1
|
Naderi E, Schack LMH, Welsh C, Sim AYL, Aguado-Barrera ME, Dudding T, Summersgil H, Martínez-Calvo L, Ong EHW, Odding Y, Varela-Pazos A, Steenbakkers RJHM, Crijns APG, Jena R, Pring M, Dennis J, Lobato-Busto R, Alsner J, Ness A, Nutting C, Thomson DJ, Gómez-Caamaño A, Eriksen JG, Thomas SJ, Bates AM, Overgaard J, Cascallar-Caneda LM, Duprez F, Barnett GC, Dorling L, Chua MLK, Vega A, West CML, Langendijk JA, Nicolaj Andreassen C, Alizadeh BZ. Meta-GWAS identifies the heritability of acute radiation-induced toxicities in head and neck cancer. Radiother Oncol 2022; 176:138-148. [PMID: 36191651 DOI: 10.1016/j.radonc.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE We aimed to the genetic components and susceptibility variants associated with acute radiation-induced toxicities (RITs) in patients with head and neck cancer (HNC). MATERIALS AND METHODS We performed the largest meta-GWAS of seven European cohorts (n = 4,042). Patients were scored weekly during radiotherapy for acute RITs including dysphagia, mucositis, and xerostomia. We analyzed the effect of variants on the average burden (measured as area under curve, AUC) per each RIT, and standardized total average acute toxicity (STATacute) score using a multivariate linear regression. We tested suggestive variants (p < 1.0x10-5) in discovery set (three cohorts; n = 2,640) in a replication set (four cohorts; n = 1,402). We meta-analysed all cohorts to calculate RITs specific SNP-based heritability, and effect of polygenic risk scores (PRSs), and genetic correlations among RITS. RESULTS From 393 suggestive SNPs identified in discovery set; 37 were nominally significant (preplication < 0.05) in replication set, but none reached genome-wide significance (pcombined < 5 × 10-8). In-silico functional analyses identified "3'-5'-exoribonuclease activity" (FDR = 1.6e-10) for dysphagia, "inositol phosphate-mediated signalling" for mucositis (FDR = 2.20e-09), and "drug catabolic process" for STATacute (FDR = 3.57e-12) as the most enriched pathways by the RIT specific suggestive genes. The SNP-based heritability (±standard error) was 29 ± 0.08 % for dysphagia, 9 ± 0.12 % (mucositis) and 27 ± 0.09 % (STATacute). Positive genetic correlation was rg = 0.65 (p = 0.048) between dysphagia and STATacute. PRSs explained limited variation of dysphagia (3 %), mucositis (2.5 %), and STATacute (0.4 %). CONCLUSION In HNC patients, acute RITs are modestly heritable, sharing 10 % genetic susceptibility, when PRS explains < 3 % of their variance. We identified numerus suggestive SNPs, which remain to be replicated in larger studies.
Collapse
Affiliation(s)
- Elnaz Naderi
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, the Netherlands; Department of Epidemiology, University Medical Center Groningen, Groningen, the Netherlands.
| | - Line M H Schack
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark; Department of Oncology, Regional Hospital West Jutland, Gødstrup, Denmark
| | - Ceilidh Welsh
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Adelene Y L Sim
- Division of Radiation Oncology, Dept of Head and Neck and Thoracic Cancers, Duke-NUS Medical School, Singapore, Singapore; Division of Medical Sciences, National Cancer Centre, Singapore
| | - Miguel E Aguado-Barrera
- Fundación Pública Galega Medicina Xenómica (FPGMX), Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Tom Dudding
- Bristol Dental School, University of Bristol, Bristol, UK; MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Holly Summersgil
- Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester, UK
| | - Laura Martínez-Calvo
- Fundación Pública Galega Medicina Xenómica (FPGMX), Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Enya H W Ong
- Division of Medical Sciences, National Cancer Centre, Singapore
| | - Yasmin Odding
- University Hospitals Bristol and Weston, Bristol, UK
| | - Ana Varela-Pazos
- Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Roel J H M Steenbakkers
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, the Netherlands
| | - Anne P G Crijns
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, the Netherlands
| | - Rajesh Jena
- Department of Oncology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Miranda Pring
- Bristol Dental School, University of Bristol, Bristol, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Ramón Lobato-Busto
- Department of Medical Physics, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Jan Alsner
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Andy Ness
- Bristol Dental School, University of Bristol, Bristol, UK
| | | | - David J Thomson
- Christie Hospital NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Antonio Gómez-Caamaño
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Jesper G Eriksen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark; Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Steve J Thomas
- Bristol Dental School, University of Bristol, Bristol, UK
| | - Amy M Bates
- Department of Oncology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Luis M Cascallar-Caneda
- Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Fréderic Duprez
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium; Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Gillian C Barnett
- Department of Oncology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Leila Dorling
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Melvin L K Chua
- Division of Radiation Oncology, Dept of Head and Neck and Thoracic Cancers, Duke-NUS Medical School, Singapore, Singapore; Division of Radiation Oncology, National Cancer Centre, Singapore
| | - Ana Vega
- Fundación Pública Galega Medicina Xenómica (FPGMX), Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Catharine M L West
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust Hospital, Manchester, UK
| | - Johannes A Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, the Netherlands
| | - Christian Nicolaj Andreassen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark; Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Behrooz Z Alizadeh
- Department of Epidemiology, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
2
|
Identification of Novel Regulators of Radiosensitivity Using High-Throughput Genetic Screening. Int J Mol Sci 2022; 23:ijms23158774. [PMID: 35955908 PMCID: PMC9369104 DOI: 10.3390/ijms23158774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
The biological impact of ionizing radiation (IR) on humans depends not only on the physical properties and absorbed dose of radiation but also on the unique susceptibility of the exposed individual. A critical target of IR is DNA, and the DNA damage response is a safeguard mechanism for maintaining genomic integrity in response to the induced cellular stress. Unrepaired DNA lesions lead to various mutations, contributing to adverse health effects. Cellular sensitivity to IR is highly correlated with the ability of cells to repair DNA lesions, in particular coding sequences of genes that affect that process and of others that contribute to preserving genomic integrity. However, accurate profiling of the molecular events underlying individual sensitivity requires techniques with sensitive readouts. Here we summarize recent studies that have used whole-genome analysis and identified genes that impact individual radiosensitivity. Whereas microarray and RNA-seq provide a snapshot of the transcriptome, RNA interference (RNAi) and CRISPR-Cas9 techniques are powerful tools that enable modulation of gene expression and characterizing the function of specific genes involved in radiosensitivity or radioresistance. Notably, CRISPR-Cas9 has altered the landscape of genome-editing technology with its increased readiness, precision, and sensitivity. Identifying critical regulators of cellular radiosensitivity would help tailor regimens that enhance the efficacy of therapeutic treatments and fast-track prediction of clinical outcomes. It would also contribute to occupational protection based on average individual sensitivity, as well as the formulation of countermeasures to the harmful effects of radiation.
Collapse
|
3
|
Cherednichenko O, Pilyugina A, Nuraliev S. Chronic human exposure to ionizing radiation: Individual variability of chromosomal aberration frequencies and G 0 radiosensitivities. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 873:503434. [PMID: 35094813 DOI: 10.1016/j.mrgentox.2021.503434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 10/19/2022]
Abstract
Bio-monitoring of human radiation exposure is based, as a rule, on a single analysis of chromosomal aberrations. Factors such as radiosensitivity, adaptation, and the stability of cytogenetic indices are not taken into account. We studied frequency of chromosome aberrations (FCA) and G0 chromosome radiosensitivity following in vitro γ-exposure, over a 2.5-year period, for 129 residents of the Dolon settlement, part of the extreme radiation risk zone, Semipalatinsk nuclear test site region, Kazakhstan. Radiosensitivity was evaluated on the basis of FCA and dose assessment by physical dosimetry. FCA was 3-fold higher in Dolon inhabitants as in the control group (p ≤ 0.01). The average coefficient of variability of spontaneous FCA was 31 %. In 20 % of the subjects, it was very high (50-70 %). Individual dose estimation in a single study in such individuals may lead to significant errors. Individual G0-chromosomal radiosensitivity showed less variation (18.7 %). Chronic low-dose irradiation was an adaptive factor to the damaging dose (1 Gy). Three methods of individual radiosensitivity assessment were considered, based on: G0-chromosomal radiosensitivity under additional in vitro γ-radiation; FCA and average dose per year; FCA and total dose received during years of residence in a radiocontaminated settlement, according to physical dosimetry. There is a significant difference in response (FCA) between radiosensitive and radioresistant individuals. This should be taken into account in individual dosimetry and risk assessment of radiation exposure.
