with a high biomass yield on glucose. When we started the selection with an S. cerevisiae deletion collection, serial propagation in emulsion enriched hxk2Δ and reg1Δ strains with an increased biomass yield on glucose. Surprisingly, a tps1Δ strain was highly abundant in both emulsion- and suspension-propagated populations. In a separate experiment we propagated a chemically mutagenized S. cerevisiae population in emulsion, which resulted in mutants with a higher cell number yield on glucose, but no significantly changed biomass yield. Genome analyses indicate that genes involved in glucose repression and cell cycle processes play a role in the selected phenotypes. The repeated identification of mutations in genes involved in glucose-repression indicates that serial propagation in emulsion is a valuable tool to study metabolic efficiency in S. cerevisiae.
Collapse
Affiliation(s)
- Rinke Johanna van Tatenhove-Pel
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences, VU University Amsterdam, de Boelelaan 1108, 1081HV Amsterdam, the Netherlands
| | - Emile Zwering
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences, VU University Amsterdam, de Boelelaan 1108, 1081HV Amsterdam, the Netherlands
| | - Daan Floris Boreel
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences, VU University Amsterdam, de Boelelaan 1108, 1081HV Amsterdam, the Netherlands
| | - Martijn Falk
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences, VU University Amsterdam, de Boelelaan 1108, 1081HV Amsterdam, the Netherlands
| | - Johan Hendrik van Heerden
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences, VU University Amsterdam, de Boelelaan 1108, 1081HV Amsterdam, the Netherlands
| | - Mariah B M J Kes
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences, VU University Amsterdam, de Boelelaan 1108, 1081HV Amsterdam, the Netherlands
| | - Cindy Iris Kranenburg
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences, VU University Amsterdam, de Boelelaan 1108, 1081HV Amsterdam, the Netherlands
| | - Dennis Botman
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences, VU University Amsterdam, de Boelelaan 1108, 1081HV Amsterdam, the Netherlands
| | - Bas Teusink
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences, VU University Amsterdam, de Boelelaan 1108, 1081HV Amsterdam, the Netherlands
| | - Herwig Bachmann
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences, VU University Amsterdam, de Boelelaan 1108, 1081HV Amsterdam, the Netherlands; NIZO Food Research, Kernhemseweg 2, 6718ZB, Ede, the Netherlands.
| |
Collapse
|
16
|
González-Jiménez MDC, García-Martínez T, Mauricio JC, Sánchez-León I, Puig-Pujol A, Moreno J, Moreno-García J. Comparative Study of the Proteins Involved in the Fermentation-Derived Compounds in Two Strains of Saccharomyces cerevisiae during Sparkling Wine Second Fermentation. Microorganisms 2020; 8:microorganisms8081209. [PMID: 32784425 PMCID: PMC7463476 DOI: 10.3390/microorganisms8081209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Sparkling wine is a distinctive wine. Saccharomyces cerevisiae flor yeasts is innovative and ideal for the sparkling wine industry due to the yeasts’ resistance to high ethanol concentrations, surface adhesion properties that ease wine clarification, and the ability to provide a characteristic volatilome and odorant profile. The objective of this work is to study the proteins in a flor yeast and a conventional yeast that are responsible for the production of the volatile compounds released during sparkling wine elaboration. The proteins were identified using the OFFGEL fractionator and LTQ Orbitrap. We identified 50 and 43 proteins in the flor yeast and the conventional yeast, respectively. Proteomic profiles did not show remarkable differences between strains except for Adh1p, Fba1p, Tdh1p, Tdh2p, Tdh3p, and Pgk1p, which showed higher concentrations in the flor yeast versus the conventional yeast. The higher concentration of these proteins could explain the fuller body in less alcoholic wines obtained when using flor yeasts. The data presented here can be thought of as a proteomic map for either flor or conventional yeasts which can be useful to understand how these strains metabolize the sugars and release pleasant volatiles under sparkling wine elaboration conditions.
Collapse
Affiliation(s)
- María del Carmen González-Jiménez
- Department of Agricultural Chemistry, Edaphology and Microbiology, Microbiology Area, Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (M.d.C.G.-J.); (T.G.-M.); (I.S.-L.); (J.M.); (J.M.-G.)
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, Microbiology Area, Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (M.d.C.G.-J.); (T.G.-M.); (I.S.-L.); (J.M.); (J.M.-G.)
| | - Juan Carlos Mauricio
- Department of Agricultural Chemistry, Edaphology and Microbiology, Microbiology Area, Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (M.d.C.G.-J.); (T.G.-M.); (I.S.-L.); (J.M.); (J.M.-G.)
- Correspondence: ; Tel.: +34-957-218-640; Fax: +34-957-218-650
| | - Irene Sánchez-León
- Department of Agricultural Chemistry, Edaphology and Microbiology, Microbiology Area, Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (M.d.C.G.-J.); (T.G.-M.); (I.S.-L.); (J.M.); (J.M.-G.)
| | - Anna Puig-Pujol
- Department of Enological Research, Institute of Agrifood Research and Technology-Catalan Institute of Vine and wine (IRTA-INCAVI), 08720 Barcelona, Spain;
| | - Juan Moreno
- Department of Agricultural Chemistry, Edaphology and Microbiology, Microbiology Area, Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (M.d.C.G.-J.); (T.G.-M.); (I.S.-L.); (J.M.); (J.M.-G.)
| | - Jaime Moreno-García
- Department of Agricultural Chemistry, Edaphology and Microbiology, Microbiology Area, Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (M.d.C.G.-J.); (T.G.-M.); (I.S.-L.); (J.M.); (J.M.-G.)
| |
Collapse
|
17
|
Perli T, Wronska AK, Ortiz‐Merino RA, Pronk JT, Daran J. Vitamin requirements and biosynthesis in Saccharomyces cerevisiae. Yeast 2020; 37:283-304. [PMID: 31972058 PMCID: PMC7187267 DOI: 10.1002/yea.3461] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/19/2019] [Accepted: 01/02/2020] [Indexed: 12/30/2022] Open
Abstract
Chemically defined media for yeast cultivation (CDMY) were developed to support fast growth, experimental reproducibility, and quantitative analysis of growth rates and biomass yields. In addition to mineral salts and a carbon substrate, popular CDMYs contain seven to nine B-group vitamins, which are either enzyme cofactors or precursors for their synthesis. Despite the widespread use of CDMY in fundamental and applied yeast research, the relation of their design and composition to the actual vitamin requirements of yeasts has not been subjected to critical review since their first development in the 1940s. Vitamins are formally defined as essential organic molecules that cannot be synthesized by an organism. In yeast physiology, use of the term "vitamin" is primarily based on essentiality for humans, but the genome of the Saccharomyces cerevisiae reference strain S288C harbours most of the structural genes required for synthesis of the vitamins included in popular CDMY. Here, we review the biochemistry and genetics of the biosynthesis of these compounds by S. cerevisiae and, based on a comparative genomics analysis, assess the diversity within the Saccharomyces genus with respect to vitamin prototrophy.
