1
|
Klusek J, Will E, Christensen T, Caravella K, Hogan A, Sun J, Smith J, Fairchild AJ, Roberts JE. Social Communication Delay in an Unbiased Sample of Preschoolers With the FMR1 Premutation. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:2316-2332. [PMID: 38889222 PMCID: PMC11253810 DOI: 10.1044/2024_jslhr-23-00580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/20/2023] [Accepted: 04/15/2024] [Indexed: 06/20/2024]
Abstract
PURPOSE The Fragile X Messenger Ribonucleoprotein-1 (FMR1) premutation (FXpm) is a genetic variant that is common in the general population and is associated with health symptoms and disease in adulthood. However, poor understanding of the clinical phenotype during childhood has hindered the development of clinical practice guidelines for screening and intervention. Given that social communication difficulties have been widely documented in adults with the FXpm and are linked with reduced psychosocial functioning, the present study aimed to characterize the communication profile of the FXpm during early childhood. METHOD Eighteen children with the FXpm who were identified through cascade testing (89%) or screening at birth (11%) were compared to 21 matched typically developing children, aged 2-4 years. Participants completed standardized assessments of language (Mullen Scales of Early Learning) and adaptive communication (Vineland Adaptive Behavior Scales-II). Social communication was rated from seminaturalistic interaction samples using the Brief Observation of Social Communication Change. RESULTS Children with the FXpm showed delayed social communication development, with the magnitude of group differences highlighting social communication as a feature that distinguishes children with the FXpm from their peers (p = .046, ηp2 = .12). The groups did not differ on the standardized language and adaptive communication measures (ps > .297, ηp2s < .03). CONCLUSIONS Early screening and treatment of social communication delays may be key to optimizing outcomes for children with the FXpm. Further research is needed to replicate findings in a larger sample, delineate the trajectory and consequences of social communication difficulties across the life span in the FXpm, and determine the potential epidemiological significance of FMR1 as a mediator of developmental communication differences within the general population.
Collapse
Affiliation(s)
- Jessica Klusek
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia
| | - Elizabeth Will
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia
| | - Thomas Christensen
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia
| | - Kelly Caravella
- Department of Psychiatry, Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill School of Medicine
| | - Abigail Hogan
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia
| | - Jennifer Sun
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia
| | - Jenna Smith
- Department of Psychology, University of South Carolina, Columbia
| | | | - Jane E. Roberts
- Department of Psychology, University of South Carolina, Columbia
| |
Collapse
|
2
|
Zucker A, Hinton VJ. Autistic Traits Associated with the Fragile X Premutation Allele: The Neurodevelopmental Profile. Dev Neuropsychol 2024; 49:153-166. [PMID: 38753030 PMCID: PMC11330676 DOI: 10.1080/87565641.2024.2351795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Although most individuals who carry the Fragile X premutation allele, defined as 55-200 CGG repeats on the X-linked FMR1 gene (Fragile X Messenger Ribonucleoprotein 1 gene), do not meet diagnostic criteria for autism spectrum disorder, there is a suggestion of increased behaviors associated with subtle autistic traits. More autism associated characteristics have been reported among adults than children. This may highlight a possible worsening developmental trajectory, variable findings due to research quality or differences in number of studies done in adults vs children, rather than true developmental changes. This review is designed to examine the neurodevelopmental profile associated with the premutation allele from a developmental perspective, focused on autistic traits.
Collapse
Affiliation(s)
- Ariel Zucker
- The Graduate Center, City University of New York, USA
- Queens College, City University of New York, USA
| | - Veronica J Hinton
- The Graduate Center, City University of New York, USA
- Queens College, City University of New York, USA
| |
Collapse
|
3
|
Dy ABC, Tanchanco LBS, Sy JCY, Levantino MD, Hagerman RJ. Screening for Fragile X Syndrome Among Filipino Children with Autism Spectrum Disorder. J Autism Dev Disord 2023; 53:4465-4473. [PMID: 35972625 DOI: 10.1007/s10803-022-05707-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
Individuals with autism spectrum disorder present with difficulties in social communication, restricted interests or behaviors and other co-morbidities. About 2 to 10% of cases of autism have a genetic cause, and Fragile X Syndrome (FXS) is reported in 0 to 6.5% of individuals with autism. However, the FXS and premutation prevalence among Filipino children has never been reported. The aim of the study was to establish the presence of FXS or premutation carriers among Filipino children with autism and to describe the phenotypic characteristic of cases identified. Blood was collected from 235 children aged 2-6 years old and diagnosed with autism. Samples were analyzed using PCR methods to amplify CGG repeats in the FMRI gene. The diagnosis of autism was confirmed through the Autism Diagnostic Observation Schedule-2. Additional characteristics were documented from a physical examination, Griffiths Scales of Child Development assessment and a parent-answered questionnaire using the Vineland Adaptive Behavior Scale. Fragile X testing through PCR methods in 235 children with diagnosed autism showed 220 (93.6%) were negative, no full mutations, 1 (0.436%) premutation carrier and 14 (5.95%) cases contained intermediate alleles. The FXS testing was limited to confirmed cases of autism, which is considered a high-risk group and does not provide prevalence for the general Filipino population. Subjects were self-referred or referred by clinicians, which may not represent the Filipino autism population with a bias towards those with means for clinical consultations and ability to travel to the place of testing. Samples were not measured for mosaicism, DNA methylation or AGG interspersion patterns. These may have effects on the CGG repeat expansion and overall presentation of FXS. Findings from a single premutation carrier cannot characterize features distinctly present in Filipinos with the mutation. Nevertheless, these results support the data that the prevalence of FXS in Asian populations may be lower than non-Asian populations. This can contribute to a better understanding of FXS and genetic causes of autism in the Philippines and other Asian populations.
Collapse
Affiliation(s)
- Angel Belle C Dy
- Ateneo de Manila University School of Medicine and Public Health, Don Eugenio Lopez Sr. Medical Complex, Pasig City, NCR, Philippines.
| | - Lourdes Bernadette S Tanchanco
- Ateneo de Manila University School of Medicine and Public Health, Don Eugenio Lopez Sr. Medical Complex, Pasig City, NCR, Philippines
| | - Jenica Clarisse Y Sy
- Ateneo de Manila University School of Medicine and Public Health, Don Eugenio Lopez Sr. Medical Complex, Pasig City, NCR, Philippines
| | - Myla Dominicina Levantino
- Ateneo de Manila University School of Medicine and Public Health, Don Eugenio Lopez Sr. Medical Complex, Pasig City, NCR, Philippines
| | - Randi J Hagerman
- University of California Davis, MIND Institute, Sacramento, CA, USA
| |
Collapse
|
4
|
Tassone F, Protic D, Allen EG, Archibald AD, Baud A, Brown TW, Budimirovic DB, Cohen J, Dufour B, Eiges R, Elvassore N, Gabis LV, Grudzien SJ, Hall DA, Hessl D, Hogan A, Hunter JE, Jin P, Jiraanont P, Klusek J, Kooy RF, Kraan CM, Laterza C, Lee A, Lipworth K, Losh M, Loesch D, Lozano R, Mailick MR, Manolopoulos A, Martinez-Cerdeno V, McLennan Y, Miller RM, Montanaro FAM, Mosconi MW, Potter SN, Raspa M, Rivera SM, Shelly K, Todd PK, Tutak K, Wang JY, Wheeler A, Winarni TI, Zafarullah M, Hagerman RJ. Insight and Recommendations for Fragile X-Premutation-Associated Conditions from the Fifth International Conference on FMR1 Premutation. Cells 2023; 12:2330. [PMID: 37759552 PMCID: PMC10529056 DOI: 10.3390/cells12182330] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The premutation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene is characterized by an expansion of the CGG trinucleotide repeats (55 to 200 CGGs) in the 5' untranslated region and increased levels of FMR1 mRNA. Molecular mechanisms leading to fragile X-premutation-associated conditions (FXPAC) include cotranscriptional R-loop formations, FMR1 mRNA toxicity through both RNA gelation into nuclear foci and sequestration of various CGG-repeat-binding proteins, and the repeat-associated non-AUG (RAN)-initiated translation of potentially toxic proteins. Such molecular mechanisms contribute to subsequent consequences, including mitochondrial dysfunction and neuronal death. Clinically, premutation carriers may exhibit a wide range of symptoms and phenotypes. Any of the problems associated with the premutation can appropriately be called FXPAC. Fragile X-associated tremor/ataxia syndrome (FXTAS), fragile X-associated primary ovarian insufficiency (FXPOI), and fragile X-associated neuropsychiatric disorders (FXAND) can fall under FXPAC. Understanding the molecular and clinical aspects of the premutation of the FMR1 gene is crucial for the accurate diagnosis, genetic counseling, and appropriate management of affected individuals and families. This paper summarizes all the known problems associated with the premutation and documents the presentations and discussions that occurred at the International Premutation Conference, which took place in New Zealand in 2023.
Collapse
Affiliation(s)
- Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
| | - Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia;
- Fragile X Clinic, Special Hospital for Cerebral Palsy and Developmental Neurology, 11040 Belgrade, Serbia
| | - Emily Graves Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Alison D. Archibald
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Melbourne, VIC 3052, Australia;
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Genomics in Society Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Anna Baud
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Ted W. Brown
- Central Clinical School, University of Sydney, Sydney, NSW 2006, Australia;
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
- NYS Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA
| | - Dejan B. Budimirovic
- Department of Psychiatry, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, MD 21205, USA;
- Department of Psychiatry & Behavioral Sciences-Child Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jonathan Cohen
- Fragile X Alliance Clinic, Melbourne, VIC 3161, Australia;
| | - Brett Dufour
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center Affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel;
| | - Nicola Elvassore
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Lidia V. Gabis
- Keshet Autism Center Maccabi Wolfson, Holon 5822012, Israel;
- Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Samantha J. Grudzien
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Deborah A. Hall
- Department of Neurological Sciences, Rush University, Chicago, IL 60612, USA;
| | - David Hessl
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Abigail Hogan
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - Jessica Ezzell Hunter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Poonnada Jiraanont
- Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Jessica Klusek
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Claudine M. Kraan
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Diagnosis and Development, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Cecilia Laterza
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Andrea Lee
- Fragile X New Zealand, Nelson 7040, New Zealand;
| | - Karen Lipworth
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
| | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60201, USA;
| | - Danuta Loesch
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Reymundo Lozano
- Departments of Genetics and Genomic Sciences and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Marsha R. Mailick
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Apostolos Manolopoulos
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA;
| | - Veronica Martinez-Cerdeno
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Yingratana McLennan
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | | | - Federica Alice Maria Montanaro
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Matthew W. Mosconi
- Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, KS 66045, USA;
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS 66045, USA
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS 66045, USA
| | - Sarah Nelson Potter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Melissa Raspa
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Susan M. Rivera
- Department of Psychology, University of Maryland, College Park, MD 20742, USA;
| | - Katharine Shelly
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Peter K. Todd
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI 48105, USA
| | - Katarzyna Tutak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Jun Yi Wang
- Center for Mind and Brain, University of California Davis, Davis, CA 95618, USA;
| | - Anne Wheeler
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Tri Indah Winarni
- Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro, Semarang 502754, Central Java, Indonesia;
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Randi J. Hagerman
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
5
|
Keil-Stietz K, Lein PJ. Gene×environment interactions in autism spectrum disorders. Curr Top Dev Biol 2022; 152:221-284. [PMID: 36707213 PMCID: PMC10496028 DOI: 10.1016/bs.ctdb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is credible evidence that environmental factors influence individual risk and/or severity of autism spectrum disorders (hereafter referred to as autism). While it is likely that environmental chemicals contribute to the etiology of autism via multiple mechanisms, identifying specific environmental factors that confer risk for autism and understanding how they contribute to the etiology of autism has been challenging, in part because the influence of environmental chemicals likely varies depending on the genetic substrate of the exposed individual. Current research efforts are focused on elucidating the mechanisms by which environmental chemicals interact with autism genetic susceptibilities to adversely impact neurodevelopment. The goal is to not only generate insights regarding the pathophysiology of autism, but also inform the development of screening platforms to identify specific environmental factors and gene×environment (G×E) interactions that modify autism risk. Data from such studies are needed to support development of intervention strategies for mitigating the burden of this neurodevelopmental condition on individuals, their families and society. In this review, we discuss environmental chemicals identified as putative autism risk factors and proposed mechanisms by which G×E interactions influence autism risk and/or severity using polychlorinated biphenyls (PCBs) as an example.
Collapse
Affiliation(s)
- Kimberly Keil-Stietz
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, United States
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, United States.
| |
Collapse
|
6
|
Aishworiya R, Protic D, Tang SJ, Schneider A, Tassone F, Hagerman R. Fragile X-Associated Neuropsychiatric Disorders (FXAND) in Young Fragile X Premutation Carriers. Genes (Basel) 2022; 13:genes13122399. [PMID: 36553666 PMCID: PMC9778214 DOI: 10.3390/genes13122399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Background: The fragile X premutation carrier state (PM) (55-200 CGG repeats in the fragile X messenger ribonucleoprotein 1, FMR1 gene) is associated with several conditions, including fragile X-associated primary ovarian insufficiency (FXPOI) and fragile X-associated tremor ataxia (FXTAS), with current literature largely primarily investigating older PM individuals. The aim of this study was to identify the prevalence of fragile X-associated neurodevelopmental disorders (FXAND) in a sample of young PM individuals. Methods: This was a retrospective study conducted through a medical record review of PM individuals who were seen either for clinical concerns (probands, 45.9%) or identified through the cascade testing (non-probands, 54.1%) of an affected sibling with fragile X syndrome. Information on the presence of autism spectrum disorder, attention deficit hyperactivity disorder, anxiety, depression, long-term psychiatric medication intake, and cognitive function, based on standardized assessments, was obtained. Molecular data, including CGG repeat number and FMR1 mRNA levels, were also available for a subset of participants. Analysis included descriptive statistics and a test of comparison to describe the clinical profile of PM individuals pertinent to FXAND. Results: Participants included 61 individuals (52 males and 9 females) aged 7.8 to 20.0 years (mean 12.6 ± 3.4) with a mean full-scale IQ of 90.9 ± 22.7. The majority (N = 52; 85.2%) had at least one mental health disorder, with anxiety being the most common (82.0% of subjects), followed by ADHD (66.5%), and ASD (32.8%). Twenty-seven (87.1%) of non-probands also had at least one mental health condition, with probands having lower cognitive and adaptive skills than non-probands. ASD was present in 20 participants (17/52 males and 3/9 females; 15 probands) with significantly lower FSIQ in those with ASD (mean 73.5 vs. 98.0, p < 0.001). Participants with ASD had a higher number of long-term medications compared to those without (2.32 vs. 1.3, p = 0.002). Conclusions: Our findings indicate a high rate of FXAND diagnoses within a cohort of young PM individuals, including those identified via cascade testing, although this was not a population sample. An awareness of the entity of FXAND and the early recognition of the symptoms of associated conditions may facilitate timely and appropriate care for PM individuals.