Collapse
Affiliation(s)
- Oksana Cherednichenko
- Laboratory of Genetic Monitoring, Institute of Genetics and Physiology, Almaty, 050060, Al-Faraby 93, Kazakhstan.
| | - Anastassiya Pilyugina
- Laboratory of Genetic Monitoring, Institute of Genetics and Physiology, Almaty, 050060, Al-Faraby 93, Kazakhstan
| | - Serikbai Nuraliev
- Laboratory of Genetic Monitoring, Institute of Genetics and Physiology, Almaty, 050060, Al-Faraby 93, Kazakhstan
| |
Collapse
|
4
|
Naderi E, Crijns APG, Steenbakkers RJHM, van den Hoek JGM, Boezen HM, Alizadeh BZ, Langendijk JA. A two-stage genome-wide association study of radiation-induced acute toxicity in head and neck cancer. J Transl Med 2021; 19:481. [PMID: 34838041 PMCID: PMC8626989 DOI: 10.1186/s12967-021-03145-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Most head and neck cancer (HNC) patients receive radiotherapy (RT) and develop toxicities. This genome-wide association study (GWAS) was designed to identify single nucleotide polymorphisms (SNPs) associated with common acute radiation-induced toxicities (RITs) in an HNC cohort. METHODS A two-stage GWAS was performed in 1279 HNC patients treated with RT and prospectively scored for mucositis, xerostomia, sticky saliva, and dysphagia. The area under the curve (AUC) was used to estimate the average load of toxicity during RT. At the discovery study, multivariate linear regression was used in 957 patients, and the top-ranking SNPs were tested in 322 independent replication cohort. Next, the discovery and the replication studies were meta-analyzed. RESULTS A region on 5q21.3 containing 16 SNPs showed genome-wide (GW) significance association at P-value < 5.0 × 10-8 with patient-rated acute xerostomia in the discovery study. The top signal was rs35542 with an adjusted effect size of 0.17*A (95% CI 0.12 to 0.23; P-value < = 3.78 × 10-9). The genome wide significant SNPs were located within three genes (EFNA5, FBXL17, and FER). In-silico functional analysis showed these genes may be involved in DNA damage response and co-expressed in minor salivary glands. We found 428 suggestive SNPs (P-value < 1.0 × 10-5) for other toxicities, taken to the replication study. Eleven of them showed a nominal association (P-value < 0.05). CONCLUSIONS This GWAS suggested novel SNPs for patient-rated acute xerostomia in HNC patients. If validated, these SNPs and their related functional pathways could lead to a predictive assay to identify sensitive patients to radiation, which may eventually allow a more individualized RT treatment.
Collapse
Affiliation(s)
- Elnaz Naderi
- Department of Radiation Oncology, University Medical Center Groningen, Hanzeplein 1, HPC; DA 30, P.O. Box 30 001, 9700 RB, Groningen, The Netherlands.
- Department of Epidemiology, University Medical Center Groningen, Groningen, The Netherlands.
| | - Anne Petra Gerarda Crijns
- Department of Radiation Oncology, University Medical Center Groningen, Hanzeplein 1, HPC; DA 30, P.O. Box 30 001, 9700 RB, Groningen, The Netherlands
| | | | - Johanna Geertruida Maria van den Hoek
- Department of Radiation Oncology, University Medical Center Groningen, Hanzeplein 1, HPC; DA 30, P.O. Box 30 001, 9700 RB, Groningen, The Netherlands
| | - Hendrika Marike Boezen
- Department of Epidemiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Behrooz Ziad Alizadeh
- Department of Epidemiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Johannes Albertus Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, Hanzeplein 1, HPC; DA 30, P.O. Box 30 001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
5
|
Sumner W, Ray X, Sutton L, Rebibo D, Marincola F, Sanghvi P, Moiseenko V, Deichaite I. Gene alterations as predictors of radiation-induced toxicity in head and neck squamous cell carcinoma. J Transl Med 2021; 19:212. [PMID: 34001187 PMCID: PMC8130372 DOI: 10.1186/s12967-021-02876-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/05/2021] [Indexed: 01/02/2023] Open
Abstract
Background Optimizing the therapeutic ratio for radiation therapy (RT) in head and neck squamous cell carcinoma (HNSCC) is uniquely challenging owing to high rates of early and late toxicity involving nearby organs at risk. These toxicities have a profound impact on treatment compliance and quality of life. Emerging evidence suggests that RT dose alone cannot fully account for the variable severity of RT-related adverse events (rtAEs) observed in HNSCC patients. Next-generation sequencing has become an increasingly valuable tool with widespread use in the oncology field and is being robustly explored for predicting rtAEs beyond dosimetric data. Methods Patients who had Foundation Medicine sequencing data and received RT for primary or locally recurrent HNSCC were selected for this study. Early and late toxicity data were collected and reported based on Common Terminology Criteria for Adverse Events version 5.0. Dosimetric parameters were collected for pertinent structures. Results A total of HNSCC 37 patients were analyzed in this study. Genetic alterations in BRCA2, ERBB3, NOTCH1 and CCND1 were all associated with higher mean grade of toxicity with BRCA2 alteration implicated in all toxicity parameters evaluated including mucositis, early dysphagia, xerostomia and to a lesser extent, late dysphagia. Interestingly, patients who exhibited alterations in both BRCA2 and ERBB3 experienced a twofold or greater increase in early dysphagia, early xerostomia and late dysphagia compared to ERBB3 alteration alone. Furthermore, several gene alterations were associated with improved toxicity outcomes. Within an RT supersensitive patient subset, alterations were found in TNFAIP3, HNF1A, SPTA1 and CASP8. All of these alterations were not found in the RT insensitive patient subset. We found 17 gene alterations in the RT insensitive patient subset that were not found in the RT supersensitive patient subset. Conclusion Despite consistent RT dosimetric parameters, patients with HNSCC experience heterogeneous patterns of rtAEs. Identifying factors associated with toxicity outcomes offers a new avenue for personalized precision RT therapy and prophylactic management. Here, next-generation sequencing in a population of HNSCC patients correlates several genetic alterations with severity of rtAEs. Further analysis is urgently needed to identify genetic patterns associated with rtAEs in order to reduce harmful outcomes in this challenging population. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02876-5.
Collapse
Affiliation(s)
- Whitney Sumner
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Xenia Ray
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Leisa Sutton
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Daniel Rebibo
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | | | - Parag Sanghvi
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Vitali Moiseenko
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ida Deichaite
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA. .,Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Vinnikov V, Hande MP, Wilkins R, Wojcik A, Zubizarreta E, Belyakov O. Prediction of the Acute or Late Radiation Toxicity Effects in Radiotherapy Patients Using Ex Vivo Induced Biodosimetric Markers: A Review. J Pers Med 2020; 10:E285. [PMID: 33339312 PMCID: PMC7766345 DOI: 10.3390/jpm10040285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
A search for effective methods for the assessment of patients' individual response to radiation is one of the important tasks of clinical radiobiology. This review summarizes available data on the use of ex vivo cytogenetic markers, typically used for biodosimetry, for the prediction of individual clinical radiosensitivity (normal tissue toxicity, NTT) in cells of cancer patients undergoing therapeutic irradiation. In approximately 50% of the relevant reports, selected for the analysis in peer-reviewed international journals, the average ex vivo induced yield of these biodosimetric markers was higher in patients with severe reactions than in patients with a lower grade of NTT. Also, a significant correlation was sometimes found between the biodosimetric marker yield and the severity of acute or late NTT reactions at an individual level, but this observation was not unequivocally proven. A similar controversy of published results was found regarding the attempts to apply G2- and γH2AX foci assays for NTT prediction. A correlation between ex vivo cytogenetic biomarker yields and NTT occurred most frequently when chromosome aberrations (not micronuclei) were measured in lymphocytes (not fibroblasts) irradiated to relatively high doses (4-6 Gy, not 2 Gy) in patients with various grades of late (not early) radiotherapy (RT) morbidity. The limitations of existing approaches are discussed, and recommendations on the improvement of the ex vivo cytogenetic testing for NTT prediction are provided. However, the efficiency of these methods still needs to be validated in properly organized clinical trials involving large and verified patient cohorts.
Collapse
Affiliation(s)
- Volodymyr Vinnikov
- S.P. Grigoriev Institute for Medical Radiology and Oncology, National Academy of Medical Science of Ukraine, 61024 Kharkiv, Ukraine
| | - Manoor Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9, 2 Medical Drive, Singapore 117593, Singapore;
| | - Ruth Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa, ON K1A 1C1, Canada;
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, MBW Department, Stockholm University, Svante Arrhenius väg 20C, Room 515, 10691 Stockholm, Sweden;
| | - Eduardo Zubizarreta
- Section of Applied Radiation Biology and Radiotherapy, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria;
| | - Oleg Belyakov
- Section of Applied Radiation Biology and Radiotherapy, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria;
| |
Collapse
|
7
|
Bergom C, West CM, Higginson DS, Abazeed ME, Arun B, Bentzen SM, Bernstein JL, Evans JD, Gerber NK, Kerns SL, Keen J, Litton JK, Reiner AS, Riaz N, Rosenstein BS, Sawakuchi GO, Shaitelman SF, Powell SN, Woodward WA. The Implications of Genetic Testing on Radiation Therapy Decisions: A Guide for Radiation Oncologists. Int J Radiat Oncol Biol Phys 2019; 105:698-712. [PMID: 31381960 DOI: 10.1016/j.ijrobp.2019.07.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 06/21/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
Abstract
The advent of affordable and rapid next-generation DNA sequencing technology, along with the US Supreme Court ruling invalidating gene patents, has led to a deluge of germline and tumor genetic variant tests that are being rapidly incorporated into clinical cancer decision-making. A major concern for clinicians is whether the presence of germline mutations may increase the risk of radiation toxicity or secondary malignancies. Because scarce clinical data exist to inform decisions at this time, the American Society for Radiation Oncology convened a group of radiation science experts and clinicians to summarize potential issues, review relevant data, and provide guidance for adult patients and their care teams regarding the impact, if any, that genetic testing should have on radiation therapy recommendations. During the American Society for Radiation Oncology workshop, several main points emerged, which are discussed in this manuscript: (1) variants of uncertain significance should be considered nondeleterious until functional genomic data emerge to demonstrate otherwise; (2) possession of germline alterations in a single copy of a gene critical for radiation damage responses does not necessarily equate to increased risk of radiation-induced toxicity; (3) deleterious ataxia-telangiesctasia gene mutations may modestly increase second cancer risk after radiation therapy, and thus follow-up for these patients after indicated radiation therapy should include second cancer screening; (4) conveying to patients the difference between relative and absolute risk is critical to decision-making; and (5) more work is needed to assess the impact of tumor somatic alterations on the probability of response to radiation therapy and the potential for individualization of radiation doses. Data on radiosensitivity related to specific genetic mutations is also briefly discussed.