Collapse
Affiliation(s)
- Thomas Perli
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | - Anna K. Wronska
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | | | - Jack T. Pronk
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | - Jean‐Marc Daran
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| |
Collapse
|
18
|
A Novel cis Element Achieves the Same Solution as an Ancestral cis Element During Thiamine Starvation in Candida glabrata. G3-GENES GENOMES GENETICS 2020; 10:321-331. [PMID: 31732505 PMCID: PMC6945020 DOI: 10.1534/g3.119.400897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Regulatory networks often converge on very similar cis sequences to drive transcriptional programs due to constraints on what transcription factors are present. To determine the role of constraint loss on cis element evolution, we examined the recent appearance of a thiamine starvation regulated promoter in Candida glabrata. This species lacks the ancestral transcription factor Thi2, but still has the transcription factor Pdc2, which regulates thiamine starvation genes, allowing us to determine the effect of constraint change on a new promoter. We identified two different cis elements in C. glabrata - one present in the evolutionarily recent gene called CgPMU3, and the other element present in the other thiamine (THI) regulated genes. Reciprocal swaps of the cis elements and incorporation of the S. cerevisiaeThi2 transcription factor-binding site into these promoters demonstrate that the two elements are functionally different from one another. Thus, this loss of an imposed constraint on promoter function has generated a novel cis sequence, suggesting that loss of trans constraints can generate a non-convergent pathway with the same output.
Collapse
|
19
|
Yeast α-arrestin Art2 is the key regulator of ubiquitylation-dependent endocytosis of plasma membrane vitamin B1 transporters. PLoS Biol 2019; 17:e3000512. [PMID: 31658248 PMCID: PMC6837554 DOI: 10.1371/journal.pbio.3000512] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 11/07/2019] [Accepted: 10/09/2019] [Indexed: 11/19/2022] Open
Abstract
Endocytosis of membrane proteins in yeast requires α-arrestin-mediated ubiquitylation by the ubiquitin ligase Rsp5. Yet, the diversity of α-arrestin targets studied is restricted to a small subset of plasma membrane (PM) proteins. Here, we performed quantitative proteomics to identify new targets of 12 α-arrestins and gained insight into the diversity of pathways affected by α-arrestins, including the cell wall integrity pathway and PM–endoplasmic reticulum contact sites. We found that Art2 is the main regulator of substrate- and stress-induced ubiquitylation and endocytosis of the thiamine (vitamin B1) transporters: Thi7, nicotinamide riboside transporter 1 (Nrt1), and Thi72. Genetic screening allowed for the isolation of transport-defective Thi7 mutants, which impaired thiamine-induced endocytosis. Coexpression of inactive mutants with wild-type Thi7 revealed that both transporter conformation and transport activity are important to induce endocytosis. Finally, we provide evidence that Art2 mediated Thi7 endocytosis is regulated by the target of rapamycin complex 1 (TORC1) and requires the Sit4 phosphatase but is not inhibited by the Npr1 kinase. A combination of proteomics, protein modeling, and molecular biology sheds light on how endocytosis of the plasma membrane vitamin B1 transporter Thi7 in yeast is regulated by the α-arrestin Art2.
Collapse
|
20
|
Li Y, Zhang Y, Liu M, Qin Y, Liu Y. Saccharomyces cerevisiae isolates with extreme hydrogen sulfide production showed different oxidative stress resistances responses during wine fermentation by RNA sequencing analysis. Food Microbiol 2019; 79:147-155. [DOI: 10.1016/j.fm.2018.10.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/16/2018] [Accepted: 10/31/2018] [Indexed: 10/28/2022]
|
21
|
SNZ3 Encodes a PLP Synthase Involved in Thiamine Synthesis in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2019; 9:335-344. [PMID: 30498136 PMCID: PMC6385983 DOI: 10.1534/g3.118.200831] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pyridoxal 5′-phosphate (the active form of vitamin B6) is a cofactor that is important for a broad number of biochemical reactions and is essential for all forms of life. Organisms that can synthesize pyridoxal 5′-phosphate use either the deoxyxylulose phosphate-dependent or -independent pathway, the latter is encoded by a two-component pyridoxal 5′-phosphate synthase. Saccharomyces cerevisiae contains three paralogs of the two-component SNZ/SNO pyridoxal 5′-phosphate synthase. Past work identified the biochemical activity of Snz1p, Sno1p and provided in vivo data that SNZ1 was involved in pyridoxal 5′-phosphate biosynthesis. Snz2p and Snz3p were considered redundant isozymes and no growth condition requiring their activity was reported. Genetic data herein showed that either SNZ2 or SNZ3 are required for efficient thiamine biosynthesis in Saccharomyces cerevisiae. Further, SNZ2 or SNZ3 alone could satisfy the cellular requirement for pyridoxal 5′-phosphate (and thiamine), while SNZ1 was sufficient for pyridoxal 5′-phosphate synthesis only if thiamine was provided. qRT-PCR analysis determined that SNZ2,3 are repressed ten-fold by the presence thiamine. In total, the data were consistent with a requirement for PLP in thiamine synthesis, perhaps in the Thi5p enzyme, that could only be satisfied by SNZ2 or SNZ3. Additional data showed that Snz3p is a pyridoxal 5′-phosphate synthase in vitro and is sufficient to satisfy the pyridoxal 5′-phosphate requirement in Salmonella enterica when the medium has excess ammonia.
Collapse
|
22
|
Mans R, Hassing EJ, Wijsman M, Giezekamp A, Pronk JT, Daran JM, van Maris AJA. A CRISPR/Cas9-based exploration into the elusive mechanism for lactate export in Saccharomyces cerevisiae. FEMS Yeast Res 2019; 17:4628041. [PMID: 29145596 DOI: 10.1093/femsyr/fox085] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/13/2017] [Indexed: 11/14/2022] Open
Abstract
CRISPR/Cas9-based genome editing allows rapid, simultaneous modification of multiple genetic loci in Saccharomyces cerevisiae. Here, this technique was used in a functional analysis study aimed at identifying the hitherto unknown mechanism of lactate export in this yeast. First, an S. cerevisiae strain was constructed with deletions in 25 genes encoding transport proteins, including the complete aqua(glycero)porin family and all known carboxylic acid transporters. The 25-deletion strain was then transformed with an expression cassette for Lactobacillus casei lactate dehydrogenase (LcLDH). In anaerobic, glucose-grown batch cultures this strain exhibited a lower specific growth rate (0.15 vs. 0.25 h-1) and biomass-specific lactate production rate (0.7 vs. 2.4 mmol g biomass-1 h-1) than an LcLDH-expressing reference strain. However, a comparison of the two strains in anaerobic glucose-limited chemostat cultures (dilution rate 0.10 h-1) showed identical lactate production rates. These results indicate that, although deletion of the 25 transporter genes affected the maximum specific growth rate, it did not impact lactate export rates when analysed at a fixed specific growth rate. The 25-deletion strain provides a first step towards a 'minimal transportome' yeast platform, which can be applied for functional analysis of specific (heterologous) transport proteins as well as for evaluation of metabolic engineering strategies.