Collapse
Affiliation(s)
- Ramkumar Aishworiya
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
- Correspondence: ; Tel.: +916-703-0247; Fax: +916-703-0240
| | - Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Si Jie Tang
- Department of Pediatrics, School of Medicine, University of California Davis, 4610 X St, Sacramento, CA 95817, USA
| | - Andrea Schneider
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA
- Department of Pediatrics, School of Medicine, University of California Davis, 4610 X St, Sacramento, CA 95817, USA
| | - Flora Tassone
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, 4610 X St, Sacramento, CA 95817, USA
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA
- Department of Pediatrics, School of Medicine, University of California Davis, 4610 X St, Sacramento, CA 95817, USA
| |
Collapse
|
7
|
Aishworiya R, Protic D, Hagerman R. Autism spectrum disorder in the fragile X premutation state: possible mechanisms and implications. J Neurol 2022; 269:4676-4683. [PMID: 35723724 DOI: 10.1007/s00415-022-11209-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/23/2022]
Abstract
There is increasing recognition of the heterogeneity of origin of cases of autism spectrum disorder (ASD) with multiple forms of ASD having been identified over the decades. Among these, a genetic etiology can be identified in 20-40% of cases when a full genetic work-up is completed. The Fragile X premutation state (characterized by the presence of 55-200 CGG repeats in the FMR1 gene) is a relatively newly identified disease state that has since been associated with several disorders including fragile X-associated tremor ataxia syndrome (FXTAS), fragile X-associated primary ovarian insufficiency (FXPOI) and most recently, fragile X-associated neurodevelopmental disorders (FXAND) which commonly includes anxiety and depression. In addition to these associated disorders, extant literature and clinical observations have suggested an association between the premutation state and ASD. In this paper, we review the literature pertinent to this and discuss possible molecular mechanisms that may explain this association. This includes lowered levels of the FMR1 Protein (FMRP), GABA deficits, mitochondrial dysfunction and secondary genetic abnormalities that is seen in premutation carriers as well as their increased vulnerability to environmental stressors. Understanding these mechanisms can facilitate development of targeted treatment for specific sub-groups of ASD and premutation disorders in future.
Collapse
Affiliation(s)
- Ramkumar Aishworiya
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA. .,Khoo Teck Puat-National University Children's Medical Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore. .,Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore, 117597, Singapore.
| | - Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA.,Department of Pediatrics, University of California Davis School of Medicine, 4610 X St, Sacramento, CA, 95817, USA
| |
Collapse
|
8
|
Keil Stietz KP, Sethi S, Klocke CR, de Ruyter TE, Wilson MD, Pessah IN, Lein PJ. Sex and Genotype Modulate the Dendritic Effects of Developmental Exposure to a Human-Relevant Polychlorinated Biphenyls Mixture in the Juvenile Mouse. Front Neurosci 2021; 15:766802. [PMID: 34924936 PMCID: PMC8678536 DOI: 10.3389/fnins.2021.766802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/04/2021] [Indexed: 11/23/2022] Open
Abstract
While many neurodevelopmental disorders (NDDs) are thought to result from interactions between environmental and genetic risk factors, the identification of specific gene-environment interactions that influence NDD risk remains a critical data gap. We tested the hypothesis that polychlorinated biphenyls (PCBs) interact with human mutations that alter the fidelity of neuronal Ca2+ signaling to confer NDD risk. To test this, we used three transgenic mouse lines that expressed human mutations known to alter Ca2+ signals in neurons: (1) gain-of-function mutation in ryanodine receptor-1 (T4826I-RYR1); (2) CGG-repeat expansion in the 5′ non-coding portion of the fragile X mental retardation gene 1 (FMR1); and (3) a double mutant (DM) that expressed both mutations. Transgenic and wildtype (WT) mice were exposed throughout gestation and lactation to the MARBLES PCB mix at 0.1, 1, or 6 mg/kg in the maternal diet. The MARBLES mix simulates the relative proportions of the twelve most abundant PCB congeners found in serum from pregnant women at increased risk for having a child with an NDD. Using Golgi staining, the effect of developmental PCB exposure on dendritic arborization of pyramidal neurons in the CA1 hippocampus and somatosensory cortex of male and female WT mice was compared to pyramidal neurons from transgenic mice. A multilevel linear mixed-effects model identified a main effect of dose driven by increased dendritic arborization of cortical neurons in the 1 mg/kg PCB dose group. Subsequent analyses with genotypes indicated that the MARBLES PCB mixture had no effect on the dendritic arborization of hippocampal neurons in WT mice of either sex, but significantly increased dendritic arborization of cortical neurons of WT males in the 6 mg/kg PCB dose group. Transgene expression increased sensitivity to the impact of developmental PCB exposure on dendritic arborization in a sex-, and brain region-dependent manner. In conclusion, developmental exposure to PCBs present in the gestational environment of at-risk humans interfered with normal dendritic morphogenesis in the developing mouse brain in a sex-, genotype- and brain region-dependent manner. Overall, these observations provide proof-of-principle evidence that PCBs interact with heritable mutations to modulate a neurodevelopmental outcome of relevance to NDDs.
Collapse
Affiliation(s)
- Kimberly P Keil Stietz
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Sunjay Sethi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Carolyn R Klocke
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Tryssa E de Ruyter
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Machelle D Wilson
- Clinical and Translational Science Center, Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
9
|
Bhat SA, Yousuf A, Mushtaq Z, Kumar V, Qurashi A. Fragile X Premutation rCGG Repeats Impair Synaptic Growth and Synaptic Transmission at Drosophila larval Neuromuscular Junction. Hum Mol Genet 2021; 30:1677-1692. [PMID: 33772546 DOI: 10.1093/hmg/ddab087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 11/14/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disease that develops in some premutation (PM) carriers of the FMR1 gene with alleles bearing 55-200 CGG repeats. The discovery of a broad spectrum of clinical and cell developmental abnormalities among PM carriers with or without FXTAS and in model systems suggests that neurodegeneration seen in FXTAS could be the inevitable end-result of pathophysiological processes set during early development. Hence, it is imperative to trace early PM-induced pathological abnormalities. Previous studies have shown that transgenic Drosophila carrying PM-length CGG repeats are sufficient to cause neurodegeneration. Here, we used the same transgenic model to understand the effect of CGG repeats on the structure and function of the developing nervous system. We show that presynaptic expression of CGG repeats restricts synaptic growth, reduces the number of synaptic boutons, leads to aberrant presynaptic varicosities, and impairs synaptic transmission at the larval neuromuscular junctions. The postsynaptic analysis shows that both glutamate receptors and subsynaptic reticulum proteins were normal. However, a high percentage of boutons show a reduced density of Bruchpilot protein, a key component of presynaptic active zones required for vesicle release. The electrophysiological analysis shows a significant reduction in quantal content, a measure of total synaptic vesicles released per excitation potential. Together, these findings suggest that synapse perturbation caused by rCGG repeats mediates presynaptically during larval NMJ development. We also suggest that the stress-activated c-Jun N-terminal kinase protein Basket and CIDE-N protein Drep-2 positively mediate Bruchpilot active zone defects caused by rCGG repeats.
Collapse
Affiliation(s)
- Sajad A Bhat
- Department of Biotechnology, University of Kashmir, Srinagar, JK, 190006, India
| | - Aadil Yousuf
- Department of Biotechnology, University of Kashmir, Srinagar, JK, 190006, India
| | - Zeeshan Mushtaq
- Laboratory of Neurogenetics, IISER-Bhopal, Bhopal, MP, 462066, India
| | - Vimlesh Kumar
- Laboratory of Neurogenetics, IISER-Bhopal, Bhopal, MP, 462066, India
| | - Abrar Qurashi
- Department of Biotechnology, University of Kashmir, Srinagar, JK, 190006, India
| |
Collapse
|
10
|
Tassanakijpanich N, Hagerman RJ, Worachotekamjorn J. Fragile X premutation and associated health conditions: A review. Clin Genet 2021; 99:751-760. [PMID: 33443313 DOI: 10.1111/cge.13924] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/17/2022]
Abstract
Fragile X syndrome (FXS) is the most common single gene disorder, which causes autism and intellectual disability. The fragile X mental retardation 1 (FMR1) gene is silenced when cytosine-guanine-guanine (CGG) triplet repeats exceed 200, which is the full mutation that causes FXS. Carriers of FXS have a CGG repeat between 55 and 200, which is defined as a premutation and transcription of the gene is overactive with high levels of the FMR1 mRNA. Most carriers of the premutation have normal levels of fragile X mental retardation protein (FMRP) and a normal intelligence, but in the upper range of the premutation (120-200) the FMRP level may be lower than normal. The clinical problems associated with the premutation are caused by the RNA toxicity associated with increased FMR1 mRNA levels, although for some mildly lowered FMRP can cause problems associated with FXS. The RNA toxicity causes various health problems in the carriers including but not limited to fragile X-associated tremor/ataxia syndrome, fragile X-associated primary ovarian insufficiency, and fragile X-associated neuropsychiatric disorders. Since some individuals with neuropsychiatric problems do not meet the severity for a diagnosis of a "disorder" then the condition can be labeled as fragile X premutation associated condition (FXPAC). Physicians must be able to recognize these health problems in the carriers and provide appropriate management.
Collapse
Affiliation(s)
| | - Randi J Hagerman
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, USA.,Department of Pediatrics, University of California, Davis, School of Medicine, Sacramento, California, USA
| | | |
Collapse
|
11
|
Elias-Mas A, Alvarez-Mora MI, Caro-Benito C, Rodriguez-Revenga L. Neuroimaging Insight Into Fragile X-Associated Neuropsychiatric Disorders: Literature Review. Front Psychiatry 2021; 12:728952. [PMID: 34721105 PMCID: PMC8554234 DOI: 10.3389/fpsyt.2021.728952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/17/2021] [Indexed: 11/29/2022] Open
Abstract
FMR1 premutation is defined by 55-200 CGG repeats in the Fragile X Mental Retardation 1 (FMR1) gene. FMR1 premutation carriers are at risk of developing a neurodegenerative disease called fragile X-associated tremor/ataxia syndrome (FXTAS) and Fragile X-associated primary ovarian insufficiency (FXPOI) in adulthood. In the last years an increasingly board spectrum of clinical manifestations including psychiatric disorders have been described as occurring at a greater frequency among FMR1 premutation carriers. Herein, we reviewed the neuroimaging findings reported in relation with psychiatric symptomatology in adult FMR1 premutation carriers. A structured electronic literature search was conducted on FMR1 premutation and neuroimaging yielding a total of 3,229 articles examined. Of these, 7 articles were analyzed and are included in this review. The results showed that the main radiological findings among adult FMR1 premutation carriers presenting neuropsychiatric disorders were found on the amygdala and hippocampus, being the functional abnormalities more consistent and the volumetric changes more inconsistent among studies. From a molecular perspective, CGG repeat size, FMR1 mRNA and FMRP levels have been investigated in relation with the neuroimaging findings. Based on the published results, FMRP might play a key role in the pathophysiology of the psychiatric symptoms described among FMR1 premutation carriers. However, additional studies including further probes of brain function and a broader scope of psychiatric symptom measurement are required in order to obtain a comprehensive landscape of the neuropsychiatric phenotype associated with the FMR1 premutation.
Collapse
Affiliation(s)
- Andrea Elias-Mas
- Radiology Department, Hospital Universitari Mútua de Terrassa, Terrassa, Spain.,Institute for Research and Innovation Parc Taulí (I3PT), Sabadell, Spain.,Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Maria Isabel Alvarez-Mora
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Barcelona, Spain.,CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Laia Rodriguez-Revenga
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Barcelona, Spain.,CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
12
|
Li W, Kutas M, Gray JA, Hagerman RH, Olichney JM. The Role of Glutamate in Language and Language Disorders - Evidence from ERP and Pharmacologic Studies. Neurosci Biobehav Rev 2020; 119:217-241. [PMID: 33039453 PMCID: PMC11584167 DOI: 10.1016/j.neubiorev.2020.09.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/10/2020] [Accepted: 09/21/2020] [Indexed: 12/31/2022]
Abstract
Current models of language processing do not address mechanisms at the neurotransmitter level, nor how pharmacologic agents may improve language function(s) in seemingly disparate disorders. L-Glutamate, the primary excitatory neurotransmitter in the human brain, is extensively involved in various higher cortical functions. We postulate that the physiologic role of L-Glutamate neurotransmission extends to the regulation of language access, comprehension, and production, and that disorders in glutamatergic transmission and circuitry contribute to the pathogenesis of neurodegenerative diseases and sporadic-onset language disorders such as the aphasic stroke syndromes. We start with a review of basic science data pertaining to various glutamate receptors in the CNS and ways that they may influence the physiological processes of language access and comprehension. We then focus on the dysregulation of glutamate neurotransmission in three conditions in which language dysfunction is prominent: Alzheimer's Disease, Fragile X-associated Tremor/Ataxia Syndrome, and Aphasic Stroke Syndromes. Finally, we review the pharmacologic and electrophysiologic (event related brain potential or ERP) data pertaining to the role glutamate neurotransmission plays in language processing and disorders.