Collapse
Affiliation(s)
- Carmen Bergom
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Catharine M West
- Division of Cancer Sciences, National Institute for Health Research Manchester Biomedical Research Centre, University of Manchester, Christie National Health Service Foundation Trust Hospital, Manchester, UK
| | - Daniel S Higginson
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mohamed E Abazeed
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio; Department of Translational Hematology Oncology Research, Cleveland Clinic, Cleveland, Ohio
| | - Banu Arun
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Soren M Bentzen
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jonine L Bernstein
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jaden D Evans
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota; Department of Radiation Oncology and Precision Genomics, Intermountain Healthcare, Ogden, Utah
| | - Naamit K Gerber
- Department of Radiation Oncology, New York University Langone Health, New York, New York
| | - Sarah L Kerns
- Department of Radiation Oncology, University of Rochester, Rochester, New York
| | - Judy Keen
- Scientific Affairs, American Society for Radiation Oncology, Arlington, Virginia
| | - Jennifer K Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anne S Reiner
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Barry S Rosenstein
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gabriel O Sawakuchi
- Department of Radiation Physics The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Simona F Shaitelman
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Simon N Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Wendy A Woodward
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
8
|
Xie L, Bao X, Cai T, Silva SG, Ma J, Zhang Z, Guo X, Marks LB. Elevated Risk of Radiation Therapy-Associated Second Malignant Neoplasms in Young African-American Women Survivors of Stage I-IIIA Breast Cancer. Int J Radiat Oncol Biol Phys 2019; 105:275-284. [PMID: 31201893 DOI: 10.1016/j.ijrobp.2019.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/13/2019] [Accepted: 06/01/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE To estimate the effect of radiation therapy (RT) on nonbreast second malignant neoplasms (SMNs) in young women survivors of stage I-IIIA breast cancer. METHODS AND MATERIALS Women aged 20 to 44 years who received a diagnosis of stage I-IIIA breast cancer (1988-2008) were identified in the Surveillance, Epidemiology, and End Results 9 registries. Bootstrapping approach and competing-risk proportional hazards models were used to evaluate the effect of RT on nonbreast SMN risk. The analysis was repeated in racial subgroups. Radiotolerance score analysis of normal airway epithelium was performed using Gene Expression Omnibus (GEO) data sets. RESULTS Within records of 30,003 women with primary breast cancer, 20,516 eligible patients were identified, including 2,183 African Americans (AAs) and 16,009 Caucasians. The 25-year cumulative incidences of SMN were 5.2% and 3.6% (RT vs no-RT) for AAs, with 12.8-year and 17.4-year (RT vs no-RT) median follow-up (hazard ratio [HR] = 1.81; 95% bootstrapping confidence interval [BCI], 1.02-2.50; P < .05), respectively, and 6.4% and 5.9% (RT vs no-RT) for Caucasians with 14.3-year and 18.1-year (RT vs no-RT) median follow-up (HR = 1.10; 95% BCI, 0.61-1.40; P > .05), respectively. The largest portion of excess RT-related SMN risk was lung cancer (AA: HR = 2.08, 95% BCI, 1.02-5.39, P < .05; Caucasian: HR = 1.50, 95% BCI, 0.84-5.38, P > .05). Subpopulation Treatment Effect Pattern Plot (STEPP) analysis revealed higher post-RT nonbreast SMN risk in those 20 to 44 years of age, with larger HRs for RT in AAs. Radiotolerance score (RTS) of normal airway epithelium from young AA women was significantly lower than that from young Caucasian women (P = .038). CONCLUSIONS With a projected 25-year follow-up, RT is associated with elevated risk of nonbreast SMNs, particularly second lung cancer, in young women survivors of stage I-IIIA breast cancer. Nonbreast SMNs associated with RT are higher in AA women than Caucasian women.
Collapse
Affiliation(s)
- Liyi Xie
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xuhui Bao
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina.
| | - Tianji Cai
- Department of Sociology, University of Macau, Taipa, Macau, China
| | - Susan G Silva
- Department of Clinical Trials Statistics, Duke Clinical Research Institute, Duke University Medical Center, Durham, North Carolina
| | - Jinli Ma
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaomao Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Lawrence B Marks
- Department of Radiation Oncology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
9
|
Zyla J, Kabacik S, O'Brien G, Wakil S, Al-Harbi N, Kaprio J, Badie C, Polanska J, Alsbeih G. Combining CDKN1A gene expression and genome-wide SNPs in a twin cohort to gain insight into the heritability of individual radiosensitivity. Funct Integr Genomics 2019; 19:575-585. [PMID: 30706161 PMCID: PMC6570669 DOI: 10.1007/s10142-019-00658-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/12/2018] [Accepted: 01/09/2019] [Indexed: 12/15/2022]
Abstract
Individual variability in response to radiation exposure is recognised and has often been reported as important in treatment planning. Despite many efforts to identify biomarkers allowing the identification of radiation sensitive patients, it is not yet possible to distinguish them with certainty before the beginning of the radiotherapy treatment. A comprehensive analysis of genome-wide single-nucleotide polymorphisms (SNPs) and a transcriptional response to ionising radiation exposure in twins have the potential to identify such an individual. In the present work, we investigated SNP profile and CDKN1A gene expression in blood T lymphocytes from 130 healthy Caucasians with a complex level of individual kinship (unrelated, mono- or dizygotic twins). It was found that genetic variation accounts for 66% (95% CI 37-82%) of CDKN1A transcriptional response to radiation exposure. We developed a novel integrative multi-kinship strategy allowing investigating the role of genome-wide polymorphisms in transcriptomic radiation response, and it revealed that rs205543 (ETV6 gene), rs2287505 and rs1263612 (KLF7 gene) are significantly associated with CDKN1A expression level. The functional analysis revealed that rs6974232 (RPA3 gene), involved in mismatch repair (p value = 9.68e-04) as well as in RNA repair (p value = 1.4e-03) might have an important role in that process. Two missense polymorphisms with possible deleterious effect in humans were identified: rs1133833 (AKIP1 gene) and rs17362588 (CCDC141 gene). In summary, the data presented here support the validity of this novel integrative data analysis strategy to provide insights into the identification of SNPs potentially influencing radiation sensitivity. Further investigations in radiation response research at the genomic level should be therefore continued to confirm these findings.
Collapse
Affiliation(s)
- Joanna Zyla
- Data Mining Division, Faculty of Automatic Control, Electronic and Computer Science, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
| | - Sylwia Kabacik
- Cellular Biology Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, OX11 0RQ, UK
| | - Grainne O'Brien
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, OX11 0RQ, UK
| | - Salma Wakil
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Najla Al-Harbi
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Jaakko Kaprio
- Department of Public Health and Institute for Molecular Medicine FIMM, University of Helsinki, 00140, Helsinki, Finland
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, OX11 0RQ, UK
| | - Joanna Polanska
- Data Mining Division, Faculty of Automatic Control, Electronic and Computer Science, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland.
| | - Ghazi Alsbeih
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| |
Collapse
|
10
|
Morton LM, Kerns SL, Dolan ME. Role of Germline Genetics in Identifying Survivors at Risk for Adverse Effects of Cancer Treatment. Am Soc Clin Oncol Educ Book 2018; 38:775-786. [PMID: 30231410 DOI: 10.1200/edbk_201391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The growing population of cancer survivors often faces adverse effects of treatment, which have a substantial impact on morbidity and mortality. Although certain adverse effects are thought to have a significant heritable component, much work remains to be done to understand the role of germline genetic factors in the development of treatment-related toxicities. In this article, we review current understanding of genetic susceptibility to a range of adverse outcomes among cancer survivors (e.g., fibrosis, urinary and rectal toxicities, ototoxicity, chemotherapy-induced peripheral neuropathy, subsequent malignancies). Most previous research has been narrowly focused, investigating variation in candidate genes and pathways such as drug metabolism, DNA damage and repair, and inflammation. Few of the findings from these earlier candidate gene studies have been replicated in independent populations. Advances in understanding of the genome, improvements in technology, and reduction in laboratory costs have led to recent genome-wide studies, which agnostically interrogate common and/or rare variants across the entire genome. Larger cohorts of patients with homogeneous treatment exposures and systematic ascertainment of well-defined outcomes as well as replication in independent study populations are essential aspects of the study design and are increasingly leading to the discovery of variants associated with each of the adverse outcomes considered in this review. In the long-term, validated germline genetic associations hold tremendous promise for more precisely identifying patients at highest risk for developing adverse treatment effects, with implications for frontline therapy decision-making, personalization of long-term follow-up guidelines, and potential identification of targets for prevention or treatment of the toxicity.
