1
|
Weiss ST, Mirzakhani H, Carey VJ, O'Connor GT, Zeiger RS, Bacharier LB, Stokes J, Litonjua AA. Prenatal vitamin D supplementation to prevent childhood asthma: 15-year results from the Vitamin D Antenatal Asthma Reduction Trial (VDAART). J Allergy Clin Immunol 2024; 153:378-388. [PMID: 37852328 DOI: 10.1016/j.jaci.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/13/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
This article provides an overview of the findings obtained from the Vitamin D Antenatal Asthma Reduction Trial (VDAART) spanning a period of 15 years. The review covers various aspects, including the trial's rationale, study design, and initial intent-to-treat analyses, as well as an explanation of why those analyses did not achieve statistical significance. Additionally, the article delves into the post hoc results obtained from stratified intent-to-treat analyses based on maternal vitamin D baseline levels and genotype-stratified analyses. These results demonstrate a statistically significant reduction in asthma among offspring aged 3 and 6 years when comparing vitamin D supplementation (4400 IU/d) to the standard prenatal multivitamin with vitamin D (400 IU/d). Furthermore, these post hoc analyses found that vitamin D supplementation led to a decrease in total serum IgE levels and improved lung function in children compared to those whose mothers received a placebo alongside the standard prenatal multivitamin with vitamin D. Last, the article concludes with recommendations regarding the optimal dosing of vitamin D for pregnant women to prevent childhood asthma as well as suggestions for future trials in this field.
Collapse
Affiliation(s)
- Scott T Weiss
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass.
| | - Hooman Mirzakhani
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Vincent J Carey
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - George T O'Connor
- Department of Medicine, Pulmonary Centre, Boston Medical Centre, Boston University, Boston, Mass
| | - Robert S Zeiger
- Department of Clinical Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, Calif
| | - Leonard B Bacharier
- Department of Pediatrics, Division of Pediatric Allergy, Immunology and Pulmonary Medicine, Monroe Carell Jr Children's Hospital at Vanderbilt, Nashville, Tenn
| | - Jeffrey Stokes
- Department of Pediatrics, Division of Pediatric Allergy, Immunology and Pulmonary Medicine, Washington University, St Louis, Mo
| | - Augusto A Litonjua
- Department of Pediatrics Golisano Children's Hospital, Pediatric Pulmonary Division, University of Rochester Medical School, Rochester, NY
| |
Collapse
|
2
|
James BN, Weigel C, Green CD, Brown RDR, Palladino END, Tharakan A, Milstien S, Proia RL, Martin RK, Spiegel S. Neutrophilia in severe asthma is reduced in Ormdl3 overexpressing mice. FASEB J 2023; 37:e22799. [PMID: 36753412 PMCID: PMC9990076 DOI: 10.1096/fj.202201821r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023]
Abstract
Genome-wide association studies have linked the ORM (yeast)-like protein isoform 3 (ORMDL3) to asthma severity. Although ORMDL3 is a member of a family that negatively regulates serine palmitoyltransferase (SPT) and thus biosynthesis of sphingolipids, it is still unclear whether ORMDL3 and altered sphingolipid synthesis are causally related to non-Th2 severe asthma associated with a predominant neutrophil inflammation and high interleukin-17 (IL-17) levels. Here, we examined the effects of ORMDL3 overexpression in a preclinical mouse model of allergic lung inflammation that is predominantly neutrophilic and recapitulates many of the clinical features of severe human asthma. ORMDL3 overexpression reduced lung and circulating levels of dihydrosphingosine, the product of SPT. However, the most prominent effect on sphingolipid levels was reduction of circulating S1P. The LPS/OVA challenge increased markers of Th17 inflammation with a predominant infiltration of neutrophils into the lung. A significant decrease of neutrophil infiltration was observed in the Ormdl3 transgenic mice challenged with LPS/OVA compared to the wild type and concomitant decrease in IL-17, that plays a key role in the pathogenesis of neutrophilic asthma. LPS decreased survival of murine neutrophils, which was prevented by co-treatment with S1P. Moreover, S1P potentiated LPS-induced chemotaxis of neutrophil, suggesting that S1P can regulate neutrophil survival and recruitment following LPS airway inflammation. Our findings reveal a novel connection between ORMDL3 overexpression, circulating levels of S1P, IL-17 and neutrophil recruitment into the lung, and questions the potential involvement of ORMDL3 in the pathology, leading to development of severe neutrophilic asthma.
Collapse
Affiliation(s)
- Briana N. James
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Cynthia Weigel
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Christopher D. Green
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Ryan D. R. Brown
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Elisa N. D. Palladino
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Anuj Tharakan
- Department of Microbiology and ImmunologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Sheldon Milstien
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Richard L. Proia
- Genetics and Biochemistry BranchNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| | - Rebecca K. Martin
- Department of Microbiology and ImmunologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| |
Collapse
|
3
|
Nowakowska J, Olechnowicz A, Langwiński W, Koteluk O, Lemańska Ż, Jóźwiak K, Kamiński K, Łosiewski W, Stegmayr J, Wagner D, Alsafadi HN, Lindstedt S, Dziuba M, Bielicka A, Graczyk Z, Szczepankiewicz A. Increased expression of ORMDL3 in allergic asthma: a case control and in vitro study. J Asthma 2023; 60:458-467. [PMID: 35321632 DOI: 10.1080/02770903.2022.2056896] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Asthma is the most frequent chronic disease in children. One of the most replicated genetic findings in childhood asthma is the ORMDL3 gene confirmed in several GWA studies in several pediatric populations. OBJECTIVES The purpose of this study was to analyze ORMDL3 variants and expression in childhood asthma in the Polish population. METHODS In the study we included 416 subject, 223 asthmatic children and 193 healthy control subjects. The analysis of two SNPs (rs3744246 and rs8076131) was performed using genotyping with TaqMan probes. The methylation of the ORMDL3 promoter was examined with Methylation Sensitive HRM (MS-HRM), covering 9 CpG sites. The expression of ORMDL3 was analyzed in PBMCs from pediatric patients diagnosed with allergic asthma and primary human bronchial epithelial cells derived from healthy subjects treated with IL-13, IL-4, or co-treatment with both cytokines to model allergic airway inflammation. RESULTS We found that ORMDL3 expression was increased in allergic asthma both in PBMCs from asthmatic patients as well as in human bronchial epithelial cells stimulated with the current cytokines. We did not observe significant differences between cases and controls either in the genotype distribution of analyzed SNPs (rs3744246 and rs8076131) nor in the level of promoter methylation. CONCLUSIONS Increased ORMDL3 expression is associated with pediatric allergic asthma and upregulated in the airways upon Th2-cytokines stimulation, but further functional studies are required to fully understand its role in this disease.
Collapse
Affiliation(s)
- Joanna Nowakowska
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Olechnowicz
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech Langwiński
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Oliwia Koteluk
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Żaneta Lemańska
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Kacper Jóźwiak
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Kacper Kamiński
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech Łosiewski
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - John Stegmayr
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Darcy Wagner
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Hani N Alsafadi
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Sandra Lindstedt
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Maria Dziuba
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Antonina Bielicka
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Zuzanna Graczyk
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Aleksandra Szczepankiewicz
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
4
|
Jiang Z, Zhao M, Qin H, Li S, Yang X. Genome-wide analysis of NBS-LRR genes revealed contribution of disease resistance from Saccharum spontaneum to modern sugarcane cultivar. FRONTIERS IN PLANT SCIENCE 2023; 14:1091567. [PMID: 36890898 PMCID: PMC9986449 DOI: 10.3389/fpls.2023.1091567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION During plant evolution, nucleotide-binding sites (NBS) and leucine-rich repeat (LRR) genes have made significant contributions to plant disease resistance. With many high-quality plant genomes sequenced, identification and comprehensive analyses of NBS-LRR genes at whole genome level are of great importance to understand and utilize them. METHODS In this study, we identified the NBS-LRR genes of 23 representative species at whole genome level, and researches on NBS-LRR genes of four monocotyledonous grass species, Saccharum spontaneum, Saccharum officinarum, Sorghum bicolor and Miscanthus sinensis, were focused. RESULTS AND DISCUSSION We found that whole genome duplication, gene expansion, and allele loss could be factors affecting the number of NBS-LRR genes in the species, and whole genome duplication is likely to be the main cause of the number of NBS-LRR genes in sugarcane. Meanwhile, we also found a progressive trend of positive selection on NBS-LRR genes. These studies further elucidated the evolutionary pattern of NBS-LRR genes in plants. Transcriptome data from multiple sugarcane diseases revealed that more differentially expressed NBS-LRR genes were derived from S. spontaneum than from S. officinarum in modern sugarcane cultivars, and the proportion was significantly higher than the expected. This finding reveals that S. spontaneum has a greater contribution to disease resistance for modern sugarcane cultivars. In addition, we observed allelespecific expression of seven NBS-LRR genes under leaf scald, and 125 NBS-LRR genes responding to multiple diseases were identified. Finally, we built a plant NBS-LRR gene database to facilitate subsequent analysis and use of NBSLRR genes obtained here. In conclusion, this study complemented and completed the research of plant NBS-LRR genes, and discussed how NBS-LRR genes responding to sugarcane diseases, which provided a guide and genetic resources for further research and utilization of NBS-LRR genes.
Collapse
Affiliation(s)
- Zhengjie Jiang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Mengyu Zhao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Hongzhen Qin
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Sicheng Li
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Xiping Yang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
5
|
Alsheikh AJ, Wollenhaupt S, King EA, Reeb J, Ghosh S, Stolzenburg LR, Tamim S, Lazar J, Davis JW, Jacob HJ. The landscape of GWAS validation; systematic review identifying 309 validated non-coding variants across 130 human diseases. BMC Med Genomics 2022; 15:74. [PMID: 35365203 PMCID: PMC8973751 DOI: 10.1186/s12920-022-01216-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/17/2022] [Indexed: 02/08/2023] Open
Abstract
Background The remarkable growth of genome-wide association studies (GWAS) has created a critical need to experimentally validate the disease-associated variants, 90% of which involve non-coding variants. Methods To determine how the field is addressing this urgent need, we performed a comprehensive literature review identifying 36,676 articles. These were reduced to 1454 articles through a set of filters using natural language processing and ontology-based text-mining. This was followed by manual curation and cross-referencing against the GWAS catalog, yielding a final set of 286 articles. Results We identified 309 experimentally validated non-coding GWAS variants, regulating 252 genes across 130 human disease traits. These variants covered a variety of regulatory mechanisms. Interestingly, 70% (215/309) acted through cis-regulatory elements, with the remaining through promoters (22%, 70/309) or non-coding RNAs (8%, 24/309). Several validation approaches were utilized in these studies, including gene expression (n = 272), transcription factor binding (n = 175), reporter assays (n = 171), in vivo models (n = 104), genome editing (n = 96) and chromatin interaction (n = 33). Conclusions This review of the literature is the first to systematically evaluate the status and the landscape of experimentation being used to validate non-coding GWAS-identified variants. Our results clearly underscore the multifaceted approach needed for experimental validation, have practical implications on variant prioritization and considerations of target gene nomination. While the field has a long way to go to validate the thousands of GWAS associations, we show that progress is being made and provide exemplars of validation studies covering a wide variety of mechanisms, target genes, and disease areas. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01216-w.