Collapse
Affiliation(s)
- Wentao Li
- Department of Neurology, University of California, Davis, 4860 Y Street, Suite 3700, Sacramento, CA, 95817, USA.
| | - Marta Kutas
- Department of Cognitive Science, University of California, San Diego, 9500 Gilman Drive #0515, La Jolla, CA, 92093, USA; Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - John A Gray
- Department of Neurology, University of California, Davis, 4860 Y Street, Suite 3700, Sacramento, CA, 95817, USA; Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA, 95618, USA.
| | - Randi H Hagerman
- MIND Institute, University of California, Davis, 2825 50th Street, Sacramento, CA, 95817, USA.
| | - John M Olichney
- Department of Neurology, University of California, Davis, 4860 Y Street, Suite 3700, Sacramento, CA, 95817, USA; Center for Mind and Brain, University of California, Davis, 267 Cousteau Place, Davis, CA, 95618, USA.
| |
Collapse
|
13
|
Wang JY, Danial M, Soleymanzadeh C, Kim B, Xia Y, Kim K, Tassone F, Hagerman RJ, Rivera SM. Cortical gyrification and its relationships with molecular measures and cognition in children with the FMR1 premutation. Sci Rep 2020; 10:16059. [PMID: 32994518 PMCID: PMC7525519 DOI: 10.1038/s41598-020-73040-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/10/2020] [Indexed: 11/18/2022] Open
Abstract
Neurobiological basis for cognitive development and psychiatric conditions remains unexplored in children with the FMR1 premutation (PM). Knock-in mouse models of PM revealed defects in embryonic cortical development that may affect cortical folding. Cortical-folding complexity quantified using local gyrification index (LGI) was examined in 61 children (age 8–12 years, 19/14 male/female PM carriers, 15/13 male/female controls). Whole-brain vertex-wise analysis of LGI was performed for group comparisons and correlations with IQ. Individuals with aberrant gyrification in 68 cortical areas were identified using Z-scores of LGI (hyper: Z ≥ 2.58, hypo: Z ≤ − 2.58). Significant group-by-sex-by-age interaction in LGI was detected in right inferior temporal and fusiform cortices, which correlated negatively with CGG repeat length in the PM carriers. Sixteen PM boys (hyper/hypo: 7/9) and 10 PM girls (hyper/hypo: 2/5, 3 both) displayed aberrant LGI in 1–17 regions/person while 2 control boys (hyper/hypo: 0/2) and 2 control girls (hyper/hypo: 1/1) met the same criteria in only 1 region/person. LGI in the precuneus and cingulate cortices correlated positively with IQ scores in PM and control boys while negatively in PM girls and no significant correlation in control girls. These findings reveal aberrant gyrification, which may underlie cognitive performance in children with the PM.
Collapse
Affiliation(s)
- Jun Yi Wang
- Center for Mind and Brain, University of California-Davis, 267 Cousteau Place, Davis, CA, 95618, USA. .,MIND Institute, University of California-Davis Medical Center, Sacramento, CA, 95817, USA.
| | - Merna Danial
- Center for Mind and Brain, University of California-Davis, 267 Cousteau Place, Davis, CA, 95618, USA.,Department of Psychology, University of California-Davis, Davis, CA, 95616, USA
| | - Cyrus Soleymanzadeh
- Center for Mind and Brain, University of California-Davis, 267 Cousteau Place, Davis, CA, 95618, USA.,Department of Psychology, University of California-Davis, Davis, CA, 95616, USA
| | - Bella Kim
- Center for Mind and Brain, University of California-Davis, 267 Cousteau Place, Davis, CA, 95618, USA.,Department of Psychology, University of California-Davis, Davis, CA, 95616, USA
| | - Yiming Xia
- Center for Mind and Brain, University of California-Davis, 267 Cousteau Place, Davis, CA, 95618, USA.,Department of Psychology, University of California-Davis, Davis, CA, 95616, USA
| | - Kyoungmi Kim
- MIND Institute, University of California-Davis Medical Center, Sacramento, CA, 95817, USA.,Department of Public Health Sciences, School of Medicine, University of California-Davis, Sacramento, CA, 95817, USA
| | - Flora Tassone
- MIND Institute, University of California-Davis Medical Center, Sacramento, CA, 95817, USA.,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California-Davis, Sacramento, CA, 95817, USA
| | - Randi J Hagerman
- MIND Institute, University of California-Davis Medical Center, Sacramento, CA, 95817, USA.,Department of Pediatrics, School of Medicine, University of California-Davis, Sacramento, CA, 95817, USA
| | - Susan M Rivera
- Center for Mind and Brain, University of California-Davis, 267 Cousteau Place, Davis, CA, 95618, USA.,MIND Institute, University of California-Davis Medical Center, Sacramento, CA, 95817, USA.,Department of Psychology, University of California-Davis, Davis, CA, 95616, USA
| |
Collapse
|
14
|
Elevated FMR1-mRNA and lowered FMRP - A double-hit mechanism for psychiatric features in men with FMR1 premutations. Transl Psychiatry 2020; 10:205. [PMID: 32576818 PMCID: PMC7311546 DOI: 10.1038/s41398-020-00863-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 01/07/2023] Open
Abstract
Fragile X syndrome (FXS) is caused by a full mutation of the FMR1 gene (>200 CGG repeats and subsequent methylation), such that there is little or no FMR1 protein (FMRP) produced, leading to intellectual disability (ID). Individuals with the premutation allele (55-200 CGG repeats, generally unmethylated) have elevated FMR1 mRNA levels, a consequence of enhanced transcription, resulting in neuronal toxicity and a spectrum of premutation-associated disorders, including the neurodegenerative disorder fragile X-associated tremor/ataxia syndrome (FXTAS). Here we described 14 patients who had both lowered FMRP and elevated FMR1 mRNA levels, representing dual mechanisms of clinical involvement, which may combine features of both FXS and FXTAS. In addition, the majority of these cases show psychiatric symptoms, including bipolar disorder, and/or psychotic features, which are rarely seen in those with just FXS.
Collapse
|
15
|
Cabal-Herrera AM, Saldarriaga-Gil W, Salcedo-Arellano MJ, Hagerman RJ. Fragile X associated neuropsychiatric disorders in a male without FXTAS. Intractable Rare Dis Res 2020; 9:113-118. [PMID: 32494560 PMCID: PMC7263992 DOI: 10.5582/irdr.2020.01028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 11/05/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and autism spectrum disorder. In most cases, it is due to an expansion of the CGG triplet to more than 200 repeats within the promoter region of the FMR1 gene. In the premutation (PM) the trinucleotide is expanded to 55-200 repeats. PM carriers can present with disorders associated with the PM including fragile X-associated tremor/ataxia syndrome (FXTAS) and fragile X-associated ovarian insufficiency (FXPOI). Recently fragile X-associated neuropsychiatric disorders (FXAND) was proposed as an umbrella term to include the neuropsychiatric disorders that are more prevalent in PM carriers compared to the general population such as anxiety, depression, chronic fatigue, alcohol abuse, and psychosis, among others. The patient in our study was evaluated by a team of clinicians from the University del Valle in Cali who traveled to Ricaurte, a Colombian town known for being a genetic geographic cluster of FXS. A detailed medical history was collected and complete physical, neurological and psychiatric evaluations were performed in addition to molecular and neuroradiological studies. We report the case of a 78-year-old man, PM carrier, without FXTAS whose main clinical presentation consists of behavioral changes and psychosis. Brain imaging revealed white matter lesions in the periventricular region and mild cerebral atrophy. Although anxiety and depression are the most common neuropsychiatric manifestations in PM carriers, it is important to perform a complete psychiatric evaluation since some patients may present with behavioral changes and psychosis.
Collapse
Affiliation(s)
- Ana María Cabal-Herrera
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health, Sacramento, CA, USA
- School of Medicine, Universidad del Valle, Cali, Colombia
| | | | - Maria Jimena Salcedo-Arellano
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Randi J Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
16
|
Santos E, Emeka‐Nwonovo C, Wang JY, Schneider A, Tassone F, Hagerman P, Hagerman R. Developmental aspects of FXAND in a man with the FMR1 premutation. Mol Genet Genomic Med 2020; 8:e1050. [PMID: 31899609 PMCID: PMC7005639 DOI: 10.1002/mgg3.1050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Fragile X mental retardation 1 (FMR1) premutation can cause developmental problems including autism spectrum disorder (ASD), social anxiety, depression, and attention deficit hyperactivity disorder (ADHD). These problems fall under an umbrella term of Fragile X-associated Neuropsychiatric Disorders (FXAND) and is separate from Fragile X-associated Tremor/Ataxia syndrome (FXTAS), a neurodegenerative disorder. METHODS/CLINICAL CASE A 26-year-old Caucasian male with the Fragile X premutation who presented with multiple behavior and emotional problems including depression and anxiety at 10 years of age. He was evaluated at 13, 18, and 26 years old with age-appropriate cognitive assessments, psychiatric evaluations, and an MRI of the brain. RESULTS The Autism Diagnostic Observation Scale (ADOS) was done at 13 years old and showed the patient has autism spectrum disorder (ASD). An evaluation at 18 years old showed a full-scale IQ of 64. A Kiddie Schedule for Affective Disorders and Schizophrenia (K-SADS) performed at 26 years old confirmed the previous impression of social anxiety disorder, agoraphobia disorder, and selective mutism. His MRI acquired at 26 years old showed enlarged ventricles, increased frontal subarachnoid spaces, and hypergyrification. CONCLUSION This is an exemplary case of an FMR1 premutation carrier with significant psychiatric and cognitive issues that demonstrates Fragile X-associated Neuropsychiatric Disorders (FXAND) as separate from the other well-known premutation disorders.
Collapse
Affiliation(s)
- Ellery Santos
- MIND InstituteUniversity of California Davis School of MedicineSacramentoCAUSA
- Department of PediatricsUniversity of California Davis School of MedicineSacramentoCAUSA
| | | | - Jun Yi Wang
- MIND InstituteUniversity of California Davis School of MedicineSacramentoCAUSA
- Center for Mind and BrainUniversity of California DavisSacramentoCAUSA
- Department of Biochemistry and Molecular MedicineUniversity of California Davis School of MedicineSacramentoCAUSA
| | - Andrea Schneider
- MIND InstituteUniversity of California Davis School of MedicineSacramentoCAUSA
- Department of PediatricsUniversity of California Davis School of MedicineSacramentoCAUSA
| | - Flora Tassone
- MIND InstituteUniversity of California Davis School of MedicineSacramentoCAUSA
- Department of Biochemistry and Molecular MedicineUniversity of California Davis School of MedicineSacramentoCAUSA
| | - Paul Hagerman
- MIND InstituteUniversity of California Davis School of MedicineSacramentoCAUSA
- Department of Biochemistry and Molecular MedicineUniversity of California Davis School of MedicineSacramentoCAUSA
| | - Randi Hagerman
- MIND InstituteUniversity of California Davis School of MedicineSacramentoCAUSA
- Department of PediatricsUniversity of California Davis School of MedicineSacramentoCAUSA
| |
Collapse
|
17
|
Kim K, Hessl D, Randol JL, Espinal GM, Schneider A, Protic D, Aydin EY, Hagerman RJ, Hagerman PJ. Association between IQ and FMR1 protein (FMRP) across the spectrum of CGG repeat expansions. PLoS One 2019; 14:e0226811. [PMID: 31891607 PMCID: PMC6938341 DOI: 10.1371/journal.pone.0226811] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
Fragile X syndrome, the leading heritable form of intellectual disability, is caused by hypermethylation and transcriptional silencing of large (CGG) repeat expansions (> 200 repeats) in the 5′ untranslated region of the fragile X mental retardation 1 (FMR1) gene. As a consequence of FMR1 gene silencing, there is little or no production of FMR1 protein (FMRP), an important element in normal synaptic function. Although the absence of FMRP has long been known to be responsible for the cognitive impairment in fragile X syndrome, the relationship between FMRP level and cognitive ability (IQ) is only imprecisely understood. To address this issue, a high-throughput, fluorescence resonance energy transfer (FRET) assay has been used to quantify FMRP levels in dermal fibroblasts, and the relationship between FMRP and IQ measures was assessed by statistical analysis in a cohort of 184 individuals with CGG-repeat lengths spanning normal (< 45 CGGs) to full mutation (> 200 CGGs) repeat ranges in fibroblasts. The principal findings of the current study are twofold: i) For those with normal CGG repeats, IQ is no longer sensitive to further increases in FMRP above an FMRP threshold of ~70% of the mean FMRP level; below this threshold, IQ decreases steeply with further decreases in FMRP; and ii) For the current cohort, a mean IQ of 85 (lower bound for the normal IQ range) is attained for FMRP levels that are only ~35% of the mean FMRP level among normal CGG-repeat controls. The current results should help guide expectations for efforts to induce FMR1 gene activity and for the levels of cognitive function expected for a given range of FMRP levels.