Collapse
Affiliation(s)
- Robert Mans
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Else-Jasmijn Hassing
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Melanie Wijsman
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Annabel Giezekamp
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Antonius J A van Maris
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
23
|
Donovan PD, Holland LM, Lombardi L, Coughlan AY, Higgins DG, Wolfe KH, Butler G. TPP riboswitch-dependent regulation of an ancient thiamin transporter in Candida. PLoS Genet 2018; 14:e1007429. [PMID: 29852014 PMCID: PMC5997356 DOI: 10.1371/journal.pgen.1007429] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/12/2018] [Accepted: 05/18/2018] [Indexed: 11/30/2022] Open
Abstract
Riboswitches are non-coding RNA molecules that regulate gene expression by binding to specific ligands. They are primarily found in bacteria. However, one riboswitch type, the thiamin pyrophosphate (TPP) riboswitch, has also been described in some plants, marine protists and fungi. We find that riboswitches are widespread in the budding yeasts (Saccharomycotina), and they are most common in homologs of DUR31, originally described as a spermidine transporter. We show that DUR31 (an ortholog of N. crassa gene NCU01977) encodes a thiamin transporter in Candida species. Using an RFP/riboswitch expression system, we show that the functional elements of the riboswitch are contained within the native intron of DUR31 from Candida parapsilosis, and that the riboswitch regulates splicing in a thiamin-dependent manner when RFP is constitutively expressed. The DUR31 gene has been lost from Saccharomyces, and may have been displaced by an alternative thiamin transporter. TPP riboswitches are also present in other putative transporters in yeasts and filamentous fungi. However, they are rare in thiamin biosynthesis genes THI4 and THI5 in the Saccharomycotina, and have been lost from all genes in the sequenced species in the family Saccharomycetaceae, including S. cerevisiae. Thiamin, or Vitamin B1, is an essential requirement in all living organisms because it is a co-factor for many enzymes in metabolism. Unlike animals, many yeasts can synthesize thiamin, or they can import it from the environment. Expression of thiamin biosynthesis genes and of thiamin transporters is strictly regulated in response to the presence of thiamin. In many filamentous fungi, expression of thiamin biosynthesis genes is regulated by TPP riboswitches, RNA regulatory elements that are located within messenger RNA. TPP riboswitches are rare in yeasts. However, we find that TPP riboswitches are conserved in an ancient thiamin transporter, found in filamentous fungi, yeasts and other related organisms. There appears to be a high turnover of thiamin transporters in fungi, and there has been a gradual loss of TPP riboswitches in yeasts.
Collapse
Affiliation(s)
- Paul D. Donovan
- School of Biomedical and Biomolecular Science and UCD Conway Institute of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Linda M. Holland
- School of Biomedical and Biomolecular Science and UCD Conway Institute of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lisa Lombardi
- School of Biomedical and Biomolecular Science and UCD Conway Institute of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Aisling Y. Coughlan
- School of Medicine and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Desmond G. Higgins
- School of Medicine and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kenneth H. Wolfe
- School of Medicine and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Geraldine Butler
- School of Biomedical and Biomolecular Science and UCD Conway Institute of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
- * E-mail:
| |
Collapse
|
24
|
Wei S, Liu Y, Wu M, Ma T, Bai X, Hou J, Shen Y, Bao X. Disruption of the transcription factors Thi2p and Nrm1p alleviates the post-glucose effect on xylose utilization in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:112. [PMID: 29686730 PMCID: PMC5901872 DOI: 10.1186/s13068-018-1112-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 04/06/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND The recombinant Saccharomyces cerevisiae strains that acquired the ability to utilize xylose through metabolic and evolutionary engineering exhibit good performance when xylose is the sole carbon source in the medium (designated the X stage in the present work). However, the xylose consumption rate of strains is generally low after glucose depletion during glucose-xylose co-fermentation, despite the presence of xylose in the medium (designated the GX stage in the present work). Glucose fermentation appears to reduce the capacity of these strains to "recognize" xylose during the GX stage, a phenomenon termed the post-glucose effect on xylose metabolism. RESULTS Two independent xylose-fermenting S. cerevisiae strains derived from a haploid laboratory strain and a diploid industrial strain were used in the present study. Their common characteristics were investigated to reveal the mechanism underlying the post-glucose effect and to develop methods to alleviate this effect. Both strains showed lower growth and specific xylose consumption rates during the GX stage than during the X stage. Glycolysis, the pentose phosphate pathway, and translation-related gene expression were reduced; meanwhile, genes in the tricarboxylic acid cycle and glyoxylic acid cycle demonstrated higher expression during the GX stage than during the X stage. The effects of 11 transcription factors (TFs) whose expression levels significantly differed between the GX and X stages in both strains were investigated. Knockout of THI2 promoted ribosome synthesis, and the growth rate, specific xylose utilization rate, and specific ethanol production rate of the strain increased by 17.4, 26.8, and 32.4%, respectively, in the GX stage. Overexpression of the ribosome-related genes RPL9A, RPL7B, and RPL7A also enhanced xylose utilization in a corresponding manner. Furthermore, the overexpression of NRM1, which is related to the cell cycle, increased the growth rate by 8.7%, the xylose utilization rate by 30.0%, and the ethanol production rate by 76.6%. CONCLUSIONS The TFs Thi2p and Nrm1p exerted unexpected effects on the post-glucose effect, enhancing ribosome synthesis and altering the cell cycle, respectively. The results of this study will aid in maintaining highly efficient xylose metabolism during glucose-xylose co-fermentation, which is utilized for lignocellulosic bioethanol production.
Collapse
Affiliation(s)
- Shan Wei
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, Shan Da Nan Road 27, Jinan, 250100 China
- School of Life Science, Shandong University, Shan Da Nan Road 27, Jinan, 250100 China
| | - Yanan Liu
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, Shan Da Nan Road 27, Jinan, 250100 China
- School of Life Science, Shandong University, Shan Da Nan Road 27, Jinan, 250100 China
| | - Meiling Wu
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, Shan Da Nan Road 27, Jinan, 250100 China
- School of Life Science, Shandong University, Shan Da Nan Road 27, Jinan, 250100 China
| | - Tiantai Ma
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, Shan Da Nan Road 27, Jinan, 250100 China
- School of Life Science, Shandong University, Shan Da Nan Road 27, Jinan, 250100 China
| | - Xiangzheng Bai
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, Shan Da Nan Road 27, Jinan, 250100 China
- School of Life Science, Shandong University, Shan Da Nan Road 27, Jinan, 250100 China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, Shan Da Nan Road 27, Jinan, 250100 China
- School of Life Science, Shandong University, Shan Da Nan Road 27, Jinan, 250100 China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, Shan Da Nan Road 27, Jinan, 250100 China
- School of Life Science, Shandong University, Shan Da Nan Road 27, Jinan, 250100 China
| | - Xiaoming Bao
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, Shan Da Nan Road 27, Jinan, 250100 China
- School of Life Science, Shandong University, Shan Da Nan Road 27, Jinan, 250100 China
- Shandong Provincial Key Laboratory of Microbial Engineering, Qi Lu University of Technology, Daxue Rd 3501, Jinan, 250353 China
| |
Collapse
|
25
|
Cuello RA, Flores Montero KJ, Mercado LA, Combina M, Ciklic IF. Construction of low-ethanol-wine yeasts through partial deletion of the Saccharomyces cerevisiae PDC2 gene. AMB Express 2017; 7:67. [PMID: 28324615 PMCID: PMC5360750 DOI: 10.1186/s13568-017-0369-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/13/2017] [Indexed: 11/10/2022] Open
Abstract
We propose an alternative GMO based strategy to obtain Saccharomyces cerevisiae mutant strains with a slight reduction in their ability to produce ethanol, but with a moderate impact on the yeast metabolism. Through homologous recombination, two truncated Pdc2p proteins Pdc2pΔ344 and Pdc2pΔ519 were obtained and transformed into haploid and diploid lab yeast strains. In the pdc2Δ344 mutants the DNA-binding and transactivation site of the protein remain intact, whereas in pdc2Δ519 only the DNA-binding site is conserved. Compared to the control, the diploid BY4743pdc2Δ519 mutant strain reduced up to 7.4% the total ethanol content in lab scale-vinifications. The residual sugar and volatile acidity was not significantly affected by this ethanol reduction. Remarkably, we got a much higher ethanol reduction of 10 and 15% when the pdc2Δ519 mutation was tested in a native and a commercial wine yeast strain against their respective controls. Our results demonstrate that the insertion of the pdc2Δ519 mutation in wine yeast strains can reduce the ethanol concentration up to 1.89% (v/v) without affecting the fermentation performance. In contrast to non-GMO based strategies, our approach permits the insertion of the pdc2Δ519 mutation in any locally selected wine strain, making possible to produce quality wines with regional characteristics and lower alcohol content. Thus, we consider our work a valuable contribution to the problem of high ethanol concentration in wine.