Collapse
Affiliation(s)
- Ammar J Alsheikh
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA.
| | - Sabrina Wollenhaupt
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Emily A King
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Jonas Reeb
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Sujana Ghosh
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | | | - Saleh Tamim
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Jozef Lazar
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - J Wade Davis
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Howard J Jacob
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| |
Collapse
|
6
|
Jablonski KP, Carron L, Mozziconacci J, Forné T, Hütt MT, Lesne A. Contribution of 3D genome topological domains to genetic risk of cancers: a genome-wide computational study. Hum Genomics 2022; 16:2. [PMID: 35016721 PMCID: PMC8753905 DOI: 10.1186/s40246-022-00375-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/02/2022] [Indexed: 01/31/2023] Open
Abstract
Background Genome-wide association studies have identified statistical associations between various diseases, including cancers, and a large number of single-nucleotide polymorphisms (SNPs). However, they provide no direct explanation of the mechanisms underlying the association. Based on the recent discovery that changes in three-dimensional genome organization may have functional consequences on gene regulation favoring diseases, we investigated systematically the genome-wide distribution of disease-associated SNPs with respect to a specific feature of 3D genome organization: topologically associating domains (TADs) and their borders. Results For each of 449 diseases, we tested whether the associated SNPs are present in TAD borders more often than observed by chance, where chance (i.e., the null model in statistical terms) corresponds to the same number of pointwise loci drawn at random either in the entire genome, or in the entire set of disease-associated SNPs listed in the GWAS catalog. Our analysis shows that a fraction of diseases displays such a preferential localization of their risk loci. Moreover, cancers are relatively more frequent among these diseases, and this predominance is generally enhanced when considering only intergenic SNPs. The structure of SNP-based diseasome networks confirms that localization of risk loci in TAD borders differs between cancers and non-cancer diseases. Furthermore, different TAD border enrichments are observed in embryonic stem cells and differentiated cells, consistent with changes in topological domains along embryogenesis and delineating their contribution to disease risk. Conclusions Our results suggest that, for certain diseases, part of the genetic risk lies in a local genetic variation affecting the genome partitioning in topologically insulated domains. Investigating this possible contribution to genetic risk is particularly relevant in cancers. This study thus opens a way of interpreting genome-wide association studies, by distinguishing two types of disease-associated SNPs: one with an effect on an individual gene, the other acting in interplay with 3D genome organization. Supplementary Information The online version contains supplementary material available at 10.1186/s40246-022-00375-2.
Collapse
Affiliation(s)
- Kim Philipp Jablonski
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, 4058, Basel, Switzerland
| | - Leopold Carron
- Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, CNRS, Sorbonne Université, Paris, France.,Laboratory of Computational and Quantitative Biology, LCQB, Sorbonne Université, Paris, France
| | - Julien Mozziconacci
- Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, CNRS, Sorbonne Université, Paris, France.,Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, Paris, France
| | - Thierry Forné
- Institut de Génétique Moléculaire de Montpellier, IGMM, CNRS, Univ. Montpellier, Montpellier, France
| | - Marc-Thorsten Hütt
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany.
| | - Annick Lesne
- Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, CNRS, Sorbonne Université, Paris, France. .,Institut de Génétique Moléculaire de Montpellier, IGMM, CNRS, Univ. Montpellier, Montpellier, France.
| |
Collapse
|
7
|
Worgall TS. Sphingolipids and Asthma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:145-155. [DOI: 10.1007/978-981-19-0394-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Zhang Z, van Dijk F, de Klein N, van Gijn ME, Franke LH, Sinke RJ, Swertz MA, van der Velde KJ. Feasibility of predicting allele specific expression from DNA sequencing using machine learning. Sci Rep 2021; 11:10606. [PMID: 34012022 PMCID: PMC8134421 DOI: 10.1038/s41598-021-89904-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/04/2021] [Indexed: 11/09/2022] Open
Abstract
Allele specific expression (ASE) concerns divergent expression quantity of alternative alleles and is measured by RNA sequencing. Multiple studies show that ASE plays a role in hereditary diseases by modulating penetrance or phenotype severity. However, genome diagnostics is based on DNA sequencing and therefore neglects gene expression regulation such as ASE. To take advantage of ASE in absence of RNA sequencing, it must be predicted using only DNA variation. We have constructed ASE models from BIOS (n = 3432) and GTEx (n = 369) that predict ASE using DNA features. These models are highly reproducible and comprise many different feature types, highlighting the complex regulation that underlies ASE. We applied the BIOS-trained model to population variants in three genes in which ASE plays a clinically relevant role: BRCA2, RET and NF1. This resulted in predicted ASE effects for 27 variants, of which 10 were known pathogenic variants. We demonstrated that ASE can be predicted from DNA features using machine learning. Future efforts may improve sensitivity and translate these models into a new type of genome diagnostic tool that prioritizes candidate pathogenic variants or regulators thereof for follow-up validation by RNA sequencing. All used code and machine learning models are available at GitHub and Zenodo.
Collapse
Affiliation(s)
- Zhenhua Zhang
- Genomics Coordination Center, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Freerk van Dijk
- Genomics Coordination Center, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- Prinses Maxima Center for Child Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Niek de Klein
- Department of Genetics, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Mariëlle E van Gijn
- Department of Genetics, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Lude H Franke
- Department of Genetics, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Richard J Sinke
- Department of Genetics, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Morris A Swertz
- Genomics Coordination Center, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - K Joeri van der Velde
- Genomics Coordination Center, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
- Department of Genetics, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
9
|
Green CD, Weigel C, Oyeniran C, James BN, Davis D, Mahawar U, Newton J, Wattenberg BW, Maceyka M, Spiegel S. CRISPR/Cas9 deletion of ORMDLs reveals complexity in sphingolipid metabolism. J Lipid Res 2021; 62:100082. [PMID: 33939982 PMCID: PMC8167824 DOI: 10.1016/j.jlr.2021.100082] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 12/26/2022] Open
Abstract
The serine palmitoyltransferase (SPT) complex catalyzes the rate-limiting step in the de novo biosynthesis of ceramides, the precursors of sphingolipids. The mammalian ORMDL isoforms (ORMDL1-3) are negative regulators of SPT. However, the roles of individual ORMDL isoforms are unclear. Using siRNA against individual ORMDLs, only single siORMDL3 had modest effects on dihydroceramide and ceramide levels, whereas downregulation of all three ORMDLs induced more pronounced increases. With the CRISPR/Cas9-based genome-editing strategy, we established stable single ORMDL3 KO (ORMDL3-KO) and ORMDL1/2/3 triple-KO (ORMDL-TKO) cell lines to further understand the roles of ORMDL proteins in sphingolipid biosynthesis. While ORMDL3-KO modestly increased dihydroceramide and ceramide levels, ORMDL-TKO cells had dramatic increases in the accumulation of these sphingolipid precursors. SPT activity was increased only in ORMDL-TKO cells. In addition, ORMDL-TKO but not ORMDL3-KO dramatically increased levels of galactosylceramides, glucosylceramides, and lactosylceramides, the elevated N-acyl chain distributions of which broadly correlated with the increases in ceramide species. Surprisingly, although C16:0 is the major sphingomyelin species, it was only increased in ORMDL3-KO, whereas all other N-acyl chain sphingomyelin species were significantly increased in ORMDL-TKO cells. Analysis of sphingoid bases revealed that although sphingosine was only increased 2-fold in ORMDL-TKO cells, levels of dihydrosphingosine, dihydrosphingosine-1-phosphate, and sphingosine-1-phosphate were hugely increased in ORMDL-TKO cells and not in ORMDL3-KO cells. Thus, ORMDL proteins may have a complex, multifaceted role in the biosynthesis and regulation of cellular sphingolipids.
Collapse
Affiliation(s)
- Christopher D Green
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Cynthia Weigel
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Clement Oyeniran
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Briana N James
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Deanna Davis
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Usha Mahawar
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Jason Newton
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Binks W Wattenberg
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Michael Maceyka
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA.
| |
Collapse
|
10
|
Chang ML, Moussette S, Gamero-Estevez E, Gálvez JH, Chiwara V, Gupta IR, Ryan AK, Naumova AK. Regulatory interaction between the ZPBP2-ORMDL3/Zpbp2-Ormdl3 region and the circadian clock. PLoS One 2019; 14:e0223212. [PMID: 31560728 PMCID: PMC6764692 DOI: 10.1371/journal.pone.0223212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/15/2019] [Indexed: 11/18/2022] Open
Abstract
Genome-wide association study (GWAS) loci for several immunity-mediated diseases (early onset asthma, inflammatory bowel disease (IBD), primary biliary cholangitis, and rheumatoid arthritis) map to chromosomal region 17q12-q21. The predominant view is that association between 17q12-q21 alleles and increased risk of developing asthma or IBD is due to regulatory variants. ORM sphingolipid biosynthesis regulator (ORMDL3) residing in this region is the most promising gene candidate for explaining association with disease. However, the relationship between 17q12-q21 alleles and disease is complex suggesting contributions from other factors, such as trans-acting genetic and environmental modifiers or circadian rhythms. Circadian rhythms regulate expression levels of thousands of genes and their dysregulation is implicated in the etiology of several common chronic inflammatory diseases. However, their role in the regulation of the 17q12-q21 genes has not been investigated. Moreover, the core clock gene nuclear receptor subfamily 1, group D, member 1 (NR1D1) resides about 200 kb distal to the GWAS region. We hypothesized that circadian rhythms influenced gene expression levels in 17q12-q21 region and conversely, regulatory elements in this region influenced transcription of the core clock gene NR1D1 in cis. To test these hypotheses, we examined the diurnal expression profiles of zona pellucida binding protein 2 (ZPBP2/Zpbp2), gasdermin B (GSDMB), and ORMDL3/Ormdl3 in human and mouse tissues and analyzed the impact of genetic variation in the ZPBP2/Zpbp2 region on NR1D1/Nr1d1 expression. We found that Ormdl3 and Zpbp2 were controlled by the circadian clock in a tissue-specific fashion. We also report that deletion of the Zpbp2 region altered the expression profile of Nr1d1 in lungs and ileum in a time-dependent manner. In liver, the deletion was associated with enhanced expression of Ormdl3. We provide the first evidence that disease-associated genes Zpbp2 and Ormdl3 are regulated by circadian rhythms and the Zpbp2 region influences expression of the core clock gene Nr1d1.