Collapse
Affiliation(s)
- Kyoungmi Kim
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, United States of America
- Department of Public Health Sciences, University of California, Davis, School of Medicine, Davis, California, United States of America
| | - David Hessl
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, United States of America
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, School of Medicine, Sacramento, California, United States of America
| | - Jamie L. Randol
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California, United States of America
| | - Glenda M. Espinal
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California, United States of America
| | - Andrea Schneider
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, United States of America
- Department of Pediatrics, University of California, Davis, School of Medicine, Sacramento, California, United States of America
| | - Dragana Protic
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, United States of America
| | - Elber Yuksel Aydin
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, United States of America
| | - Randi J. Hagerman
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, United States of America
- Department of Pediatrics, University of California, Davis, School of Medicine, Sacramento, California, United States of America
| | - Paul J. Hagerman
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, United States of America
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
18
|
Autism Spectrum Disorder and miRNA: An Overview of Experimental Models. Brain Sci 2019; 9:brainsci9100265. [PMID: 31623367 PMCID: PMC6827020 DOI: 10.3390/brainsci9100265] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/25/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neuropsychiatric disorder characterized by deficits in social interactions, communication, language, and in a limited repertoire of activities and interests. The etiology of ASD is very complex. Genetic, epigenetic, and environmental factors contribute to the onset of ASD. Researchers have shown that microRNAs (miRNAs) could be one of the possible causes associated with ASD. miRNAs are small noncoding mRNAs that regulate gene expression, and they are often linked to biological processes and implicated in neurodevelopment. This review aims to provide an overview of the animal models and the role of the different miRNAs involved in ASD. Therefore, the use of animal models that reproduce the ASD and the identification of miRNAs could be a useful predictive tool to study this disorder.
Collapse
|
19
|
Brown SSG, Whalley HC, Kind PC, Stanfield AC. Decreased functional brain response to emotional arousal and increased psychiatric symptomology in FMR1 premutation carriers. Psychiatry Res Neuroimaging 2019; 285:9-17. [PMID: 30711710 DOI: 10.1016/j.pscychresns.2019.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/23/2018] [Accepted: 01/28/2019] [Indexed: 12/30/2022]
Abstract
The FMR1 premutation is an expansion of the CGG repeat island in the FMR1 gene to between 55 and 200 repeats. Evidence suggests that as well as conferring risk for neurodegeneration, the premutation is also associated with increased risk for autistic traits and psychiatric symptoms. An emotional processing fMRI task was used to examine the response to a change in emotional arousal in 17 male carriers and 17 matched controls. A psychiatric symptom checklist (SCL-90-R), autism spectrum and empathy quotients (AQ and EQ), and the Ekman Faces Test were used to investigate clinical symptoms and emotional processing. Carriers exhibited significantly lower activation compared to controls at the bilateral superior parietal lobe, bilateral Brodmann Area (BA) 17 (V1), right intraparietal area and right BA18 (V2) when comparing high and low arousal conditions. Group by age analyses were not significant. Assessments revealed that carriers displayed significantly worse symptoms of psychiatric symptoms and higher levels of autistic traits, as well as impaired facial emotion recognition. No measurements revealed an association with age. Here, we show significantly altered emotional processing in carriers which display stability over age, suggesting that, unlike degenerative aspects, emotional symptoms may be consistent over the lifespan in carriers.
Collapse
Affiliation(s)
- Stephanie S G Brown
- Patrick Wild Centre, Division of Psychiatry, School of Molecular and Clinical Medicine, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh EH10 5HF, United Kingdom.
| | - Heather C Whalley
- Patrick Wild Centre, Division of Psychiatry, School of Molecular and Clinical Medicine, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh EH10 5HF, United Kingdom
| | - Peter C Kind
- Patrick Wild Centre, Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh EH8 9XD, United Kingdom
| | - Andrew C Stanfield
- Patrick Wild Centre, Division of Psychiatry, School of Molecular and Clinical Medicine, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh EH10 5HF, United Kingdom
| |
Collapse
|
20
|
Salcedo-Arellano MJ, Hagerman RJ, Martínez-Cerdeño V. [Fragile X associated tremor/ataxia syndrome: its clinical presentation, pathology, and treatment]. Rev Neurol 2019; 68:199-206. [PMID: 30805918 PMCID: PMC7001878 DOI: 10.33588/rn.6805.2018457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fragile X associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disease associated with the repetition of CGG triplets (55-200 CGG repetitions) in the FMR1 gene. The premutation of the FMR1 gene, contrasting with the full mutation (more than 200 CGG repetitions), presents an increased production of messenger and a similar or slightly decreased production of FMRP protein. FXTAS affects 40% of men and 16% of women carriers of the premutation. It presents with a wide constellation of neurological signs such as intention tremor, cerebellar ataxia, parkinsonism, executive function deficits, peripheral neuropathy and cognitive decline leading to dementia among others. In this review, we present what is currently known about the molecular mechanism, the radiological findings and the pathology, as well as the complexity of the diagnosis and management of FXTAS.
Collapse
Affiliation(s)
- María Jimena Salcedo-Arellano
- Department of Pediatrics, University of California Davis
School of Medicine, Sacramento, CA, USA
- Medical Investigation of Neurodevelopmental Disorders
(MIND) Institute, University of California Davis, Sacramento, CA, USA
| | - Randi J Hagerman
- Department of Pediatrics, University of California Davis
School of Medicine, Sacramento, CA, USA
- Medical Investigation of Neurodevelopmental Disorders
(MIND) Institute, University of California Davis, Sacramento, CA, USA
| | - Verónica Martínez-Cerdeño
- Medical Investigation of Neurodevelopmental Disorders
(MIND) Institute, University of California Davis, Sacramento, CA, USA
- Institute for Pediatric Regenerative Medicine and Shriners
Hospitals for Children Northern California, Sacramento, CA, USA
- Department of Pathology and Laboratory Medicine, UC Davis
School of Medicine, Sacramento, CA, USA
| |
Collapse
|
21
|
Saldarriaga W, Salcedo-Arellano MJ, Rodriguez-Guerrero T, Ríos M, Fandiño-Losada A, Ramirez-Cheyne J, Lein PJ, Tassone F, Hagerman RJ. Increased severity of fragile X spectrum disorders in the agricultural community of Ricaurte, Colombia. Int J Dev Neurosci 2019; 72:1-5. [PMID: 30385191 PMCID: PMC6354926 DOI: 10.1016/j.ijdevneu.2018.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/30/2018] [Accepted: 10/25/2018] [Indexed: 12/26/2022] Open
Abstract
Premutation carriers of the FMR1 gene (CGG repeats between 55 and 200) usually have normal intellectual abilities but approximately 20% are diagnosed with developmental problems or autism spectrum disorder. Additionally, close to 50% have psychiatric problems such as anxiety, ADHD and/or depression. The spectrum of fragile X disorders also includes Fragile-X-associated primary ovarian insufficiency (FXPOI) in female carriers and Fragile-X-associated tremor/ataxia syndrome (FXTAS) in older male and female carriers. We evaluated 25 premutation carriers in the rural community of Ricaurte Colombia and documented all behavioral problems, social deficits and clinical signs of FXPOI and FXTAS as well as reviewed the medical and obstetric history. We found an increased frequency and severity of symptoms of fragile X spectrum disorders, which might be related to the vulnerability of FMR1 premutation carriers to higher exposure to neurotoxic pesticides in this rural community.
Collapse
Affiliation(s)
- Wilmar Saldarriaga
- School of Medicine, Universidad del Valle, Cali, Colombia; Research Group in Congenital & Perinatal Malformations, Dysmorphology and Clinical Genetics (MACOS), Universidad del Valle, Cali, Colombia; Department of Morphology, Universidad del Valle, Cali, Colombia
| | - María J Salcedo-Arellano
- School of Medicine, Universidad del Valle, Cali, Colombia; Research Group in Congenital & Perinatal Malformations, Dysmorphology and Clinical Genetics (MACOS), Universidad del Valle, Cali, Colombia; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA.
| | | | - Marcela Ríos
- School of Medicine, Universidad del Valle, Cali, Colombia
| | - Andrés Fandiño-Losada
- School of Medicine, Universidad del Valle, Cali, Colombia; CISALVA Institute, School of Public Health, Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Julian Ramirez-Cheyne
- School of Medicine, Universidad del Valle, Cali, Colombia; Research Group in Congenital & Perinatal Malformations, Dysmorphology and Clinical Genetics (MACOS), Universidad del Valle, Cali, Colombia; Department of Morphology, Universidad del Valle, Cali, Colombia
| | - Pamela J Lein
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA; Department of Molecular Biosciences, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Flora Tassone
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA; Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Randi J Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA; Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
22
|
Keil KP, Sethi S, Wilson MD, Silverman JL, Pessah IN, Lein PJ. Genetic mutations in Ca 2+ signaling alter dendrite morphology and social approach in juvenile mice. GENES, BRAIN, AND BEHAVIOR 2019; 18:e12526. [PMID: 30311737 PMCID: PMC6540090 DOI: 10.1111/gbb.12526] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 01/28/2023]
Abstract
Dendritic morphology is a critical determinant of neuronal connectivity, and calcium signaling plays a predominant role in shaping dendrites. Altered dendritic morphology and genetic mutations in calcium signaling are both associated with neurodevelopmental disorders (NDDs). In this study we tested the hypothesis that dendritic arborization and NDD-relevant behavioral phenotypes are altered by human mutations that modulate calcium-dependent signaling pathways implicated in NDDs. The dendritic morphology of pyramidal neurons in CA1 hippocampus and somatosensory cortex was quantified in Golgi-stained brain sections from juvenile mice of both sexes expressing either a human gain-of-function mutation in ryanodine receptor 1 (T4826I-RYR1), a human CGG repeat expansion (170-200 CGG repeats) in the fragile X mental retardation gene 1 (FMR1 premutation), both mutations (double mutation; DM), or wildtype mice. In hippocampal neurons, increased dendritic arborization was observed in male T4826I-RYR1 and, to a lesser extent, male FMR1 premutation neurons. Dendritic morphology of cortical neurons was altered in both sexes of FMR1 premutation and DM animals with the most pronounced differences seen in DM females. Genotype also impaired behavior, as assessed using the three-chambered social approach test. The most striking lack of sociability was observed in DM male and female mice. In conclusion, mutations that alter the fidelity of calcium signaling enhance dendritic arborization in a brain region- and sex-specific manner and impair social behavior in juvenile mice. The phenotypic outcomes of these mutations likely provide a susceptible biological substrate for additional environmental stressors that converge on calcium signaling to determine individual NDD risk.
Collapse
Affiliation(s)
- Kimberly P. Keil
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, California
| | - Sunjay Sethi
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, California
| | - Machelle D. Wilson
- Clinical and Translational Science Center, Department of Public Health Sciences, Division of Biostatistics, University of California-Davis, School of Medicine, Davis, California
| | - Jill L. Silverman
- Department of Psychiatry and Behavioral Sciences, University of California-Davis School of Medicine, Sacramento, California
- MIND Institute, University of California-Davis, School of Medicine, Sacramento, California
| | - Isaac N. Pessah
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, California
- MIND Institute, University of California-Davis, School of Medicine, Sacramento, California
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, California
- MIND Institute, University of California-Davis, School of Medicine, Sacramento, California
| |
Collapse
|
23
|
Pereverzeva DS, Tyushkevich SA, Gorbachevskaya NL, Mamokhina UA, Danilina KK. Heterogeneity of clinical characteristics of FMR1-related disorders. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:103-111. [DOI: 10.17116/jnevro2019119071103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Cerdeño VM, Hong T, Amina S, Lechpammer M, Ariza J, Tassone F, Noctor SC, Hagerman P, Hagerman R. Microglial cell activation and senescence are characteristic of the pathology FXTAS. Mov Disord 2018; 33:1887-1894. [PMID: 30537011 PMCID: PMC6413690 DOI: 10.1002/mds.27553] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/15/2018] [Accepted: 09/27/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder associated with premutation alleles of the FMR1 gene. Expansions of more than 200 CGG repeats give rise to fragile X syndrome, the most common inherited form of cognitive impairment. Fragile X-associated tremor/ataxia syndrome is characterized by cerebellar tremor and ataxia, and the presence of ubiquitin-positive inclusions in neurons and astrocytes. It has been previously suggested that fragile X-associated tremor/ataxia syndrome is associated with an inflammatory state based on signs of oxidative stress-mediated damage and iron deposition. OBJECTIVE Determine whether the pathology of fragile X-associated tremor/ataxia syndrome involves microglial activation and an inflammatory state. METHODS Using ionized calcium binding adaptor molecule 1 and cluster differentiation 68 antibodies to label microglia, we examined the number and state of activation of microglial cells in the putamen of 13 fragile X-associated tremor/ataxia syndrome and 9 control postmortem cases. RESULTS Nearly half of fragile X-associated tremor/ataxia syndrome cases (6 of 13) presented with dystrophic senescent microglial cells. In the remaining fragile X-associated tremor/ataxia syndrome cases (7 of 13), the number of microglial cells and their activation state were increased compared to controls. CONCLUSIONS The presence of senescent microglial cells in half of fragile X-associated tremor/ataxia syndrome cases suggests that this indicator could be used, together with the presence of intranuclear inclusions and the presence of iron deposits, as a biomarker to aid in the postmortem diagnosis of fragile X-associated tremor/ataxia syndrome. An increased number and activation indicate that microglial cells play a role in the inflammatory state present in the fragile X-associated tremor/ataxia syndrome brain. Anti-inflammatory treatment of patients with fragile X-associated tremor/ataxia syndrome may be indicated to slow neurodegeneration. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Verónica Martínez Cerdeño
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, California, USA
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California, USA
- MIND Institute, UC Davis Medical Center, Sacramento, California, USA
| | - Tiffany Hong
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, California, USA
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California, USA
| | - Sarwat Amina
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California, USA
- MIND Institute, UC Davis Medical Center, Sacramento, California, USA
| | - Mirna Lechpammer
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, California, USA
| | - Jeanelle Ariza
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, California, USA
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California, USA
| | - Flora Tassone
- MIND Institute, UC Davis Medical Center, Sacramento, California, USA
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine Sacramento, California, USA
| | - Stephen C. Noctor
- MIND Institute, UC Davis Medical Center, Sacramento, California, USA
- Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine Sacramento, California, USA
| | - Paul Hagerman
- MIND Institute, UC Davis Medical Center, Sacramento, California, USA
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine Sacramento, California, USA
| | - Randi Hagerman
- MIND Institute, UC Davis Medical Center, Sacramento, California, USA
- Department of Pediatrics, UC Davis School of Medicine Sacramento, California, USA
| |
Collapse
|
25
|
Hagerman RJ, Protic D, Rajaratnam A, Salcedo-Arellano MJ, Aydin EY, Schneider A. Fragile X-Associated Neuropsychiatric Disorders (FXAND). Front Psychiatry 2018; 9:564. [PMID: 30483160 PMCID: PMC6243096 DOI: 10.3389/fpsyt.2018.00564] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022] Open
Abstract
Fragile X syndrome (FXS) is caused by the full mutation (>200 CGG repeats) in the Fragile X Mental Retardation 1 (FMR1) gene. It is the most common inherited cause of intellectual disability (ID) and autism. This review focuses on neuropsychiatric disorders frequently experienced by premutation carriers with 55 to 200 CGG repeats and the pathophysiology involves elevated FMR1 mRNA levels, which is different from the absence or deficiency of fragile X mental retardation protein (FMRP) seen in FXS. Neuropsychiatric disorders are the most common problems associated with the premutation, and they affect approximately 50% of individuals with 55 to 200 CGG repeats in the FMR1 gene. Neuropsychiatric disorders in children with the premutation include anxiety, ADHD, social deficits, or autism spectrum disorders (ASD). In adults with the premutation, anxiety and depression are the most common problems, although obsessive compulsive disorder, ADHD, and substance abuse are also common. These problems are often exacerbated by chronic fatigue, chronic pain, fibromyalgia, autoimmune disorders and sleep problems, which are also associated with the premutation. Here we review the clinical studies, neuropathology and molecular underpinnings of RNA toxicity associated with the premutation. We also propose the name Fragile X-associated Neuropsychiatric Disorders (FXAND) in an effort to promote research and the use of fragile X DNA testing to enhance recognition and treatment for these disorders.