Collapse
|
26
|
Bunik V, Aleshin V. Analysis of the Protein Binding Sites for Thiamin and Its Derivatives to Elucidate the Molecular Mechanisms of the Noncoenzyme Action of Thiamin (Vitamin B1). STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63930-1.00011-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Zeng WY, Tang YQ, Gou M, Sun ZY, Xia ZY, Kida K. Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability. Appl Microbiol Biotechnol 2016; 101:1753-1767. [DOI: 10.1007/s00253-016-8046-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 10/20/2022]
|
28
|
Wu WS, Lai FJ. Detecting Cooperativity between Transcription Factors Based on Functional Coherence and Similarity of Their Target Gene Sets. PLoS One 2016; 11:e0162931. [PMID: 27623007 PMCID: PMC5021274 DOI: 10.1371/journal.pone.0162931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/30/2016] [Indexed: 11/22/2022] Open
Abstract
In eukaryotic cells, transcriptional regulation of gene expression is usually achieved by cooperative transcription factors (TFs). Therefore, knowing cooperative TFs is the first step toward uncovering the molecular mechanisms of gene expression regulation. Many algorithms based on different rationales have been proposed to predict cooperative TF pairs in yeast. Although various types of rationales have been used in the existing algorithms, functional coherence is not yet used. This prompts us to develop a new algorithm based on functional coherence and similarity of the target gene sets to identify cooperative TF pairs in yeast. The proposed algorithm predicted 40 cooperative TF pairs. Among them, three (Pdc2-Thi2, Hot1-Msn1 and Leu3-Met28) are novel predictions, which have not been predicted by any existing algorithms. Strikingly, two (Pdc2-Thi2 and Hot1-Msn1) of the three novel predictions have been experimentally validated, demonstrating the power of the proposed algorithm. Moreover, we show that the predictions of the proposed algorithm are more biologically meaningful than the predictions of 17 existing algorithms under four evaluation indices. In summary, our study suggests that new algorithms based on novel rationales are worthy of developing for detecting previously unidentifiable cooperative TF pairs.
Collapse
Affiliation(s)
- Wei-Sheng Wu
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| | - Fu-Jou Lai
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
29
|
Shi X, Zou Y, Chen Y, Zheng C, Ying H. Overexpression of a Water-Forming NADH Oxidase Improves the Metabolism and Stress Tolerance of Saccharomyces cerevisiae in Aerobic Fermentation. Front Microbiol 2016; 7:1427. [PMID: 27679617 PMCID: PMC5020133 DOI: 10.3389/fmicb.2016.01427] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/29/2016] [Indexed: 01/01/2023] Open
Abstract
Redox homeostasis is fundamental to the maintenance of metabolism. Redox imbalance can cause oxidative stress, which affects metabolism and growth. Water-forming NADH oxidase regulates the redox balance by oxidizing cytosolic NADH to NAD+, which relieves cytosolic NADH accumulation through rapid glucose consumption in Saccharomyces cerevisiae, thus decreasing the production of the by product glycerol in industrial ethanol production. Here, we studied the effects of overexpression of a water-forming NADH oxidase from Lactococcus lactis on the stress response of S. cerevisiae in aerobic batch fermentation, and we constructed an interaction network of transcriptional regulation and metabolic networks to study the effects of and mechanisms underlying NADH oxidase regulation. The oxidase-overexpressing strain (NOX) showed increased glucose consumption, growth, and ethanol production, while glycerol production was remarkably lower. Glucose was exhausted by NOX at 26 h, while 18.92 ± 0.94 g/L residual glucose was left in the fermentation broth of the control strain (CON) at this time point. At 29.5 h, the ethanol concentration for NOX peaked at 35.25 ± 1.76 g/L, which was 14.37% higher than that for CON (30.82 ± 1.54 g/L). Gene expression involved in the synthesis of thiamine, which is associated with stress responses in various organisms, was increased in NOX. The transcription factor HAP4 was significantly upregulated in NOX at the late-exponential phase, indicating a diauxic shift in response to starvation. The apoptosis-inducing factor Nuc1 was downregulated while the transcription factor Sok2, which regulates the production of the small signaling molecule ammonia, was upregulated at the late-exponential phase, benefiting young cells on the rim. Reactive oxygen species production was decreased by 10% in NOX, supporting a decrease in apoptosis. The HOG pathway was not activated, although the osmotic stress was truly higher, indicating improved osmotolerance. Thus, the NADH oxidase can regulate the metabolism during aerobic fermentation in S. cerevisiae, thereby protecting cells against several stresses. Our findings indicate its suitability for use in industrial processes.
Collapse
Affiliation(s)
- Xinchi Shi
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China
| | - Yanan Zou
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China
| | - Yong Chen
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China; Jiangsu National Synergistic Innovation Center for Advanced MaterialsNanjing, China
| | - Cheng Zheng
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China
| | - Hanjie Ying
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China; Jiangsu National Synergistic Innovation Center for Advanced MaterialsNanjing, China
| |
Collapse
|
30
|
Abstract
Moonlighting proteins are multifunctional proteins that participate in unrelated biological processes and that are not the result of gene fusion. A certain number of these proteins have been characterized in yeasts, and the easy genetic manipulation of these microorganisms has been useful for a thorough analysis of some cases of moonlighting. As the awareness of the moonlighting phenomenon has increased, a growing number of these proteins are being uncovered. In this review, we present a crop of newly identified moonlighting proteins from yeasts and discuss the experimental evidence that qualifies them to be classified as such. The variety of moonlighting functions encompassed by the proteins considered extends from control of transcription to DNA repair or binding to plasminogen. We also discuss several questions pertaining to the moonlighting condition in general. The cases presented show that yeasts are important organisms to be used as tools to understand different aspects of moonlighting proteins.