Collapse
Affiliation(s)
- Matthew L. Chang
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Sanny Moussette
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | - Victoria Chiwara
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Indra R. Gupta
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Paediatrics, McGill University, Montreal, Quebec, Canada
| | - Aimee K. Ryan
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Paediatrics, McGill University, Montreal, Quebec, Canada
| | - Anna K. Naumova
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
11
|
Hernandez-Pacheco N, Pino-Yanes M, Flores C. Genomic Predictors of Asthma Phenotypes and Treatment Response. Front Pediatr 2019; 7:6. [PMID: 30805318 PMCID: PMC6370703 DOI: 10.3389/fped.2019.00006] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022] Open
Abstract
Asthma is a complex respiratory disease considered as the most common chronic condition in children. A large genetic contribution to asthma susceptibility is predicted by the clustering of asthma and allergy symptoms among relatives and the large disease heritability estimated from twin studies, ranging from 55 to 90%. Genetic basis of asthma has been extensively investigated in the past 40 years using linkage analysis and candidate-gene association studies. However, the development of dense arrays for polymorphism genotyping has enabled the transition toward genome-wide association studies (GWAS), which have led the discovery of several unanticipated asthma genes in the last 11 years. Despite this, currently known risk variants identified using many thousand samples from distinct ethnicities only explain a small proportion of asthma heritability. This review examines the main findings of the last 2 years in genomic studies of asthma using GWAS and admixture mapping studies, as well as the direction of studies fostering integrative perspectives involving omics data. Additionally, we discuss the need for assessing the whole spectrum of genetic variation in association studies of asthma susceptibility, severity, and treatment response in order to further improve our knowledge of asthma genes and predictive biomarkers. Leveraging the individual's genetic information will allow a better understanding of asthma pathogenesis and will facilitate the transition toward a more precise diagnosis and treatment.
Collapse
Affiliation(s)
- Natalia Hernandez-Pacheco
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Maria Pino-Yanes
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| |
Collapse
|
12
|
Davis D, Kannan M, Wattenberg B. Orm/ORMDL proteins: Gate guardians and master regulators. Adv Biol Regul 2018; 70:3-18. [PMID: 30193828 DOI: 10.1016/j.jbior.2018.08.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 12/22/2022]
Abstract
Sphingolipids comprise a diverse family of lipids that perform multiple functions in both structure of cellular membranes and intra- and inter-cellular signaling. The diversity of this family is generated by an array of enzymes that produce individual classes and molecular species of family members and enzymes which catabolize those lipids for recycling pathways. However, all of these lipids begin their lives with a single step, the condensation of an amino acid, almost always serine, and a fatty acyl-CoA, almost always the 16-carbon, saturated fatty acid, palmitate. The enzyme complex that accomplishes this condensation is serine palmitoyltransferase (SPT), a membrane-bound component of the endoplasmic reticulum. This places SPT in the unique position of regulating the production of the entire sphingolipid pool. Understanding how SPT activity is regulated is currently a central focus in the field of sphingolipid biology. In this review we examine the regulation of SPT activity by a set of small, membrane-bound proteins of the endoplasmic reticulum, the Orms (in yeast) and ORMDLs (in vertebrates). We discuss what is known about how these proteins act as homeostatic regulators by monitoring cellular levels of sphingolipid, but also how the Orms/ORMDLs regulate SPT in response to other stimuli. Finally, we discuss the intriguing connection between one of the mammalian ORMDL isoforms, ORMDL3, and the pervasive pulmonary disease, asthma, in humans.
Collapse
Affiliation(s)
- Deanna Davis
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Muthukumar Kannan
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Binks Wattenberg
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
13
|
Kanagaratham C, Chiwara V, Ho B, Moussette S, Youssef M, Venuto D, Jeannotte L, Bourque G, de Sanctis JB, Radzioch D, Naumova AK. Loss of the zona pellucida-binding protein 2 (Zpbp2) gene in mice impacts airway hypersensitivity and lung lipid metabolism in a sex-dependent fashion. Mamm Genome 2018. [PMID: 29536159 DOI: 10.1007/s00335-018-9743-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The human chromosomal region 17q12-q21 is one of the best replicated genome-wide association study loci for childhood asthma. The associated SNPs span a large genomic interval that includes several protein-coding genes. Here, we tested the hypothesis that the zona pellucida-binding protein 2 (ZPBP2) gene residing in this region contributes to asthma pathogenesis using a mouse model. We tested the lung phenotypes of knock-out (KO) mice that carry a deletion of the Zpbp2 gene. The deletion attenuated airway hypersensitivity (AHR) in female, but not male, mice in the absence of allergic sensitization. Analysis of the lipid profiles of their lungs showed that female, but not male, KO mice had significantly lower levels of sphingosine-1-phosphate (S1P), very long-chain ceramides (VLCCs), and higher levels of long-chain ceramides compared to wild-type controls. Furthermore, in females, lung resistance following methacholine challenge correlated with lung S1P levels (Pearson correlation coefficient 0.57) suggesting a link between reduced AHR in KO females, Zpbp2 deletion, and S1P level regulation. In livers, spleens and blood plasma, however, VLCC, S1P, and sphingosine levels were reduced in both KO females and males. We also find that the Zpbp2 deletion was associated with gain of methylation in the adjacent DNA regions. Thus, we demonstrate that the mouse ortholog of ZPBP2 has a role in controlling AHR in female mice. Our data also suggest that Zpbp2 may act through regulation of ceramide metabolism. These findings highlight the importance of phospholipid metabolism for sexual dimorphism in AHR.
Collapse
Affiliation(s)
| | - Victoria Chiwara
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Bianca Ho
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Sanny Moussette
- The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Mina Youssef
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - David Venuto
- McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Lucie Jeannotte
- Département de Biologie moléculaire, Biochimie medicale & Pathologie, Faculté de médecine, Université Laval, Québec, QC, Canada.,Centre de recherche sur le cancer de l'Université Laval, CRCHU de Québec-Université Laval, L'Hôtel-Dieu de Québec, Québec, QC, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Juan Bautista de Sanctis
- Institute of Immunology, Faculty of Medicine, Universidad Central de Venezuela, Sabana Grande, Caracas, Venezuela
| | - Danuta Radzioch
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Infectious Diseases and Immunity in Global Health Program (IDIGH), The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Anna K Naumova
- Department of Human Genetics, McGill University, Montreal, QC, Canada. .,The Research Institute of the McGill University Health Centre, Montreal, QC, Canada. .,Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
14
|
Ho B, Greenlaw K, Al Tuwaijri A, Moussette S, Martínez F, Giorgio E, Brusco A, Ferrero GB, Linhares ND, Valadares ER, Svartman M, Kalscheuer VM, Rodríguez Criado G, Laprise C, Greenwood CMT, Naumova AK. X chromosome dosage and presence of SRY shape sex-specific differences in DNA methylation at an autosomal region in human cells. Biol Sex Differ 2018; 9:10. [PMID: 29463315 PMCID: PMC5819645 DOI: 10.1186/s13293-018-0169-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/31/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Sexual dimorphism in DNA methylation levels is a recurrent epigenetic feature in different human cell types and has been implicated in predisposition to disease, such as psychiatric and autoimmune disorders. To elucidate the genetic origins of sex-specific DNA methylation, we examined DNA methylation levels in fibroblast cell lines and blood cells from individuals with different combinations of sex chromosome complements and sex phenotypes focusing on a single autosomal region--the differentially methylated region (DMR) in the promoter of the zona pellucida binding protein 2 (ZPBP2) as a reporter. RESULTS Our data show that the presence of the sex determining region Y (SRY) was associated with lower methylation levels, whereas higher X chromosome dosage in the absence of SRY led to an increase in DNA methylation levels at the ZPBP2 DMR. We mapped the X-linked modifier of DNA methylation to the long arm of chromosome X (Xq13-q21) and tested the impact of mutations in the ATRX and RLIM genes, located in this region, on methylation levels. Neither ATRX nor RLIM mutations influenced ZPBP2 methylation in female carriers. CONCLUSIONS We conclude that sex-specific methylation differences at the autosomal locus result from interaction between a Y-linked factor SRY and at least one X-linked factor that acts in a dose-dependent manner.
Collapse
Affiliation(s)
- Bianca Ho
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | | | - Abeer Al Tuwaijri
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Sanny Moussette
- The Research Institute of the McGill University Health Centre (MUHC), 1001 Decarie Blvd., Bloc E, Room EM03226, Montreal, Quebec, H4A 3J1, Canada
| | - Francisco Martínez
- Unidad de Genética, Hospital Universitario y Politécnico La Fe, 46026, Valencia, Spain
| | - Elisa Giorgio
- Department of Medical Sciences, University of Torino, 10126, Turin, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, 10126, Turin, Italy
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126, Turin, Italy
| | | | - Natália D Linhares
- Setor de Citogenética, Laboratório Central do Hospital das Clínicas da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eugênia R Valadares
- Departamento de Propedêutica Complementar, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Ambulatório de Erros Inatos do Metabolismo, Hospital das Clínicas da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marta Svartman
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vera M Kalscheuer
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Catherine Laprise
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Centre intégré universitaire de santé et services sociaux du Saguenay, Lac-Saint-Jean, Saguenay, Quebec, Canada
- Centre de santé et de services sociaux de Chicoutimi, Saguenay, Québec, Canada
| | - Celia M T Greenwood
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Lady Davis Research Institute, Montréal, Quebec, Canada
- Departments of Oncology and Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Anna K Naumova
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.
- The Research Institute of the McGill University Health Centre (MUHC), 1001 Decarie Blvd., Bloc E, Room EM03226, Montreal, Quebec, H4A 3J1, Canada.
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
15
|
Wiemels JL, Walsh KM, de Smith AJ, Metayer C, Gonseth S, Hansen HM, Francis SS, Ojha J, Smirnov I, Barcellos L, Xiao X, Morimoto L, McKean-Cowdin R, Wang R, Yu H, Hoh J, DeWan AT, Ma X. GWAS in childhood acute lymphoblastic leukemia reveals novel genetic associations at chromosomes 17q12 and 8q24.21. Nat Commun 2018; 9:286. [PMID: 29348612 PMCID: PMC5773513 DOI: 10.1038/s41467-017-02596-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/13/2017] [Indexed: 01/07/2023] Open
Abstract
Childhood acute lymphoblastic leukemia (ALL) (age 0-14 years) is 20% more common in Latino Americans than non-Latino whites. We conduct a genome-wide association study in a large sample of 3263 Californian children with ALL (including 1949 of Latino heritage) and 3506 controls matched on month and year of birth, sex, and ethnicity, and an additional 12,471 controls from the Kaiser Resource for Genetic Epidemiology Research on Aging Cohort. Replication of the strongest genetic associations is performed in two independent datasets from the Children's Oncology Group and the California Childhood Leukemia Study. Here we identify new risk loci on 17q12 near IKZF3/ZPBP2/GSDMB/ORMDL3, a locus encompassing a transcription factor important for lymphocyte development (IKZF3), and at an 8q24 region known for structural contacts with the MYC oncogene. These new risk loci may impact gene expression via local (four 17q12 genes) or long-range (8q24) interactions, affecting function of well-characterized hematopoietic and growth-regulation pathways.
Collapse
Affiliation(s)
- Joseph L Wiemels
- Department of Epidemiology and Biostatistics, University of California San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA.
- Department of Neurological Surgery, University of California San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA.
- Institute for Human Genetics, University of California San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA.