Collapse
Affiliation(s)
- Lindsay M Morton
- From the Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute at the National Institutes of Health, Bethesda, MD; Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY; Department of Medicine, University of Chicago, Chicago, IL
| | - Sarah L Kerns
- From the Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute at the National Institutes of Health, Bethesda, MD; Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY; Department of Medicine, University of Chicago, Chicago, IL
| | - M Eileen Dolan
- From the Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute at the National Institutes of Health, Bethesda, MD; Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY; Department of Medicine, University of Chicago, Chicago, IL
| |
Collapse
|
11
|
Kerns SL, Chuang KH, Hall W, Werner Z, Chen Y, Ostrer H, West C, Rosenstein B. Radiation biology and oncology in the genomic era. Br J Radiol 2018; 91:20170949. [PMID: 29888979 PMCID: PMC6475928 DOI: 10.1259/bjr.20170949] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/25/2022] Open
Abstract
Radiobiology research is building the foundation for applying genomics in precision radiation oncology. Advances in high-throughput approaches will underpin increased understanding of radiosensitivity and the development of future predictive assays for clinical application. There is an established contribution of genetics as a risk factor for radiotherapy side effects. An individual's radiosensitivity is an inherited polygenic trait with an architecture that includes rare mutations in a few genes that confer large effects and common variants in many genes with small effects. Current thinking is that some will be tissue specific, and future tests will be tailored to the normal tissues at risk. The relationship between normal and tumor cell radiosensitivity is poorly understood. Data are emerging suggesting interplay between germline genetic variation and epigenetic modification with growing evidence that changes in DNA methylation regulate the radiosensitivity of cancer cells and histone acetyltransferase inhibitors have radiosensitizing effects. Changes in histone methylation can also impair DNA damage response signaling and alter radiosensitivity. An important effort to advance radiobiology in the genomic era was establishment of the Radiogenomics Consortium to enable the creation of the large radiotherapy cohorts required to exploit advances in genomics. To address challenges in harmonizing data from multiple cohorts, the consortium established the REQUITE project to collect standardized data and genotyping for ~5,000 patients. The collection of detailed dosimetric data is important to produce validated multivariable models. Continued efforts will identify new genes that impact on radiosensitivity to generate new knowledge on toxicity pathogenesis and tests to incorporate into the clinical decision-making process.
Collapse
Affiliation(s)
| | - Kuang-Hsiang Chuang
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - William Hall
- Department of Radiation Oncology, Medical College of Wisconsin and Clement J Zablocki VA Medical Center Milwaukee, Milwaukee, WI, USA
| | | | - Yuhchyau Chen
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Harry Ostrer
- Departments of Pathology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Catharine West
- Division of Cancer Sciences, University of Manchester, Christie Hospital, Manchester, UK
| | - Barry Rosenstein
- Departments of Radiation Oncology, Genetics and Genomic Sciences, and Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
12
|
Morton LM, Ricks-Santi L, West CML, Rosenstein BS. Radiogenomic Predictors of Adverse Effects following Charged Particle Therapy. Int J Part Ther 2018; 5:103-113. [PMID: 30505881 PMCID: PMC6261418 DOI: 10.14338/ijpt-18-00009.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/16/2018] [Indexed: 12/31/2022] Open
Abstract
Radiogenomics is the study of genomic factors that are associated with response to radiation therapy. In recent years, progress has been made toward identifying genetic risk factors linked with late radiation-induced adverse effects. These advances have been underpinned by the establishment of an international Radiogenomics Consortium with collaborative studies that expand cohort sizes to increase statistical power and efforts to improve methodologic approaches for radiogenomic research. Published studies have predominantly reported the results of research involving patients treated with photons using external beam radiation therapy. These studies demonstrate our ability to pool international cohorts to identify common single nucleotide polymorphisms associated with risk for developing normal tissue toxicities. Progress has also been achieved toward the discovery of genetic variants associated with radiation therapy-related subsequent malignancies. With the increasing use of charged particle therapy (CPT), there is a need to establish cohorts for patients treated with these advanced technology forms of radiation therapy and to create biorepositories with linked clinical data. While some genetic variants are likely to impact toxicity and second malignancy risks for both photons and charged particles, it is plausible that others may be specific to the radiation modality due to differences in their biological effects, including the complexity of DNA damage produced. In recognition that the formation of patient cohorts treated with CPT for radiogenomic studies is a high priority, efforts are underway to establish collaborations involving institutions treating cancer patients with protons and/or carbon ions as well as consortia, including the Proton Collaborative Group, the Particle Therapy Cooperative Group, and the Pediatric Proton Consortium Registry. These important radiogenomic CPT initiatives need to be expanded internationally to build on experience gained from the Radiogenomics Consortium and epidemiologists investigating normal tissue toxicities and second cancer risk.
Collapse
Affiliation(s)
- Lindsay M. Morton
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Catharine M. L. West
- Division of Cancer Sciences, The University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, United Kingdom
| | - Barry S. Rosenstein
- Department of Radiation Oncology and Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
13
|
Habash M, Bohorquez LC, Kyriakou E, Kron T, Martin OA, Blyth BJ. Clinical and Functional Assays of Radiosensitivity and Radiation-Induced Second Cancer. Cancers (Basel) 2017; 9:cancers9110147. [PMID: 29077012 PMCID: PMC5704165 DOI: 10.3390/cancers9110147] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 01/10/2023] Open
Abstract
Whilst the near instantaneous physical interaction of radiation energy with living cells leaves little opportunity for inter-individual variation in the initial yield of DNA damage, all the downstream processes in how damage is recognized, repaired or resolved and therefore the ultimate fate of cells can vary across the population. In the clinic, this variability is observed most readily as rare extreme sensitivity to radiotherapy with acute and late tissue toxic reactions. Though some radiosensitivity can be anticipated in individuals with known genetic predispositions manifest through recognizable phenotypes and clinical presentations, others exhibit unexpected radiosensitivity which nevertheless has an underlying genetic cause. Currently, functional assays for cellular radiosensitivity represent a strategy to identify patients with potential radiosensitivity before radiotherapy begins, without needing to discover or evaluate the impact of the precise genetic determinants. Yet, some of the genes responsible for extreme radiosensitivity would also be expected to confer susceptibility to radiation-induced cancer, which can be considered another late adverse event associated with radiotherapy. Here, the utility of functional assays of radiosensitivity for identifying individuals susceptible to radiotherapy-induced second cancer is discussed, considering both the common mechanisms and important differences between stochastic radiation carcinogenesis and the range of deterministic acute and late toxic effects of radiotherapy.
Collapse
Affiliation(s)
- Mohammad Habash
- Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
- Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Luis C Bohorquez
- Physical Sciences, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
| | - Elizabeth Kyriakou
- Physical Sciences, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
| | - Tomas Kron
- Physical Sciences, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
| | - Olga A Martin
- Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
- Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Benjamin J Blyth
- Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
- Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
| |
Collapse
|
14
|
Medda E, Minoprio A, Nisticò L, Bocca B, Simonelli V, D'Errico M, Calcagnile A, Giuliani A, Toccaceli V, Minghetti L, Alimonti A, Stazi MA, Mazzei F, Dogliotti E. The response to oxidative stress and metallomics analysis in a twin study: The role of the environment. Free Radic Biol Med 2016; 97:236-243. [PMID: 27264237 DOI: 10.1016/j.freeradbiomed.2016.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 05/23/2016] [Accepted: 05/29/2016] [Indexed: 02/02/2023]
Abstract
Inefficient response to oxidative stress has been associated with ageing and health risk. Metals are known to inhibit DNA repair and may modify the antioxidant response. How genetic variability and lifestyle factors modulate the response to oxidative stress is poorly explored. Our study aims to disentangle the contribution of genetics and environmental exposures to oxidative stress response using data from twin pairs. The non-enzymatic antioxidant capacity (NEAC), the repair capacity of 8-oxo-7,8-dihydroguanine (OGG activity) and the levels of 12 metals were measured in blood of 64 monozygotic and 31 dizygotic twin pairs. The contributions of genetic and environmental effects were assessed using standard univariate twin modelling. NEAC and OGG activity significantly decreased with age. Gender-, age- and body mass index-associated differences were identified for some metals. Principal Component Analysis identified two groups of metals whose levels in blood were highly correlated: As, Hg, Pb, Se, Zn and Al, Co, Cr, Mn, Ni. The environmental influence was predominant on OGG activity and NEAC variance whereas for most metals the best-fitting model incorporated additive genetic and unique environmental sources of variance. NEAC and OGG activity were both inversely correlated with blood levels of various metals. The inhibition of OGG activity by Cd was largely explained by smoking. Our data show a substantial role of environmental factors in NEAC and OGG activity variance that is not explained by twins' age. Exogenous environmental factors such as metals contribute to oxidative stress by decreasing NEAC and inhibiting repair of oxidatively-induced DNA damage.
Collapse
Affiliation(s)
- Emanuela Medda
- National Center of Epidemiology, Surveillance and Health Promotion, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Minoprio
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Lorenza Nisticò
- National Center of Epidemiology, Surveillance and Health Promotion, Istituto Superiore di Sanità, Rome, Italy
| | - Beatrice Bocca
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Valeria Simonelli
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Mariarosaria D'Errico
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Angelo Calcagnile
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandro Giuliani
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Virgilia Toccaceli
- National Center of Epidemiology, Surveillance and Health Promotion, Istituto Superiore di Sanità, Rome, Italy
| | - Luisa Minghetti
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandro Alimonti
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Antonietta Stazi
- National Center of Epidemiology, Surveillance and Health Promotion, Istituto Superiore di Sanità, Rome, Italy
| | - Filomena Mazzei
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy.
| | - Eugenia Dogliotti
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
15
|
Gender bias in individual radiosensitivity and the association with genetic polymorphic variations. Radiother Oncol 2016; 119:236-43. [PMID: 26987471 DOI: 10.1016/j.radonc.2016.02.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 12/08/2015] [Accepted: 02/29/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE To assess the extent of variation in radiosensitivity between individuals, gender-related dissimilarity and impact on the association with single nucleotide polymorphisms (SNPs). MATERIALS AND METHODS Survival curves of 152 fibroblast cell strains derived from both gender were generated. Individual radiosensitivity was characterized by the surviving fraction at 2Gy (SF2). SNPs in 10 radiation responsive genes were genotyped by direct sequencing. RESULTS The wide variation in SF2 (0.12-0.50; mean=0.33) was significantly associated with 3 SNPs: TP53 G72C (P=0.007), XRCC1 G399A (P=0.002) and ATM G1853A (P=0.01). Females and males differed significantly in radiosensitivity (P=0.004) that impacted genetic association where only XRCC1 remained significant in both gender (P<0.05). Meanwhile, discordant association was observed for TP53 that was significant in females (P=0.012) and ATM that was significant in males (P=0.0006). When gender-specific SF2-mean (0.31 and 0.35 for females and males; respectively) was considered, further discordance was observed where XRCC1 turned out not to be associated with radiosensitivity in males (P>0.05). CONCLUSIONS Although the variation in individual radiosensitivity was associated with certain SNPs, gender bias for both endpoints was evident. Therefore, assessing the risk of radiation exposure in females and males should be considered separately in order to achieve the ultimate goal of personalized radiation medicine.
