1
|
Wang Y, Chen F, Chen Y, Ren K, Zhao D, Li K, Li H, Wan X, Peng M, Xiang Z, Tang Q, Hou Z, Fang Q, Zhou Y, Lu Y. Identification and analysis of drought-responsive F-box genes in upland rice and involvement of OsFBX148 in ABA response and ROS accumulation. BMC PLANT BIOLOGY 2024; 24:1120. [PMID: 39581968 PMCID: PMC11587610 DOI: 10.1186/s12870-024-05820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Upland rice varieties exhibit significant genetic diversity and broad environmental adaptability, making them ideal candidates for identifying consistently expressed stress-responsive genes. F-box proteins typically function as part of the SKP1-CUL1-F-box protein (SCF) ubiquitin ligase complexes to precisely regulate gene expression and protein level, playing essential roles in the modulation of abiotic stress responses. Therefore, utilizing upland rice varieties for screening stress-responsive F-box genes is a highly advantageous approach. RESULTS Through mRNA-seq analysis in the Brazilian upland rice (cv. IAPAR9), the research identified 29 drought-responsive F-box genes. Gene distribution and duplication analysis revealed these genes are distributed on 11 of the 12 chromosomes and 10 collinear gene pairs were identified on different chromosomes. 13 cis-elements or binding sites were identified in the promoters of the 29 drought-responsive F-box genes by analysis. Protein domain, stability and subcellular localization analysis results suggest that these F-box proteins possess F-box domain and several other domains, and they are mostly unstable proteins with subcellular localization in cytoplasm, nucleus, chloroplasts, mitochondria and endoplasmic reticulum. Most of drought-responsive F-box genes exhibited expression in various tissues such as root, stem, leaf, leaf sheath and panicle except for OsFBO10 and OsFBX283. These genes exhibited various responses to abiotic stresses such as osmotic, cold, heat, and salt stresses, along with ABA treatment. Importantly, a frame-shift mutation in OsFBX148 was created in the ZH11 variety, leading to altered ABA signal transduction and ROS accumulation. The study further elucidated the interaction of OsFBX148 with SKP1 family proteins OSK4/7/17 to form the SCF complex, dependent on the F-box domain. CONCLUSIONS The research identified and analyzed 29 drought-responsive F-box genes in upland rice and provides valuable insights into the role of OsFBX148 in ABA and ROS responses. It establishes a basis for future exploration of F-box genes in improving resistance to abiotic stresses, especially drought.
Collapse
Affiliation(s)
- Yifan Wang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 44500, China
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Enshi, 44500, China
| | - Fang Chen
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 44500, China
| | - Yuyang Chen
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 44500, China
| | - Kaiwen Ren
- Sanya Institute of Henan University, Sanya, 572000, China
| | - Dan Zhao
- Sanya Institute of Henan University, Sanya, 572000, China
| | - Kun Li
- School of Life Sciences, Henan University, Kaifeng, 475000, China
- State Key Laboratory of Cotton Biology, Kaifeng, 475000, China
| | - Haipeng Li
- Sanya Institute of Henan University, Sanya, 572000, China
| | - Xiaobin Wan
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 44500, China
| | - Mu Peng
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 44500, China
| | - Zhixin Xiang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 44500, China
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Enshi, 44500, China
| | - Qiaoyu Tang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 44500, China
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Enshi, 44500, China
- College of Forestry and Horticulture, Hubei Minzu University, Enshi, 44500, China
| | - Zhi Hou
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 44500, China
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Enshi, 44500, China
| | - Qing Fang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 44500, China
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Enshi, 44500, China
| | - Yifeng Zhou
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 44500, China
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Enshi, 44500, China
| | - Yanke Lu
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 44500, China.
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Enshi, 44500, China.
- Sanya Institute of Henan University, Sanya, 572000, China.
| |
Collapse
|
2
|
Su Y, Ngea GLN, Wang K, Lu Y, Godana EA, Ackah M, Yang Q, Zhang H. Deciphering the mechanism of E3 ubiquitin ligases in plant responses to abiotic and biotic stresses and perspectives on PROTACs for crop resistance. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2811-2843. [PMID: 38864414 PMCID: PMC11536463 DOI: 10.1111/pbi.14407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/12/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024]
Abstract
With global climate change, it is essential to find strategies to make crops more resistant to different stresses and guarantee food security worldwide. E3 ubiquitin ligases are critical regulatory elements that are gaining importance due to their role in selecting proteins for degradation in the ubiquitin-proteasome proteolysis pathway. The role of E3 Ub ligases has been demonstrated in numerous cellular processes in plants responding to biotic and abiotic stresses. E3 Ub ligases are considered a class of proteins that are difficult to control by conventional inhibitors, as they lack a standard active site with pocket, and their biological activity is mainly due to protein-protein interactions with transient conformational changes. Proteolysis-targeted chimeras (PROTACs) are a new class of heterobifunctional molecules that have emerged in recent years as relevant alternatives for incurable human diseases like cancer because they can target recalcitrant proteins for destruction. PROTACs interact with the ubiquitin-proteasome system, principally the E3 Ub ligase in the cell, and facilitate proteasome turnover of the proteins of interest. PROTAC strategies harness the essential functions of E3 Ub ligases for proteasomal degradation of proteins involved in dysfunction. This review examines critical advances in E3 Ub ligase research in plant responses to biotic and abiotic stresses. It highlights how PROTACs can be applied to target proteins involved in plant stress response to mitigate pathogenic agents and environmental adversities.
Collapse
Affiliation(s)
- Yingying Su
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Guillaume Legrand Ngolong Ngea
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
- Institute of Fisheries Sciences, University of DoualaDoualaCameroon
| | - Kaili Wang
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Yuchun Lu
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Esa Abiso Godana
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Michael Ackah
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Qiya Yang
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Hongyin Zhang
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| |
Collapse
|
3
|
Abd-Hamid NA, Ismail I. An F-box Kelch repeat protein, PmFBK2, from Persicaria minor interacts with GID1b to modulate gibberellin signalling. JOURNAL OF PLANT PHYSIOLOGY 2024; 300:154299. [PMID: 38936241 DOI: 10.1016/j.jplph.2024.154299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
The F-box protein (FBP) family plays diverse functions in the plant kingdom, with the function of many members still unrevealed. In this study, a specific FBP called PmFBK2, containing Kelch repeats from Persicaria minor, was functionally investigated. Employing the yeast two-hybrid (Y2H) assay, PmFBK2 was found to interact with Skp1-like proteins from P. minor, suggesting its potential to form an E3 ubiquitin ligase, known as the SCF complex. Y2H and co-immunoprecipitation tests revealed that PmFBK2 interacts with full-length PmGID1b. The interaction marks the first documented binding between these two protein types, which have never been reported in other plants before, and they exhibited a negative effect on gibberellin (GA) signal transduction. The overexpression of PmFBK2 in the kmd3 mutant, a homolog from Arabidopsis, demonstrated the ability of PmFBK2 to restore the function of the mutated KMD3 gene. The function restoration was supported by morphophysiological and gene expression analyses, which exhibited patterns similar to the wild type (WT) compared to the kmd3 mutant. Interestingly, the overexpression of PmFBK2 or PmGID1b in Arabidopsis had opposite effects on rosette diameter, seed weight, and plant height. This study provides new insights into the complex GA signalling. It highlights the crucial roles of the interaction between FBP and the GA receptor (GID1b) in regulating GA responses. These findings have implications for developing strategies to enhance plant growth and yield by modulating GA signalling in crops.
Collapse
Affiliation(s)
- Nur-Athirah Abd-Hamid
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Ismanizan Ismail
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
4
|
Deng H, Zhang Y, Manzoor MA, Sabir IA, Han B, Song C. Genome-scale identification, expression and evolution analysis of B-box members in Dendrobium huoshanense. Heliyon 2024; 10:e32773. [PMID: 38975129 PMCID: PMC11225821 DOI: 10.1016/j.heliyon.2024.e32773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/24/2024] [Accepted: 06/09/2024] [Indexed: 07/09/2024] Open
Abstract
B-box (BBX) proteins have been recognized as vital determinants in plant development, morphogenesis, and adaptive responses to a myriad of environmental stresses. These zinc-finger proteins play a pivotal role in various biological processes. Their influence spans photomorphogenesis, the regulation of flowering, and imparting resilience to a wide array of challenges, encompassing both biotic and abiotic factors. Chromosome localization, gene structure and conserved motifs, phylogenetic analysis, collinearity analysis, expression profiling, fluorescence quantitative analysis, and tobacco transient transformation methods were used for functional localization and expression pattern analysis of the DhBBX gene. A total of 23 DhBBX members were identified from Dendrobium huoshanense. Subsequent phylogenetic evaluations effectively segregated these genes into five discrete evolutionary subsets. The predictions of subcellular localizations revealed that all these proteins were localized in the nucleus. The genetic composition and patterns showed that the majority of these genes consisted of several exons, with a few variations that could be attributed to transposon insertion. A comprehensive analysis using qRT-PCR was conducted to unravel the expression patterns of these genes in D. huoshanense, with a specific concentration on their responses to various hormone treatments and cold stress. Subcellular localization reveals that DhBBX21 and DhBBX9 are located in the nucleus. Our results provide a deep comprehension of the complex regulatory mechanisms of BBXs in response to various environmental and hormonal stimuli. These discoveries encourage further detailed and focused investigations into the operational dynamics of the BBX gene family in a wider range of plant species.