- Department of Preventative Medicine, University of Southern California, SSB 318D 2001 N. Soto Street, Los Angeles, CA, 90033, USA.
| | - Kyle M Walsh
- Department of Epidemiology and Biostatistics, University of California San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA
- Department of Neurological Surgery, University of California San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA
| | - Adam J de Smith
- Department of Epidemiology and Biostatistics, University of California San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA
| | - Catherine Metayer
- School of Public Health, University of California Berkeley, 1950 University Avenue, Suite 460, Berkeley, CA, 94720, USA
| | - Semira Gonseth
- Department of Epidemiology and Biostatistics, University of California San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA
- Department of Preventative Medicine, University of Southern California, SSB 318D 2001 N. Soto Street, Los Angeles, CA, 90033, USA
| | - Helen M Hansen
- Department of Neurological Surgery, University of California San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA
| | - Stephen S Francis
- Department of Epidemiology and Biostatistics, University of California San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA
- Department of Epidemiology, School of Community Health Sciences, University of Nevada Reno, 1664 N. Virginia Street, Reno, NV, 89557, USA
| | - Juhi Ojha
- Department of Epidemiology and Biostatistics, University of California San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA
| | - Ivan Smirnov
- Department of Neurological Surgery, University of California San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA
| | - Lisa Barcellos
- School of Public Health, University of California Berkeley, 1950 University Avenue, Suite 460, Berkeley, CA, 94720, USA
| | - Xiaorong Xiao
- School of Public Health, University of California Berkeley, 1950 University Avenue, Suite 460, Berkeley, CA, 94720, USA
| | - Libby Morimoto
- School of Public Health, University of California Berkeley, 1950 University Avenue, Suite 460, Berkeley, CA, 94720, USA
| | - Roberta McKean-Cowdin
- Department of Preventative Medicine, University of Southern California, SSB 318D 2001 N. Soto Street, Los Angeles, CA, 90033, USA
| | - Rong Wang
- Department of Chronic Diseases Epidemiology, School of Public Health, Yale University, 60 College Street, New Haven, CT, 06520, USA
| | - Herbert Yu
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Josephine Hoh
- Department of Chronic Diseases Epidemiology, School of Public Health, Yale University, 60 College Street, New Haven, CT, 06520, USA
| | - Andrew T DeWan
- Department of Chronic Diseases Epidemiology, School of Public Health, Yale University, 60 College Street, New Haven, CT, 06520, USA
| | - Xiaomei Ma
- Department of Chronic Diseases Epidemiology, School of Public Health, Yale University, 60 College Street, New Haven, CT, 06520, USA.
| |
Collapse
|
16
|
A decade of research on the 17q12-21 asthma locus: Piecing together the puzzle. J Allergy Clin Immunol 2018; 142:749-764.e3. [PMID: 29307657 PMCID: PMC6172038 DOI: 10.1016/j.jaci.2017.12.974] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/13/2017] [Accepted: 12/16/2017] [Indexed: 12/20/2022]
Abstract
Chromosome 17q12–21 remains the most highly replicated and significant asthma locus. Genotypes in the core region defined by the first genome-wide association study correlate with expression of 2 genes, ORM1-like 3 (ORMDL3) and gasdermin B (GSDMB), making these prime candidate asthma genes, although recent studies have implicated gasdermin A (GSDMA) distal to and post-GPI attachment to proteins 3 (PGAP3) proximal to the core region as independent loci. We review 10 years of studies on the 17q12–21 locus and suggest that genotype-specific risks for asthma at the proximal and distal loci are not specific to early-onset asthma and mediated by PGAP3, ORMDL3, and/or GSDMA expression. We propose that the weak and inconsistent associations of 17q single nucleotide polymorphisms with asthma in African Americans is due to the high frequency of some 17q alleles, the breakdown of linkage disequilibrium on African-derived chromosomes, and possibly different early-life asthma endotypes in these children. Finally, the inconsistent association between asthma and gene expression levels in blood or lung cells from older children and adults suggests that genotype effects may mediate asthma risk or protection during critical developmental windows and/or in response to relevant exposures in early life. Thus studies of young children and ethnically diverse populations are required to fully understand the relationship between genotype and asthma phenotype and the gene regulatory architecture at this locus. (J Allergy Clin Immunol 2018;142:749–64.)
Collapse
|
17
|
Vicente CT, Revez JA, Ferreira MAR. Lessons from ten years of genome-wide association studies of asthma. Clin Transl Immunology 2017; 6:e165. [PMID: 29333270 PMCID: PMC5750453 DOI: 10.1038/cti.2017.54] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/10/2017] [Accepted: 10/31/2017] [Indexed: 12/13/2022] Open
Abstract
Twenty-five genome-wide association studies (GWAS) of asthma were published between 2007 and 2016, the largest with a sample size of 157242 individuals. Across these studies, 39 genetic variants in low linkage disequilibrium (LD) with each other were reported to associate with disease risk at a significance threshold of P<5 × 10−8, including 31 in populations of European ancestry. Results from analyses of the UK Biobank data (n=380 503) indicate that at least 28 of the 31 associations reported in Europeans represent true-positive findings, collectively explaining 2.5% of the variation in disease liability (median of 0.06% per variant). We identified 49 transcripts as likely target genes of the published asthma risk variants, mostly based on LD with expression quantitative trait loci (eQTL). Of these genes, 16 were previously implicated in disease pathophysiology by functional studies, including TSLP, TNFSF4, ADORA1, CHIT1 and USF1. In contrast, at present, there is limited or no functional evidence directly implicating the remaining 33 likely target genes in asthma pathophysiology. Some of these genes have a known function that is relevant to allergic disease, including F11R, CD247, PGAP3, AAGAB, CAMK4 and PEX14, and so could be prioritized for functional follow-up. We conclude by highlighting three areas of research that are essential to help translate GWAS findings into clinical research or practice, namely validation of target gene predictions, understanding target gene function and their role in disease pathophysiology and genomics-guided prioritization of targets for drug development.
Collapse
Affiliation(s)
| | - Joana A Revez
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | |
Collapse
|
18
|
Yan Q, Brehm J, Pino-Yanes M, Forno E, Lin J, Oh SS, Acosta-Perez E, Laurie CC, Cloutier MM, Raby BA, Stilp AM, Sofer T, Hu D, Huntsman S, Eng CS, Conomos MP, Rastogi D, Rice K, Canino G, Chen W, Barr RG, Burchard EG, Celedón JC. A meta-analysis of genome-wide association studies of asthma in Puerto Ricans. Eur Respir J 2017; 49:49/5/1601505. [PMID: 28461288 DOI: 10.1183/13993003.01505-2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/18/2016] [Indexed: 12/15/2022]
Abstract
Puerto Ricans are disproportionately affected with asthma in the USA. In this study, we aim to identify genetic variants that confer susceptibility to asthma in Puerto Ricans.We conducted a meta-analysis of genome-wide association studies (GWAS) of asthma in Puerto Ricans, including participants from: the Genetics of Asthma in Latino Americans (GALA) I-II, the Hartford-Puerto Rico Study and the Hispanic Community Health Study. Moreover, we examined whether susceptibility loci identified in previous meta-analyses of GWAS are associated with asthma in Puerto Ricans.The only locus to achieve genome-wide significance was chromosome 17q21, as evidenced by our top single nucleotide polymorphism (SNP), rs907092 (OR 0.71, p=1.2×10-12) at IKZF3 Similar to results in non-Puerto Ricans, SNPs in genes in the same linkage disequilibrium block as IKZF3 (e.g. ZPBP2, ORMDL3 and GSDMB) were significantly associated with asthma in Puerto Ricans. With regard to results from a meta-analysis in Europeans, we replicated findings for rs2305480 at GSDMB, but not for SNPs in any other genes. On the other hand, we replicated results from a meta-analysis of North American populations for SNPs at IL1RL1, TSLP and GSDMB but not for IL33Our findings suggest that common variants on chromosome 17q21 have the greatest effects on asthma in Puerto Ricans.
Collapse
Affiliation(s)
- Qi Yan
- Division of Pediatric Pulmonary Medicine, Allergy, and Immunology, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA, USA
| | - John Brehm
- Division of Pediatric Pulmonary Medicine, Allergy, and Immunology, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria Pino-Yanes
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Erick Forno
- Division of Pediatric Pulmonary Medicine, Allergy, and Immunology, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jerome Lin
- Dept of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sam S Oh
- Dept of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Edna Acosta-Perez
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Cathy C Laurie
- Dept of Biostatistics, University of Washington, Seattle, WA, USA
| | | | - Benjamin A Raby
- Channing Division of Network Medicine, Dept of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Adrienne M Stilp
- Dept of Biostatistics, University of Washington, Seattle, WA, USA
| | - Tamar Sofer
- Dept of Biostatistics, University of Washington, Seattle, WA, USA
| | - Donglei Hu
- Dept of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Scott Huntsman
- Dept of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Celeste S Eng
- Dept of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | - Deepa Rastogi
- Dept of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kenneth Rice
- Dept of Biostatistics, University of Washington, Seattle, WA, USA
| | - Glorisa Canino
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Wei Chen
- Division of Pediatric Pulmonary Medicine, Allergy, and Immunology, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA, USA
| | - R Graham Barr
- Dept of Epidemiology, Columbia University, New York, NY, USA.,These authors contributed equally to this work
| | - Esteban G Burchard
- Dept of Medicine, University of California San Francisco, San Francisco, CA, USA.,Dept of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.,These authors contributed equally to this work
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, Allergy, and Immunology, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA, USA .,These authors contributed equally to this work
| |
Collapse
|
19
|
Role of DNA methylation in expression control of the IKZF3-GSDMA region in human epithelial cells. PLoS One 2017; 12:e0172707. [PMID: 28241063 PMCID: PMC5328393 DOI: 10.1371/journal.pone.0172707] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/08/2017] [Indexed: 12/29/2022] Open
Abstract
Chromosomal region 17q12-q21 is associated with asthma and harbors regulatory polymorphisms that influence expression levels of all five protein-coding genes in the region: IKAROS family zinc finger 3 (Aiolos) (IKZF3), zona pellucida binding protein 2 (ZPBP2), ORMDL sphingolipid biosynthesis regulator 3 (ORMDL3), and gasdermins A and B (GSDMA, GSDMB). Furthermore, DNA methylation in this region has been implicated as a potential modifier of the genetic risk of asthma development. To further characterize the effect of DNA methylation, we examined the impact of treatment with DNA methyltransferase inhibitor 5-aza-2’-deoxycytidine (5-aza-dC) that causes DNA demethylation, on expression and promoter methylation of the five 17q12-q21 genes in the human airway epithelium cell line NuLi-1, embryonic kidney epithelium cell line 293T and human adenocarcinoma cell line MCF-7. 5-aza-dC treatment led to upregulation of expression of GSDMA in all three cell lines. ZPBP2 was upregulated in NuLi-1, but remained repressed in 293T and MCF-7 cells, whereas ORMDL3 was upregulated in 293T and MCF-7 cells, but not NuLi-1. Upregulation of ZPBP2 and GSDMA was accompanied by a decrease in promoter methylation. Moreover, 5-aza-dC treatment modified allelic expression of ZPBP2 and ORMDL3 suggesting that different alleles may respond differently to treatment. We also identified a polymorphic CTCF-binding site in intron 1 of ORMDL3 carrying a CG SNP rs4065275 and determined its methylation level. The site’s methylation was unaffected by 5-aza-dC treatment in NuLi-1 cells. We conclude that modest changes (8–13%) in promoter methylation levels of ZPBP2 and GSDMA may cause substantial changes in RNA levels and that allelic expression of ZPBP2 and ORMDL3 is mediated by DNA methylation.