Collapse
Affiliation(s)
- Randi J. Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Dragana Protic
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Department of Pharmacology, Clinical Pharmacology and Toxicology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Akash Rajaratnam
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Maria J. Salcedo-Arellano
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Elber Yuksel Aydin
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Andrea Schneider
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
26
|
Fernández E, Gennaro E, Pirozzi F, Baldo C, Forzano F, Turolla L, Faravelli F, Gastaldo D, Coviello D, Grasso M, Bagni C. FXS-Like Phenotype in Two Unrelated Patients Carrying a Methylated Premutation of the FMR1 Gene. Front Genet 2018; 9:442. [PMID: 30450110 PMCID: PMC6224343 DOI: 10.3389/fgene.2018.00442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 09/14/2018] [Indexed: 12/31/2022] Open
Abstract
Fragile X syndrome (FXS) is mostly caused by two distinct events that occur in the FMR1 gene (Xq27.3): an expansion above 200 repeats of a CGG triplet located in the 5′UTR of the gene, and methylation of the cytosines located in the CpG islands upstream of the CGG repeats. Here, we describe two unrelated families with one FXS child and another sibling presenting mild intellectual disability and behavioral features evocative of FXS. Genetic characterization of the undiagnosed sibling revealed mosaicism in both the CGG expansion size and the methylation levels in the different tissues analyzed. This report shows that in the same family, two siblings carrying different CGG repeats, one in the full-mutation range and the other in the premutation range, present methylation mosaicism and consequent decreased FMRP production leading to FXS and FXS-like features, respectively. Decreased FMRP levels, more than the number of repeats seem to correlate with the severity of FXS clinical phenotypes.
Collapse
Affiliation(s)
- Esperanza Fernández
- Center for Human Genetics, KU Leuven, Leuven, Belgium.,VIB & KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Elena Gennaro
- Laboratorio di Genetica Umana, Ospedali Galliera, Genoa, Italy
| | - Filomena Pirozzi
- Center for Human Genetics, KU Leuven, Leuven, Belgium.,VIB & KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Chiara Baldo
- Laboratorio di Genetica Umana, Ospedali Galliera, Genoa, Italy
| | - Francesca Forzano
- Clinical Genetics Department, Borough Wing Guy's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.,S.S.D. Genetica Medica, Ospedali Galliera, Genoa, Italy
| | - Licia Turolla
- U.O.S. Genetica Medica, Azienda ULSS 2, Treviso, Italy
| | - Francesca Faravelli
- Clinical Genetics Department, Great Ormond Street Hospital, London, United Kingdom
| | - Denise Gastaldo
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | | | - Marina Grasso
- Laboratorio di Genetica Umana, Ospedali Galliera, Genoa, Italy
| | - Claudia Bagni
- Center for Human Genetics, KU Leuven, Leuven, Belgium.,VIB & KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
27
|
Raspa M, Wylie A, Wheeler AC, Kolacz J, Edwards A, Heilman K, Porges SW. Sensory Difficulties in Children With an FMR1 Premutation. Front Genet 2018; 9:351. [PMID: 30233641 PMCID: PMC6127619 DOI: 10.3389/fgene.2018.00351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 08/09/2018] [Indexed: 01/07/2023] Open
Abstract
Abnormal sensory processing is one of the core characteristics of the fragile X phenotype. Studies of young children with fragile X syndrome (FXS) and the FMR1 premutation have shown sensory challenges as early as infancy and into early childhood. This study sought to examine differences in sensory difficulties in children with an FMR1 premutation compared with children with FXS and typically developing children. We conducted an online survey of 176 parents of affected children (FXS or FMR1 premutation). Most respondents were mothers who are Caucasian (86%), have a 4-year college or graduate degree (68%), and are married (92%). Children ranged in age from 5 to 18, with a mean age of 13.0 years (3.3 SD). Participants completed the BBC Sensory Scales, a 50-item Likert-type scale (1 = Almost Always, 4 = Almost Never) comprised of 8 subscales that assessed auditory processing, visual processing, tactile processing, and eating and feeding behaviors. Mean scores were calculated for the items and each of the subscales. Non-parametric tests examined differences in child and family-level variables. Across all BBCSS subscales, children with an FMR1 premutation displayed more sensory challenges than typically developing children. For six out of the eight subscales, children with the full mutation had the lowest scores indicating more sensory challenges, but this was closely followed by children with an FMR1 premutation. Fragile X status was associated with seven of the eight subscales; children with an FMR1 premutation did not differ from children with FXS on any of the subscales but had more digestive problems than children with no fragile X. Gender, autism status, and family income were also related to sensory sensitivities. In conclusion, these data provide further evidence that some children with an FMR1 premutation experience sensory difficulties that are similar to children with FXS but different than typically developing children.
Collapse
Affiliation(s)
| | | | | | - Jacek Kolacz
- Traumatic Stress Research Consortium, Kinsey Institute, Indiana University Bloomington, Bloomington, IN, United States
| | | | - Keri Heilman
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephen W Porges
- Traumatic Stress Research Consortium, Kinsey Institute, Indiana University Bloomington, Bloomington, IN, United States.,Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
28
|
Landowska A, Rzońca S, Bal J, Gos M. [Fragile X syndrome and FMR1-dependent diseases - clinical presentation, epidemiology and molecular background]. DEVELOPMENTAL PERIOD MEDICINE 2018; 22. [PMID: 29641417 PMCID: PMC8522919 DOI: 10.34763/devperiodmed.20182201.1421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Fragile X syndrome (FXS) is the second most common inherited cause of intellectual disability (ID), after Down syndrome. The severity of ID in FXS patients varies and depends mainly on the patient's sex. Besides intellectual disorders, additional symptoms, such as psychomotor delay, a specific behavioral phenotype, or emotional problems are present in FXS patients. In over 99% of the cases, the disease is caused by the presence of a dynamic mutation in the FMR1 gene localized on the X chromosome. Due to the expansion of CGG nucleotides (over 200 repeats), FMR1 gene expression is decreased and results in the significant reduction of the FMRP protein level. The CGG expansion to premutation range (55-200 CGG repeats) is equivalent to the FXS carrier status and may cause FMR1-dependent disorders - fragile X-associated primary ovarian insufficiency (FXPOI) and fragile X-associated tremor/ataxia syndrome (FXTAS). In contrast to FXS, clinical symptoms of these diseases occur later in adulthood. The aim of the article is to present the knowledge about the molecular background and epidemiology of fragile X syndrome and other FMR1-related disorders.
Collapse
Affiliation(s)
- Aleksandra Landowska
- Zakład Genetyki Medycznej, Instytut Matki i Dziecka, Warszawa, Polska,Aleksandra Landowska Zakład Genetyki Medycznej, Instytut Matki i Dziecka ul. Kasprzaka 17a, 01-211 Warszawa tel. (+48 22) 327-71-76
| | - Sylwia Rzońca
- Zakład Genetyki Medycznej, Instytut Matki i Dziecka, Warszawa, Polska
| | - Jerzy Bal
- Zakład Genetyki Medycznej, Instytut Matki i Dziecka, Warszawa, Polska
| | - Monika Gos
- Zakład Genetyki Medycznej, Instytut Matki i Dziecka, Warszawa, Polska
| |
Collapse
|
29
|
He N, Li BM, Li ZX, Wang J, Liu XR, Meng H, Tang B, Bian WJ, Shi YW, Liao WP. Few individuals with Lennox-Gastaut syndrome have autism spectrum disorder: a comparison with Dravet syndrome. J Neurodev Disord 2018; 10:10. [PMID: 29558884 PMCID: PMC5859706 DOI: 10.1186/s11689-018-9229-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 03/08/2018] [Indexed: 11/21/2022] Open
Abstract
Background Autism spectrum disorder (ASD) in epilepsy has been a topic of increasing interest, which in general occurs in 15–35% of the patients with epilepsy, more frequently in those with intellectual disability (ID). Lennox-Gastaut syndrome (LGS) and Dravet syndrome (DS) are two typical forms of intractable epileptic encephalopathy associated with ID. We previously reported that ASD was diagnosed in 24.3% of patients with DS, higher in those with profound ID. Given the severe epilepsy and high frequency of ID in LGS, it is necessary to know whether ASD is a common psychomotor co-morbidity of LGS. This study evaluated the autistic behaviors and intelligence in patients with LGS and further compared that between LGS and DS, aiming to understand the complex pathogenesis of epilepsy-ASD-ID triad. Methods A total of 50 patients with LGS and 45 patients with DS were enrolled and followed up for at least 3 years. The clinical characteristics were analyzed, and evaluations of ASD and ID were performed. Results No patients with LGS fully met the diagnostic criteria for ASD, but three of them exhibited more or less autistic behaviors. Majority (86%) of LGS patients presented ID, among which moderate to severe ID was the most common. Early onset age and symptomatic etiology were risk predictors for ID. The prevalence of ASD in LGS was significantly lower than that in DS (0/50 vs. 10/45, p < 0.001), while the prevalence and severity of ID showed no significant difference between the two forms of epileptic encephalopathy. Conclusions This study demonstrated a significant difference in the co-morbidity of ASD between LGS and DS, although they had a similar prevalence and severity of ID, refuting the proposal that the prevalence of ASD in epilepsy is accounted for by ID. These findings suggest that the co-morbidity of ASD, ID, and epilepsy may result from multifaceted pathogenic mechanisms.
Collapse
Affiliation(s)
- Na He
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Chang-gang-dong Road 250, Guangzhou, 510260, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Bing-Mei Li
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Chang-gang-dong Road 250, Guangzhou, 510260, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Zhao-Xia Li
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Chang-gang-dong Road 250, Guangzhou, 510260, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Jie Wang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Chang-gang-dong Road 250, Guangzhou, 510260, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Xiao-Rong Liu
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Chang-gang-dong Road 250, Guangzhou, 510260, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Heng Meng
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Chang-gang-dong Road 250, Guangzhou, 510260, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China.,Department of Neurology, The First Affiliated Hospital of Jinan University, Guangdong, 510630, China.,Clinical Neuroscience Institute of Jinan University, Guangdong, 510630, China
| | - Bin Tang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Chang-gang-dong Road 250, Guangzhou, 510260, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Wen-Jun Bian
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Chang-gang-dong Road 250, Guangzhou, 510260, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Yi-Wu Shi
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Chang-gang-dong Road 250, Guangzhou, 510260, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Wei-Ping Liao
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Chang-gang-dong Road 250, Guangzhou, 510260, China. .,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China.
| |
Collapse
|
30
|
Muslimov IA, Eom T, Iacoangeli A, Chuang SC, Hukema RK, Willemsen R, Stefanov DG, Wong RKS, Tiedge H. BC RNA Mislocalization in the Fragile X Premutation. eNeuro 2018; 5:ENEURO.0091-18.2018. [PMID: 29766042 PMCID: PMC5952321 DOI: 10.1523/eneuro.0091-18.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 12/27/2022] Open
Abstract
Fragile X premutation disorder is caused by CGG triplet repeat expansions in the 5' untranslated region of FMR1 mRNA. The question of how expanded CGG repeats cause disease is a subject of continuing debate. Our work indicates that CGG-repeat structures compete with regulatory BC1 RNA for access to RNA transport factor hnRNP A2. As a result, BC1 RNA is mislocalized in vivo, as its synapto-dendritic presence is severely diminished in brains of CGG-repeat knock-in animals (a premutation mouse model). Lack of BC1 RNA is known to cause seizure activity and cognitive dysfunction. Our working hypothesis thus predicted that absence, or significantly reduced presence, of BC1 RNA in synapto-dendritic domains of premutation animal neurons would engender cognate phenotypic alterations. Testing this prediction, we established epileptogenic susceptibility and cognitive impairments as major phenotypic abnormalities of CGG premutation mice. In CA3 hippocampal neurons of such animals, synaptic release of glutamate elicits neuronal hyperexcitability in the form of group I metabotropic glutamate receptor-dependent prolonged epileptiform discharges. CGG-repeat knock-in animals are susceptible to sound-induced seizures and are cognitively impaired as revealed in the Attentional Set Shift Task. These phenotypic disturbances occur in young-adult premutation animals, indicating that a neurodevelopmental deficit is an early-initial manifestation of the disorder. The data are consistent with the notion that RNA mislocalization can contribute to pathogenesis.