Collapse
Affiliation(s)
- Hui Deng
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China
| | - Yingyu Zhang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 201109, China
| | - Irfan Ali Sabir
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Bangxing Han
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China
| | - Cheng Song
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China
| |
Collapse
|
5
|
Hina A, Khan N, Kong K, Lv W, Karikari B, Abbasi A, Zhao T. Exploring the role of FBXL fbxl gene family in Soybean: Implications for plant height and seed size regulation. PHYSIOLOGIA PLANTARUM 2024; 176:e14191. [PMID: 38351287 DOI: 10.1111/ppl.14191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/16/2023] [Accepted: 01/01/2024] [Indexed: 02/16/2024]
Abstract
F-box proteins constitute a significant family in eukaryotes and, as a component of the Skp1p-cullin-F-box complex, are considered critical for cellular protein degradation and other biological processes in plants. Despite their importance, the functions of F-box proteins, particularly those with C-terminal leucine-rich repeat (LRR) domains, remain largely unknown in plants. Therefore, the present study conducted genome-wide identification and in silico characterization of F-BOX proteins with C-terminal LRR domains in soybean (Glycine max L.) (GmFBXLs). A total of 45 GmFBXLs were identified. The phylogenetic analysis showed that GmFBXLs could be subdivided into ten subgroups and exhibited a close relationship with those from Arabidopsis thaliana, Cicer aretineum, and Medicago trunculata. It was observed that most cis-regulatory elements in the promoter regions of GmFBXLs are involved in hormone signalling, stress responses, and developmental stages. In silico transcriptome data illustrated diverse expression patterns of the identified GmFBXLs across various tissues, such as shoot apical meristem, flower, green pods, leaves, nodules, and roots. Overexpressing (OE) GmFBXL12 in Tianlong No.1 cultivar resulted in a significant difference in seed size, number of pods, and number of seeds per plant, indicated a potential increase in yield compared to wild type. This study offers valuable perspectives into the role of FBXLs in soybean, serving as a foundation for future research. Additionally, the identified OE lines represent valuable genetic resources for enhancing seed-related traits in soybean.
Collapse
Affiliation(s)
- Aiman Hina
- Soybean Research Institute, Ministry of Agriculture (MOA) Key Laboratory of Biology and Genetic Improvement of Soybean (General), MOA National Centre for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Nadeem Khan
- Global Institute for Food Security, Saskatoon, SK, Canada
| | - Keke Kong
- Soybean Research Institute, Ministry of Agriculture (MOA) Key Laboratory of Biology and Genetic Improvement of Soybean (General), MOA National Centre for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Wenhuan Lv
- Soybean Research Institute, Ministry of Agriculture (MOA) Key Laboratory of Biology and Genetic Improvement of Soybean (General), MOA National Centre for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Benjamin Karikari
- Département de phytologie, Université Laval, QC, Québec, Canada
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Asim Abbasi
- Department of Environmental Sciences, Kohsar University Murree, Pakistan
| | - Tuanjie Zhao
- Soybean Research Institute, Ministry of Agriculture (MOA) Key Laboratory of Biology and Genetic Improvement of Soybean (General), MOA National Centre for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Saxena H, Negi H, Sharma B. Role of F-box E3-ubiquitin ligases in plant development and stress responses. PLANT CELL REPORTS 2023:10.1007/s00299-023-03023-8. [PMID: 37195503 DOI: 10.1007/s00299-023-03023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/27/2023] [Indexed: 05/18/2023]
Abstract
KEY MESSAGE F-box E3-ubiquitin ligases regulate critical biological processes in plant development and stress responses. Future research could elucidate why and how plants have acquired a large number of F-box genes. The ubiquitin-proteasome system (UPS) is a predominant regulatory mechanism employed by plants to maintain the protein turnover in the cells and involves the interplay of three classes of enzymes, E1 (ubiquitin-activating), E2 (ubiquitin-conjugating), and E3 ligases. The diverse and most prominent protein family among eukaryotes, F-box proteins, are a vital component of the multi-subunit SCF (Skp1-Cullin 1-F-box) complex among E3 ligases. Several F-box proteins with multifarious functions in different plant systems have evolved rapidly over time within closely related species, but only a small part has been characterized. We need to advance our understanding of substrate-recognition regulation and the involvement of F-box proteins in biological processes and environmental adaptation. This review presents a background of E3 ligases with particular emphasis on the F-box proteins, their structural assembly, and their mechanism of action during substrate recognition. We discuss how the F-box proteins regulate and participate in the signaling mechanisms of plant development and environmental responses. We highlight an urgent need for research on the molecular basis of the F-box E3-ubiquitin ligases in plant physiology, systems biology, and biotechnology. Further, the developments and outlooks of the potential technologies targeting the E3-ubiquitin ligases for developing crop improvement strategies have been discussed.
Collapse
Affiliation(s)
- Harshita Saxena
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia Griffin Campus, 1109 Experiment Street, Griffin, GA, 30223, USA
| | - Harshita Negi
- Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC, 29208, USA
| | - Bhaskar Sharma
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC, 3216, Australia.
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
7
|
Gidhi A, Mohapatra A, Fatima M, Jha SK, Kumar M, Mukhopadhyay K. Insights of auxin signaling F-box genes in wheat (Triticum aestivum L.) and their dynamic expression during the leaf rust infection. PROTOPLASMA 2023; 260:723-739. [PMID: 36100728 DOI: 10.1007/s00709-022-01808-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The TRANSPORT INHIBITOR RESPONSE 1/AUXIN SIGNALING F-BOX (TIR1/AFB) protein serves as auxin receptor and links with Aux/IAA repressor protein leading to its degradation via SKP-Cullin-F box (SCFTIR1/AFB) complex in the auxin signaling pathway. Present study revealed 11 TIR1/AFB genes in wheat by genome-wide search using AFB HMM profile. Phylogenetic analysis clustered these genes in two classes. Several phytohormone, abiotic, and biotic stress responsive cis-elements were detected in promoter regions of TIR1/AFB genes. These genes were localized on homoeologous chromosome groups 2, 3, and 5 showing orthologous relation with other monocot plants. Most genes were interrupted by introns and the gene products were localized in cytoplasm, nucleus, and cell organelles. TaAFB3, TaAFB5, and TaAFB8 had nuclear localization signals. The evolutionary constraint suggested paralogous sister pairs and orthologous genes went through strong purifying selection process and are slowly evolving at protein level. Functional annotation revealed all TaAFB genes participated in auxin activated signaling pathway and SCF-mediated ubiquitination process. Furthermore, in silico expression study revealed their diverse expression profiles during various developmental stages in different tissues and organs as well as during biotic and abiotic stress. QRT-PCR based studies suggested distinct expression pattern of TIR1-1, TIR1-3, TaAFB1, TaAFB2, TaAFB3, TaAFB4, TaAFB5, TaAFB7, and TaAFB8 displaying maximum expression at 24 and 48 h post inoculation in both susceptible and resistant near isogenic wheat lines infected with leaf rust pathogen. Importantly, this also reflects coordinated responses in expression patterns of wheat TIR1/AFB genes during progression stages of leaf rust infection.
Collapse
Affiliation(s)
- Anupama Gidhi
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Archit Mohapatra
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Mehar Fatima
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Shailendra Kumar Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Manish Kumar
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Kunal Mukhopadhyay
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.
| |
Collapse
|
8
|
Song J, Sajad S, Xia D, Jiang S. Identification of F-box gene family in Brassica oleracea and expression analysis in response to low-temperature stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107717. [PMID: 37150011 DOI: 10.1016/j.plaphy.2023.107717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/12/2023] [Accepted: 04/23/2023] [Indexed: 05/09/2023]
Abstract
Unfavorable climatic conditions, such as low temperatures, often hinder the growth and production of crops worldwide. The F-box protein-encoding gene family performs an essential role in plant stress resistance. However, a comprehensive analysis of the F-box gene family in cabbage (Brassica oleracea var capitata L.) has not been reported yet. In this study, genome-wide characterization of F-box proteins in cabbage yielded 303 BoFBX genes and 224 BoFBX genes unevenly distributed on 9 chromosomes of cabbage. Phylogenetic analysis of 303 BoFBX genes was classified into nine distinct subfamily groups (GI-GIX). Analysis of the gene structure of BoFBX genes indicated that most genes within the same clade are highly conserved. In addition, tissue-specific expression analysis revealed that six F-box genes in cabbage showed the highest expression in rosette leaves, followed by roots and stems and the lowest expression was observed in the BoFBX156 gene. In contrast, the expression of the other five genes, BoFBX100, BoFBX117, BoFBX136, BoFBX137 and BoFBX213 was observed to be upregulated in response to low-temperature stress. Moreover, we found that the expression level of the BoFBX gene in the cold-tolerant cultivar "ZG" was higher than that in cold-sensitive "YC" with the extension of stress duration, while expression levels of each gene in "ZG" were higher than "YC" at 24 h. Knowledge of the various functions provided by BoFBXs genes and their expression patterns provides a firm theoretical foundation for explaining the functions of BoFBXs, thereby contributing to the molecular breeding process of cabbage.