Collapse
|
31
|
Qi X, Su X, Guo H, Qi J, Cheng H. VdThit, a Thiamine Transport Protein, Is Required for Pathogenicity of the Vascular Pathogen Verticillium dahliae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:545-559. [PMID: 27089469 DOI: 10.1094/mpmi-03-16-0057-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Verticillium dahliae causes a serious wilt disease of important crops and is difficult to control. Few plasma-membrane transport proteins for nutrient acquisition have been identified for this fungus, and their involvement in the disease process is unknown. Here, a plasma-membrane protein, the V. dahliae thiamine transporter protein VdThit, was characterized functionally by deletion of the VdThit gene in V. dahliae. Disruption strains were viable, but growth and conidial germination and production were reduced and virulence was impaired. Interestingly, by supplementing exogenous thiamine, growth, conidiation, and virulence of the VdΔThit mutants were partially restored. Stress-tolerance assays showed that the VdΔThit mutant strains were markedly more susceptible to oxidative stress and UV damage. High-pressure liquid chromatography-mass spectrometry (HPLC-MS) and gas chromatography-mass spectrometry (GC-MS) analyses showed low levels of pyruvate metabolism intermediates acetoin and acetyl coenzyme A (acetyl-CoA) in the VdΔThit mutant strains, suggesting that pyruvate metabolism was suppressed. Expression analysis of VdThit confirmed the importance of VdThit in vegetative growth, reproduction, and invasive hyphal growth. Furthermore, a green fluorescent protein (GFP)-labeled VdΔThit mutant (VdΔThit-7-GFP) was suppressed in initial infection and root colonization, as viewed with light microscopy. Together, these results showed that VdThit plays an indispensable role in the pathogenicity of V. dahliae.
Collapse
Affiliation(s)
- Xiliang Qi
- 1 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; and
- 2 Agriculture College of Shihezi University, Shihezi 832000, China
| | - Xiaofeng Su
- 1 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; and
| | - Huiming Guo
- 1 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; and
| | - Juncang Qi
- 2 Agriculture College of Shihezi University, Shihezi 832000, China
| | - Hongmei Cheng
- 1 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; and
| |
Collapse
|
32
|
Iosue CL, Attanasio N, Shaik NF, Neal EM, Leone SG, Cali BJ, Peel MT, Grannas AM, Wykoff DD. Partial Decay of Thiamine Signal Transduction Pathway Alters Growth Properties of Candida glabrata. PLoS One 2016; 11:e0152042. [PMID: 27015653 PMCID: PMC4807840 DOI: 10.1371/journal.pone.0152042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/21/2016] [Indexed: 12/31/2022] Open
Abstract
The phosphorylated form of thiamine (Vitamin B1), thiamine pyrophosphate (TPP) is essential for the metabolism of amino acids and carbohydrates in all organisms. Plants and microorganisms, such as yeast, synthesize thiamine de novo whereas animals do not. The thiamine signal transduction (THI) pathway in Saccharomyces cerevisiae is well characterized. The ~10 genes required for thiamine biosynthesis and uptake are transcriptionally upregulated during thiamine starvation by THI2, THI3, and PDC2. Candida glabrata, a human commensal and opportunistic pathogen, is closely related to S. cerevisiae but is missing half of the biosynthetic pathway, which limits its ability to make thiamine. We investigated the changes to the THI pathway in C. glabrata, confirming orthologous functions. We found that C. glabrata is unable to synthesize the pyrimidine subunit of thiamine as well as the thiamine precursor vitamin B6. In addition, THI2 (the gene encoding a transcription factor) is not present in C. glabrata, indicating a difference in the transcriptional regulation of the pathway. Although the pathway is upregulated by thiamine starvation in both species, C. glabrata appears to upregulate genes involved in thiamine uptake to a greater extent than S. cerevisiae. However, the altered regulation of the THI pathway does not alter the concentration of thiamine and its vitamers in the two species as measured by HPLC. Finally, we demonstrate potential consequences to having a partial decay of the THI biosynthetic and regulatory pathway. When the two species are co-cultured, the presence of thiamine allows C. glabrata to rapidly outcompete S. cerevisiae, while absence of thiamine allows S. cerevisiae to outcompete C. glabrata. This simplification of the THI pathway in C. glabrata suggests its environment provides thiamine and/or its precursors to cells, whereas S. cerevisiae is not as reliant on environmental sources of thiamine.
Collapse
Affiliation(s)
- Christine L. Iosue
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Nicholas Attanasio
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Noor F. Shaik
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Erin M. Neal
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Sarah G. Leone
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Brian J. Cali
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Michael T. Peel
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Amanda M. Grannas
- Department of Chemistry, Villanova University, Villanova, Pennsylvania, United States of America
| | - Dennis D. Wykoff
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
33
|
Marsit S, Sanchez I, Galeote V, Dequin S. Horizontally acquired oligopeptide transporters favour adaptation ofSaccharomyces cerevisiaewine yeast to oenological environment. Environ Microbiol 2016; 18:1148-61. [DOI: 10.1111/1462-2920.13117] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Souhir Marsit
- INRA; UMR1083 Sciences pour l'Oenology; Montpellier France
| | | | | | - Sylvie Dequin
- INRA; UMR1083 Sciences pour l'Oenology; Montpellier France
| |
Collapse
|
34
|
Xylose-induced dynamic effects on metabolism and gene expression in engineered Saccharomyces cerevisiae in anaerobic glucose-xylose cultures. Appl Microbiol Biotechnol 2015; 100:969-85. [DOI: 10.1007/s00253-015-7038-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 09/14/2015] [Accepted: 09/22/2015] [Indexed: 12/27/2022]
|
35
|
Brion C, Ambroset C, Delobel P, Sanchez I, Blondin B. Deciphering regulatory variation of THI genes in alcoholic fermentation indicate an impact of Thi3p on PDC1 expression. BMC Genomics 2014; 15:1085. [PMID: 25494835 PMCID: PMC4299793 DOI: 10.1186/1471-2164-15-1085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/26/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Thiamine availability is involved in glycolytic flux and fermentation efficiency. A deficiency of this vitamin may be responsible for sluggish fermentations in wine making. Therefore, both thiamine uptake and de novo synthesis could have key roles in fermentation processes. Thiamine biosynthesis is regulated in response to thiamine availability and is coordinated by the thiamine sensor Thi3p, which activates Pdc2p and Thi2p. We used a genetic approach to identify quantitative trait loci (QTLs) in wine yeast and we discovered that a set of thiamine genes displayed expression-QTL on a common locus, which contains the thiamine regulator THI3. RESULTS We deciphered here the source of these regulatory variations of the THI and PDC genes. We showed that alteration of THI3 results in reduced expression of the genes involved in thiamine biosynthesis (THI11/12/13 and THI74) and increased expression of the pyruvate decarboxylase gene PDC1. Functional analysis of the allelic effect of THI3 confirmed the control of the THI and PDC1 genes. We observed, however, only a small effect of the THI3 on fermentation kinetics. We demonstrated that the expression levels of several THI genes are correlated with fermentation rate, suggesting that decarboxylation activity could drive gene expression through a modulation of thiamine content. Our data also reveals a new role of Thi3p in the regulation of the main pyruvate decarboxylase gene, PDC1. CONCLUSIONS This highlights a switch from PDC1 to PDC5 gene expression during thiamine deficiency, which may improve the thiamine affinity or conservation during the enzymatic reaction. In addition, we observed that the lab allele of THI3 and of the thiamin transporter THI7 have diverged from the original alleles, consistent with an adaptation of lab strains to rich media containing an excess of thiamine.