Collapse
Affiliation(s)
- Ilham A. Muslimov
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York 11203
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| | - Taesun Eom
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York 11203
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| | - Anna Iacoangeli
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York 11203
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| | - Shih-Chieh Chuang
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York 11203
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| | - Renate K. Hukema
- Department of Clinical Genetics, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Dimitre G. Stefanov
- Statistical Design and Analysis, Research Division, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| | - Robert K. S. Wong
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York 11203
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
- Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| | - Henri Tiedge
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York 11203
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
- Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| |
Collapse
|
31
|
Bakke KA, Howlin P, Retterstøl L, Kanavin ØJ, Heiberg A, Nærland T. Effect of epilepsy on autism symptoms in Angelman syndrome. Mol Autism 2018; 9:2. [PMID: 29340132 PMCID: PMC5759870 DOI: 10.1186/s13229-017-0185-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 12/25/2017] [Indexed: 12/02/2022] Open
Abstract
Background Autism spectrum disorder and epilepsy often co-occur; however, the extent to which the association between autism symptoms and epilepsy is due to shared aetiology or to the direct effects of seizures is a topic of ongoing debate. Angelman syndrome (AS) is presented as a suitable disease model to explore this association. Methods Data from medical records and questionnaires were used to examine the association between age of epilepsy onset, autism symptoms, genetic aberration and communication level. Forty-eight participants had genetically verified AS (median age 14.5 years; range 1–57 years). A measure of autism symptoms (the Social Communication Questionnaire; SCQ) was completed for 38 individuals aged ≥ 4 years. Genetic cause was subgrouped into deletion and other genetic aberrations of the 15q11-q13 area. The number of signs used to communicate (< 20 sign and ≥ 20 signs) was used as a measure of nonverbal communication. Results Mean age of epilepsy onset was 3.0 years (range 3 months–7.8 years). Mean SCQ score for individuals without epilepsy was 13.6 (SD = 6.7) and with epilepsy 17.0 (SD = 5.6; p = 0.17); 58% used fewer than 20 signs to communicate. There were no age differences between groups according to presence of epilepsy, level of nonverbal communication or type of genetic aberration. SCQ scores were higher in individuals with the deletion than in those with other genetic aberrations (18.7 vs 10.8 p = 0.008) and higher in the group who used < 20 signs to communicate (19.4 vs 14.1 p = 0.007). Age of epilepsy onset was correlated with SCQ (r = − 0.61, p < 0.001). Multiple regression showed that age of seizure onset was significantly related to SCQ score (β = − 0.90; p = 0.006), even when the type of genetic abnormality was controlled (R2 = 0.53; F = 10.7; p = 0.001). Conclusions The study provides support for the notion that seizures themselves contribute more to autism symptoms than expected from the underlying genetic pathology alone. The study demonstrates how a rare genetic syndrome such as Angelman syndrome may be used to study the relation between epilepsy and autism symptomatology.
Collapse
Affiliation(s)
- Kristin A Bakke
- NevSom, Department of Rare Disorders, Oslo University Hospital, Oslo, Norway
| | - Patricia Howlin
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Faculty of Health Sciences, University of Sydney, Sydney, NSW Australia
| | - Lars Retterstøl
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Øivind J Kanavin
- Frambu National Resource Center for Rare Disorders, Siggerud, Norway
| | - Arvid Heiberg
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Terje Nærland
- NevSom, Department of Rare Disorders, Oslo University Hospital, Oslo, Norway.,NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
32
|
Man L, Lekovich J, Rosenwaks Z, Gerhardt J. Fragile X-Associated Diminished Ovarian Reserve and Primary Ovarian Insufficiency from Molecular Mechanisms to Clinical Manifestations. Front Mol Neurosci 2017; 10:290. [PMID: 28955201 PMCID: PMC5600956 DOI: 10.3389/fnmol.2017.00290] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/28/2017] [Indexed: 12/12/2022] Open
Abstract
Fragile X syndrome (FXS), is caused by a loss-of-function mutation in the FMR1 gene located on the X-chromosome, which leads to the most common cause of inherited intellectual disability in males and the leading single-gene defect associated with autism. A full mutation (FM) is represented by more than 200 CGG repeats within the FMR1 gene, resulting in FXS. A FM is inherited from women carrying a FM or a premutation (PM; 55–200 CGG repeats) allele. PM is associated with phenotypes distinct from those associated with FM. Some manifestations of the PM are unique; fragile-X-associated tremor/ataxia syndrome (FXTAS), and fragile-X-associated primary ovarian insufficiency (FXPOI), while others tend to be non-specific such as intellectual disability. In addition, women carrying a PM may suffer from subfertility or infertility. There is a need to elucidate whether the impairment of ovarian function found in PM carriers arises during the primordial germ cell (PGC) development stage, or due to a rapidly diminishing oocyte pool throughout life or even both. Due to the possibility of expansion into a FM in the next generation, and other ramifications, carrying a PM can have an enormous impact on one’s life; therefore, preconception counseling for couples carrying the PM is of paramount importance. In this review, we will elaborate on the clinical manifestations in female PM carriers and propose the definition of fragile-X-associated diminished ovarian reserve (FXDOR), then we will review recent scientific findings regarding possible mechanisms leading to FXDOR and FXPOI. Lastly, we will discuss counseling, preventative measures and interventions available for women carrying a PM regarding different aspects of their reproductive life, fertility treatment, pregnancy, prenatal testing, contraception and fertility preservation options.
Collapse
Affiliation(s)
- Limor Man
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell MedicineNew York, NY, United States
| | - Jovana Lekovich
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell MedicineNew York, NY, United States
| | - Zev Rosenwaks
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell MedicineNew York, NY, United States
| | - Jeannine Gerhardt
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell MedicineNew York, NY, United States
| |
Collapse
|
33
|
Niu M, Han Y, Dy ABC, Du J, Jin H, Qin J, Zhang J, Li Q, Hagerman RJ. Autism Symptoms in Fragile X Syndrome. J Child Neurol 2017; 32:903-909. [PMID: 28617074 DOI: 10.1177/0883073817712875] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fragile X syndrome (FXS) is recognized as the most common genetic cause of intellectual disability and autism spectrum disorder (ASD). Although symptoms of ASD are frequently observed in patients with FXS, researchers have not yet clearly determined whether the symptoms in patients with FXS differ from the symptoms in patients without ASD or nonsyndromic ASD. Behavioral similarities and differences between FXS and ASD are important to improve our understanding of the causes and correlations of ASD with FXS. Based on the evidence presented in this review, individuals with FXS and comorbid ASD have more severe behavioral problems than individuals with FXS alone. However, patients with FXS and comorbid ASD exhibit less severe impairments in the social and communication symptoms than patients with nonsyndromic ASD. Individuals with FXS also present with anxiety and seizures in addition to comorbid ASD symptoms, and differences in these conditions are noted in patients with FXS and ASD. This review also discusses the role of fragile X mental retardation 1 protein (FMRP) in FXS and ASD phenotypes.
Collapse
Affiliation(s)
- Manman Niu
- 1 Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ying Han
- 1 Department of Pediatrics, Peking University First Hospital, Beijing, China.,2 MIND Institute, University of California, Davis, CA, USA
| | - Angel Belle C Dy
- 2 MIND Institute, University of California, Davis, CA, USA.,3 Ateneo de Manila University - School of Medicine and Public Health, Philippines
| | - Junbao Du
- 1 Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hongfang Jin
- 1 Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jiong Qin
- 4 Department of Pediatrics, Peking University People's Hospital, Beijing, China
| | - Jing Zhang
- 1 Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Qinrui Li
- 1 Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Randi J Hagerman
- 2 MIND Institute, University of California, Davis, CA, USA.,5 Department of Pediatrics, University of California, Davis, CA, USA
| |
Collapse
|
34
|
Mittal SO, Mack K, Bower JH. Fragile X-associated Tremor/Ataxia Syndrome in an Adolescent Female. Mov Disord Clin Pract 2017; 4:778-780. [DOI: 10.1002/mdc3.12513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/03/2017] [Accepted: 05/18/2017] [Indexed: 11/08/2022] Open
Affiliation(s)
| | - Kenneth Mack
- Department of Pediatric Neurology; Mayo Clinic; Rochester Minnesota
| | - James H. Bower
- Department of Neurology; Mayo Clinic; Rochester Minnesota
| |
Collapse
|
35
|
Wheeler A, Raspa M, Hagerman R, Mailick M, Riley C. Implications of the FMR1 Premutation for Children, Adolescents, Adults, and Their Families. Pediatrics 2017; 139:S172-S182. [PMID: 28814538 PMCID: PMC5621635 DOI: 10.1542/peds.2016-1159d] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/24/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Given the nature of FMR1 gene expansions, most biological mothers, and often multiple other family members of children with fragile X syndrome (FXS), will have a premutation, which may increase individual and family vulnerabilities. This article summarizes important gaps in knowledge and notes potential implications for pediatric providers with regard to developmental and medical risks for children and adolescents with an FMR1 premutation, including possible implications into adulthood. METHODS A structured electronic literature search was conducted on FMR1 pre- and full mutations, yielding a total of 306 articles examined. Of these, 116 focused primarily on the premutation and are included in this review. RESULTS Based on the literature review, 5 topic areas are discussed: genetics and epidemiology; phenotypic characteristics of individuals with the premutation; implications for carrier parents of children with FXS; implications for the extended family; and implications for pediatricians. CONCLUSIONS Although the premutation phenotype is typically less severe in clinical presentation than in FXS, premutation carriers are much more common and are therefore more likely to be seen in a typical pediatric practice. In addition, there is a wide range of medical, cognitive/developmental, and psychiatric associated features that individuals with a premutation are at increased risk for having, which underscores the importance of awareness on the part of pediatricians in identifying and monitoring premutation carriers and recognizing the impact this identification may have on family members.
Collapse
Affiliation(s)
- Anne Wheeler
- RTI International, Research Triangle Park, North Carolina;
| | - Melissa Raspa
- RTI International, Research Triangle Park, North Carolina
| | - Randi Hagerman
- MIND Institute, University of California at Davis, Sacramento, California
| | - Marsha Mailick
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Catharine Riley
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
36
|
Bailey DB, Berry-Kravis E, Gane LW, Guarda S, Hagerman R, Powell CM, Tassone F, Wheeler A. Fragile X Newborn Screening: Lessons Learned From a Multisite Screening Study. Pediatrics 2017; 139:S216-S225. [PMID: 28814542 DOI: 10.1542/peds.2016-1159h] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/24/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Delays in the diagnosis of children with fragile X syndrome (FXS) suggest the possibility of newborn screening as a way to identify children earlier. However, FXS does not have a proven treatment that must be provided early, and ethical concerns have been raised about the detection of infants who are carriers. This article summarizes major findings from a multisite, prospective, longitudinal pilot screening study. METHODS Investigators in North Carolina, California, and Illinois collaborated on a study in which voluntary screening for FXS was offered to parents in 3 birthing hospitals. FXS newborn screening was offered to >28 000 families to assess public acceptance and determine whether identification of babies resulted in any measurable harms or adverse events. Secondary goals were to determine the prevalence of FMR1 carrier gene expansions, study the consent process, and describe early development and behavior of identified children. RESULTS A number of publications have resulted from the project. This article summarizes 10 "lessons learned" about the consent process, reasons for accepting and declining screening, development and evaluation of a decision aid, prevalence of carriers, father participation in consent, family follow-up, and maternal reactions to screening. CONCLUSIONS The project documented public acceptance of screening as well as the challenges inherent in obtaining consent in the hospital shortly after birth. Collectively, the study provides answers to a number of questions that now set the stage for a next generation of research to determine the benefits of earlier identification for children and families.
Collapse
Affiliation(s)
- Donald B Bailey
- Center for Newborn Screening, Ethics, and Disability Studies, RTI International, Research Triangle Park, North Carolina;
| | | | - Louise W Gane
- MIND Institute, University of California at Davis, Sacramento, California; and
| | - Sonia Guarda
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Randi Hagerman
- MIND Institute, University of California at Davis, Sacramento, California; and
| | - Cynthia M Powell
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Flora Tassone
- MIND Institute, University of California at Davis, Sacramento, California; and
| | - Anne Wheeler
- Center for Newborn Screening, Ethics, and Disability Studies, RTI International, Research Triangle Park, North Carolina
| |
Collapse
|
37
|
Jiraanont P, Sweha SR, AlOlaby RR, Silva M, Tang HT, Durbin-Johnson B, Schneider A, Espinal GM, Hagerman PJ, Rivera SM, Hessl D, Hagerman RJ, Chutabhakdikul N, Tassone F. Clinical and molecular correlates in fragile X premutation females. eNeurologicalSci 2017; 7:49-56. [PMID: 28971146 PMCID: PMC5621595 DOI: 10.1016/j.ensci.2017.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/10/2017] [Indexed: 12/21/2022] Open
Abstract
The prevalence of the fragile X premutation (55-200 CGG repeats) among the general population is relatively high, but there remains a lack of clear understanding of the links between molecular biomarkers and clinical outcomes. In this study we investigated the correlations between molecular measures (CGG repeat size, FMR1 mRNA, FMRP expression levels, and methylation status at the promoter region and in FREE2 site) and clinical phenotypes (anxiety, obsessive compulsive symptoms, depression and executive function deficits) in 36 adult premutation female carriers and compared to 24 normal control subjects. Premutation carriers reported higher levels of obsessive compulsive symptoms, depression, and anxiety, but demonstrated no significant deficits in global cognitive functions or executive function compared to the control group. Increased age in carriers was significantly associated with increased anxiety levels. As expected, FMR1 mRNA expression was significantly correlated with CGG repeat number. However, no significant correlations were observed between molecular (including epigenetic) measures and clinical phenotypes in this sample. Our study, albeit limited by the sample size, establishes the complexity of the mechanisms that link the FMR1 locus to the clinical phenotypes commonly observed in female carriers suggesting that other factors, including environment or additional genetic changes, may have an impact on the clinical phenotypes. However, it continues to emphasize the need for assessment and treatment of psychiatric problems in female premutation carriers.