Collapse
Affiliation(s)
- Jianghua Song
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, 230036, Hefei, Anhui, China.
| | - Shoukat Sajad
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, 230036, Hefei, Anhui, China
| | - Dongjian Xia
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, 230036, Hefei, Anhui, China
| | - Shuhan Jiang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, 230036, Hefei, Anhui, China
| |
Collapse
|
9
|
Sharma E, Bhatnagar A, Bhaskar A, Majee SM, Kieffer M, Kepinski S, Khurana P, Khurana JP. Stress-induced F-Box protein-coding gene OsFBX257 modulates drought stress adaptations and ABA responses in rice. PLANT, CELL & ENVIRONMENT 2023; 46:1207-1231. [PMID: 36404527 DOI: 10.1111/pce.14496] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 10/15/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
F-box (FB) proteins that form part of SKP1-CUL1-F-box (SCF) type of E3 ubiquitin ligases are important components of plant growth and development. Here we characterized OsFBX257, a rice FB protein-coding gene that is differentially expressed under drought conditions and other abiotic stresses. Population genomics analysis suggest that OsFBX257 shows high allelic diversity in aus accessions and has been under positive selection in some japonica, aromatic and indica cultivars. Interestingly, allelic variation at OsFBX257 in aus cultivar Nagina22 is associated with an alternatively spliced transcript. Conserved among land plants, OsFBX257 is a component of the SCF complex, can form homomers and interact molecularly with the 14-3-3 rice proteins GF14b and GF14c. OsFBX257 is co-expressed in a network involving protein kinases and phosphatases. We show that OsFBX257 can bind the kinases OsCDPK1 and OsSAPK2, and that its phosphorylation can be reversed by phosphatase OsPP2C08. OsFBX257 expression level modulates root architecture and drought stress tolerance in rice. OsFBX257 knockdown (OsFBX257KD ) lines show reduced total root length and depth, crown root number, panicle size and survival under stress. In contrast, its overexpression (OsFBX257OE ) increases root depth, leaf and grain length, number of panicles, and grain yield in rice. OsFBX257 is a promising breeding target for alleviating drought stress-induced damage in rice.
Collapse
Affiliation(s)
- Eshan Sharma
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Akanksha Bhatnagar
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Avantika Bhaskar
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Susmita M Majee
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Martin Kieffer
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Stefan Kepinski
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Global Food and Environment Institute, University of Leeds, Leeds, UK
| | - Paramjit Khurana
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
10
|
Wang Y, Li C, Yan S, Yu B, Gan Y, Liu R, Qiu Z, Cao B. Genome-Wide Analysis and Characterization of Eggplant F-Box Gene Superfamily: Gene Evolution and Expression Analysis under Stress. Int J Mol Sci 2022; 23:ijms232416049. [PMID: 36555688 PMCID: PMC9780924 DOI: 10.3390/ijms232416049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
F-box genes play an important role in plant growth and resistance to abiotic and biotic stresses. To date, systematic analysis of F-box genes and functional annotation in eggplant (Solanum melongena) is still limited. Here, we identified 389 F-box candidate genes in eggplant. The domain study of F-box candidate genes showed that the F-box domain is conserved, whereas the C-terminal domain is diverse. There are 376 SmFBX candidate genes distributed on 12 chromosomes. A collinearity analysis within the eggplant genome suggested that tandem duplication is the dominant form of F-box gene replication in eggplant. The collinearity analysis between eggplant and the three other species (Arabidopsis thaliana, rice and tomato) provides insight into the evolutionary characteristics of F-box candidate genes. In addition, we analyzed the expression of SmFBX candidate genes in different tissues under high temperature and bacterial wilt stress. The results identified several F-box candidate genes that potentially participate in eggplant heat tolerance and bacterial wilt resistance. Moreover, the yeast two-hybrid assay showed that several representative F-box candidate proteins interacted with representative Skp1 proteins. Overexpression of SmFBX131 and SmFBX230 in tobacco increased resistance to bacterial wilt. Overall, these results provide critical insights into the functional analysis of the F-box gene superfamily in eggplant and provide potentially valuable targets for heat and bacterial resistance.
Collapse
Affiliation(s)
- Yixi Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Vegetable Engineering and Technology Research Center, Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou 510642, China
| | - Chuhao Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Shuangshuang Yan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Vegetable Engineering and Technology Research Center, Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou 510642, China
| | - Bingwei Yu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Vegetable Engineering and Technology Research Center, Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou 510642, China
| | - Yuwei Gan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Vegetable Engineering and Technology Research Center, Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou 510642, China
| | - Renjian Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Vegetable Engineering and Technology Research Center, Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou 510642, China
| | - Zhengkun Qiu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Vegetable Engineering and Technology Research Center, Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Z.Q.); (B.C.)
| | - Bihao Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Vegetable Engineering and Technology Research Center, Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Z.Q.); (B.C.)
| |
Collapse
|
11
|
Pan J, Ahmad MZ, Zhu S, Chen W, Yao J, Li Y, Fang S, Li T, Yeboah A, He L, Zhang Y. Identification, Classification and Characterization Analysis of FBXL Gene in Cotton. Genes (Basel) 2022; 13:genes13122194. [PMID: 36553463 PMCID: PMC9777894 DOI: 10.3390/genes13122194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
F-box/LR (FBXL), Leucine-rich repeats in F-box proteins, belongs to the Skp1-Cullin1-F-box protein (SCF) E3 ligase family. FBXL genes play important roles in plant growth, such as plant hormones, responses to environmental stress, and floral organ development. Here, a total of 518 FBXL genes were identified and analyzed in six plant species. Phylogenetic analysis showed that AtFBXLs, VvFBXLs, and GrFBXLs were clustered into three subfamilies (Ⅰ-Ⅲ). Based on the composition of the F-box domain and carboxyl-terminal amino acid sequence, FBXL proteins were classified into three types (Type-A/-B/-C). Whole-genome duplication (WGD) along with tandem duplications and segmental contributed to the expansion of this gene family. The result indicates that four cotton species are also divided into three subfamilies. FBXLs in cotton were classified into three clades by phylogenetic and structural analyses. Furthermore, expression analyses indicated that the expression patterns of GhFBXLs in different cotton tissues were different. The highly expressed of GH_A07G2363 in 5-8 mm anthers, indicates that this gene might play a role in the reproductive process, providing candidate genes for future studies on cotton fertility materials. This study provides an original functional opinion and a useful interpretation of the FBXL protein family in cotton.
Collapse
Affiliation(s)
- Jingwen Pan
- College of Agronomy, Tarim University, Alar 843300, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Muhammad Zulfiqar Ahmad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Shouhong Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jinbo Yao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yan Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Shengtao Fang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Tengyu Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Akwasi Yeboah
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Liangrong He
- College of Agronomy, Tarim University, Alar 843300, China
- Correspondence: (L.H.); (Y.Z.)
| | - Yongshan Zhang
- College of Agronomy, Tarim University, Alar 843300, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Correspondence: (L.H.); (Y.Z.)
| |
Collapse
|
12
|
Fan G, Xia X, Yao W, Cheng Z, Zhang X, Jiang J, Zhou B, Jiang T. Genome-Wide Identification and Expression Patterns of the F-box Family in Poplar under Salt Stress. Int J Mol Sci 2022; 23:ijms231810934. [PMID: 36142847 PMCID: PMC9505895 DOI: 10.3390/ijms231810934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
The F-box family exists in a wide variety of plants and plays an extremely important role in plant growth, development and stress responses. However, systematic studies of F-box family have not been reported in populus trichocarpa. In the present study, 245 PtrFBX proteins in total were identified, and a phylogenetic tree was constructed on the basis of their C-terminal conserved domains, which was divided into 16 groups (A–P). F-box proteins were located in 19 chromosomes and six scaffolds, and segmental duplication was main force for the evolution of the F-box family in poplar. Collinearity analysis was conducted between poplar and other species including Arabidopsis thaliana, Glycine max, Anemone vitifolia Buch, Oryza sativa and Zea mays, which indicated that poplar has a relatively close relationship with G. max. The promoter regions of PtrFBX genes mainly contain two kinds of cis-elements, including hormone-responsive elements and stress-related elements. Transcriptome analysis indicated that there were 82 differentially expressed PtrFBX genes (DEGs), among which 64 DEGs were in the roots, 17 in the leaves and 26 in the stems. In addition, a co-expression network analysis of four representative PtrFBX genes indicated that their co-expression gene sets were mainly involved in abiotic stress responses and complex physiological processes. Using bioinformatic methods, we explored the structure, evolution and expression pattern of F-box genes in poplar, which provided clues to the molecular function of F-box family members and the screening of salt-tolerant PtrFBX genes.