Collapse
|
20
|
Carreras-Sureda A, Rubio-Moscardo F, Olvera A, Argilaguet J, Kiefer K, Mothe B, Meyerhans A, Brander C, Vicente R. Lymphocyte Activation Dynamics Is Shaped by Hereditary Components at Chromosome Region 17q12-q21. PLoS One 2016; 11:e0166414. [PMID: 27835674 PMCID: PMC5106028 DOI: 10.1371/journal.pone.0166414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/29/2016] [Indexed: 12/14/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) located in the chromosome region 17q12-q21 are risk factors for asthma. Particularly, there are cis-regulatory haplotypes within this region that regulate differentially the expression levels of ORMDL3, GSDMB and ZPBP2 genes. Remarkably, ORMDL3 has been shown to modulate lymphocyte activation parameters in a heterologous expression system. In this context, it has been shown that Th2 and Th17 cytokine production is affected by SNPs in this region. Therefore, we aim to assess the impact of hereditary components within region 17q12-q21 on the activation profile of human T lymphocytes, focusing on the haplotype formed by allelic variants of SNPs rs7216389 and rs12936231. We measured calcium influx and activation markers, as well as the proliferation rate upon T cell activation. Haplotype-dependent differences in mRNA expression levels of IL-2 and INF-γ were observed at early times after activation. In addition, the allelic variants of these SNPs impacted on the extent of calcium influx in resting lymphocytes and altered proliferation rates in a dose dependent manner. As a result, the asthma risk haplotype carriers showed a lower threshold of saturation during activation. Finally, we confirmed differences in activation marker expression by flow cytometry using phytohemagglutinin, a strong polyclonal stimulus. Altogether, our data suggest that the genetic component of pro-inflammatory pathologies present in this chromosome region could be explained by different T lymphocyte activation dynamics depending on individual allelic heredity.
Collapse
Affiliation(s)
- Amado Carreras-Sureda
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Fanny Rubio-Moscardo
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Alex Olvera
- AIDS Research Institute, IrsiCaixa—HIVACAT, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Jordi Argilaguet
- Infection Biology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Kerstin Kiefer
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Beatriz Mothe
- AIDS Research Institute, IrsiCaixa—HIVACAT, Hospital Germans Trias i Pujol, Badalona, Spain
- Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Spain
| | - Andreas Meyerhans
- Infection Biology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Christian Brander
- AIDS Research Institute, IrsiCaixa—HIVACAT, Hospital Germans Trias i Pujol, Badalona, Spain
- Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Rubén Vicente
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail:
| |
Collapse
|
21
|
Žavbi M, Korošec P, Fležar M, Škrgat Kristan S, Marc Malovrh M, Rijavec M. Polymorphisms and haplotypes of the chromosome locus 17q12-17q21.1 contribute to adult asthma susceptibility in Slovenian patients. Hum Immunol 2016; 77:527-34. [PMID: 27163155 DOI: 10.1016/j.humimm.2016.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 02/18/2016] [Accepted: 05/04/2016] [Indexed: 11/24/2022]
Abstract
One of the major asthma susceptibility loci is 17q12-17q21.1, but the relationship between this locus and adult asthma is unclear. Association analysis of 13 single nucleotide polymorphisms (SNPs) and haplotypes from 17q12-17q21.1 was performed in 418 adult patients with asthma and 288 controls from Slovenia. Single SNP analysis revealed only marginal associations with adult asthma for SNPs located in GSDMA, GSDMB, ORMDL3 and ZPBP2 genes, and rs7219080 was the most highly associated. Analyses of asthma phenotypes found no association with atopy or lung function, but rs2305480 and rs8066582 were associated with childhood asthma and rs9916279 was associated with asthma in smokers. Notably, haplotypes consisting of rs9916279, rs8066582, rs1042658, and rs2302777 harbouring PSMD3, CSF3 and MED24 genes were highly associated with asthma. The four most common haplotypes, TCCG, TTTA, CCCA and TTCA, were more frequent in patients with asthma, whereas TTCG, TCCA, TCTA and TTTG were more frequent in controls. Only 3% of asthma patients belonged to haplotypes TTCG, TCCA, TCTA and TTTG compared with nearly one-third (31%) of controls. Associations confirmed that the 17q12-17q21.1 locus harbours a genetic determinant for asthma risk in adults and suggest that in addition to the previously known ORMDL3-GSDM locus, CSF3-PSMD3-MED24 also plays a role in asthma pathogenesis.
Collapse
Affiliation(s)
- Mateja Žavbi
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik 36, 4204 Golnik, Slovenia
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik 36, 4204 Golnik, Slovenia
| | - Matjaž Fležar
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik 36, 4204 Golnik, Slovenia
| | - Sabina Škrgat Kristan
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik 36, 4204 Golnik, Slovenia
| | - Mateja Marc Malovrh
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik 36, 4204 Golnik, Slovenia
| | - Matija Rijavec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik 36, 4204 Golnik, Slovenia.
| |
Collapse
|
22
|
Al Tuwaijri A, Gagné-Ouellet V, Madore AM, Laprise C, Naumova AK. Local genotype influences DNA methylation at two asthma-associated regions, 5q31 and 17q21, in a founder effect population. J Med Genet 2015; 53:232-41. [PMID: 26671913 DOI: 10.1136/jmedgenet-2015-103313] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/14/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Two asthma-associated regions 17q12-q21 and 5q31.1 harbour genes that show strong effect of genotype on expression levels. DNA methylation has an important role in gene regulation; therefore, we examined DNA methylation at promoters of 12 genes from 5q31 and 17q12-q21 regions. Our goal was to determine whether DNA methylation was associated with predisposition to asthma and whether such a relationship was independent from genetic association. METHODS Using sodium bisulfite sequencing and pyrosequencing methylation assays, we examined the effect of genotype on DNA methylation in peripheral blood cells from individuals from the Saguenay-Lac-Saint-Jean asthma familial collection and lymphoblastoid cell lines. RESULTS The local genotype influenced methylation levels of solute carrier family 22 (organic 3 cation/carnitine transporter) member 5 (SLC22A5), zona pellucida binding protein 2 (ZPBP2) and gasdermin A (GSDMA) promoter regions. The genotype had a dominant effect on ZPBP2 and GSDMA methylation with lower methylation levels in individuals that carry the asthma-predisposing alleles. Males also had lower methylation at the ZPBP2 promoter than females. We did not observe an effect of asthma status that would be independent of the genotype and the sex effects in the GSDMA, ZPBP2 and SLC22A5 regions; however, GSDMA and ZPBP2 data were suggestive of interaction between asthma and methylation levels in females and SLC22A5 in males. CONCLUSIONS The local genotype influences methylation levels at SLC22A5 and ZPBP2 promoters independently of the asthma status. Further studies are necessary to confirm the relationship between GSDMA-ZPBP2 and SLC22A5 methylation and asthma in females and males separately.
Collapse
Affiliation(s)
- Abeer Al Tuwaijri
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Valérie Gagné-Ouellet
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| | - Anne-Marie Madore
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| | - Catherine Laprise
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| | - Anna K Naumova
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Andiappan AK, Sio YY, Lee B, Suri BK, Matta SA, Lum J, Foo S, Koh G, Liu J, Zolezzi F, Poidinger M, Wang DY, Rotzschke O, Chew FT. Functional variants of 17q12-21 are associated with allergic asthma but not allergic rhinitis. J Allergy Clin Immunol 2015; 137:758-66.e3. [PMID: 26483175 DOI: 10.1016/j.jaci.2015.08.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 08/02/2015] [Accepted: 08/25/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND Allergic rhinitis (AR) and asthma are common allergic conditions with a shared genetic component to their cause. The 17q12-21 locus includes several genes that have been linked to asthma susceptibility, but the role of this locus in AR is unclear. Asthma and AR in adults of Chinese ethnicity in Singapore are predominately caused by sensitization against house dust mites with a nearly complete penetrance of the allergen, which presents a unique opportunity for accurately identifying genetic associations with allergic diseases. OBJECTIVE We sought to define the functional role of 17q12-21 in patients with AR and allergic asthma. METHODS We asked whether single nucleotide polymorphisms (SNPs) in the 17q12-21 locus were associated with AR or asthma in a cohort of 3460 ethnic Chinese subjects residing in Singapore (1435 in the discovery phase and 2025 in the validation phase). Full-blood mRNA gene expression data, plasma IgE levels, and immune cell frequencies in peripheral blood were tested against the tag SNP genotypes. Luciferase assays were used to measure the effect of putative promoter SNPs on expression of the asthma-associated orosomucoid-like 3 gene (ORMDL3). RESULTS Within 17q12-21, only the tag SNP rs8076131 was significantly associated with asthma (P = 8.53 × 10(-10); odds ratio, 0.6715), and AR status was independent of SNPs in this region. C-A alleles at rs8076131 resulted in significantly increased ORMDL3 expression in HEK293 cells in vitro relative to T-G alleles. Moreover, subjects with the risk genotype AA exhibited significantly higher total IgE levels and higher blood eosinophil counts than those with the lower-risk genotypes. CONCLUSION The 17q12-21 locus has a strong genetic association with allergic asthma but not with AR. The polymorphic effect of this locus is attributed to the linkage set tagged by rs8076131, which affects the expression of ORMDL3, protein phosphatase 1, regulatory inhibitor subunit 1B (PPP1R1B), zona pellucida binding protein 2 (ZPBP2), and gasdermin B (GSDMB) and is correlated with high IgE levels and eosinophil counts in subjects bearing the risk genotype.
Collapse
Affiliation(s)
- Anand Kumar Andiappan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore; Department of Biological Sciences, National University of Singapore, Singapore
| | - Yang Yie Sio
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Bani Kaur Suri
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Sri Anusha Matta
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shihui Foo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Geraldine Koh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jianjun Liu
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Francesca Zolezzi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - De Yun Wang
- Department of Otolaryngology, National University of Singapore, National University Health System, Singapore.
| | - Olaf Rotzschke
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Fook Tim Chew
- Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
24
|
Oyeniran C, Sturgill JL, Hait NC, Huang WC, Avni D, Maceyka M, Newton J, Allegood JC, Montpetit A, Conrad DH, Milstien S, Spiegel S. Aberrant ORM (yeast)-like protein isoform 3 (ORMDL3) expression dysregulates ceramide homeostasis in cells and ceramide exacerbates allergic asthma in mice. J Allergy Clin Immunol 2015; 136:1035-46.e6. [PMID: 25842287 PMCID: PMC4591101 DOI: 10.1016/j.jaci.2015.02.031] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/28/2015] [Accepted: 02/27/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Asthma, a chronic inflammatory condition defined by episodic shortness of breath with expiratory wheezing and cough, is a serious health concern affecting more than 250 million persons. Genome-wide association studies have identified ORM (yeast)-like protein isoform 3 (ORMDL3) as a gene associated with susceptibility to asthma. Although its yeast ortholog is a negative regulator of de novo ceramide biosynthesis, how ORMDL3 contributes to asthma pathogenesis is not known. OBJECTIVES We sought to decipher the molecular mechanism for the pathologic functions of ORMDL3 in asthma and the relationship to its evolutionarily conserved role in regulation of ceramide homeostasis. METHODS We determined the relationship between expression of ORMDL3 and ceramide in epithelial and inflammatory cells and in asthma pathogenesis in mice. RESULTS Although small increases in ORMDL3 expression decrease ceramide levels, remarkably, higher expression in lung epithelial cells and macrophages in vitro and in vivo increased ceramide production, which promoted chronic inflammation, airway hyperresponsiveness, and mucus production during house dust mite-induced allergic asthma. Moreover, nasal administration of the immunosuppressant drug FTY720/fingolimod reduced ORMDL3 expression and ceramide levels and mitigated airway inflammation and hyperreactivity and mucus hypersecretion in house dust mite-challenged mice. CONCLUSIONS Our findings demonstrate that overexpression of ORMDL3 regulates ceramide homeostasis in cells in a complex manner and suggest that local FTY720 administration might be a useful therapeutic intervention for the control of allergic asthma.