Collapse
Affiliation(s)
- Poonnada Jiraanont
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakornpathom, Thailand
| | - Stefan R. Sweha
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Reem R. AlOlaby
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Marisol Silva
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Hiu-Tung Tang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Blythe Durbin-Johnson
- Department of Public Health Sciences, School of Medicine, University of California at Davis, Davis, CA, USA
| | - Andrea Schneider
- Department of Pediatrics, School of Medicine, University of California Davis, Davis, CA, USA
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, USA
| | - Glenda M. Espinal
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Paul J. Hagerman
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, USA
| | - Susan M. Rivera
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, USA
- Neurocognitive Development Lab, Center for Mind and Brain UC Davis, Professor, Department of Psychology, University of California Davis Medical Center, Sacramento, CA, USA
| | - David Hessl
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, CA, USA
| | - Randi J. Hagerman
- Department of Pediatrics, School of Medicine, University of California Davis, Davis, CA, USA
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, USA
| | - Nuanchan Chutabhakdikul
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakornpathom, Thailand
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
38
|
Martínez-Cerdeño V, Lechpammer M, Noctor S, Ariza J, Hagerman P, Hagerman R. FMR1 premutation with Prader-Willi phenotype and fragile X-associated tremor/ataxia syndrome. Clin Case Rep 2017; 5:625-629. [PMID: 28469864 PMCID: PMC5412812 DOI: 10.1002/ccr3.834] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 11/07/2016] [Accepted: 01/04/2017] [Indexed: 11/12/2022] Open
Abstract
This is a report of FMR1 premutation with Prader-Willi phenotype (PWP) and FXTAS. Although the PWP is common in fragile X syndrome (FXS), it has never been described in someone with the premutation. The patient presented intranuclear inclusions, severe obesity, hyperphagia, and ADHD symptoms, typical of the PWP in FXS. In addition, the autopsy revealed multiple architectural cortical abnormalities.
Collapse
Affiliation(s)
- Verónica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine UC Davis Medical Center Sacramento CA USA.,Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California Sacramento CA USA.,MIND Institute UC Davis Medical Center Sacramento CA USA
| | - Mirna Lechpammer
- Department of Pathology and Laboratory Medicine UC Davis Medical Center Sacramento CA USA
| | - Stephen Noctor
- MIND Institute UC Davis Medical Center Sacramento CA USA.,Department of Psychiatry and Behavioral Sciences UC Davis Medical Center Sacramento CA USA
| | - Jeanelle Ariza
- Department of Pathology and Laboratory Medicine UC Davis Medical Center Sacramento CA USA.,Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California Sacramento CA USA
| | - Paul Hagerman
- Department of Biochemistry and Molecular Medicine UC Davis Medical Center Sacramento CA USA
| | - Randi Hagerman
- MIND Institute UC Davis Medical Center Sacramento CA USA.,Department of Pediatrics UC Davis Medical Center Sacramento CA USA
| |
Collapse
|
39
|
Ariza J, Rogers H, Hartvigsen A, Snell M, Dill M, Judd D, Hagerman P, Martínez-Cerdeño V. Iron accumulation and dysregulation in the putamen in fragile X-associated tremor/ataxia syndrome. Mov Disord 2017; 32:585-591. [PMID: 28233916 DOI: 10.1002/mds.26902] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/07/2016] [Accepted: 12/07/2016] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Fragile X-associated tremor/ataxia syndrome is an adult-onset disorder associated with premutation alleles of the FMR1 gene. This disorder is characterized by progressive action tremor, gait ataxia, and cognitive decline. Fragile X-associated tremor/ataxia syndrome pathology includes dystrophic white matter and intranuclear inclusions in neurons and astrocytes. We previously demonstrated that the transport of iron into the brain is altered in fragile X-associated tremor/ataxia syndrome; therefore, we also expect an alteration of iron metabolism in brain areas related to motor control. Iron is essential for cell metabolism, but uncomplexed iron leads to oxidative stress and contributes to the development of neurodegenerative diseases. We investigated a potential iron modification in the putamen - a structure that participates in motor learning and performance - in fragile X-associated tremor/ataxia syndrome. METHODS We used samples of putamen obtained from 9 fragile X-associated tremor/ataxia syndrome and 9 control cases to study iron localization using Perl's method, and iron-binding proteins using immunostaining. RESULTS We found increased iron deposition in neuronal and glial cells in the putamen in fragile X-associated tremor/ataxia syndrome. We also found a generalized decrease in the amount of the iron-binding proteins transferrin and ceruloplasmin, and decreased number of neurons and glial cells that contained ceruloplasmin. However, we found increased levels of iron, transferrin, and ceruloplasmin in microglial cells, indicating an attempt by the immune system to remove the excess iron. CONCLUSIONS Overall, found a deficit in proteins that eliminate extra iron from the cells with a concomitant increase in the deposit of cellular iron in the putamen in Fragile X-associated tremor/ataxia syndrome. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jeanelle Ariza
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, and the Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California
| | - Hailee Rogers
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, and the Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California
| | - Anna Hartvigsen
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, and the Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California
| | - Melissa Snell
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, and the Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California
| | - Michael Dill
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, and the Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California
| | - Derek Judd
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, and the Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California
| | - Paul Hagerman
- MIND Institute, UC Davis Medical Center, Sacramento, California.,Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, California
| | - Verónica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, and the Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California.,MIND Institute, UC Davis Medical Center, Sacramento, California
| |
Collapse
|
40
|
Wheeler AC, Sideris J, Hagerman R, Berry-Kravis E, Tassone F, Bailey DB. Developmental profiles of infants with an FMR1 premutation. J Neurodev Disord 2016; 8:40. [PMID: 27822316 PMCID: PMC5095966 DOI: 10.1186/s11689-016-9171-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 10/16/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Emerging evidence suggests that a subset of FMR1 premutation carriers is at an increased risk for cognitive, emotional, and medical conditions. However, because the premutation is rarely diagnosed at birth, the early developmental trajectories of children with a premutation are not known. METHODS This exploratory study examined the cognitive, communication, and social-behavioral profiles of 26 infants with a premutation who were identified through participation in a newborn screening for fragile X syndrome pilot study. In this study, families whose newborn screened positive for an FMR1 premutation were invited to participate in a longitudinal study of early development. Twenty-six infants with the premutation and 21 matched, screen-negative comparison babies were assessed using validated standardized measures at 6-month intervals starting as young as 3 months of age. The babies were assessed up to seven times over a 4-year period. RESULTS The premutation group was not statistically different from the comparison group on measures of cognitive development, adaptive behavior, temperament, or overall communication. However, the babies with the premutation had a significantly different developmental trajectory on measures of nonverbal communication and hyperresponsivity to sensory experiences. They also were significantly more hyporesponsive at all ages than the comparison group. Cytosine-guanine-guanine repeat length was linearly associated with overall cognitive development. CONCLUSIONS These results suggest that infants with a premutation may present with subtle developmental differences as young as 12 months of age that may be early markers of later anxiety, social deficits, or other challenges thought to be experienced by a subset of carriers.
Collapse
Affiliation(s)
- Anne C Wheeler
- RTI International, 3040 E. Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC 27709 USA
| | - John Sideris
- University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Randi Hagerman
- Davis MIND (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California at Davis, Davis, CA USA ; Department of Pediatrics, University of California at Davis, Davis, CA USA
| | | | - Flora Tassone
- Davis MIND (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California at Davis, Davis, CA USA
| | - Donald B Bailey
- RTI International, 3040 E. Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC 27709 USA
| |
Collapse
|
41
|
Zwemer LM, Nolin SL, Okamoto PM, Eisenberg M, Wick HC, Bianchi DW. Global transcriptome dysregulation in second trimester fetuses with FMR1 expansions. Prenat Diagn 2016; 37:43-52. [PMID: 27646161 DOI: 10.1002/pd.4928] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/30/2016] [Accepted: 09/14/2016] [Indexed: 02/06/2023]
Abstract
OBJECTIVE We tested the hypothesis that FMR1 expansions would result in global gene dysregulation as early as the second trimester of human fetal development. METHOD Using cell-free fetal RNA obtained from amniotic fluid supernatant and expression microarrays, we compared RNA levels in samples from fetuses with premutation or full mutation allele expansions with control samples. RESULTS We found clear signals of differential gene expression relating to a variety of cellular functions, including ubiquitination, mitochondrial function, and neuronal/synaptic architecture. Additionally, among the genes showing differential gene expression, we saw links to related diseases of intellectual disability and motor function. Finally, within the unique molecular phenotypes established for each mutation set, we saw clear signatures of mitochondrial dysfunction and disrupted neurological function. Patterns of differential gene expression were very different in male and female fetuses with premutation alleles. CONCLUSION These results support a model for which genetic misregulation during fetal development may set the stage for late clinical manifestations of FMR1-related disorders. © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lillian M Zwemer
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Sarah L Nolin
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Patricia M Okamoto
- Integrated Genetics/Laboratory Corporation of America® Holdings, Westborough, MA, USA
| | - Marcia Eisenberg
- Laboratory Corporation of America® Holdings, Research Triangle Park, NC, USA
| | - Heather C Wick
- Department of Computer Science, Tufts University, Medford, MA, USA
| | - Diana W Bianchi
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
42
|
Lozano R, Martinez-Cerdeno V, Hagerman RJ. Advances in the Understanding of the Gabaergic Neurobiology of FMR1 Expanded Alleles Leading to Targeted Treatments for Fragile X Spectrum Disorder. Curr Pharm Des 2016; 21:4972-4979. [PMID: 26365141 DOI: 10.2174/1381612821666150914121038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/11/2015] [Indexed: 12/15/2022]
Abstract
Fragile X spectrum disorder (FXSD) includes: fragile X syndrome (FXS), fragile X-associated tremor ataxia syndrome (FXTAS) and fragile X-associated primary ovarian insufficiency (FXPOI), as well as other medical, psychiatric and neurobehavioral problems associated with the premutation and gray zone alleles. FXS is the most common monogenetic cause of autism (ASD) and intellectual disability (ID). The understanding of the neurobiology of FXS has led to many targeted treatment trials in FXS. The first wave of phase II clinical trials in FXS were designed to target the mGluR5 pathway; however the results did not show significant efficacy and the trials were terminated. The advances in the understanding of the GABA system in FXS have shifted the focus of treatment trials to GABA agonists, and a new wave of promising clinical trials is under way. Ganaxolone and allopregnanolone (GABA agonists) have been studied in individuals with FXSD and are currently in phase II trials. Both allopregnanolone and ganaxolone may be efficacious in treatment of FXS and FXTAS, respectively. Allopregnanolone, ganaxolone, riluzole, gaboxadol, tiagabine, and vigabatrin are potential GABAergic treatments. The lessons learned from the initial trials have not only shifted the targeted system, but also have refined the design of clinical trials. The results of these new trials will likely impact further clinical trials for FXS and other genetic disorders associated with ASD.
Collapse
Affiliation(s)
- Reymundo Lozano
- Icahn School of Medicine at Mount Sinai, New York, NY USA; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Veronica Martinez-Cerdeno
- Medical Investigation of Neurodevelopmental Disorders MIND Institute, UC Davis, CA, USA; Institute for Pediatric Regenerative Medicine and Shriners Hospital for Children of Northern California, Sacramento, CA, USA; Department of Pathology and Laboratory Medicine, UC Davis, Sacramento, USA
| | - Randi J Hagerman
- Medical Investigation of Neurodevelopmental Disorders MIND Institute, UC Davis, CA, USA; Department of Pediatrics, UC Davis, Sacramento, CA, USA
| |
Collapse
|
43
|
Bourgeois JA. Neuropsychiatry of fragile X-premutation carriers with and without fragile X-associated tremor-ataxia syndrome: implications for neuropsychology. Clin Neuropsychol 2016; 30:913-28. [PMID: 27355575 DOI: 10.1080/13854046.2016.1192134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Clinical neuropsychologists benefit from clinical currency in recently ascertained neuropsychiatric illness, such as fragile X premutation (FXPM) disorders. The author reviewed the clinical literature through 2016 for neuropsychiatric phenotypes in FXPM disorders, including patients with fragile X-associated tremor/ataxia syndrome (FXTAS). METHODS A PubMed search using the search terms 'Fragile X,' 'Premutation,' 'Carriers,' 'Psychiatric,' 'Dementia,' 'Mood,' and 'Anxiety' for citations in the clinical literature through 2016 was reviewed for studies specifically examining the neuropsychiatric phenotype in FXPM patients. The relevant articles were classified according to specific neuropsychiatric syndromes, including child onset, adult onset with and without FXTAS, as well as common systemic comorbidities in FXPM patients. RESULTS Eighty-six articles were reviewed for the neuropsychiatric and other phenotypes in FXPM patients. The neuropsychiatric phenotype in FXPM patients is distinct from that of full mutation (Fragile X Syndrome) patients. FXTAS is associated with a specific cortical-subcortical major or mild neurocognitive disorder (NCD). CONCLUSIONS FXPM patients are at risk for neuropsychiatric illness. In addition, FXPM patients are at risk for other systemic conditions that should raise suspicion for FXPM-associated illnesses. Clinicians should consider a diagnosis of FXPM-associated neuropsychiatric illness when patients with specific clinical scenarios are encountered; especially in patient pedigrees consistent with a typical (often multigenerational) presentation of fragile X-associated conditions, confirmatory genetic testing should be considered. Clinical management should take into account the psychological challenges of a multigenerational genetic neuropsychiatric illness with a variable CNS and systemic clinical phenotype.