Collapse
Affiliation(s)
- Gaofeng Fan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xinhui Xia
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Wenjing Yao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Zihan Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xuemei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jiahui Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Boru Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Correspondence: (B.Z.); (T.J.)
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Correspondence: (B.Z.); (T.J.)
| |
Collapse
|
13
|
Amoanimaa-Dede H, Shao Z, Su C, Yeboah A, Zhu H. Genome-wide identification and characterization of F-box family proteins in sweet potato and its expression analysis under abiotic stress. Gene 2022; 817:146191. [PMID: 35026290 DOI: 10.1016/j.gene.2022.146191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 11/04/2022]
Abstract
In this study, genome-wide characterization of F-box proteins in sweet potato yielded 243 IbFBX genes, unevenly distributed on the 15 chromosomes of sweet potato. Gene duplication analysis suggested segmental duplication as the principal factor influencing the expansive evolution of IbFBX genes in sweet potato. Phylogenetic analysis clustered F-box proteins in sweet potato, Arabidopsis, and rice into six clades (I-VI). Gene structure analysis of the IbFBX genes revealed that most of the genes within the same clade were highly conserved. Expression profiles of IbFBX family genes in 9 different tissues and under stress conditions revealed that the IbFBXs were highly upregulated or downregulated in response to salt and drought stress, suggesting their significant roles in abiotic stress response and adaptation. Knowledge of the diverse functions and expression patterns of IbFBXs presents a solid theoretical basis for annotating the functions of IbFBXs and further facilitate the molecular breeding of sweet potato.
Collapse
Affiliation(s)
- Hanna Amoanimaa-Dede
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, No. 1 Haida Road, Mazhang District, Zhanjiang 524088, Guangdong, PR China
| | - Zhengwei Shao
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, No. 1 Haida Road, Mazhang District, Zhanjiang 524088, Guangdong, PR China
| | - Chuntao Su
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, No. 1 Haida Road, Mazhang District, Zhanjiang 524088, Guangdong, PR China
| | - Akwasi Yeboah
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, No. 1 Haida Road, Mazhang District, Zhanjiang 524088, Guangdong, PR China
| | - Hongbo Zhu
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, No. 1 Haida Road, Mazhang District, Zhanjiang 524088, Guangdong, PR China.
| |
Collapse
|
14
|
Liu H, Able AJ, Able JA. Small RNA, Transcriptome and Degradome Analysis of the Transgenerational Heat Stress Response Network in Durum Wheat. Int J Mol Sci 2021; 22:ijms22115532. [PMID: 34073862 PMCID: PMC8197280 DOI: 10.3390/ijms22115532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/19/2021] [Accepted: 05/23/2021] [Indexed: 12/17/2022] Open
Abstract
Heat stress is a major limiting factor of grain yield and quality in crops. Abiotic stresses have a transgenerational impact and the mechanistic basis is associated with epigenetic regulation. The current study presents the first systematic analysis of the transgenerational effects of post-anthesis heat stress in tetraploid wheat. Leaf physiological traits, harvest components and grain quality traits were characterized under the impact of parental and progeny heat stress. The parental heat stress treatment had a positive influence on the offspring for traits including chlorophyll content, grain weight, grain number and grain total starch content. Integrated sequencing analysis of the small RNAome, mRNA transcriptome and degradome provided the first description of the molecular networks mediating heat stress adaptation under transgenerational influence. The expression profile of 1771 microRNAs (733 being novel) and 66,559 genes was provided, with differentially expressed microRNAs and genes characterized subject to the progeny treatment, parental treatment and tissue-type factors. Gene Ontology and KEGG pathway analysis of stress responsive microRNAs-mRNA modules provided further information on their functional roles in biological processes such as hormone homeostasis, signal transduction and protein stabilization. Our results provide new insights on the molecular basis of transgenerational heat stress adaptation, which can be used for improving thermo-tolerance in breeding.
Collapse
|
15
|
Parida AP, Srivastava A, Mathur S, Sharma AK, Kumar R. Identification, evolutionary profiling, and expression analysis of F-box superfamily genes under phosphate deficiency in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:349-362. [PMID: 33730620 DOI: 10.1016/j.plaphy.2021.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/02/2021] [Indexed: 05/26/2023]
Abstract
F-box genes are an integral component of the Skp1-cullin-F-box (SCF) complex in eukaryotes. These genes are primarily involved in determining substrate specificities during cellular proteolysis. Here we report that 410 members constitute the F-box superfamily in tomato. Based on the incidence of C-terminal domains, these genes fell into ten subfamilies, leucine-rich repeat domain-containing F-box members constituting the largest subfamily. The F-box genes are present on all 12 chromosomes with varying gene densities. Both segmental and tandem duplication events contribute significantly to their expansion in the tomato genome. The syntenic analysis revealed close relationships among F-box homologs within Solanaceae species genomes. Transcript profiling of F-box members identified several ripening-associated genes with altered expression in the ripening mutants. RNA-sequencing data analysis showed that phosphate (Pi) deficiency affected 55 F-box transcripts in the Pi-deficient seedlings compared to their control seedlings. The persistent up-regulation of eight members, including two phloem protein 2B (PP2-B) genes, PP2-B15, and MATERNAL EFFECT EMBRYO ARREST 66 (MEE66) homologs, at multiple time-points in the roots, shoot, and seedling, point towards their pivotal roles in Pi starvation response in tomato. The attenuation of such upregulation in sucrose absence revealed the necessity of this metabolite for robust activation of these genes in the Pi-deficient seedlings. Altogether, this study identifies novel F-box genes with potential roles in fruit ripening and Pi starvation response and unlocks new avenues for functional characterization of candidate genes in tomato and other related species.
Collapse
Affiliation(s)
- Adwaita Prasad Parida
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Alok Srivastava
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Amity Education Valley, Gurgaon, India; Institute of Bioinformatics and Computational Biology, Visakhapatnam, Andhra Pradesh, India
| | - Saloni Mathur
- National Institute of Plant Genome Research, New Delhi, India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Rahul Kumar
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
16
|
Mo F, Zhang N, Qiu Y, Meng L, Cheng M, Liu J, Yao L, Lv R, Liu Y, Zhang Y, Chen X, Wang A. Molecular Characterization, Gene Evolution and Expression Analysis of the F-Box Gene Family in Tomato ( Solanum lycopersicum). Genes (Basel) 2021; 12:417. [PMID: 33799396 PMCID: PMC7998346 DOI: 10.3390/genes12030417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 11/23/2022] Open
Abstract
F-box genes play an important role in the growth and development of plants, but there are few studies on its role in a plant's response to abiotic stresses. In order to further study the functions of F-box genes in tomato (Solanum lycopersicum, Sl), a total of 139 F-box genes were identified in the whole genome of tomato using bioinformatics methods, and the basic information, transcript structure, conserved motif, cis-elements, chromosomal location, gene evolution, phylogenetic relationship, expression patterns and the expression under cold stress, drought stress, jasmonic acid (JA) treatment and salicylic acid (SA) treatment were analyzed. The results showed that SlFBX genes were distributed on 12 chromosomes of tomato and were prone to TD (tandem duplication) at the ends of chromosomes. WGD (whole genome duplication), TD, PD (proximal duplication) and TRD (transposed duplication) modes seem play an important role in the expansion and evolution of tomato SlFBX genes. The most recent divergence occurred 1.3042 million years ago, between SlFBX89 and SlFBX103. The cis-elements in SlFBX genes' promoter regions were mainly responded to phytohormone and abiotic stress. Expression analysis based on transcriptome data and qRT-PCR (Real-time quantitative PCR) analysis of SlFBX genes showed that most SlFBX genes were differentially expressed under abiotic stress. SlFBX24 was significantly up-regulated at 12 h under cold stress. This study reported the SlFBX gene family of tomato for the first time, providing a theoretical basis for the detailed study of SlFBX genes in the future, especially the function of SlFBX genes under abiotic stress.