Collapse
Affiliation(s)
- Clement Oyeniran
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Jamie L Sturgill
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Richmond, Va; School of Nursing, Virginia Commonwealth University, Richmond, Va
| | - Nitai C Hait
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Wei-Ching Huang
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Dorit Avni
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Michael Maceyka
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Jason Newton
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Jeremy C Allegood
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Alison Montpetit
- School of Nursing, Virginia Commonwealth University, Richmond, Va
| | - Daniel H Conrad
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Va.
| |
Collapse
|
25
|
Huang YT, Liang L, Moffatt MF, Cookson WOCM, Lin X. iGWAS: Integrative Genome-Wide Association Studies of Genetic and Genomic Data for Disease Susceptibility Using Mediation Analysis. Genet Epidemiol 2015; 39:347-56. [PMID: 25997986 DOI: 10.1002/gepi.21905] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/23/2015] [Accepted: 04/07/2015] [Indexed: 12/20/2022]
Abstract
Genome-wide association studies (GWAS) have been a standard practice in identifying single nucleotide polymorphisms (SNPs) for disease susceptibility. We propose a new approach, termed integrative GWAS (iGWAS) that exploits the information of gene expressions to investigate the mechanisms of the association of SNPs with a disease phenotype, and to incorporate the family-based design for genetic association studies. Specifically, the relations among SNPs, gene expression, and disease are modeled within the mediation analysis framework, which allows us to disentangle the genetic effect on a disease phenotype into two parts: an effect mediated through a gene expression (mediation effect, ME) and an effect through other biological mechanisms or environment-mediated mechanisms (alternative effect, AE). We develop omnibus tests for the ME and AE that are robust to underlying true disease models. Numerical studies show that the iGWAS approach is able to facilitate discovering genetic association mechanisms, and outperforms the SNP-only method for testing genetic associations. We conduct a family-based iGWAS of childhood asthma that integrates genetic and genomic data. The iGWAS approach identifies six novel susceptibility genes (MANEA, MRPL53, LYCAT, ST8SIA4, NDFIP1, and PTCH1) using the omnibus test with false discovery rate less than 1%, whereas no gene using SNP-only analyses survives with the same cut-off. The iGWAS analyses further characterize that genetic effects of these genes are mostly mediated through their gene expressions. In summary, the iGWAS approach provides a new analytic framework to investigate the mechanism of genetic etiology, and identifies novel susceptibility genes of childhood asthma that were biologically meaningful.
Collapse
Affiliation(s)
- Yen-Tsung Huang
- Departments of Epidemiology and Biostatistics, Brown University, Providence, Rhode Island, United States of America
| | - Liming Liang
- Departments of Epidemiology and Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Miriam F Moffatt
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Xihong Lin
- Departments of Epidemiology and Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
26
|
Schedel M, Michel S, Gaertner VD, Toncheva AA, Depner M, Binia A, Schieck M, Rieger MT, Klopp N, von Berg A, Bufe A, Laub O, Rietschel E, Heinzmann A, Simma B, Vogelberg C, Genuneit J, Illig T, Kabesch M. Polymorphisms related to ORMDL3 are associated with asthma susceptibility, alterations in transcriptional regulation of ORMDL3, and changes in TH2 cytokine levels. J Allergy Clin Immunol 2015; 136:893-903.e14. [PMID: 25930191 DOI: 10.1016/j.jaci.2015.03.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 02/27/2015] [Accepted: 03/12/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Chromosome 17q21, harboring the orosomucoid 1-like 3 (ORMDL3) gene, has been consistently associated with childhood asthma in genome-wide association studies. OBJECTIVE We investigated genetic variants in and around ORMDL3 that can change the function of ORMDL3 and thus contribute to asthma susceptibility. METHODS We performed haplotype analyses and fine mapping of the ORMDL3 locus in a cross-sectional (International Study of Asthma and Allergies in Childhood Phase II, n = 3557 total subjects, n = 281 asthmatic patients) and case-control (Multicenter Asthma Genetics in Childhood Study/International Study of Asthma and Allergies in Childhood Phase II, n = 1446 total subjects, n = 763 asthmatic patients) data set to identify putative causal single nucleotide polymorphisms (SNPs) in the locus. Top asthma-associated polymorphisms were analyzed for allele-specific effects on transcription factor binding and promoter activity in vitro and gene expression in PBMCs after stimulation ex vivo. RESULTS Two haplotypes (H1 and H2) were significantly associated with asthma in the cross-sectional (P = 9.9 × 10(-5) and P = .0035, respectively) and case-control (P = 3.15 × 10(-8) and P = .0021, respectively) populations. Polymorphisms rs8076131 and rs4065275 were identified to drive these effects. For rs4065275, a quantitative difference in transcription factor binding was found, whereas for rs8076131, changes in upstream stimulatory factor 1 and 2 transcription factor binding were observed in vitro by using different cell lines and PBMCs. This might contribute to detected alterations in luciferase activity paralleled with changes in ORMDL3 gene expression and IL-4 and IL-13 cytokine levels ex vivo in response to innate and adaptive stimuli in an allele-specific manner. Both SNPs were in strong linkage disequilibrium with asthma-associated 17q21 SNPs previously related to altered ORMDL3 gene expression. CONCLUSION Polymorphisms in a putative promoter region of ORMDL3, which are associated with childhood asthma, alter transcriptional regulation of ORMDL3, correlate with changes in TH2 cytokines levels, and therefore might contribute to the childhood asthma susceptibility signal from 17q21.
Collapse
Affiliation(s)
- Michaela Schedel
- Department of Pediatrics, National Jewish Health, Denver, Colo; Department of Pediatric Pneumology, Allergy, and Neonatology, Hannover Medical School, Hannover, Germany
| | - Sven Michel
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany; Department of Pediatric Pneumology, Allergy, and Neonatology, Hannover Medical School, Hannover, Germany
| | - Vincent D Gaertner
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany
| | - Antoaneta A Toncheva
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany; Department of Pediatric Pneumology, Allergy, and Neonatology, Hannover Medical School, Hannover, Germany
| | - Martin Depner
- Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Aristea Binia
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany; Nestlé Research Centre, Nutrition & Health Department, Lausanne, Switzerland
| | - Maximilian Schieck
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany; Department of Pediatric Pneumology, Allergy, and Neonatology, Hannover Medical School, Hannover, Germany
| | - Marie T Rieger
- Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Norman Klopp
- Research Group of Molecular Epidemiology, Helmholtz Centre Munich, Neuherberg, Germany; Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Andrea von Berg
- Research Institute for the Prevention of Allergic Diseases, Children's Department, Marien-Hospital, Wesel, Germany
| | - Albrecht Bufe
- Department of Experimental Pneumology, Ruhr-University, Bochum, Germany
| | - Otto Laub
- Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Ernst Rietschel
- University Children's Hospital, University of Cologne, Cologne, Germany
| | - Andrea Heinzmann
- University Children's Hospital, Albert Ludwigs University, Freiburg, Germany
| | - Burkard Simma
- Children's Department, Feldkirch Hospital, Feldkirch, Austria
| | | | - Jon Genuneit
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Thomas Illig
- Research Group of Molecular Epidemiology, Helmholtz Centre Munich, Neuherberg, Germany; Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Michael Kabesch
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany; Department of Pediatric Pneumology, Allergy, and Neonatology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
27
|
Perkins JR, Sanak M, Canto G, Blanca M, Cornejo-García JA. Unravelling adverse reactions to NSAIDs using systems biology. Trends Pharmacol Sci 2015; 36:172-80. [PMID: 25577398 DOI: 10.1016/j.tips.2014.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 12/23/2022]
Abstract
We introduce the reader to systems biology, using adverse drug reactions (ADRs), specifically hypersensitivity reactions to multiple non-steroidal anti-inflammatory drugs (NSAIDs), as a model. To disentangle the different processes that contribute to these reactions - from drug intake to the appearance of symptoms - it will be necessary to create high-throughput datasets. Just as crucial will be the use of systems biology to integrate and make sense of them. We review previous work using systems biology to study related pathologies such as asthma/allergy, and NSAID metabolism. We show examples of their application to NSAIDs-hypersensitivity using current datasets. We describe breakthroughs in high-throughput technology and speculate on their use to improve our understanding of this and other drug-induced pathologies.
Collapse
Affiliation(s)
- James R Perkins
- Research Laboratory, IBIMA, Regional University Hospital of Malaga, UMA, Malaga, Spain
| | - Marek Sanak
- Division of Molecular Biology and Clinical Genetics, Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | | | - Miguel Blanca
- Allergy Unit, IBIMA, Regional University Hospital of Malaga, UMA, Malaga, Spain.
| | - José Antonio Cornejo-García
- Research Laboratory, IBIMA, Regional University Hospital of Malaga, UMA, Malaga, Spain; Allergy Unit, IBIMA, Regional University Hospital of Malaga, UMA, Malaga, Spain
| |
Collapse
|
28
|
Li L, Wang W, Cui H, Zheng X, Chen Y, Sheng Y, Gao J, Shen C, Zeng M, Zhang T, Sun L, Zhang X. The allele T of rs10852936 confers risk for early-onset psoriasis. J Dermatol Sci 2014; 77:129-31. [PMID: 25620289 DOI: 10.1016/j.jdermsci.2014.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/30/2014] [Accepted: 11/10/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Longnian Li
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China; Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China; State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China; Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, China
| | - Wenjun Wang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China; Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China; State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China; Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, China
| | - Hongzhou Cui
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China; Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China; State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China; Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, China
| | - Xiaodong Zheng
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China; Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China; State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China; Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, China
| | - Yan Chen
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China; Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China; State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China; Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, China
| | - Yujun Sheng
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China; Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China; State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China; Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, China
| | - Jinping Gao
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China; Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China; State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China; Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, China
| | - Changbing Shen
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China; Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China; State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China; Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, China
| | - Ming Zeng
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China; Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China; State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China; Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, China
| | - Tangde Zhang
- Department of Dermatology, ZhuJiang Hospital of Southern Medical University, Guangzhou, Guangdong, China; Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, China
| | - Liangdan Sun
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China; Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China; State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China; Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, China.
| | - Xuejun Zhang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China; Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China; State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China; Department of Dermatology, ZhuJiang Hospital of Southern Medical University, Guangzhou, Guangdong, China; Department of Dermatology at No.2 Hospital, Anhui Medical University, Hefei, Anhui, China; Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
29
|
Lockett GA, Patil VK, Soto-Ramírez N, Ziyab AH, Holloway JW, Karmaus W. Epigenomics and allergic disease. Epigenomics 2014; 5:685-99. [PMID: 24283882 DOI: 10.2217/epi.13.68] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Allergic disease development is affected by both genes and the environment, and epigenetic mechanisms are hypothesized to mediate these environmental effects. In this article, we discuss the link between the environment, DNA methylation and allergic disease, as well as questions of causality inherent to analyses of DNA methylation. From the practical side, we describe characteristics of allergic phenotypes and contrast different epidemiologic study designs used in epigenetic research. We examine methodological considerations, how best to conduct preprocessing and analysis of DNA methylation data sets, and the latest methods, technologies and discoveries in this rapidly advancing field. DNA methylation and other epigenetic marks are firmly entwined with allergic disease, a link that may hold the basis for future allergic disease diagnosis and treatment.