Collapse
Affiliation(s)
- James A Bourgeois
- a Department of Psychiatry , University of California San Francisco School of Medicine , San Francisco , CA , USA
| |
Collapse
|
44
|
Schneider A, Johnston C, Tassone F, Sansone S, Hagerman RJ, Ferrer E, Rivera SM, Hessl D. Broad autism spectrum and obsessive-compulsive symptoms in adults with the fragile X premutation. Clin Neuropsychol 2016; 30:929-43. [PMID: 27355445 DOI: 10.1080/13854046.2016.1189536] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Clinical observations and a limited number of research studies provide evidence that the fragile X premutation may confer risk for autism, executive dysfunction, and psychopathology. The link to autism spectrum symptoms and social cognition deficits with the premutation remains uncertain, and thus was the focus of the present investigation. METHOD Our sample included 131 individuals, 42 men/22 women with the FMR1 premutation (mean age = 31.83 ± 8.59 years) with a normal neurological exam, and 48 men/19 women healthy age-matched controls (mean age = 29.48 ± 7.29 years). Individuals completed a comprehensive neuropsychological battery with additional assessments for social cognition, broad autism spectrum, and obsessive-compulsive (OC) symptoms. RESULTS Premutation carriers self-reported higher rates of autism-related symptoms (Autism Quotient; p = .001). Among males only, premutation carriers showed more atypical social interaction (p < .001) and stereotyped behavior (p = .014) during standardized clinical examination on the Autism Diagnostic Observation Schedule (ADOS) relative to controls. Female premutation carriers reported significantly higher rates of OC symptoms compared to control females (p = .012). Molecular measures defining the expanded premutation (FMR1 CGG repeat length and/or mRNA) were significantly associated with a measure of theory of mind (Reading the Mind in the Eyes Task). CONCLUSIONS The results of this study indicate a higher rate of broad autism spectrum symptoms in some males with the premutation and provide evidence for an obsessive-compulsive subtype in female premutation carriers.
Collapse
Affiliation(s)
- A Schneider
- a MIND Institute, UC Davis Medical Center , Sacramento , CA , USA.,c Department of Pediatrics , UC Davis School of Medicine , Sacramento , CA , USA
| | - C Johnston
- a MIND Institute, UC Davis Medical Center , Sacramento , CA , USA.,b Department of Psychiatry and Behavioral Sciences , UC Davis School of Medicine , Sacramento , CA , USA
| | - F Tassone
- a MIND Institute, UC Davis Medical Center , Sacramento , CA , USA.,f Department of Biochemistry and Molecular Medicine , UC Davis , Davis , CA , USA
| | - S Sansone
- a MIND Institute, UC Davis Medical Center , Sacramento , CA , USA.,g Department of Human Development , UC Davis , Davis , CA , USA
| | - R J Hagerman
- a MIND Institute, UC Davis Medical Center , Sacramento , CA , USA.,c Department of Pediatrics , UC Davis School of Medicine , Sacramento , CA , USA
| | - E Ferrer
- d Department of Psychology , UC Davis , Davis , CA , USA
| | - S M Rivera
- a MIND Institute, UC Davis Medical Center , Sacramento , CA , USA.,d Department of Psychology , UC Davis , Davis , CA , USA.,e Center for Mind and Brain, UC Davis , Davis , CA , USA
| | - D Hessl
- a MIND Institute, UC Davis Medical Center , Sacramento , CA , USA.,b Department of Psychiatry and Behavioral Sciences , UC Davis School of Medicine , Sacramento , CA , USA
| |
Collapse
|
45
|
Abstract
Many physicians are unaware of the many phenotypes associated with the fragile X premutation, an expansion in the 5' untranslated region of the fragile X mental retardation 1 (FMR1) gene that consists of 55-200 CGG repeats. The most severe of these phenotypes is fragile X-associated tremor/ataxia syndrome (FXTAS), which occurs in the majority of ageing male premutation carriers but in fewer than 20% of ageing women with the premutation. The prevalence of the premutation is 1 in 150-300 females, and 1 in 400-850 males, so physicians are likely to see people affected by FXTAS. Fragile X DNA testing is broadly available in the Western world. The clinical phenotype of FXTAS at presentation can vary and includes intention tremor, cerebellar ataxia, neuropathic pain, memory and/or executive function deficits, parkinsonian features, and psychological disorders, such as depression, anxiety and/or apathy. FXTAS causes brain atrophy and white matter disease, usually in the middle cerebellar peduncles, the periventricular area, and the splenium and/or genu of the corpus callosum. Here, we review the complexities involved in the clinical management of FXTAS and consider how targeted treatment for these clinical features of FXTAS will result from advances in our understanding of the molecular mechanisms that underlie this neurodegenerative disorder. Such targeted approaches should also be more broadly applicable to earlier forms of clinical involvement among premutation carriers.
Collapse
|
46
|
Leung C, Jia Z. Mouse Genetic Models of Human Brain Disorders. Front Genet 2016; 7:40. [PMID: 27047540 PMCID: PMC4803727 DOI: 10.3389/fgene.2016.00040] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/08/2016] [Indexed: 01/29/2023] Open
Abstract
Over the past three decades, genetic manipulations in mice have been used in neuroscience as a major approach to investigate the in vivo function of genes and their alterations. In particular, gene targeting techniques using embryonic stem cells have revolutionized the field of mammalian genetics and have been at the forefront in the generation of numerous mouse models of human brain disorders. In this review, we will first examine childhood developmental disorders such as autism, intellectual disability, Fragile X syndrome, and Williams-Beuren syndrome. We will then explore psychiatric disorders such as schizophrenia and lastly, neurodegenerative disorders including Alzheimer’s disease and Parkinson’s disease. We will outline the creation of these mouse models that range from single gene deletions, subtle point mutations to multi-gene manipulations, and discuss the key behavioral phenotypes of these mice. Ultimately, the analysis of the models outlined in this review will enhance our understanding of the in vivo role and underlying mechanisms of disease-related genes in both normal brain function and brain disorders, and provide potential therapeutic targets and strategies to prevent and treat these diseases.
Collapse
Affiliation(s)
- Celeste Leung
- The Hospital for Sick Children, Program in Neurosciences and Mental Health, Peter Gilgan Centre for Research and Learning, TorontoON, Canada; Program in Physiology, University of Toronto, TorontoON, Canada
| | - Zhengping Jia
- The Hospital for Sick Children, Program in Neurosciences and Mental Health, Peter Gilgan Centre for Research and Learning, TorontoON, Canada; Program in Physiology, University of Toronto, TorontoON, Canada
| |
Collapse
|
47
|
Saldarriaga W, Lein P, González Teshima LY, Isaza C, Rosa L, Polyak A, Hagerman R, Girirajan S, Silva M, Tassone F. Phenobarbital use and neurological problems in FMR1 premutation carriers. Neurotoxicology 2016; 53:141-147. [PMID: 26802682 DOI: 10.1016/j.neuro.2016.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 01/08/2016] [Accepted: 01/18/2016] [Indexed: 12/23/2022]
Abstract
Fragile X Syndrome (FXS) is a neurodevelopmental disorder caused by a CGG expansion in the FMR1 gene located at Xq27.3. Patients with the premutation in FMR1 present specific clinical problems associated with the number of CGG repeats (55-200 CGG repeats). Premutation carriers have elevated FMR1 mRNA expression levels, which have been associated with neurotoxicity potentially causing neurodevelopmental problems or neurological problems associated with aging. However, cognitive impairments or neurological problems may also be related to increased vulnerability of premutation carriers to neurotoxicants, including phenobarbital. Here we present a study of three sisters with the premutation who were exposed differentially to phenobarbital therapy throughout their lives, allowing us to compare the neurological effects of this drug in these patients.
Collapse
Affiliation(s)
- Wilmar Saldarriaga
- Research Group in Congenital & Perinatal Malformations, Dysmorphology and Clinical Genetics (MACOS),Universidad del Valle, Cali, Colombia; Departments of Morphology and Obstetrics & Gynecology, Universidad del Valle, Hospital Universitario Del Valle, Cali, Colombia.
| | - Pamela Lein
- Department of Molecular Biosciences, University of California, Davis School of Veterinary Medicine, Davis, CA, USA; MIND Institute, University of California, Davis School of Medicine, Sacramento, CA, USA
| | | | - Carolina Isaza
- Department of Morphology, Universidad del Valle, Cali, Colombia
| | - Lina Rosa
- La Misericordia International Clinic, Barranquilla, Colombia; Instituto Superior de Estudios Psicológicos, Barcelona, Spain; Autonomous University of Barcelona-Sant Joan de Déu Hospital, Barcelona, Spain
| | - Andrew Polyak
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Randi Hagerman
- Department of Pediatrics and the MIND Institute, University of California, Davis Medical Center, Sacramento, CA, USA
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Marisol Silva
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Flora Tassone
- MIND Institute, University of California, Davis School of Medicine, Sacramento, CA, USA; Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| |
Collapse
|
48
|
Famula J, Basuta K, Gane LW, Hagerman RJ, Tassone F. Identification of a male with fragile X syndrome through newborn screening. Intractable Rare Dis Res 2015; 4:198-202. [PMID: 26668780 PMCID: PMC4660861 DOI: 10.5582/irdr.2015.01031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A pilot newborn screening (NBS) study for fragile X syndrome was recently conducted at the University of California, Davis Medical Center. The screening study identified a case of a male with the full mutation completely methylated and no detectable expression of the fragile X mental retardation-1 (FMR1) gene. The patient was initially seen in clinic at the MIND Institute, for medical follow-up and a genetic counseling session at the chronological age of 3 months. Since then, he has been seen in clinic every six months for follow up, medical examination and developmental assessments. Longitudinally administered developmental testing of the infant has revealed persistent delays in development, consistent with fragile X syndrome. Cascade testing revealed that the patient's mother and two siblings also have the full mutation. The patient has been receiving speech and language therapy, combined with physical and occupational therapies on a weekly basis since the age of one year. He is currently being treated with 2.5 mg of sertraline, which has been demonstrated to be helpful for improving language in young children with the syndrome.
Collapse
Affiliation(s)
- Jessica Famula
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, USA
| | - Kirin Basuta
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, USA
| | - Louise W. Gane
- MIND Institute, University of California, Davis, Medical Center, Sacramento, USA
| | - Randi J. Hagerman
- MIND Institute, University of California, Davis, Medical Center, Sacramento, USA
- Department of Pediatrics, University of California at Davis, Sacramento, USA
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, USA
- MIND Institute, University of California, Davis, Medical Center, Sacramento, USA
- Address correspondence to: Dr. Flora Tassone, Department of Biochemistry and Molecular Medicine, 2700 Stockton Blvd, Suite 2102, Sacramento, CA 95817, USA; MIND Institute, 2805 50th Street Sacramento, CA 95817, USA. E-mail:
| |
Collapse
|
49
|
Abstract
Fragile X syndrome (FXS), a trinucleotide repeat disorder, is the most common heritable form of cognitive impairment. Since the discovery of the FMR1 gene in 1991, great strides have been made in the field of molecular diagnosis for FXS. Cytogenetic analysis, which was the method of diagnosis in the early 1990, was replaced by Southern blot and PCR analysis albeit with some limitations. In the past few years many PCR-based methodologies, able to amplify large full mutation expanded alleles, with or without methylation, have been proposed. Reviewed here are the advantages, disadvantages and limitations of the most recent developments in the field of FXS diagnosis.
Collapse
Affiliation(s)
- Flora Tassone
- a Department of Biochemistry and Molecular Medicine , University of California, Davis, School of Medicine , Davis , CA 95616 , USA.,b MIND Institute , University of California Davis Medical Center , Sacramento , CA 95817 , USA
| |
Collapse
|
50
|
Cordeiro L, Abucayan F, Hagerman R, Tassone F, Hessl D. Anxiety disorders in fragile X premutation carriers: Preliminary characterization of probands and non-probands. Intractable Rare Dis Res 2015; 4:123-30. [PMID: 26361563 PMCID: PMC4561241 DOI: 10.5582/irdr.2015.01029] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/05/2015] [Accepted: 08/08/2015] [Indexed: 12/20/2022] Open
Abstract
A very high proportion of individuals with fragile X syndrome (FXS) (FMR1 full mutation, > 200 CGG repeats) experience clinically significant anxiety. Recent evidence suggests that adult fragile X premutation carriers (55-200 CGG repeats) also are at risk for anxiety disorders, and they demonstrate limbic system alterations mediated by FMRP and/or elevated FMR1 mRNA that may explain this heightened risk. However, less is known about psychiatric symptoms including anxiety among children and adolescents with the premutation. We completed structured DSM-IV based diagnostic interviews focused on current anxiety in 35 children, adolescents or young adults with the premutation (ages 5-23 years, M = 11.3 ± 4.3; 27 male; 20 probands and 15 non-probands) and 31 controls (ages 5-18 years, M = 9.9 ± 3.6; 22 males). Among premutation carriers, 70.6% met criteria for at least one anxiety disorder (most frequently generalized anxiety disorder, specific phobia, social phobia, or obsessive compulsive disorder), compared to 22.6% of controls and 9.8% of the general population in this age range. Premutation carriers with intellectual disability, male gender, and proband status were associated with the highest rates of anxiety disorders. However, non-probands did have higher rates of having any anxiety disorder (40.0%) compared to general population norms. Although the results implicate anxiety as a target of screening and intervention among youth with the premutation, larger studies of unselected samples from the population of premutation carriers are needed to confirm and specify the degree and extent of psychiatric disorders in this condition.
Collapse
Affiliation(s)
- Lisa Cordeiro
- Department of Pediatrics, University of Colorado, Denver, USA
| | | | - Randi Hagerman
- MIND Institute, University of California Davis, Sacramento, USA
- Department of Pediatrics, University of California Davis, Sacramento, USA
| | - Flora Tassone
- MIND Institute, University of California Davis, Sacramento, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, USA
| | - David Hessl
- MIND Institute, University of California Davis, Sacramento, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Sacramento, USA
- Address correspondence to: Dr. David Hessl, MIND Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA. E-mail:
| |
Collapse
|