Collapse
Affiliation(s)
- Fulei Mo
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (F.M.); (Y.Q.); (M.C.); (Y.Z.)
| | - Nian Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (N.Z.); (L.M.); (R.L.); (Y.L.)
| | - Youwen Qiu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (F.M.); (Y.Q.); (M.C.); (Y.Z.)
| | - Lingjun Meng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (N.Z.); (L.M.); (R.L.); (Y.L.)
| | - Mozhen Cheng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (F.M.); (Y.Q.); (M.C.); (Y.Z.)
| | - Jiayin Liu
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; (J.L.); (L.Y.)
| | - Lanning Yao
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; (J.L.); (L.Y.)
| | - Rui Lv
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (N.Z.); (L.M.); (R.L.); (Y.L.)
| | - Yuxin Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (N.Z.); (L.M.); (R.L.); (Y.L.)
| | - Yao Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (F.M.); (Y.Q.); (M.C.); (Y.Z.)
| | - Xiuling Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (N.Z.); (L.M.); (R.L.); (Y.L.)
| | - Aoxue Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (F.M.); (Y.Q.); (M.C.); (Y.Z.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (N.Z.); (L.M.); (R.L.); (Y.L.)
| |
Collapse
|
17
|
Li H, Wei C, Meng Y, Fan R, Zhao W, Wang X, Yu X, Laroche A, Kang Z, Liu D. Identification and expression analysis of some wheat F-box subfamilies during plant development and infection by Puccinia triticina. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:535-548. [PMID: 32836199 DOI: 10.1016/j.plaphy.2020.06.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
As one of the largest protein families in plants, F-box proteins are involved in many important cellular processes. Until now, a limited number of investigations have been conducted on wheat F-box genes due to its variable structure and large and polyploid genome. Classification, identification, structural analysis, evolutionary relationship, and chromosomal distribution of some wheat F-box genes are described in the present study. A total number of 1013 potential F-box proteins which are encoded by 409 genes was identified in wheat, and classified into 12 subfamilies based on their C-terminal domain structures. Furthermore, proteins with identical or similar C-terminal domain were clustered together. Location of 409 F-box genes was identified on all 21 wheat chromosomes but showed an uneven distribution. Segmental duplication was the main reason for the increase in the number of wheat F-box genes. Gene expression analysis based on digital PCR showed that most of the F-box genes were highly expressed in the later development stages of wheat, including the formation of spike, grain, flag leaf, and participated in drought stress (DS), heat stress (HS), and their combination (HD). Of the nine F-box genes we investigated using quantitative PCR (qPCR) following fungal pathogen infection, five were involved in wheat resistance to the infection by leaf rust pathogen and one in the susceptible response. These results provide important information on wheat F-box proteins for further functional studies, especially the proteins that played roles in response to heat and drought stresses and leaf rust pathogen infection.
Collapse
Affiliation(s)
- Huying Li
- College of Life Sciences, Hebei Agricultural University/ Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, 071001, China; College of Forestry, Shandong Agricultural University, Taian, Shangdong, 271018, China
| | - Chunru Wei
- College of Life Sciences, Hebei Agricultural University/ Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Yuyu Meng
- College of Life Sciences, Hebei Agricultural University/ Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Runqiao Fan
- College of Life Sciences, Hebei Agricultural University/ Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Weiquan Zhao
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, 071001, China
| | - Xiaodong Wang
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, 071001, China
| | - Xiumei Yu
- College of Life Sciences, Hebei Agricultural University/ Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, 071001, China; Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, 071001, China.
| | - André Laroche
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, T1J 4B1, Canada
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, NWAFU, Yangling, Shaanxi, 712100, China.
| | - Daqun Liu
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, 071001, China.
| |
Collapse
|
18
|
Li H, Ran K, Dong Q, Zhao Q, Shi S. Cloning, sequencing, and expression analysis of 32 NAC transcription factors (MdNAC) in apple. PeerJ 2020; 8:e8249. [PMID: 32411503 PMCID: PMC7210808 DOI: 10.7717/peerj.8249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/20/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND NAC transcription factors play important roles in the regulation of plant growth, development, abiotic and biotic stress responses. The transcriptional level of MdNACs in different tissues and under various biotic and abiotic stress treatments was determined to provide a solid foundation for studying the function of MdNACs. METHODS Thirty-two full-length cDNA sequences of Md NACs were isolated by homologous comparison and RT-PCR confirmation, and the obtained cDNA sequences and the deduced amino acid sequences were analyzed with bioinformatics methods. The prediction of subcellular locations of MdNAC proteins was performed using CELLO v.2.5, PSORT, and SoftBerry ProtComp 9.0. Expression levels of MdNACs were detected in 16 different tissues using an array. Expression patterns of MdNACs were detected in response to Alternaria alternata apple pathotype (AAAP) infection using RNA-seq, and the expression of MdNACs was analyzed under NaCl and mannitol treatments using RT-qPCR. RESULTS The sequencing results produced 32 cDNAs (designated as MdNAC24-39, MdNAC54-65, and MdNAC67-70 with GenBank accession No. MG099861-MG099876, MG099891-MG099902, and MG099904-MG099907, respectively). Phylogenetic analysis revealed that MdNAC34 belonged to the ATAF group, MdNAC63 belonged to the AtNAC3 group, MdNAC24, MdNAC26-30, MdNAC32-33, MdNAC35, MdNAC37-39, MdNAC56-57, MdNAC59-62, MdNAC64-65, and MdNAC67-70 belonged to the NAM group, and MdNAC25, MdNAC36, MdNAC54-55, and MdNAC58 belonged to the VND group. Predictions of subcellular localization showed that MdNAC24-27, MdNAC29-30, MdNAC33-37, MdNAC39, MdNAC54-65, and MdNAC67-70 proteins were located in the nucleus, MdNAC28 proteins were located in the cytoplasm, MdNAC31-32 proteins were located in the nucleus and cytoplasm, and MdNAC38 proteins were located in the nucleus and plasma membrane. Array results indicated that 32 MdNACs were expressed in all examined tissues at various expression levels. RNA-seq results showed that expression levels of MdNAC26-28, MdNAC33-34, MdNAC60, MdNAC62-65, and MdNAC68 were induced, but MdNAC24, MdNAC32, and MdNAC58 were down-regulated in response to AAAP infection. Under salt treatment, MdNAC24, MdNAC27, MdNAC29, MdNAC34, MdNAC37, MdNAC39, MdNAC54, MdNAC59, and MdNAC63 transcription levels were induced. Under mannitol treatment, MdNAC32 and MdNAC54 transcription levels were induced, but MdNAC24, MdNAC28, MdNAC30, MdNAC33, MdNAC35, MdNAC37, MdNAC55, MdNAC56, MdNAC58, and MdNAC59 were down-regulated. Taken together, the results indicated that the cloned MdNAC genes were expressed constitutively in all examined tissues. These genes were up-regulated or down-regulated in response to AAAP infection and to salt or mannitol, which suggested they may be involved in the regulation of growth, development, and stress response in apple.
Collapse
Affiliation(s)
- Huifeng Li
- Shandong Institute of Pomology, Tai'an, China
| | - Kun Ran
- Shandong Institute of Pomology, Tai'an, China
| | - Qinglong Dong
- College of Horticulture, Northwest A and F University, Yangling, China
| | - Qiang Zhao
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Song Shi
- Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
19
|
Xu M, Liu CL, Fu Y, Liao ZW, Guo PY, Xiong R, Cheng Y, Wei SS, Huang JQ, Tang H. Molecular characterization and expression analysis of pitaya (Hylocereus polyrhizus) HpLRR genes in response to Neoscytalidium dimidiatum infection. BMC PLANT BIOLOGY 2020; 20:160. [PMID: 32293269 PMCID: PMC7161156 DOI: 10.1186/s12870-020-02368-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Canker disease caused by Neoscytalidium dimidiatum is a devastating disease resulting in a major loss to the pitaya industry. However, resistance proteins in plants play crucial roles to against pathogen infection. Among resistance proteins, the leucine-rich repeat (LRR) protein is a major family that plays crucial roles in plant growth, development, and biotic and abiotic stress responses, especially in disease defense. RESULTS In the present study, a transcriptomics analysis identified a total of 272 LRR genes, 233 of which had coding sequences (CDSs), in the plant pitaya (Hylocereus polyrhizus) in response to fungal Neoscytalidium dimidiatum infection. These genes were divided into various subgroups based on specific domains and phylogenetic analysis. Molecular characterization, functional annotation of proteins, and an expression analysis of the LRR genes were conducted. Additionally, four LRR genes (CL445.Contig4_All, Unigene28_All, CL28.Contig2_All, and Unigene2712_All, which were selected because they had the four longest CDSs were further assessed using quantitative reverse transcription PCR (qRT-PCR) at different fungal infection stages in different pitaya species (Hylocereus polyrhizus and Hylocereus undatus), in different pitaya tissues, and after treatment with salicylic acid (SA), methyl jasmonate (MeJA), and abscisic acid (ABA) hormones. The associated protein functions and roles in signaling pathways were identified. CONCLUSIONS This study provides a comprehensive overview of the HpLRR family genes at transcriptional level in pitaya in response to N. dimidiatum infection, it will be helpful to understand the molecular mechanism of pitaya canker disease, and lay a strong foundation for further research.