Collapse
Affiliation(s)
| | | | | | | | - Bruno Blondin
- INRA, UMR1083, Science pour l'Œnologie, 2 Place Viala, F-34060, Montpellier, France.
| |
Collapse
|
36
|
Uptake and accumulation of B-group vitamers in Saccharomyces cerevisiae in ethanol-stat fed-batch culture. World J Microbiol Biotechnol 2014; 30:2351-9. [PMID: 24781266 DOI: 10.1007/s11274-014-1660-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/22/2014] [Indexed: 10/25/2022]
Abstract
The uptake and accumulation of the B-group vitamins thiamine, riboflavin, nicotinamide, pantothenic acid and pyridoxine in Saccharomyces cerevisiae was studied by gradually increasing the specific dosage of vitamins in an ethanol-stat fed-batch culture. Thiamine, nicotinamide, pantothenic acid, and pyridoxine were almost completely taken up at low vitamin dosages. Thiamine was determined to be the major accumulating form of vitamin B1 while most of the assimilated nicotinamide and pantothenic acid accumulated in cofactor forms. Despite the obvious uptake of pyridoxine, accumulation of B6 vitamers was not observed. In contrast with the other vitamins studied, riboflavin began accumulating in the culture medium immediately after vitamin addition was initiated. By the end of the experiment, the apparent uptake of all vitamins exceeded their accumulation in the cells. Variations in the growth rate of yeast at different vitamin dosages demonstrate the importance of balancing the vitamins in the media during cultivation.
Collapse
|
37
|
Ceschin J, Saint-Marc C, Laporte J, Labriet A, Philippe C, Moenner M, Daignan-Fornier B, Pinson B. Identification of yeast and human 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAr) transporters. J Biol Chem 2014; 289:16844-54. [PMID: 24778186 DOI: 10.1074/jbc.m114.551192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAr) is the precursor of the active monophosphate form (AICAR), a small molecule with potent anti-proliferative and low energy mimetic properties. The molecular bases for AICAR toxicity at the cellular level are poorly understood. Here, we report the isolation and characterization of several yeast AICAr-hypersensitive mutants. Identification of the cognate genes allowed us to establish that thiamine transporters Thi7 and Thi72 can efficiently take up AICAr under conditions where they are overexpressed. We establish that, under standard growth conditions, Nrt1, the nicotinamide riboside carrier, is the major AICAr transporter in yeast. A study of AICAR accumulation in human cells revealed substantial disparities among cell lines and confirmed that AICAr enters cells via purine nucleoside transporters. Together, our results point to significant differences between yeast and human cells for both AICAr uptake and AICAR accumulation.
Collapse
Affiliation(s)
- Johanna Ceschin
- From the Université de Bordeaux IBGC UMR 5095 1, F-33077 Bordeaux, France and the Centre National de la Recherche Scientifique IBGC UMR 5095 1, F-33077 Bordeaux, France
| | - Christelle Saint-Marc
- From the Université de Bordeaux IBGC UMR 5095 1, F-33077 Bordeaux, France and the Centre National de la Recherche Scientifique IBGC UMR 5095 1, F-33077 Bordeaux, France
| | - Jean Laporte
- From the Université de Bordeaux IBGC UMR 5095 1, F-33077 Bordeaux, France and the Centre National de la Recherche Scientifique IBGC UMR 5095 1, F-33077 Bordeaux, France
| | - Adrien Labriet
- From the Université de Bordeaux IBGC UMR 5095 1, F-33077 Bordeaux, France and the Centre National de la Recherche Scientifique IBGC UMR 5095 1, F-33077 Bordeaux, France
| | - Chloé Philippe
- From the Université de Bordeaux IBGC UMR 5095 1, F-33077 Bordeaux, France and the Centre National de la Recherche Scientifique IBGC UMR 5095 1, F-33077 Bordeaux, France
| | - Michel Moenner
- From the Université de Bordeaux IBGC UMR 5095 1, F-33077 Bordeaux, France and the Centre National de la Recherche Scientifique IBGC UMR 5095 1, F-33077 Bordeaux, France
| | - Bertrand Daignan-Fornier
- From the Université de Bordeaux IBGC UMR 5095 1, F-33077 Bordeaux, France and the Centre National de la Recherche Scientifique IBGC UMR 5095 1, F-33077 Bordeaux, France
| | - Benoît Pinson
- From the Université de Bordeaux IBGC UMR 5095 1, F-33077 Bordeaux, France and the Centre National de la Recherche Scientifique IBGC UMR 5095 1, F-33077 Bordeaux, France
| |
Collapse
|
38
|
Ottaviano D, Micolonghi C, Tizzani L, Lemaire M, Wésolowski-Louvel M, De Stefano ME, Ranieri D, Bianchi MM. Autoregulation of the Kluyveromyces lactis pyruvate decarboxylase gene KlPDC1 involves the regulatory gene RAG3. MICROBIOLOGY-SGM 2014; 160:1369-1378. [PMID: 24763423 DOI: 10.1099/mic.0.078543-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the yeast Kluyveromyces lactis, the pyruvate decarboxylase gene KlPDC1 is strongly regulated at the transcription level by different environmental factors. Sugars and hypoxia act as inducers of transcription, while ethanol acts as a repressor. Their effects are mediated by gene products, some of which have been characterized. KlPDC1 transcription is also strongly repressed by its product--KlPdc1--through a mechanism called autoregulation. We performed a genetic screen that allowed us to select and identify the regulatory gene RAG3 as a major factor in the transcriptional activity of the KlPDC1 promoter in the absence of the KlPdc1 protein, i.e. in the autoregulatory mechanism. We also showed that the two proteins Rag3 and KlPdc1 interact, co-localize in the cell and that KlPdc1 may control Rag3 nuclear localization.
Collapse
Affiliation(s)
- Daniela Ottaviano
- Dip. Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, p.le Aldo Moro 5, 00185 Roma, Italy
| | - Chiara Micolonghi
- Dip. Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, p.le Aldo Moro 5, 00185 Roma, Italy
| | - Lorenza Tizzani
- Dip. Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, p.le Aldo Moro 5, 00185 Roma, Italy
| | - Marc Lemaire
- CNRS, Villeurbanne, France.,Université Lyon1, Lyon, France.,Génétique Moléculaire des Levures, UMR5240 Microbiologie, Adaptation et Pathogénie, Université de Lyon, Lyon, France
| | - Micheline Wésolowski-Louvel
- CNRS, Villeurbanne, France.,Université Lyon1, Lyon, France.,Génétique Moléculaire des Levures, UMR5240 Microbiologie, Adaptation et Pathogénie, Université de Lyon, Lyon, France
| | - Maria Egle De Stefano
- Istituto Pasteur Fondazione Cenci-Bolognetti, Sapienza Università di Roma, Roma, Italy.,Dip. Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, p.le Aldo Moro 5, 00185 Roma, Italy
| | - Danilo Ranieri
- Dip. Medicina clinica e molecolare, Sapienza Università di Roma, via di Grottarossa 1035, 00189 Roma, Italy
| | - Michele M Bianchi
- Istituto Pasteur Fondazione Cenci-Bolognetti, Sapienza Università di Roma, Roma, Italy.,Dip. Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, p.le Aldo Moro 5, 00185 Roma, Italy
| |
Collapse
|
39
|
Pires EJ, Teixeira JA, Brányik T, Vicente AA. Yeast: the soul of beer's aroma--a review of flavour-active esters and higher alcohols produced by the brewing yeast. Appl Microbiol Biotechnol 2014; 98:1937-49. [PMID: 24384752 DOI: 10.1007/s00253-013-5470-0] [Citation(s) in RCA: 337] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/11/2013] [Accepted: 12/11/2013] [Indexed: 11/26/2022]
Abstract
Among the most important factors influencing beer quality is the presence of well-adjusted amounts of higher alcohols and esters. Thus, a heavy body of literature focuses on these substances and on the parameters influencing their production by the brewing yeast. Additionally, the complex metabolic pathways involved in their synthesis require special attention. More than a century of data, mainly in genetic and proteomic fields, has built up enough information to describe in detail each step in the pathway for the synthesis of higher alcohols and their esters, but there is still place for more. Higher alcohols are formed either by anabolism or catabolism (Ehrlich pathway) of amino acids. Esters are formed by enzymatic condensation of organic acids and alcohols. The current paper reviews the up-to-date knowledge in the pathways involving the synthesis of higher alcohols and esters by brewing yeasts. Fermentation parameters affecting yeast response during biosynthesis of these aromatic substances are also fully reviewed.