Collapse
|
16
|
Locke PA, Weil MM. Personalized Cancer Risk Assessments for Space Radiation Exposures. Front Oncol 2016; 6:38. [PMID: 26942127 PMCID: PMC4762001 DOI: 10.3389/fonc.2016.00038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/05/2016] [Indexed: 11/13/2022] Open
Abstract
Individuals differ in their susceptibility to radiogenic cancers, and there is evidence that this inter-individual susceptibility extends to HZE ion-induced carcinogenesis. Three components of individual risk: sex, age at exposure, and prior tobacco use, are already incorporated into the NASA cancer risk model used to determine safe days in space for US astronauts. Here, we examine other risk factors that could potentially be included in risk calculations. These include personal and family medical history, the presence of pre-malignant cells that could undergo malignant transformation as a consequence of radiation exposure, the results from phenotypic assays of radiosensitivity, heritable genetic polymorphisms associated with radiosensitivity, and postflight monitoring. Inclusion of these additional risk or risk reduction factors has the potential to personalize risk estimates for individual astronauts and could influence the determination of safe days in space. We consider how this type of assessment could be used and explore how the provisions of the federal Genetic Information Non-discrimination Act could impact the collection, dissemination and use of this information by NASA.
Collapse
Affiliation(s)
- Paul A Locke
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health , Baltimore, MD , USA
| | - Michael M Weil
- Department of Environmental and Radiological Health Sciences, Colorado State University , Fort Collins, CO , USA
| |
Collapse
|
17
|
Influential Factors and Synergies for Radiation-Gene Therapy on Cancer. Anal Cell Pathol (Amst) 2015; 2015:313145. [PMID: 26783511 PMCID: PMC4689877 DOI: 10.1155/2015/313145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/22/2015] [Indexed: 11/24/2022] Open
Abstract
Radiation-gene therapy, a dual anticancer strategy of radiation therapy and gene therapy through connecting radiation-inducible regulatory sequence to therapeutic gene, leading to the gene being induced to express by radiation while radiotherapy is performed and finally resulting in a double synergistic antitumor effect of radiation and gene, has become one of hotspots in the field of cancer treatment in recent years. But under routine dose of radiation, especially in the hypoxia environment of solid tumor, it is difficult for this therapy to achieve desired effect because of low activity of radiation-inducible regulatory elements, low level and transient expression of target gene induced by radiation, inferior target specificity and poor biosecurity, and so on. Based on the problems existing in radiation-gene therapy, many efforts have been devoted to the curative effect improvement of radiation-gene therapy by various means to increase radiation sensitivity or enhance target gene expression and the expression's controllability. Among these synergistic techniques, gene circuit, hypoxic sensitization, and optimization of radiation-induced sequence exhibit a good application potential. This review provides the main influential factors to radiation-gene therapy on cancer and the synergistic techniques to improve the anticancer effect of radiation-gene therapy.
Collapse
|
18
|
Barnett GC, Kerns SL, Noble DJ, Dunning AM, West CML, Burnet NG. Incorporating Genetic Biomarkers into Predictive Models of Normal Tissue Toxicity. Clin Oncol (R Coll Radiol) 2015; 27:579-87. [PMID: 26166774 DOI: 10.1016/j.clon.2015.06.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/08/2015] [Accepted: 06/12/2015] [Indexed: 12/25/2022]
Abstract
There is considerable variation in the level of toxicity patients experience for a given dose of radiotherapy, which is associated with differences in underlying individual normal tissue radiosensitivity. A number of syndromes have a large effect on clinical radiosensitivity, but these are rare. Among non-syndromic patients, variation is less extreme, but equivalent to a ±20% variation in dose. Thus, if individual normal tissue radiosensitivity could be measured, it should be possible to optimise schedules for individual patients. Early investigations of in vitro cellular radiosensitivity supported a link with tissue response, but individual studies were equivocal. A lymphocyte apoptosis assay has potential, and is currently under prospective validation. The investigation of underlying genetic variation also has potential. Although early candidate gene studies were inconclusive, more recent genome-wide association studies are revealing definite associations between genotype and toxicity and highlighting the potential for future genetic testing. Genetic testing and individualised dose prescriptions could reduce toxicity in radiosensitive patients, and permit isotoxic dose escalation to increase local control in radioresistant individuals. The approach could improve outcomes for half the patients requiring radical radiotherapy. As a number of patient- and treatment-related factors also affect the risk of toxicity for a given dose, genetic testing data will need to be incorporated into models that combine patient, treatment and genetic data.
Collapse
Affiliation(s)
- G C Barnett
- Oncology Centre, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - S L Kerns
- Rubin Center for Cancer Survivorship, Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - D J Noble
- Oncology Centre, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - A M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - C M L West
- Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| | - N G Burnet
- University of Cambridge Department of Oncology, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
19
|
Scaife JE, Barnett GC, Noble DJ, Jena R, Thomas SJ, West CML, Burnet NG. Exploiting biological and physical determinants of radiotherapy toxicity to individualize treatment. Br J Radiol 2015; 88:20150172. [PMID: 26084351 PMCID: PMC4628540 DOI: 10.1259/bjr.20150172] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/07/2015] [Accepted: 05/21/2015] [Indexed: 12/16/2022] Open
Abstract
The recent advances in radiation delivery can improve tumour control probability (TCP) and reduce treatment-related toxicity. The use of intensity-modulated radiotherapy (IMRT) in particular can reduce normal tissue toxicity, an objective in its own right, and can allow safe dose escalation in selected cases. Ideally, IMRT should be combined with image guidance to verify the position of the target, since patients, target and organs at risk can move day to day. Daily image guidance scans can be used to identify the position of normal tissue structures and potentially to compute the daily delivered dose. Fundamentally, it is still the tolerance of the normal tissues that limits radiotherapy (RT) dose and therefore tumour control. However, the dose-response relationships for both tumour and normal tissues are relatively steep, meaning that small dose differences can translate into clinically relevant improvements. Differences exist between individuals in the severity of toxicity experienced for a given dose of RT. Some of this difference may be the result of differences between the planned dose and the accumulated dose (DA). However, some may be owing to intrinsic differences in radiosensitivity of the normal tissues between individuals. This field has been developing rapidly, with the demonstration of definite associations between genetic polymorphisms and variation in toxicity recently described. It might be possible to identify more resistant patients who would be suitable for dose escalation, as well as more sensitive patients for whom toxicity could be reduced or avoided. Daily differences in delivered dose have been investigated within the VoxTox research programme, using the rectum as an example organ at risk. In patients with prostate cancer receiving curative RT, considerable daily variation in rectal position and dose can be demonstrated, although the median position matches the planning scan well. Overall, in 10 patients, the mean difference between planned and accumulated rectal equivalent uniform doses was -2.7 Gy (5%), and a dose reduction was seen in 7 of the 10 cases. If dose escalation was performed to take rectal dose back to the planned level, this should increase the mean TCP (as biochemical progression-free survival) by 5%. Combining radiogenomics with individual estimates of DA might identify almost half of patients undergoing radical RT who might benefit from either dose escalation, suggesting improved tumour cure or reduced toxicity or both.
Collapse
Affiliation(s)
- J E Scaife
- University of Cambridge Department of Oncology, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge, UK
- Cancer Research UK VoxTox Research Group, University of Cambridge Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
| | - G C Barnett
- Cancer Research UK VoxTox Research Group, University of Cambridge Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
- Oncology Centre, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - D J Noble
- Oncology Centre, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - R Jena
- University of Cambridge Department of Oncology, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge, UK
- Cancer Research UK VoxTox Research Group, University of Cambridge Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
| | - S J Thomas
- Cancer Research UK VoxTox Research Group, University of Cambridge Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
- Medical Physics Department, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - C M L West
- Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| | - N G Burnet
- University of Cambridge Department of Oncology, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge, UK
- Cancer Research UK VoxTox Research Group, University of Cambridge Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
20
|
Guo Z, Shu Y, Zhou H, Zhang W, Wang H. Radiogenomics helps to achieve personalized therapy by evaluating patient responses to radiation treatment. Carcinogenesis 2015; 36:307-17. [PMID: 25604391 DOI: 10.1093/carcin/bgv007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Radiogenomics is the whole genome application of radiogenetics, which focuses on uncovering the underlying genetic causes of individual variation in sensitivity to radiation. There is a growing consensus that radiosensitivity is a complex, inherited polygenic trait, dependent on the interaction of many genes involved in multiple cell processes. An understanding of the genes involved in processes such as DNA damage response and oxidative stress response, has evolved toward examination of how genetic variants, most often, single nucleotide polymorphisms (SNPs), may influence interindividual radioresponse. Many experimental approaches, such as candidate SNP association studies, genome-wide association studies and massively parallel sequencing are being proposed to address these questions. We present a review focusing on recent advances in association studies of SNPs to radiotherapy response and discuss challenges and opportunities for further studies. We also highlight the clinical perspective of radiogenomics in the future of personalized treatment in radiation oncology.