Collapse
Affiliation(s)
- Gabrielle A Lockett
- Human Development & Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | | | | | | | | |
Collapse
|
30
|
Huang YT. Integrative modeling of multi-platform genomic data under the framework of mediation analysis. Stat Med 2014; 34:162-78. [PMID: 25316269 DOI: 10.1002/sim.6326] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 07/02/2014] [Accepted: 09/22/2014] [Indexed: 12/24/2022]
Abstract
Given the availability of genomic data, there have been emerging interests in integrating multi-platform data. Here, we propose to model genetics (single nucleotide polymorphism (SNP)), epigenetics (DNA methylation), and gene expression data as a biological process to delineate phenotypic traits under the framework of causal mediation modeling. We propose a regression model for the joint effect of SNPs, methylation, gene expression, and their nonlinear interactions on the outcome and develop a variance component score test for any arbitrary set of regression coefficients. The test statistic under the null follows a mixture of chi-square distributions, which can be approximated using a characteristic function inversion method or a perturbation procedure. We construct tests for candidate models determined by different combinations of SNPs, DNA methylation, gene expression, and interactions and further propose an omnibus test to accommodate different models. We then study three path-specific effects: the direct effect of SNPs on the outcome, the effect mediated through expression, and the effect through methylation. We characterize correspondences between the three path-specific effects and coefficients in the regression model, which are influenced by causal relations among SNPs, DNA methylation, and gene expression. We illustrate the utility of our method in two genomic studies and numerical simulation studies.
Collapse
Affiliation(s)
- Yen-Tsung Huang
- Department of Epidemiology, Brown University, 121 S. Main St., Box G-S121-2, Providence, RI, 02912, U.S.A
| |
Collapse
|
31
|
Acevedo N, Reinius LE, Greco D, Gref A, Orsmark-Pietras C, Persson H, Pershagen G, Hedlin G, Melén E, Scheynius A, Kere J, Söderhäll C. Risk of childhood asthma is associated with CpG-site polymorphisms, regional DNA methylation and mRNA levels at the GSDMB/ORMDL3 locus. Hum Mol Genet 2014; 24:875-90. [PMID: 25256354 PMCID: PMC4291244 DOI: 10.1093/hmg/ddu479] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Single-nucleotide polymorphisms (SNPs) in GSDMB (Gasdermin B) and ORMDL3 (ORMDL sphingolipid biosynthesis regulator 3) are strongly associated with childhood asthma, but the molecular alterations contributing to disease remain unknown. We investigated the effects of asthma-associated SNPs on DNA methylation and mRNA levels of GSDMB and ORMDL3. Genetic association between GSDMB/ORMDL3 and physician-diagnosed childhood asthma was confirmed in the Swedish birth-cohort BAMSE. CpG-site SNPs (rs7216389 and rs4065275) showed differences in DNA methylation depending on carrier status of the risk alleles, and were significantly associated with methylation levels in two CpG sites in the 5′ UTR (untranslated region) of ORMDL3. In the Swedish Search study, we found significant differences in DNA methylation between asthmatics and controls in five CpG sites; after adjusting for lymphocyte and neutrophil cell counts, three remained significant: one in IKZF3 [IKAROS family zinc finger 3 (Aiolos); cg16293631] and two in the CpG island (CGI) of ORMDL3 (cg02305874 and cg16638648). Also, cg16293631 and cg02305874 correlated with mRNA levels of ORMDL3. The association between methylation and asthma was independent of the genotype in rs7216389, rs4065275 and rs12603332. Both SNPs and CpG sites showed significant associations with ORMDL3 mRNA levels. SNPs influenced expression independently of methylation, and the residual association between methylation and expression was not mediated by these SNPs. We found a differentially methylated region in the CGI shore of ORMDL3 with six CpG sites less methylated in CD8+ T-cells. In summary, this study supports that there are differences in DNA methylation at this locus between asthmatics and controls; and both SNPs and CpG sites are independently associated with ORMDL3 expression.
Collapse
Affiliation(s)
- Nathalie Acevedo
- Department of Biosciences and Nutrition, and Center for Innovative Medicine (CIMED), Karolinska Institutet, Stockholm 141 83, Sweden Department of Medicine Solna, Translational Immunology Unit, Karolinska Institutet and University Hospital, Stockholm 171 77, Sweden
| | - Lovisa E Reinius
- Department of Biosciences and Nutrition, and Center for Innovative Medicine (CIMED), Karolinska Institutet, Stockholm 141 83, Sweden
| | - Dario Greco
- Systems Toxicology Team, Finnish Institute of Occupational Health, Helsinki 00250, Finland
| | | | - Christina Orsmark-Pietras
- Department of Biosciences and Nutrition, and Center for Innovative Medicine (CIMED), Karolinska Institutet, Stockholm 141 83, Sweden
| | - Helena Persson
- Department of Biosciences and Nutrition, and Center for Innovative Medicine (CIMED), Karolinska Institutet, Stockholm 141 83, Sweden
| | | | - Gunilla Hedlin
- Department of Women's and Children's Health Centre of Allergy Research, Karolinska Institutet, Stockholm 171 77, Sweden Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm 171 64, Sweden
| | - Erik Melén
- Institute of Environmental Medicine Centre of Allergy Research, Karolinska Institutet, Stockholm 171 77, Sweden Sachs' Children's Hospital, Södersjukhuset, Stockholm 118 83, Sweden and
| | - Annika Scheynius
- Department of Medicine Solna, Translational Immunology Unit, Karolinska Institutet and University Hospital, Stockholm 171 77, Sweden
| | - Juha Kere
- Department of Biosciences and Nutrition, and Center for Innovative Medicine (CIMED), Karolinska Institutet, Stockholm 141 83, Sweden Folkhälsan Institute of Genetics, Helsinki, and Research Programs Unit, University of Helsinki, Helsinki 00014, Finland
| | - Cilla Söderhäll
- Department of Biosciences and Nutrition, and Center for Innovative Medicine (CIMED), Karolinska Institutet, Stockholm 141 83, Sweden Centre of Allergy Research, Karolinska Institutet, Stockholm 171 77, Sweden
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Epigenetic mechanisms such as DNA methylation, histone modification and microRNA control the accessibility of the genome and manage gene transcription in response to the environment in a heritable fashion. Recent evidence suggests that these mechanisms play a role in allergy and asthma. RECENT FINDINGS Here, we give an overview on recent developments in the field of asthma and allergy epigenetics with a special focus on the role of DNA methylation in these diseases, where finally, first pilot studies investigating differences in methylation pattern in patients have been published. Although these studies have to be interpreted with caution, it seems that methylation is affected by environmental stimuli such as prenatal smoke exposure and farming environments, whereas asthma status is associated with change in methylation in early childhood. SUMMARY Early stage data from population studies indicate a role of methylation differences in asthma and allergy, whereas the exact impact of these epigenetic mechanisms on disease development needs to be elucidated further.
Collapse
|
33
|
Raedler D, Schaub B. Immune mechanisms and development of childhood asthma. THE LANCET RESPIRATORY MEDICINE 2014; 2:647-56. [PMID: 25008972 DOI: 10.1016/s2213-2600(14)70129-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Early life influences are crucial for the development of distinct childhood asthma phenotypes, which are currently included under the term asthma syndrome. Improved characterisation of different childhood asthma phenotypes will help to elucidate specific underlying immune mechanisms--namely, endotypes. Besides genetics, epigenetics and environmental factors have an effect on innate and adaptive immune regulatory networks. Crucial determining factors for complex immune regulation and barrier function include family history of atopy, respiratory infections, microbiome, and nutrition. Recent diagnostic approaches, including biomarkers, might offer a unique opportunity to improve definitions of asthma sub-phenotypes, prediction of outcome, and treatment options, by referring to the underlying pathophysiology. For prevention and patient-individualised medicine, a multifactorial approach incorporating deep phenotyping and mathematical models for analysis to extend our present knowledge is needed.
Collapse
Affiliation(s)
- Diana Raedler
- University Children's Hospital Munich, Department of Allergy and Pulmonary, Ludwig-Maximilians University of Munich, Munich, Germany; German Centre for Lung Research, Comprehensive Pneumology Centre, Munich, Germany
| | - Bianca Schaub
- University Children's Hospital Munich, Department of Allergy and Pulmonary, Ludwig-Maximilians University of Munich, Munich, Germany; German Centre for Lung Research, Comprehensive Pneumology Centre, Munich, Germany.
| |
Collapse
|
34
|
Kukurba KR, Zhang R, Li X, Smith KS, Knowles DA, How Tan M, Piskol R, Lek M, Snyder M, MacArthur DG, Li JB, Montgomery SB. Allelic expression of deleterious protein-coding variants across human tissues. PLoS Genet 2014; 10:e1004304. [PMID: 24786518 PMCID: PMC4006732 DOI: 10.1371/journal.pgen.1004304] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 02/27/2014] [Indexed: 11/19/2022] Open
Abstract
Personal exome and genome sequencing provides access to loss-of-function and rare deleterious alleles whose interpretation is expected to provide insight into individual disease burden. However, for each allele, accurate interpretation of its effect will depend on both its penetrance and the trait's expressivity. In this regard, an important factor that can modify the effect of a pathogenic coding allele is its level of expression; a factor which itself characteristically changes across tissues. To better inform the degree to which pathogenic alleles can be modified by expression level across multiple tissues, we have conducted exome, RNA and deep, targeted allele-specific expression (ASE) sequencing in ten tissues obtained from a single individual. By combining such data, we report the impact of rare and common loss-of-function variants on allelic expression exposing stronger allelic bias for rare stop-gain variants and informing the extent to which rare deleterious coding alleles are consistently expressed across tissues. This study demonstrates the potential importance of transcriptome data to the interpretation of pathogenic protein-coding variants. Gene expression is a fundamental cellular process that contributes to phenotypic diversity. Gene expression can vary between alleles of an individual through differences in genomic imprinting or cis-acting regulatory variation. Distinguishing allelic activity is important for informing the abundance of altered mRNA and protein products. Advances in sequencing technologies allow us to quantify patterns of allele-specific expression (ASE) in different individuals and cell-types. Previous studies have identified patterns of ASE across human populations for single cell-types; however the degree of tissue-specificity of ASE has not been deeply characterized. In this study, we compare patterns of ASE across multiple tissues from a single individual using whole transcriptome sequencing (RNA-Seq) and a targeted, high-resolution assay (mmPCR-Seq). We detect patterns of ASE for rare deleterious and loss-of-function protein-coding variants, informing the frequency at which allelic expression could modify the functional impact of personal deleterious protein-coding across tissues. We demonstrate that these interactions occur for one third of such variants however large direction flips in allelic expression are infrequent.