Collapse
Affiliation(s)
- Eduardo J Pires
- IBB - Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal,
| | | | | | | |
Collapse
|
40
|
Agarwal PK, Uppada V, Noronha SB. Comparison of pyruvate decarboxylases from Saccharomyces cerevisiae and Komagataella pastoris (Pichia pastoris). Appl Microbiol Biotechnol 2013; 97:9439-49. [DOI: 10.1007/s00253-013-4758-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/03/2013] [Accepted: 02/05/2013] [Indexed: 11/30/2022]
|
41
|
Huang Z, Srinivasan S, Zhang J, Chen K, Li Y, Li W, Quiocho FA, Pan X. Discovering thiamine transporters as targets of chloroquine using a novel functional genomics strategy. PLoS Genet 2012; 8:e1003083. [PMID: 23209439 PMCID: PMC3510038 DOI: 10.1371/journal.pgen.1003083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/24/2012] [Indexed: 12/27/2022] Open
Abstract
Chloroquine (CQ) and other quinoline-containing antimalarials are important drugs with many therapeutic benefits as well as adverse effects. However, the molecular targets underlying most such effects are largely unknown. By taking a novel functional genomics strategy, which employs a unique combination of genome-wide drug-gene synthetic lethality (DGSL), gene-gene synthetic lethality (GGSL), and dosage suppression (DS) screens in the model organism Saccharomyces cerevisiae and is thus termed SL/DS for simplicity, we found that CQ inhibits the thiamine transporters Thi7, Nrt1, and Thi72 in yeast. We first discovered a thi3Δ mutant as hypersensitive to CQ using a genome-wide DGSL analysis. Using genome-wide GGSL and DS screens, we then found that a thi7Δ mutation confers severe growth defect in the thi3Δ mutant and that THI7 overexpression suppresses CQ-hypersensitivity of this mutant. We subsequently showed that CQ inhibits the functions of Thi7 and its homologues Nrt1 and Thi72. In particular, the transporter activity of wild-type Thi7 but not a CQ-resistant mutant (Thi7T287N) was completely inhibited by the drug. Similar effects were also observed with other quinoline-containing antimalarials. In addition, CQ completely inhibited a human thiamine transporter (SLC19A3) expressed in yeast and significantly inhibited thiamine uptake in cultured human cell lines. Therefore, inhibition of thiamine uptake is a conserved mechanism of action of CQ. This study also demonstrated SL/DS as a uniquely effective methodology for discovering drug targets. By using a novel SL/DS methodology in the model organism yeast, we discovered that the antimalarial drug CQ inhibits thiamine transporters and consequently causes thiamine (vitamin B1) deficiency and growth defects. This mechanism of action (MOA) is conserved in human cells and possibly also in other organisms. Given that both thiamine deficiency and treatment with CQ cause retinal, neurological, and cardiovascular disorders in humans, our results suggest that thiamine deficiency might be a root cause of some of CQ's adverse effects, which might be preventable with concomitant dietary thiamine supplementation. Such a MOA by CQ could also be responsible for its therapeutic effects against malarial parasites, which need exogenous thiamine for survival. Such a possibility needs to be investigated before dietary thiamine supplementation can be used to prevent CQ's adverse effects.
Collapse
Affiliation(s)
- Zhiwei Huang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, China
| | - Sankaranarayanan Srinivasan
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jianhuai Zhang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kaifu Chen
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yongxiang Li
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Wei Li
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Florante A. Quiocho
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Xuewen Pan
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Center of Molecular Discovery, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
42
|
Styger G, Jacobson D, Prior BA, Bauer FF. Genetic analysis of the metabolic pathways responsible for aroma metabolite production by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2012; 97:4429-42. [PMID: 23111598 DOI: 10.1007/s00253-012-4522-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/13/2012] [Accepted: 10/15/2012] [Indexed: 11/29/2022]
Abstract
During alcoholic fermentation, higher alcohols, esters, and acids are formed from amino acids via the Ehrlich pathway by yeast, but many of the genes encoding the enzymes have not yet been identified. When the BAT1/2 genes, encoding transaminases that deaminate amino acids in the first step of the Ehrlich pathway are deleted, higher metabolite formation is significantly decreased. Screening yeast strains with deletions of genes encoding decarboxylases, dehydrogenases, and reductases revealed nine genes whose absence had the most significant impact on higher alcohol production. The seven most promising genes (AAD6, BAT2, HOM2, PAD1, PRO2, SPE1, and THI3) were further investigated by constructing double- and triple-deletion mutants. All double-deletion strains showed a greater decrease in isobutanol, isoamyl alcohol, isobutyric, and isovaleric acid production than the corresponding single deletion strains with the double-deletion strains in combination with ∆bat2 and the ∆hom2-∆aad6 strain revealing the greatest impact. BAT2 is the dominant gene in these deletion strains and this suggests the initial transaminase step of the Ehrlich pathway is rate-limiting. The triple-deletion strains in combination with BAT2 (∆bat2-∆thi3-∆aad6 and ∆bat2-∆thi3-∆hom2) had the greatest impact on the end metabolite production with the exception of isoamyl alcohol and isovaleric acid. The strain deleted for two dehydrogenases and a reductase (∆hom2-∆pro2-∆aad6) had a greater effect on the levels of these two compounds. This study contributes to the elucidation of the Ehrlich pathway and its significance for aroma production by fermenting yeast cells.
Collapse
Affiliation(s)
- Gustav Styger
- Institute for Wine Biotechnology, Stellenbosch University, Stellenbosch 7600, South Africa
| | | | | | | |
Collapse
|
43
|
Cordente AG, Curtin CD, Varela C, Pretorius IS. Flavour-active wine yeasts. Appl Microbiol Biotechnol 2012; 96:601-18. [PMID: 22940803 PMCID: PMC3466427 DOI: 10.1007/s00253-012-4370-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/11/2012] [Accepted: 08/13/2012] [Indexed: 11/26/2022]
Abstract
The flavour of fermented beverages such as beer, cider, saké and wine owe much to the primary fermentation yeast used in their production, Saccharomyces cerevisiae. Where once the role of yeast in fermented beverage flavour was thought to be limited to a small number of volatile esters and higher alcohols, the discovery that wine yeast release highly potent sulfur compounds from non-volatile precursors found in grapes has driven researchers to look more closely at how choice of yeast can influence wine style. This review explores recent progress towards understanding the range of ‘flavour phenotypes’ that wine yeast exhibit, and how this knowledge has been used to develop novel flavour-active yeasts. In addition, emerging opportunities to augment these phenotypes by engineering yeast to produce so-called grape varietal compounds, such as monoterpenoids, will be discussed.