Collapse
Affiliation(s)
- Min Xu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, No.58 Renmin Avenue, Haikou, 570228 Hainan People’s Republic of China
| | - Cheng-Li Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, No.58 Renmin Avenue, Haikou, 570228 Hainan People’s Republic of China
| | - Yu Fu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, No.58 Renmin Avenue, Haikou, 570228 Hainan People’s Republic of China
| | - Zhi-Wen Liao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, No.58 Renmin Avenue, Haikou, 570228 Hainan People’s Republic of China
| | - Pan-Yang Guo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, No.58 Renmin Avenue, Haikou, 570228 Hainan People’s Republic of China
| | - Rui Xiong
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, No.58 Renmin Avenue, Haikou, 570228 Hainan People’s Republic of China
| | - Yu Cheng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, No.58 Renmin Avenue, Haikou, 570228 Hainan People’s Republic of China
| | - Shuang-Shuang Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, No.58 Renmin Avenue, Haikou, 570228 Hainan People’s Republic of China
| | - Jia-Quan Huang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, No.58 Renmin Avenue, Haikou, 570228 Hainan People’s Republic of China
| | - Hua Tang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, No.58 Renmin Avenue, Haikou, 570228 Hainan People’s Republic of China
| |
Collapse
|
20
|
Zhang S, Tian Z, Li H, Guo Y, Zhang Y, Roberts JA, Zhang X, Miao Y. Genome-wide analysis and characterization of F-box gene family in Gossypium hirsutum L. BMC Genomics 2019; 20:993. [PMID: 31856713 PMCID: PMC6921459 DOI: 10.1186/s12864-019-6280-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 11/13/2019] [Indexed: 11/18/2022] Open
Abstract
Background F-box proteins are substrate-recognition components of the Skp1-Rbx1-Cul1-F-box protein (SCF) ubiquitin ligases. By selectively targeting the key regulatory proteins or enzymes for ubiquitination and 26S proteasome mediated degradation, F-box proteins play diverse roles in plant growth/development and in the responses of plants to both environmental and endogenous signals. Studies of F-box proteins from the model plant Arabidopsis and from many additional plant species have demonstrated that they belong to a super gene family, and function across almost all aspects of the plant life cycle. However, systematic exploration of F-box family genes in the important fiber crop cotton (Gossypium hirsutum) has not been previously performed. The genome-wide analysis of the cotton F-box gene family is now possible thanks to the completion of several cotton genome sequencing projects. Results In current study, we first conducted a genome-wide investigation of cotton F-box family genes by reference to the published F-box protein sequences from other plant species. 592 F-box protein encoding genes were identified in the Gossypium hirsutume acc.TM-1 genome and, subsequently, we were able to present their gene structures, chromosomal locations, syntenic relationships with their parent species. In addition, duplication modes analysis showed that cotton F-box genes were distributed to 26 chromosomes, with the maximum number of genes being detected on chromosome 5. Although the WGD (whole-genome duplication) mode seems play a dominant role during cotton F-box gene expansion process, other duplication modes including TD (tandem duplication), PD (proximal duplication), and TRD (transposed duplication) also contribute significantly to the evolutionary expansion of cotton F-box genes. Collectively, these bioinformatic analysis suggest possible evolutionary forces underlying F-box gene diversification. Additionally, we also conducted analyses of gene ontology, and expression profiles in silico, allowing identification of F-box gene members potentially involved in hormone signal transduction. Conclusion The results of this study provide first insights into the Gossypium hirsutum F-box gene family, which lays the foundation for future studies of functionality, particularly those involving F-box protein family members that play a role in hormone signal transduction.
Collapse
Affiliation(s)
- Shulin Zhang
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China.,College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Zailong Tian
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Haipeng Li
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Yutao Guo
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Yanqi Zhang
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Jeremy A Roberts
- Faculty of Science and Engineering, School of Biological & Marine Sciences, University of Plymouth, Devon, UK
| | - Xuebin Zhang
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China.
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China.
| |
Collapse
|
21
|
Genome-Wide Identification and Transcriptional Expression Profiles of the F-box Gene Family in Common Walnut (Juglans regia L.). FORESTS 2019. [DOI: 10.3390/f10030275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The common walnut (or Persian walnut), Juglans regia L., is an economically important temperate tree species valued for both its edible nut and high-quality wood. F-box gene family members are involved in plant development, which includes regulating plant development, reproduction, cellular protein degradation, response to biotic and abiotic stresses, and flowering. However, in common walnut (J. regia), there are no reports about the F-box gene family. Here, we report a genome-wide identification of J. regia F-box genes and analyze their phylogeny, duplication, microRNA, pathway, and transcriptional expression profile. In this study, 74 F-box genes were identified and clustered into three groups based on phylogenetic analysis and eight subfamilies based on special domains in common walnut. These common walnut F-box genes are distributed on 31 different pseudo-chromosomes. The gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and microRNA profiles showed that the F-box gene family might play a critical role in the flowering of common walnut. The expressions were significantly higher in female flowers and male flowers compared with leaf and hull tissues at a transcriptome level. The results revealed that the expressions of the F-box gene in female flowers were positively correlated with male flowers, but there was no correlation between any other tissue combinations in common walnut. Our results provided insight into the general characteristics of the F-box genes in common walnut.
Collapse
|
22
|
Li R, Ge H, Dai Y, Yuan L, Liu X, Sun Q, Wang X. Genomewide analysis of homeobox gene family in apple (Malus domestica Borkh.) and their response to abiotic stress. J Genet 2019. [DOI: 10.1007/s12041-018-1049-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Zhang C, Song L, Choudhary MK, Zhou B, Sun G, Broderick K, Giesler L, Zeng L. Genome-wide analysis of genes encoding core components of the ubiquitin system in soybean (Glycine max) reveals a potential role for ubiquitination in host immunity against soybean cyst nematode. BMC PLANT BIOLOGY 2018; 18:149. [PMID: 30021519 PMCID: PMC6052599 DOI: 10.1186/s12870-018-1365-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 07/09/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Ubiquitination is a major post-translational protein modification that regulates essentially all cellular and physiological pathways in eukaryotes. The ubiquitination process typically involves three distinct classes of enzymes, ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2) and ubiquitin ligase (E3). To date, a comprehensive identification and analysis of core components comprising of the whole soybean (Glycine max) ubiquitin system (UBS) has not been reported. RESULTS We performed a systematic, genome-wide analysis of genes that encode core members of the soybean UBS in this study. A total of 1431 genes were identified with high confidence to encode putative soybean UBS components, including 4 genes encoding E1s, 71 genes that encode the E2s, and 1356 genes encoding the E3-related components. Among the E3-encoding genes, 760 encode RING-type E3s, 124 encode U-box domain-containing E3s, and 472 encode F-box proteins. To find out whether the identified soybean UBS genes encode active enzymes, a set of genes were randomly selected and the enzymatic activities of their recombinant proteins were tested. Thioester assays indicated proteins encoded by the soybean E1 gene GmUBA1 and the majority of selected E2 genes are active E1 or E2 enzymes, respectively. Meanwhile, most of the purified RING and U-box domain-containing proteins displayed E3 activity in the in vitro ubiquitination assay. In addition, 1034 of the identified soybean UBS genes were found to express in at least one of 14 soybean tissues examined and the transcript level of 338 soybean USB genes were significantly changed after abiotic or biotic (Fusarium oxysporum and Rhizobium strains) stress treatment. Finally, the expression level of a large number of the identified soybean UBS-related genes was found significantly altered after soybean cyst nematode (SCN) treatment, suggesting the soybean UBS potentially plays an important role in soybean immunity against SCN. CONCLUSIONS Our findings indicate the presence of a large and diverse number of core UBS proteins in the soybean genome, which suggests that target-specific modification by ubiquitin is a complex and important part of cellular and physiological regulation in soybean. We also revealed certain members of the soybean UBS may be involved in immunity against soybean cyst nematode (SCN). This study sets up an essential foundation for further functional characterization of the soybean UBS in various physiological processes, such as host immunity against SCN.
Collapse
Affiliation(s)
- Chunyu Zhang
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583 USA
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588 USA
| | - Li Song
- Department of Information Science, University of Arkansas, Little Rock, AR 72204 USA
| | - Mani Kant Choudhary
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583 USA
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588 USA
| | - Bangjun Zhou
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583 USA
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588 USA
| | - Guangchao Sun
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588 USA
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583 USA
| | - Kyle Broderick
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583 USA
| | - Loren Giesler
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583 USA
| | - Lirong Zeng
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583 USA
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588 USA
| |
Collapse
|
24
|
Liu X, Li R, Dai Y, Chen X, Wang X. Genome-wide identification and expression analysis of the B-box gene family in the Apple (Malus domestica Borkh.) genome. Mol Genet Genomics 2017; 293:303-315. [PMID: 29063961 DOI: 10.1007/s00438-017-1386-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/16/2017] [Indexed: 01/18/2023]
Abstract
The B-box proteins (BBXs) are a family of zinc finger proteins containing one/two B-box domain(s). Compared with intensive studies of animal BBXs, investigations of the plant BBX family are limited, though some specific plant BBXs have been demonstrated to act as transcription factors in the regulation of flowering and photomorphogenesis. In this study, using a global search of the apple (Malus domestica Borkh.) genome, a total of 64 members of BBX (MdBBX) were identified. All the MdBBXs were divided into five groups based on the phylogenetic relationship, numbers of B-boxes contained and whether there was with an additional CCT domain. According to the characteristics of organ-specific expression, MdBBXs were divided into three groups based on the microarray information. An analysis of cis-acting elements showed that elements related to the stress response were prevalent in the promoter sequences of most MdBBXs. Twelve MdBBX members from different groups were randomly selected and exposed to abiotic stresses. Their expressions were up-regulated to some extent in the roots and leaves. Six among 12 MdBBXs were sensitive to osmotic pressure, salt, cold stress and exogenous abscisic acid treatment, with their expressions enhanced more than 20-fold. Our results suggested that MdBBXs may take part in response to abiotic stress.