Collapse
Affiliation(s)
- Zhen Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, P.R. China
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA and
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, P.R. China;
| | - Hui Wang
- Department of Radiation Oncology, Hunan Provincial Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha 410013, P.R. China
| |
Collapse
|
21
|
Kerns SL, West CML, Andreassen CN, Barnett GC, Bentzen SM, Burnet NG, Dekker A, De Ruysscher D, Dunning A, Parliament M, Talbot C, Vega A, Rosenstein BS. Radiogenomics: the search for genetic predictors of radiotherapy response. Future Oncol 2014; 10:2391-406. [PMID: 25525847 DOI: 10.2217/fon.14.173] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
'Radiogenomics' is the study of genetic variation associated with response to radiotherapy. Radiogenomics aims to uncover the genes and biologic pathways responsible for radiotherapy toxicity that could be targeted with radioprotective agents and; identify genetic markers that can be used in risk prediction models in the clinic. The long-term goal of the field is to develop single nucleotide polymorphism-based risk models that can be used to stratify patients to more precisely tailored radiotherapy protocols. The field has evolved over the last two decades in parallel with advances in genomics, moving from narrowly focused candidate gene studies to large, collaborative genome-wide association studies. Several confirmed genetic variants have been identified and the field is making progress toward clinical translation.
Collapse
Affiliation(s)
- Sarah L Kerns
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Vaisnav M, Xing C, Ku HC, Hwang D, Stojadinovic S, Pertsemlidis A, Abrams JM. Genome-wide association analysis of radiation resistance in Drosophila melanogaster. PLoS One 2014; 9:e104858. [PMID: 25121966 PMCID: PMC4133248 DOI: 10.1371/journal.pone.0104858] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/17/2014] [Indexed: 02/04/2023] Open
Abstract
Background Ionizing radiation is genotoxic to cells. Healthy tissue toxicity in patients and radiation resistance in tumors present common clinical challenges in delivering effective radiation therapies. Radiation response is a complex, polygenic trait with unknown genetic determinants. The Drosophila Genetic Reference Panel (DGRP) provides a model to investigate the genetics of natural variation for sensitivity to radiation. Methods and Findings Radiation response was quantified in 154 inbred DGRP lines, among which 92 radiosensitive lines and 62 radioresistant lines were classified as controls and cases, respectively. A case-control genome-wide association screen for radioresistance was performed. There are 32 single nucleotide polymorphisms (SNPs) associated with radio resistance at a nominal p<10−5; all had modest effect sizes and were common variants with the minor allele frequency >5%. All the genes implicated by those SNP hits were novel, many without a known role in radiation resistance and some with unknown function. Variants in known DNA damage and repair genes associated with radiation response were below the significance threshold of p<10−5 and were not present among the significant hits. No SNP met the genome-wide significance threshold (p = 1.49×10−7), indicating a necessity for a larger sample size. Conclusions Several genes not previously associated with variation in radiation resistance were identified. These genes, especially the ones with human homologs, form the basis for exploring new pathways involved in radiation resistance in novel functional studies. An improved DGRP model with a sample size of at least 265 lines and ideally up to 793 lines is recommended for future studies of complex traits.
Collapse
Affiliation(s)
- Mahesh Vaisnav
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Chao Xing
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Hung-Chih Ku
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Daniel Hwang
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Strahinja Stojadinovic
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Alexander Pertsemlidis
- Greehey Children’s Cancer Research Institute, Departments of Pediatrics and Cellular & Structural Biology, UT Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - John M. Abrams
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
23
|
Finding the genetic determinants of adverse reactions to radiotherapy. Clin Oncol (R Coll Radiol) 2014; 26:301-8. [PMID: 24702740 DOI: 10.1016/j.clon.2014.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 11/21/2022]
Abstract
Individual variation in radiosensitivity is thought to be at least partly determined by genetic factors. The remaining difference between individuals is caused by comorbidities, variation in treatment, body habitus and stochastic factors. Evidence for the heritability of radiosensitivity comes from rare genetic disorders and from cell-based studies. To what extent common and rare genetic variants might explain the genetic component of radiosensitivity has not been fully elucidated. If the genetic variants accounting for this heritability were to be determined, they could be incorporated into any future predictive statistical model of adverse reactions to radiotherapy. With the evolution of DNA sequencing and bioinformatics, radiogenomics has emerged as a new research field with the aim of finding the genetic determinants of adverse reactions to radiotherapy. Similar to the investigation of other complex genetic disease traits, early studies in radiogenomics involved candidate gene association studies--many plagued by false associations caused by low sample sizes and problematic experimental design. More recently, some promising genetic associations (e.g. with tumour necrosis factor) have emerged from large multi-institutional cohorts with built-in replication. At the same time, several small- to medium-sized genome-wide association studies (GWAS) have been or are about to be published. These studies will probably lead to an increasing number of genetic polymorphisms that may predict adverse reactions to radiotherapy. The future of the field is to create large patient cohorts for multiple cancer types, to validate the genetic loci and build reliable predictive models. For example, the REQUITE project involves multiple groups in Europe and North America. For further discovery studies, larger GWAS will be necessary to include rare sequence variants through next generation sequencing. Ultimately, radiogenomics seeks to predict which cancer patients will show radiosensitivity or radioresistance, so oncologists and surgeons can alter treatment accordingly to lower adverse reactions or increase the efficacy of radiotherapy.
Collapse
|
24
|
Garm C, Moreno-Villanueva M, Bürkle A, Larsen LA, Bohr VA, Christensen K, Stevnsner T. Genetic and environmental influence on DNA strand break repair: a twin study. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:414-20. [PMID: 23798034 PMCID: PMC4586258 DOI: 10.1002/em.21791] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 05/13/2013] [Accepted: 06/03/2013] [Indexed: 05/05/2023]
Abstract
Accumulation of DNA damage deriving from exogenous and endogenous sources has significant consequences for cellular survival, and is implicated in aging, cancer, and neurological diseases. Different DNA repair pathways have evolved in order to maintain genomic stability. Genetic and environmental factors are likely to influence DNA repair capacity. In order to gain more insight into the genetic and environmental contribution to the molecular basis of DNA repair, we have performed a human twin study, where we focused on the consequences of some of the most abundant types of DNA damage (single-strand breaks), and some of the most hazardous lesions (DNA double-strand breaks). DNA damage signaling response (Gamma-H2AX signaling), relative amount of endogenous damage, and DNA-strand break repair capacities were studied in peripheral blood mononuclear cells from 198 twins (94 monozygotic and 104 dizygotic). We did not detect genetic effects on the DNA-strand break variables in our study.
Collapse
Affiliation(s)
- Christian Garm
- Danish Center of Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, Denmark
- The Danish Aging Research Center, Epidemiology Unit, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Maria Moreno-Villanueva
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Lisbeth Aagaard Larsen
- The Danish Aging Research Center, Epidemiology Unit, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Vilhelm A. Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Kaare Christensen
- The Danish Aging Research Center, Epidemiology Unit, Institute of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology and Department of Clinical Genetics, Odense University Hospital, Denmark
| | - Tinna Stevnsner
- Danish Center of Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, Denmark
- Correspondence to: T. Stevnsner, Laboratory of DNA Repair and Aging, Department of Molecular Biology and Genetics, University of Aarhus, C.F. Moellers Allé 3, 8000 Aarhus C, Denmark.
| |
Collapse
|
25
|
Manning G, Rothkamm K. Deoxyribonucleic acid damage-associated biomarkers of ionising radiation: current status and future relevance for radiology and radiotherapy. Br J Radiol 2013; 86:20130173. [PMID: 23659923 DOI: 10.1259/bjr.20130173] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diagnostic and therapeutic radiation technology has developed dramatically in recent years, and its use has increased significantly, bringing clinical benefit. The use of diagnostic radiology has become widespread in modern society, particularly in paediatrics where the clinical benefit needs to be balanced with the risk of leukaemia and brain cancer increasing after exposure to low doses of radiation. With improving long-term survival rates of radiotherapy patients and the ever-increasing use of diagnostic and interventional radiology procedures, concern has risen over the long-term risks and side effects from such treatments. Biomarker development in radiology and radiotherapy has progressed significantly in recent years to investigate the effects of such use and optimise treatment. Recent biomarker development has focused on improving the limitations of established techniques by the use of automation, increasing sensitivity and developing novel biomarkers capable of quicker results. The effect of low-dose exposure (0-100 mGy) used in radiology, which is increasingly linked to cancer incidences, is being investigated, as some recent research challenges the linear-no-threshold model. Radiotherapy biomarkers are focused on identifying radiosensitive patients, determining the treatment-associated risk and allowing for a tailored and more successful treatment of cancer patients. For biomarkers in any of these areas to be successfully developed, stringent criteria must be applied in techniques and analysis of data to reduce variation among reports and allow data sets to be accurately compared. Newly developed biomarkers can then be used in combination with the established techniques to better understand and quantify the individual biological response to exposures associated with radiology tests and to personalise treatment plans for patients.