Collapse
Affiliation(s)
- Antonio G. Cordente
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064 Australia
| | - Christopher D. Curtin
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064 Australia
| | - Cristian Varela
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064 Australia
| | - Isak S. Pretorius
- University of South Australia, GPO Box 2471, Adelaide, SA 5001 Australia
| |
Collapse
|
44
|
White CE, Gavina JMA, Morton R, Britz-McKibbin P, Finan TM. Control of hydroxyproline catabolism inSinorhizobium meliloti. Mol Microbiol 2012; 85:1133-47. [DOI: 10.1111/j.1365-2958.2012.08164.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Xu G, Hua Q, Duan N, Liu L, Chen J. Regulation of thiamine synthesis in Saccharomyces cerevisiae for improved pyruvate production. Yeast 2012; 29:209-17. [DOI: 10.1002/yea.2902] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 04/11/2012] [Indexed: 11/09/2022] Open
Affiliation(s)
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai; China
| | - Ningjun Duan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi; China
| | | | | |
Collapse
|
46
|
Nosaka K, Esaki H, Onozuka M, Konno H, Hattori Y, Akaji K. Facilitated recruitment of Pdc2p, a yeast transcriptional activator, in response to thiamin starvation. FEMS Microbiol Lett 2012; 330:140-7. [PMID: 22404710 DOI: 10.1111/j.1574-6968.2012.02543.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/15/2012] [Accepted: 03/05/2012] [Indexed: 11/30/2022] Open
Abstract
In Saccharomyces cerevisiae, genes involved in thiamin pyrophosphate (TPP) synthesis (THI genes) and the pyruvate decarboxylase structural gene PDC5 are transcriptionally induced in response to thiamin starvation. Three positive regulatory factors (Thi2p, Thi3p, and Pdc2p) are involved in the expression of THI genes, whereas only Pdc2p is required for the expression of PDC5. Thi2p and Pdc2p serve as transcriptional activators and each factor can interact with Thi3p. The target consensus DNA sequence of Thi2p has been deduced. When TPP is not bound to Thi3p, the interactions between the regulatory factors are increased and THI gene expression is upregulated. In this study, we demonstrated that Pdc2p interacts with the upstream region of THI genes and PDC5. The association of Pdc2p or Thi2p with THI gene promoters was enhanced by thiamin starvation, suggesting that Pdc2p and Thi2p assist each other in their recruitment to the THI promoters via interaction with Thi3p. It is highly likely that, under thiamin-deprived conditions, a ternary Thi2p/Thi3p/Pdc2p complex is formed and transactivates THI genes in yeast cells. On the other hand, the association of Pdc2p with PDC5 was unaffected by thiamin. We also identified a DNA element in the upstream region of PDC5, which can bind to Pdc2p and is required for the expression of PDC5.
Collapse
Affiliation(s)
- Kazuto Nosaka
- Department of Chemistry, Hyogo College of Medicine, Nishinomiya, Japan.
| | | | | | | | | | | |
Collapse
|
47
|
Styger G, Jacobson D, Bauer FF. Identifying genes that impact on aroma profiles produced by Saccharomyces cerevisiae and the production of higher alcohols. Appl Microbiol Biotechnol 2011; 91:713-30. [DOI: 10.1007/s00253-011-3237-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 10/18/2022]
|
48
|
Benchabane H, Xin N, Tian A, Hafler BP, Nguyen K, Ahmed A, Ahmed Y. Jerky/Earthbound facilitates cell-specific Wnt/Wingless signalling by modulating β-catenin-TCF activity. EMBO J 2011; 30:1444-58. [PMID: 21399610 DOI: 10.1038/emboj.2011.67] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 02/10/2011] [Indexed: 12/29/2022] Open
Abstract
Wnt/Wingless signal transduction directs fundamental developmental processes, and upon hyperactivation triggers colorectal adenoma/carcinoma formation. Responses to Wnt stimulation are cell specific and diverse; yet, how cell context modulates Wnt signalling outcome remains obscure. In a Drosophila genetic screen for components that promote Wingless signalling, we identified Earthbound 1 (Ebd1), a novel member in a protein family containing Centromere Binding Protein B (CENPB)-type DNA binding domains. Ebd1 is expressed in only a subset of Wingless responsive cell types, and is required for only a limited number of Wingless-dependent processes. In addition, Ebd1 shares sequence similarity and can be functionally replaced with the human CENPB domain protein Jerky, previously implicated in juvenile myoclonic epilepsy development. Both Jerky and Ebd1 interact directly with the Wnt/Wingless pathway transcriptional co-activators β-catenin/Armadillo and T-cell factor (TCF). In colon carcinoma cells, Jerky facilitates Wnt signalling by promoting association of β-catenin with TCF and recruitment of β-catenin to chromatin. These findings indicate that tissue-restricted transcriptional co-activators facilitate cell-specific Wnt/Wingless signalling responses by modulating β-catenin-TCF activity.
Collapse
Affiliation(s)
- Hassina Benchabane
- Department of Genetics and the Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Thiamine biosynthesis in Saccharomyces cerevisiae is regulated by the NAD+-dependent histone deacetylase Hst1. Mol Cell Biol 2010; 30:3329-41. [PMID: 20439498 DOI: 10.1128/mcb.01590-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genes encoding thiamine biosynthesis enzymes in microorganisms are tightly regulated such that low environmental thiamine concentrations activate transcription and high concentrations are repressive. We have determined that multiple thiamine (THI) genes in Saccharomyces cerevisiae are also regulated by the intracellular NAD(+) concentration via the NAD(+)-dependent histone deacetylase (HDAC) Hst1 and, to a lesser extent, Sir2. Both of these HDACs associate with a distal region of the affected THI gene promoters that does not overlap with a previously defined enhancer region bound by the thiamine-responsive Thi2/Thi3/Pdc2 transcriptional activators. The specificity of histone H3 and/or H4 deacetylation carried out by Hst1 and Sir2 at the distal promoter region depends on the THI gene being tested. Hst1/Sir2-mediated repression of the THI genes occurs at the level of basal expression, thus representing the first set of transcription factors shown to actively repress this gene class. Importantly, lowering the NAD(+) concentration and inhibiting the Hst1/Sum1 HDAC complex elevated the intracellular thiamine concentration due to increased thiamine biosynthesis and transport, implicating NAD(+) in the control of thiamine homeostasis.
Collapse
|
50
|
Stambuk BU, Dunn B, Alves SL, Duval EH, Sherlock G. Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis. Genome Res 2009; 19:2271-8. [PMID: 19897511 DOI: 10.1101/gr.094276.109] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fuel ethanol is now a global energy commodity that is competitive with gasoline. Using microarray-based comparative genome hybridization (aCGH), we have determined gene copy number variations (CNVs) common to five industrially important fuel ethanol Saccharomyces cerevisiae strains responsible for the production of billions of gallons of fuel ethanol per year from sugarcane. These strains have significant amplifications of the telomeric SNO and SNZ genes, which are involved in the biosynthesis of vitamins B6 (pyridoxine) and B1 (thiamin). We show that increased copy number of these genes confers the ability to grow more efficiently under the repressing effects of thiamin, especially in medium lacking pyridoxine and with high sugar concentrations. These genetic changes have likely been adaptive and selected for in the industrial environment, and may be required for the efficient utilization of biomass-derived sugars from other renewable feedstocks.
Collapse
Affiliation(s)
- Boris U Stambuk
- Department of Genetics, Stanford University, Stanford, California 94305-5120, USA.
| | | | | | | | | |
Collapse
|