Collapse
Affiliation(s)
- Xin Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong Taian, 271018, People's Republic of China
| | - Rong Li
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong Taian, 271018, People's Republic of China
| | - Yaqing Dai
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong Taian, 271018, People's Republic of China
| | - Xuesen Chen
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong Taian, 271018, People's Republic of China
| | - Xiaoyun Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong Taian, 271018, People's Republic of China.
| |
Collapse
|
25
|
Zhang Z, Yuan L, Liu X, Chen X, Wang X. Evolution analysis of Dof transcription factor family and their expression in response to multiple abiotic stresses in Malus domestica. Gene 2017; 639:137-148. [PMID: 28986315 DOI: 10.1016/j.gene.2017.09.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/30/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
Abstract
As a family of transcription factors, DNA binding with one figure (Dof) proteins play important roles in various biological processes in plants. Here, a total of 60 putative apple (Malus domestica) Dof genes (MdDof) were identified and mapped to different chromosomes. Chromosomal distribution and synteny analysis indicated that the expansion of the MdDof genes came primarily from segmental and duplication events, and from whole genome duplication, which lead to more Dof members in apples than in other plants. All 60 MdDof genes were classified into thirteen groups, according to multiple sequence alignment and the phylogenetic tree constructed of Dof genes from apple, peach (Prunus persica), Arabidopsis and rice. Within each group, the members shared a similar exon/intron and motif compositions, although the sizes of the MdDof genes and encoding proteins were quite different. Several Dof genes from the apple and peach were identified to be homologues based on their close synteny relationship, which suggested that these genes bear similar functions. Half of the MdDof genes were randomly selected to determine their responses to different stresses. The majority of MdDof genes were quite sensitive to PEG, NaCl, cold and exogenous ABA treatment. Our results suggested that MdDof family members may play important roles in plant tolerance to abiotic stress.
Collapse
Affiliation(s)
- Zhengrong Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Taian 271018, People's Republic of China
| | - Li Yuan
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Taian 271018, People's Republic of China
| | - Xin Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Taian 271018, People's Republic of China
| | - Xuesen Chen
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Taian 271018, People's Republic of China
| | - Xiaoyun Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Taian 271018, People's Republic of China.
| |
Collapse
|
26
|
Fan S, Zhang D, Gao C, Zhao M, Wu H, Li Y, Shen Y, Han M. Identification, Classification, and Expression Analysis of GRAS Gene Family in Malus domestica. Front Physiol 2017; 8:253. [PMID: 28503152 PMCID: PMC5408086 DOI: 10.3389/fphys.2017.00253] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 04/10/2017] [Indexed: 12/02/2022] Open
Abstract
GRAS genes encode plant-specific transcription factors that play important roles in plant growth and development. However, little is known about the GRAS gene family in apple. In this study, 127 GRAS genes were identified in the apple (Malus domestica Borkh.) genome and named MdGRAS1 to MdGRAS127 according to their chromosomal locations. The chemical characteristics, gene structures and evolutionary relationships of the MdGRAS genes were investigated. The 127 MdGRAS genes could be grouped into eight subfamilies based on their structural features and phylogenetic relationships. Further analysis of gene structures, segmental and tandem duplication, gene phylogeny and tissue-specific expression with ArrayExpress database indicated their diversification in quantity, structure and function. We further examined the expression pattern of MdGRAS genes during apple flower induction with transcriptome sequencing. Eight higher MdGRAS (MdGRAS6, 26, 28, 44, 53, 64, 107, and 122) genes were surfaced. Further quantitative reverse transcription PCR indicated that the candidate eight genes showed distinct expression patterns among different tissues (leaves, stems, flowers, buds, and fruits). The transcription levels of eight genes were also investigated with various flowering related treatments (GA3, 6-BA, and sucrose) and different flowering varieties (Yanfu No. 6 and Nagafu No. 2). They all were affected by flowering-related circumstance and showed different expression level. Changes in response to these hormone or sugar related treatments indicated their potential involvement during apple flower induction. Taken together, our results provide rich resources for studying GRAS genes and their potential clues in genetic improvement of apple flowering, which enriches biological theories of GRAS genes in apple and their involvement in flower induction of fruit trees.
Collapse
Affiliation(s)
- Sheng Fan
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Dong Zhang
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Cai Gao
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Ming Zhao
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Haiqin Wu
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Youmei Li
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Yawen Shen
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Mingyu Han
- College of Horticulture, Northwest A&F UniversityYangling, China
| |
Collapse
|
27
|
Jia Q, Xiao ZX, Wong FL, Sun S, Liang KJ, Lam HM. Genome-Wide Analyses of the Soybean F-Box Gene Family in Response to Salt Stress. Int J Mol Sci 2017; 18:E818. [PMID: 28417911 PMCID: PMC5412402 DOI: 10.3390/ijms18040818] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 02/06/2023] Open
Abstract
The F-box family is one of the largest gene families in plants that regulate diverse life processes, including salt responses. However, the knowledge of the soybean F-box genes and their roles in salt tolerance remains limited. Here, we conducted a genome-wide survey of the soybean F-box family, and their expression analysis in response to salinity via in silico analysis of online RNA-sequencing (RNA-seq) data and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) to predict their potential functions. A total of 725 potential F-box proteins encoded by 509 genes were identified and classified into 9 subfamilies. The gene structures, conserved domains and chromosomal distributions were characterized. There are 76 pairs of duplicate genes identified, including genome-wide segmental and tandem duplication events, which lead to the expansion of the number of F-box genes. The in silico expression analysis showed that these genes would be involved in diverse developmental functions and play an important role in salt response. Our qRT-PCR analysis confirmed 12 salt-responding F-box genes. Overall, our results provide useful information on soybean F-box genes, especially their potential roles in salt tolerance.
Collapse
Affiliation(s)
- Qi Jia
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China.
- School of Life Sciences and Center for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Zhi-Xia Xiao
- School of Life Sciences and Center for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Fuk-Ling Wong
- School of Life Sciences and Center for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Song Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China.
| | - Kang-Jing Liang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China.
| | - Hon-Ming Lam
- School of Life Sciences and Center for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
28
|
Hou J, Liu X, Cui B, Bai J, Wang X. Concentration-dependent alterations in gene expression induced by cadmium in Solanum lycopersicum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:10528-10536. [PMID: 28281075 DOI: 10.1007/s11356-017-8748-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 03/02/2017] [Indexed: 05/11/2023]
Abstract
Cadmium (Cd) toxicity in agricultural soil has received significant attention because of its higher transformation in the food chain and toxicity to humans. The aim of the present study was to develop sensitive and specific biomarkers for Cd stress. Therefore, transcriptional analyses were performed to investigate concentration-response characteristics of Cd responsive genes identified from a Solanum lycopersicum microarray. The results showed that the lowest observable adverse effect concentrations (LOAECs) of Cd to S. lycopersicum were 1 mg/kg for seed germination, 8 mg/kg for root dry weight, 8 mg/kg for root elongation, and 8 mg/kg for root morphology. Furthermore, the genes were differentially expressed even at the lowest Cd concentrations (0.5 mg/kg), indicating that the detection of Cd in soil at the molecular level is a highly sensitive method. Cd in soil was positively correlated with the expression of the F-box protein PP2-B15 (r = 0.809, p < 0.01) and zinc transporter 4 (r = 0.643, p < 0.01), indicating that these two genes could be selected as indicators of soil Cd contamination.
Collapse
Affiliation(s)
- Jing Hou
- School of Environment And Chemical Engineering, North China Electric Power University, Beijing, 102206, China
| | - Xinhui Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Baoshan Cui
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xiangke Wang
- School of Environment And Chemical Engineering, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
29
|
Heidel AJ, Kiefer C, Coupland G, Rose LE. Pinpointing genes underlying annual/perennial transitions with comparative genomics. BMC Genomics 2016; 17:921. [PMID: 27846808 PMCID: PMC5111240 DOI: 10.1186/s12864-016-3274-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 11/08/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Transitions between perennial and an annual life history occur often in plant lineages, but the genes that control whether a plant is an annual or perennial are largely unknown. To identify genes that confer differences between annuals and perennials we compared the gene content of four pairs of sister lineages (Arabidopsis thaliana/Arabidopsis lyrata, Arabis montbretiana/Arabis alpina, Arabis verna/Aubrieta parviflora and Draba nemorosa/Draba hispanica) in the Brassicaceae in which each pair contains one annual and one perennial, plus one extra annual species (Capsella rubella). RESULTS After sorting all genes in all nine species into gene families, we identified five families in which well-annotated genes are present in the perennials A. lyrata and A. alpina, but are not present in any of the annual species. For the eleven genes in perennials in these families, an orthologous pseudogene or otherwise highly diverged gene was found in the syntenic region of the annual species in six cases. The five candidate families identified encode: a kinase, an oxidoreductase, a lactoylglutathione lyase, a F-box protein and a zinc finger protein. By comparing the active gene in the perennial to the pseudogene or heavily altered gene in the annual, dN and dS were calculated. The low dN/dS values in one kinase suggest that it became pseudogenized more recently, while the other kinase, F-box, oxidoreductase and zinc-finger became pseudogenized closer to the divergence between the annual-perennial pair. CONCLUSIONS We identified five gene families that may be involved in the life history switch from perennial to annual. Considering the dN and dS data and whether syntenic pseudogenes were found and the potential functions of the genes, the F-box family is considered the most promising candidate for future functional studies to determine if it affects life history.