Collapse
Affiliation(s)
- G Manning
- Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, UK.
| | | |
Collapse
|
26
|
Almeida A. Genetic determinants of neuronal vulnerability to apoptosis. Cell Mol Life Sci 2013; 70:71-88. [PMID: 22695677 PMCID: PMC11113535 DOI: 10.1007/s00018-012-1029-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 04/22/2012] [Accepted: 05/07/2012] [Indexed: 12/18/2022]
Abstract
Apoptosis is a common mode of cell death that contributes to neuronal loss associated with neurodegeneration. Single-nucleotide polymorphisms (SNPs) in chromosomal DNA are contributing factors dictating natural susceptibility of humans to disease. Here, the most common SNPs affecting neuronal vulnerability to apoptosis are reviewed in the context of neurological disorders. Polymorphic variants in genes encoding apoptotic proteins, either from the extrinsic (FAS, TNF-α, CASP8) or the intrinsic (BAX, BCL2, CASP3, CASP9) pathways could be highly valuable in the diagnosis of neurodegenerative diseases and stroke. Interestingly, the Arg72Pro SNP in TP53, the gene encoding tumor suppressor p53, was recently revealed a biomarker of poor prognosis in stroke due to its ability to modulate neuronal apoptotic death. Search for new SNPs responsible for genetic variability to apoptosis will ensure the implementation of novel diagnostic and prognostic tools, as well as therapeutic strategies against neurological diseases.
Collapse
Affiliation(s)
- Angeles Almeida
- Instituto de Investigación Biomédica de Salamanca, Hospital Universitario de Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
27
|
Marcon F, Carotti D, Andreoli C, Siniscalchi E, Leopardi P, Caiola S, Biffoni M, Zijno A, Medda E, Nisticò L, Rossi S, Crebelli R. DNA damage response in monozygotic twins discordant for smoking habits. Mutagenesis 2012; 28:135-44. [PMID: 23132286 DOI: 10.1093/mutage/ges062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previous studies in twins indicate that non-shared environment, beyond genetic factors, contributes substantially to individual variation in mutagen sensitivity; however, the role of specific causative factors (e.g. tobacco smoke, diet) was not elucidated. In this investigation, a population of 22 couples of monozygotic twins with discordant smoking habits was selected with the aim of evaluating the influence of tobacco smoke on individual response to DNA damage. The study design virtually eliminated the contribution of genetic heterogeneity to the intra-pair variation in DNA damage response, and thus any difference in the end-points investigated could directly be attributed to the non-shared environment experienced by co-twins, which included as main factor cigarette smoke exposure. Peripheral lymphocytes of study subjects were challenged ex vivo with γ-rays, and the induction, processing, fixation of DNA damage evaluated through multiple approaches. Folate status of study subjects was considered significant covariate since it is affected by smoking habits and can influence radiosensitivity. Similar responses were elicited by γ-rays in co-twins for all the end-points analysed, despite their discordant smoking habits. Folate status did not modify DNA damage response, even though a combined effect of smoking habits, low-plasma folic acid level, and ionising radiation was observed on apoptosis. A possible modulation of DNA damage response by duration and intensity of tobacco smoke exposure was suggested by Comet assay and micronucleus data, but the effect was quantitatively limited. Overall, the results obtained indicate that differences in smoking habits do not contribute to a large extent to inter-individual variability in the response to radiation-induced DNA damage observed in healthy human populations.
Collapse
Affiliation(s)
- Francesca Marcon
- Department of Environment and Primary Prevention, Istituto Superiore diSanità, V.le Regina Elena 299, 00161 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Peng Y, Nagasawa H, Warner C, Bedford JS. Genetic susceptibility: radiation effects relevant to space travel. HEALTH PHYSICS 2012; 103:607-620. [PMID: 23032891 DOI: 10.1097/hp.0b013e31826945b9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Genetic variation in the capacity to repair radiation damage is an important factor influencing both cellular and tissue radiosensitivity variation among individuals as well as dose rate effects associated with such damage. This paper consists of two parts. The first part reviews some of the available data relating to genetic components governing such variability among individuals in susceptibility to radiation damage relevant for radiation protection and discusses the possibility and extent to which these may also apply for space radiations. The second part focuses on the importance of dose rate effects and genetic-based variations that influence them. Very few dose rate effect studies have been carried out for the kinds of radiations encountered in space. The authors present here new data on the production of chromosomal aberrations in noncycling low passage human ATM+/+ or ATM+/- cells following irradiations with protons (50 MeV or 1 GeV), 1 GeV(-1) n iron ions and gamma rays, where doses were delivered at a high dose rate of 700 mGy(-1) min, or a lower dose rate of 5 mGy min(-1). Dose responses were essentially linear over the dose ranges tested and not significantly different for the two cell strains. Values of the dose rate effectiveness factor (DREF) were expressed as the ratio of the slopes of the dose-response curves for the high versus the lower (5 mGy min(-1)) dose rate exposures. The authors refer to this as the DREF5. For the gamma ray standard, DREF5 values of approximately two were observed. Similar dose rate effects were seen for both energies of protons (DREF5 ≈ 2.2 in both cases). For 1 GeV(-1) n iron ions [linear energy transfer (LET) ≈ 150 keV μ(-1)], the DREF5 was not 1 as might have been expected on the basis of LET alone but was approximately 1.3. From these results and conditions, the authors estimate that the relative biological effectiveness for 1 GeV(-1) n iron ions for high and low dose rates, respectively, were about 10 and 15 rather than around 20 for low dose rates, as has been assumed by most recommendations from radiation protection organizations for charged particles of this LET. The authors suggest that similar studies using appropriate animal models of carcinogenesis would be valuable.
Collapse
Affiliation(s)
- Yuanlin Peng
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | |
Collapse
|
29
|
Pernot E, Hall J, Baatout S, Benotmane MA, Blanchardon E, Bouffler S, El Saghire H, Gomolka M, Guertler A, Harms-Ringdahl M, Jeggo P, Kreuzer M, Laurier D, Lindholm C, Mkacher R, Quintens R, Rothkamm K, Sabatier L, Tapio S, de Vathaire F, Cardis E. Ionizing radiation biomarkers for potential use in epidemiological studies. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2012; 751:258-286. [DOI: 10.1016/j.mrrev.2012.05.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/04/2012] [Accepted: 05/28/2012] [Indexed: 02/07/2023]
|
30
|
Talbot CJ, Tanteles GA, Barnett GC, Burnet NG, Chang-Claude J, Coles CE, Davidson S, Dunning AM, Mills J, Murray RJS, Popanda O, Seibold P, West CML, Yarnold JR, Symonds RP. A replicated association between polymorphisms near TNFα and risk for adverse reactions to radiotherapy. Br J Cancer 2012; 107:748-53. [PMID: 22767148 PMCID: PMC3419947 DOI: 10.1038/bjc.2012.290] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Response to radiotherapy varies between individuals both in terms of efficacy and adverse reactions. Finding genetic determinants of radiation response would allow the tailoring of the treatment, either by altering the radiation dose or by surgery. Despite a growing number of studies in radiogenomics, there are no well-replicated genetic association results. METHODS We carried out a candidate gene association study and replicated the result using three additional large cohorts, a total of 2036 women scored for adverse reactions to radiotherapy for breast cancer. RESULTS Genetic variation near the tumour necrosis factor alpha gene is shown to affect several clinical endpoints including breast induration, telangiectasia and overall toxicity. In the combined analysis homozygosity for the rare allele increases overall toxicity (P=0.001) and chance of being in the upper quartile of risk with odds ratio of 2.46 (95% confidence interval 1.52-3.98). CONCLUSION We have identified that alleles of the class III major histocompatibility complex region associate with overall radiotherapy toxicity in breast cancer patients by using internal replication through a staged design. This is the first well-replicated report of a genetic predictor for radiotherapy reactions.
Collapse
Affiliation(s)
- C J Talbot
- Department of Genetics, University of Leicester, Adrian Building, University Road, Leicester LE1 7RH, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
West CML, Dunning AM, Rosenstein BS. Genome-wide association studies and prediction of normal tissue toxicity. Semin Radiat Oncol 2012; 22:91-9. [PMID: 22385916 DOI: 10.1016/j.semradonc.2011.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Catharine M L West
- The University of Manchester, The Christie Foundation Trust, Withington, Manchester, UK.
| | | | | |
Collapse
|
32
|
Independent validation of genes and polymorphisms reported to be associated with radiation toxicity: a prospective analysis study. Lancet Oncol 2012; 13:65-77. [PMID: 22169268 DOI: 10.1016/s1470-2045(11)70302-3] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Several studies have reported associations between radiation toxicity and single nucleotide polymorphisms (SNPs) in candidate genes. Few associations have been tested in independent validation studies. This prospective study aimed to validate reported associations between genotype and radiation toxicity in a large independent dataset. METHODS 92 (of 98 attempted) SNPs in 46 genes were successfully genotyped in 1613 patients: 976 received adjuvant breast radiotherapy in the Cambridge breast IMRT trial (ISRCTN21474421, n=942) or in a prospective study of breast toxicity at the Christie Hospital, Manchester, UK (n=34). A further 637 received radical prostate radiotherapy in the MRC RT01 multicentre trial (ISRCTN47772397, n=224) or in the Conventional or Hypofractionated High Dose Intensity Modulated Radiotherapy for Prostate Cancer (CHHiP) trial (ISRCTN97182923, n=413). Late toxicity was assessed 2 years after radiotherapy with a validated photographic technique (patients with breast cancer only), clinical assessment, and patient questionnaires. Association tests of genotype with overall radiation toxicity score and individual endpoints were undertaken in univariate and multivariable analyses. At a type I error rate adjusted for multiple testing, this study had 99% power to detect a SNP, with minor allele frequency of 0·35, associated with a per allele odds ratio of 2·2. FINDINGS None of the previously reported associations were confirmed by this study, after adjustment for multiple comparisons. The p value distribution of the SNPs tested against overall toxicity score was not different from that expected by chance. INTERPRETATION We did not replicate previously reported late toxicity associations, suggesting that we can essentially exclude the hypothesis that published SNPs individually exert a clinically relevant effect. Continued recruitment of patients into studies within the Radiogenomics Consortium is essential so that sufficiently powered studies can be done and methodological challenges addressed. FUNDING Cancer Research UK, The Royal College of Radiologists, Addenbrooke's Charitable Trust, Breast Cancer Campaign, Cambridge National Institute of Health Research (NIHR) Biomedical Research Centre, Experimental Cancer Medicine Centre, East Midlands Innovation, the National Cancer Institute, Joseph Mitchell Trust, Royal Marsden NHS Foundation Trust, Institute of Cancer Research NIHR Biomedical Research Centre for Cancer.
Collapse
|
33
|
West CM, Barnett GC. Genetics and genomics of radiotherapy toxicity: towards prediction. Genome Med 2011; 3:52. [PMID: 21861849 PMCID: PMC3238178 DOI: 10.1186/gm268] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy is involved in many curative treatments of cancer; millions of survivors live with the consequences of treatment, and toxicity in a minority limits the radiation doses that can be safely prescribed to the majority. Radiogenomics is the whole genome application of radiogenetics, which studies the influence of genetic variation on radiation response. Work in the area focuses on uncovering the underlying genetic causes of individual variation in sensitivity to radiation, which is important for effective, safe treatment. In this review, we highlight recent advances in radiotherapy and discuss results from four genome-wide studies of radiotoxicity.
Collapse
Affiliation(s)
- Catharine M West
- School of Cancer and Enabling Sciences, The University of Manchester, Manchester Academic Health Science Centre, The Christie, Wilmslow Road, Manchester M20 4BX, UK.
| | | |
Collapse
|
34
|
Kabacik S, Ortega-Molina A, Efeyan A, Finnon P, Bouffler S, Serrano M, Badie C. A minimally invasive assay for individual assessment of the ATM/CHEK2/p53 pathway activity. Cell Cycle 2011; 10:1152-61. [PMID: 21389785 DOI: 10.4161/cc.10.7.15231] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ionizing radiation induces DNA Double-Strand Breaks (DSBs) which activate the ATM/CHEK2/p53 pathway leading to cell cycle arrest and apoptosis through transcription of genes including CDKN1A (p21) and BBC3 (PUMA). This pathway prevents genomic instability and tumorigenesis as demonstrated in heritable syndromes [e.g. Ataxia Telangiectasia (AT); Li-Fraumeni syndrome (LFS)]. Here, a simple assay based on gene expression in peripheral blood to measure accurately ATM/CHEK2/p53 pathway activity is described. The expression of p21, Puma and Sesn2 was determined in blood from mice with different gene copy numbers of Atm, Trp53 (p53), Chek2 or Arf and in human blood and mitogen stimulated T-lymphocyte (MSTL) cultures from AT, AT carriers, LFS patients, and controls, both before and after ex vivo ionizing irradiation. Mouse Atm/Chek2/p53 activity was highly dependent on the copy number of each gene except Arf. In human MSTL, an AT case, AT carriers and LFS patients showed responses distinct from healthy donors. The relationship between gene copy number and transcriptional induction upon radiation was linear for p21 and Puma and correlated well with cancer incidence in p53 variant mice. This reliable blood test provides an assay to determine ATM/CHEK2/p53 pathway activity and demonstrates the feasibility of assessing the activity of this essential cancer protection pathway in simple assays. These findings may have implications for the individualized prediction of cancer susceptibility.
Collapse
Affiliation(s)
- Sylwia Kabacik
- Biological Effects Department, Centre for Radiation Chemical and Environmental Hazards, Health Protection Agency, Didcot, Oxfordshire, UK
| | | | | | | | | | | | | |
Collapse
|
35
|
Surowy H, Rinckleb A, Luedeke M, Stuber M, Wecker A, Varga D, Maier C, Hoegel J, Vogel W. Heritability of baseline and induced micronucleus frequencies. Mutagenesis 2011; 26:111-7. [PMID: 21164191 DOI: 10.1093/mutage/geq059] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The scoring of micronuclei (MN) is widely used in biomonitoring and mutagenicity testing as a surrogate marker of chromosomal damage inflicted by clastogenic agents or by aneugens. Individual differences in the response to a mutagenic challenge are known from studies on cancer patients and carriers of mutations in DNA repair genes. However, it has not been studied to which extent genetic factors contribute to the observed variability of individual MN frequencies. Our aim was to quantify this heritable genetic component of both baseline and radiation-induced MN frequencies. We performed a twin study comprising 39 monozygotic (MZ) and 10 dizygotic (DZ) twin pairs. Due to the small number of DZ pairs, we had to recruit controls from which 38 age- and gender-matched random control pairs (CPs) were generated. For heritability estimates, we used biometrical modelling of additive genetic, common environmental, and unique environmental components (ACE model) of variance and direct comparison of variance between the sample groups. While heritability estimates from MZ to DZ comparisons produced inconclusive results, both estimation methods revealed a high degree of heritability (h(2)) for baseline MN frequency (h(2) = 0.68 and h(2) = 0.72) as well as for the induced frequency (h(2) = 0.68 and h(2) = 0.57) when MZ were compared to CP. The result was supported by the different intraclass correlation coefficients of MZ, DZ and CP for baseline (r = 0.63, r = 0.31 and r = 0.0, respectively) as well as for induced MN frequencies (r = 0.79, r = 0.74 and r = 0.0, respectively). This study clearly demonstrates that MN frequencies are determined by genetic factors to a major part. The strong reflection of the genetic background supports the idea that MN frequencies represent an intermediate phenotype between molecular DNA repair mechanisms and the cancer phenotype and affirms the approaches that are made to utilise them as predictors of, for example, cancer risk.
Collapse
Affiliation(s)
- Harald Surowy
- Institute of Human Genetics, University Hospital Ulm, Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kabacik S, Mackay A, Tamber N, Manning G, Finnon P, Paillier F, Ashworth A, Bouffler S, Badie C. Gene expression following ionising radiation: Identification of biomarkers for dose estimation and prediction of individual response. Int J Radiat Biol 2010; 87:115-29. [DOI: 10.3109/09553002.2010.519424] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Pugh TJ, Keyes M, Barclay L, Delaney A, Krzywinski M, Thomas D, Novik K, Yang C, Agranovich A, McKenzie M, Morris WJ, Olive PL, Marra MA, Moore RA. Sequence variant discovery in DNA repair genes from radiosensitive and radiotolerant prostate brachytherapy patients. Clin Cancer Res 2009; 15:5008-16. [PMID: 19638463 DOI: 10.1158/1078-0432.ccr-08-3357] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The presence of intrinsic radiosensitivity within prostate cancer patients may be an important factor contributing to development of radiation toxicity. We investigated whether variants in genes responsible for detecting and repairing DNA damage independently contribute to toxicity following prostate brachytherapy. EXPERIMENTAL DESIGN Genomic DNA was extracted from blood samples of 41 prostate brachytherapy patients, 21 with high and 20 with low late toxicity scores. For each patient, 242 PCR amplicons were generated containing 173 exons of eight candidate genes: ATM, BRCA1, ERCC2, H2AFX, LIG4, MDC1, MRE11A, and RAD50. These amplicons were sequenced and all sequence variants were subjected to statistical analysis to identify those associated with late radiation toxicity. RESULTS Across 41 patients, 239 sites differed from the human genome reference sequence; 170 of these corresponded to known polymorphisms. Sixty variants, 14 of them novel, affected protein coding regions and 43 of these were missense mutations. In our patient population, the high toxicity group was enriched for individuals with at least one LIG4 coding variant (P = 0.028). One synonymous variant in MDC1, rs28986317, was associated with increased radiosensitivity (P = 0.048). A missense variant in ATM, rs1800057, associated with increased prostate cancer risk, was found exclusively in two high toxicity patients but did not reach statistical significance for association with radiosensitivity (P = 0.488). CONCLUSIONS Our data revealed new germ-line sequence variants, indicating that existing sequence databases do not fully represent the full extent of sequence variation. Variants in three DNA repair genes were linked to increased radiosensitivity but require validation in larger populations.
Collapse
Affiliation(s)
- Trevor J Pugh
- Genome Sciences Centre, Provincial Prostate Brachytherapy Program, and Medical Biophysics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Imyanitov EN. Gene polymorphisms, apoptotic capacity and cancer risk. Hum Genet 2009; 125:239-46. [DOI: 10.1007/s00439-009-0636-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Accepted: 02/04/2009] [Indexed: 01/13/2023]
|
39
|
Barnett GC, West CML, Dunning AM, Elliott RM, Coles CE, Pharoah PDP, Burnet NG. Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat Rev Cancer 2009; 9:134-42. [PMID: 19148183 PMCID: PMC2670578 DOI: 10.1038/nrc2587] [Citation(s) in RCA: 518] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A key challenge in radiotherapy is to maximize radiation doses to cancer cells while minimizing damage to surrounding healthy tissue. As severe toxicity in a minority of patients limits the doses that can be safely given to the majority, there is interest in developing a test to measure an individual's radiosensitivity before treatment. Variation in sensitivity to radiation is an inherited genetic trait and recent progress in genotyping raises the possibility of genome-wide studies to characterize genetic profiles that predict patient response to radiotherapy.
Collapse
Affiliation(s)
- Gillian C Barnett
- Department of Oncology, University of Cambridge, Oncology Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| | | | | | | | | | | | | |
Collapse
|