Collapse
Affiliation(s)
- Andrew J. Heidel
- Institute of Population Genetics, Heinrich-Heine-Universität, Universitätsstraße 1, Düsseldorf, D-40225 Germany
- Faculty of Biology & Pharmacy, Department of Bioinformatics, University of Jena, Ernst Abbe Pl 2, Jena, D-07743 Germany
- Cluster of Excellence on Plant Science, Düsseldorf, 40225 Germany
| | - Christiane Kiefer
- Cluster of Excellence on Plant Science, Düsseldorf, 40225 Germany
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, Cologne, D-50829 Germany
| | - George Coupland
- Cluster of Excellence on Plant Science, Düsseldorf, 40225 Germany
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, Cologne, D-50829 Germany
| | - Laura E. Rose
- Institute of Population Genetics, Heinrich-Heine-Universität, Universitätsstraße 1, Düsseldorf, D-40225 Germany
- Cluster of Excellence on Plant Science, Düsseldorf, 40225 Germany
| |
Collapse
|
30
|
Saminathan T, Bodunrin A, Singh NV, Devarajan R, Nimmakayala P, Jeff M, Aradhya M, Reddy UK. Genome-wide identification of microRNAs in pomegranate (Punica granatum L.) by high-throughput sequencing. BMC PLANT BIOLOGY 2016; 16:122. [PMID: 27230657 PMCID: PMC4880961 DOI: 10.1186/s12870-016-0807-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/17/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs), a class of small non-coding endogenous RNAs that regulate gene expression post-transcriptionally, play multiple key roles in plant growth and development and in biotic and abiotic stress response. Knowledge and roles of miRNAs in pomegranate fruit development have not been explored. RESULTS Pomegranate, which accumulates a large amount of anthocyanins in skin and arils, is valuable to human health, mainly because of its antioxidant properties. In this study, we developed a small RNA library from pooled RNA samples from young seedlings to mature fruits and identified both conserved and pomegranate-specific miRNA from 29,948,480 high-quality reads. For the pool of 15- to 30-nt small RNAs, ~50 % were 24 nt. The miR157 family was the most abundant, followed by miR156, miR166, and miR168, with variants within each family. The base bias at the first position from the 5' end had a strong preference for U for most 18- to 26-nt sRNAs but a preference for A for 18-nt sRNAs. In addition, for all 24-nt sRNAs, the nucleotide U was preferred (97 %) in the first position. Stem-loop RT-qPCR was used to validate the expression of the predominant miRNAs and novel miRNAs in leaves, male and female flowers, and multiple fruit developmental stages; miR156, miR156a, miR159a, miR159b, and miR319b were upregulated during the later stages of fruit development. Higher expression of miR156 in later fruit developmental may positively regulate anthocyanin biosynthesis by reducing SPL transcription factor. Novel miRNAs showed variation in expression among different tissues. These novel miRNAs targeted different transcription factors and hormone related regulators. Gene ontology and KEGG pathway analyses revealed predominant metabolic processes and catalytic activities, important for fruit development. In addition, KEGG pathway analyses revealed the involvement of miRNAs in ascorbate and linolenic acid, starch and sucrose metabolism; RNA transport; plant hormone signaling pathways; and circadian clock. CONCLUSION Our first and preliminary report of miRNAs will provide information on the synthesis of biochemical compounds of pomegranate for future research. The functions of the targets of the novel miRNAs need further investigation.
Collapse
Affiliation(s)
- Thangasamy Saminathan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV, 25112-1000, USA
| | - Abiodun Bodunrin
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV, 25112-1000, USA
| | - Nripendra V Singh
- ICAR-National Research Center on Pomegranate, Kegaon, Solapur, Maharashtra, 413255, India
| | - Ramajayam Devarajan
- ICAR-Indian Institute of Oil Palm Research, Pedavegi, West Godavari, Andhra Pradesh, 534450, India
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV, 25112-1000, USA
| | - Moersfelder Jeff
- National Clonal Germplasm Repository, USDA-ARS, University of California, Davis, CA, 95616, USA
| | - Mallikarjuna Aradhya
- National Clonal Germplasm Repository, USDA-ARS, University of California, Davis, CA, 95616, USA
| | - Umesh K Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV, 25112-1000, USA.
| |
Collapse
|
31
|
Xu JN, Xing SS, Zhang ZR, Chen XS, Wang XY. Genome-Wide Identification and Expression Analysis of the Tubby-Like Protein Family in the Malus domestica Genome. FRONTIERS IN PLANT SCIENCE 2016; 7:1693. [PMID: 27895653 PMCID: PMC5107566 DOI: 10.3389/fpls.2016.01693] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/27/2016] [Indexed: 05/09/2023]
Abstract
Tubby-like proteins (TLPs), which have a highly conserved β barrel tubby domain, have been found to be associated with some animal-specific characteristics. In the plant kingdom, more than 10 TLP family members were identified in Arabidopsis, rice and maize, and they were found to be involved in responses to stress. The publication of the apple genome makes it feasible to systematically study the TLP family in apple. In this investigation, nine TLP encoding genes (TLPs for short) were identified. When combined with the TLPs from other plant species, the TLPs were divided into three groups (group A, B, and C). Most plant TLP members in group A contained an additional F-box domain at the N-terminus. However, no common domain was identified other than tubby domain either in group B or in group C. An analysis of the tubby domains of MdTLPs identified three types of conserved motifs. Motif 1 and 2, the signature motifs in the confirmed TLPs, were always present in MdTLPs, while motif 3 was absent from group B. Homology modeling indicated that the tubby domain of most MdTLPs had a closed β barrel, as in animal tubby domains. Expression profiling revealed that the MdTLP genes were expressed in multiple organs and were abundant in roots, stems, and leaves but low in flowers. An analysis of cis-acting elements showed that elements related to the stress response were prevalent in the promoter sequences of MdTLPs. Expression profiling by qRT-PCR indicated that almost all MdTLPs were up-regulated at some extent under abiotic stress, exogenous ABA and H2O2 treatments in leaves and roots, though different MdTLP members exhibited differently in leaves and roots. The results and information above may provide a basis for further investigation of TLP function in plants.
Collapse
|
32
|
Xu J, Xing S, Cui H, Chen X, Wang X. Genome-wide identification and characterization of the apple (Malus domestica) HECT ubiquitin-protein ligase family and expression analysis of their responsiveness to abiotic stresses. Mol Genet Genomics 2015; 291:635-46. [PMID: 26510744 DOI: 10.1007/s00438-015-1129-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 10/04/2015] [Indexed: 02/04/2023]
Abstract
The ubiquitin-protein ligases (E3s) directly participate in ubiquitin (Ub) transferring to the target proteins in the ubiquitination pathway. The HECT ubiquitin-protein ligase (UPL), one type of E3s, is characterized as containing a conserved HECT domain of approximately 350 amino acids in the C terminus. Some UPLs were found to be involved in trichome development and leaf senescence in Arabidopsis. However, studies on plant UPLs, such as characteristics of the protein structure, predicted functional motifs of the HECT domain, and the regulatory expression of UPLs have all been limited. Here, we present genome-wide identification of the genes encoding UPLs (HECT gene) in apple. The 13 genes (named as MdUPL1-MdUPL13) from ten different chromosomes were divided into four groups by phylogenetic analysis. Among these groups, the encoding genes in the intron-exon structure and the included additional functional domains were quite different. Notably, the F-box domain was first found in MdUPL7 in plant UPLs. The HECT domain in different MdUPL groups also presented different spatial features and three types of conservative motifs were identified. The promoters of each MdUPL member carried multiple stress-response related elements by cis-acting element analysis. Experimental results demonstrated that the expressions of several MdUPLs were quite sensitive to cold-, drought-, and salt-stresses by qRT-PCR assay. The results of this study helped to elucidate the functions of HECT proteins, especially in Rosaceae plants.
Collapse
Affiliation(s)
- Jianing Xu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
- Jinan Academy of Agricultural Sciences, Jinan, 250316, Shandong, People's Republic of China
| | - Shanshan Xing
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Haoran Cui
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| | - Xiaoyun Wang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| |
Collapse
|