Collapse
Affiliation(s)
- Kimberly R. Kukurba
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Rui Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Xin Li
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Kevin S. Smith
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - David A. Knowles
- Department of Computer Science, Stanford University School of Medicine, Stanford, California, United States of America
| | - Meng How Tan
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Robert Piskol
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Monkol Lek
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Daniel G. MacArthur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Jin Billy Li
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (JBL); (SBM)
| | - Stephen B. Montgomery
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Computer Science, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (JBL); (SBM)
| |
Collapse
|
35
|
Lutz PE, Turecki G. DNA methylation and childhood maltreatment: from animal models to human studies. Neuroscience 2014; 264:142-56. [PMID: 23933308 PMCID: PMC5293537 DOI: 10.1016/j.neuroscience.2013.07.069] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/27/2013] [Accepted: 07/29/2013] [Indexed: 11/21/2022]
Abstract
Childhood maltreatment (CM) has estimated prevalence among Western societies between 10% and 15%. As CM associates with increased risk of several psychiatric disorders, early age of illness onset, increased comorbidity and negative clinical outcome, it imposes a major public health, social and economic impact. Although the clinical consequences of CM are well characterized, a major challenge remains to understand how negative early-life events can affect brain function over extended periods of time. We review here both animal and human studies indicating that the epigenetic mechanism of DNA methylation is a crucial mediator of early-life experiences, thereby maintaining life-long neurobiological sequelae of CM, and strongly determining psychopathological risk.
Collapse
Affiliation(s)
- P-E Lutz
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montréal, Québec, Canada
| | - G Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montréal, Québec, Canada.
| |
Collapse
|
36
|
Huang YT. Integrative modeling of multiple genomic data from different types of genetic association studies. Biostatistics 2014; 15:587-602. [PMID: 24705142 DOI: 10.1093/biostatistics/kxu014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Genome-wide association studies (GWASs) and expression-/methylation-quantitative trait loci (eQTL/mQTL) studies constitute popular approaches for investigating the association of single nucleotide polymorphisms (SNPs) with disease and expression/methylation, respectively. Here, we propose to integrate QTL studies to more powerfully test the SNP effect on disease in GWASs when they are conducted among different subjects. We propose a model for the joint effect of SNPs, methylation, and gene expression on disease risk and obtain the marginal model for SNPs by integrating out methylation and expression. We characterize all possible causal relations among SNPs, methylation, and expression and study the corresponding null hypotheses of no SNP effect in terms of the regression coefficients in the joint model. We develop a score test for variance components of regression coefficients to evaluate the genetic effect. We further propose an omnibus test to accommodate different models. We illustrate the utility of the proposed method in an asthma GWAS study, a brain tumor study, and numerical simulations.
Collapse
Affiliation(s)
- Yen-Tsung Huang
- Department of Epidemiology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
37
|
Provençal N, Suderman MJ, Guillemin C, Vitaro F, Côté SM, Hallett M, Tremblay RE, Szyf M. Association of childhood chronic physical aggression with a DNA methylation signature in adult human T cells. PLoS One 2014; 9:e89839. [PMID: 24691403 PMCID: PMC3972178 DOI: 10.1371/journal.pone.0089839] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 01/27/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Chronic physical aggression (CPA) is characterized by frequent use of physical aggression from early childhood to adolescence. Observed in approximately 5% of males, CPA is associated with early childhood adverse environments and long-term negative consequences. Alterations in DNA methylation, a covalent modification of DNA that regulates genome function, have been associated with early childhood adversity. AIMS To test the hypothesis that a trajectory of chronic physical aggression during childhood is associated with a distinct DNA methylation profile during adulthood. METHODS We analyzed genome-wide promoter DNA methylation profiles of T cells from two groups of adult males assessed annually for frequency of physical aggression between 6 and 15 years of age: a group with CPA and a control group. Methylation profiles covering the promoter regions of 20 000 genes and 400 microRNAs were generated using MeDIP followed by hybridization to microarrays. RESULTS In total, 448 distinct gene promoters were differentially methylated in CPA. Functionally, many of these genes have previously been shown to play a role in aggression and were enriched in biological pathways affected by behavior. Their locations in the genome tended to form clusters spanning millions of bases in the genome. CONCLUSIONS This study provides evidence of clustered and genome-wide variation in promoter DNA methylation in young adults that associates with a history of chronic physical aggression from 6 to 15 years of age. However, longitudinal studies of methylation during early childhood will be necessary to determine if and how this methylation variation in T cells DNA plays a role in early development of chronic physical aggression.
Collapse
Affiliation(s)
- Nadine Provençal
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
- Research Unit on Children's Psycho-Social Maladjustment and Sainte-Justine Hospital Research Center, University of Montreal, Montreal, Canada
- Sackler Program for Epigenetics and Psychobiology, McGill University, Montreal, Quebec, Canada
| | - Matthew J. Suderman
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
- Sackler Program for Epigenetics and Psychobiology, McGill University, Montreal, Quebec, Canada
- McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
| | - Claire Guillemin
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
- Research Unit on Children's Psycho-Social Maladjustment and Sainte-Justine Hospital Research Center, University of Montreal, Montreal, Canada
- Sackler Program for Epigenetics and Psychobiology, McGill University, Montreal, Quebec, Canada
| | - Frank Vitaro
- Research Unit on Children's Psycho-Social Maladjustment and Sainte-Justine Hospital Research Center, University of Montreal, Montreal, Canada
- School of Psycho-Education, University of Montreal, Montréal, Quebec, Canada
| | - Sylvana M. Côté
- Research Unit on Children's Psycho-Social Maladjustment and Sainte-Justine Hospital Research Center, University of Montreal, Montreal, Canada
- School of Social and Preventive Medicine, University of Montreal, Montréal, Quebec, Canada
| | - Michael Hallett
- McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
| | - Richard E. Tremblay
- Research Unit on Children's Psycho-Social Maladjustment and Sainte-Justine Hospital Research Center, University of Montreal, Montreal, Canada
- Department of Psychology and Pediatrics, University of Montreal, Montreal, Quebec, Canada
- School of Public Health, Physiotherapy and Population Sciences, University College Dublin, Dublin, Ireland
| | - Moshe Szyf
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
- Sackler Program for Epigenetics and Psychobiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
38
|
Cooper DN, Krawczak M, Polychronakos C, Tyler-Smith C, Kehrer-Sawatzki H. Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease. Hum Genet 2013; 132:1077-130. [PMID: 23820649 PMCID: PMC3778950 DOI: 10.1007/s00439-013-1331-2] [Citation(s) in RCA: 423] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/15/2013] [Indexed: 02/06/2023]
Abstract
Some individuals with a particular disease-causing mutation or genotype fail to express most if not all features of the disease in question, a phenomenon that is known as 'reduced (or incomplete) penetrance'. Reduced penetrance is not uncommon; indeed, there are many known examples of 'disease-causing mutations' that fail to cause disease in at least a proportion of the individuals who carry them. Reduced penetrance may therefore explain not only why genetic diseases are occasionally transmitted through unaffected parents, but also why healthy individuals can harbour quite large numbers of potentially disadvantageous variants in their genomes without suffering any obvious ill effects. Reduced penetrance can be a function of the specific mutation(s) involved or of allele dosage. It may also result from differential allelic expression, copy number variation or the modulating influence of additional genetic variants in cis or in trans. The penetrance of some pathogenic genotypes is known to be age- and/or sex-dependent. Variable penetrance may also reflect the action of unlinked modifier genes, epigenetic changes or environmental factors. At least in some cases, complete penetrance appears to require the presence of one or more genetic variants at other loci. In this review, we summarize the evidence for reduced penetrance being a widespread phenomenon in human genetics and explore some of the molecular mechanisms that may help to explain this enigmatic characteristic of human inherited disease.
Collapse
Affiliation(s)
- David N. Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN UK
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Christian-Albrechts University, 24105 Kiel, Germany
| | | | - Chris Tyler-Smith
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | | |
Collapse
|
39
|
Morrison FS, Locke JM, Wood AR, Tuke M, Pasko D, Murray A, Frayling T, Harries LW. The splice site variant rs11078928 may be associated with a genotype-dependent alteration in expression of GSDMB transcripts. BMC Genomics 2013; 14:627. [PMID: 24044605 PMCID: PMC3848490 DOI: 10.1186/1471-2164-14-627] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 09/16/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many genetic variants have been associated with susceptibility to complex traits by genome wide association studies (GWAS), but for most, causal genes and mechanisms of action have yet to be elucidated. Using bioinformatics, we identified index and proxy variants associated with autoimmune disease susceptibility, with the potential to affect splicing of candidate genes. PCR and sequence analysis of whole blood RNA samples from population controls was then carried out for the 8 most promising variants to determine the effect of genetic variation on splicing of target genes. RESULTS We identified 31 splice site SNPs with the potential to affect splicing, and prioritised 8 to determine the effect of genotype on candidate gene splicing. We identified that variants rs11078928 and rs2014886 were associated with altered splicing of the GSDMB and TSFM genes respectively. rs11078928, present in the asthma and autoimmune disease susceptibility locus on chromosome 17q12-21, was associated with the production of a novel Δ exon5-8 transcript of the GSDMB gene, and a separate decrease in the percentage of transcripts with inclusion of exon 6, whereas the multiple sclerosis susceptibility variant rs2014886, was associated with an alternative TFSM transcript encompassing a short cryptic exon within intron 2. CONCLUSIONS Our findings demonstrate the utility of a bioinformatic approach in identification and prioritisation of genetic variants effecting splicing of their host genes, and suggest that rs11078928 and rs2014886 may affect the splicing of the GSDMB and TSFM genes respectively.
Collapse
Affiliation(s)
- Faer S Morrison
- RNA mediated mechanisms of disease group, University of Exeter Medical School, EX2 5DW Exeter, UK.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Most asthma starts early in life. Defining phenotypes of asthma at this age is difficult as many preschool children have asthma-like respiratory symptoms. This review discusses progress in defining early wheezing phenotypes and describes genetic factors associated with the age of onset of asthma. RECENT FINDINGS Latent class analyses confirmed transient and persistent wheezing phenotypes, and identified a novel intermediate-onset wheezing phenotype that was strongly associated with atopy and asthma at age 8 years. However, no single cross-sectional or longitudinal definition of respiratory symptoms in childhood strongly predicts asthma later in life. Genome-wide association (GWA) studies have identified a locus on chromosome 17q12-21 (encoding ORMDL3 and GSDMB) as a risk factor for predominantly childhood-onset asthma, but not for atopy, and overall not for adult-onset asthma. Other loci found by GWA studies appear to increase asthma risk both in children and adults. Atopy genes do not explain early-onset asthma. SUMMARY Although most asthma starts early in life, no valid test is able to identify asthma at that age period. GWA studies have provided more insight into the unique and common genetic origins of adult-onset and childhood-onset asthma. The 17q12-21 locus is predominantly associated with childhood-onset asthma.
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Epigenetic mechanisms have the ability to alter the phenotype without changing the genetic code. The science of epigenetics has grown considerably in recent years, and future epigenetically based treatments or prevention strategies are likely. Epigenetic associations with asthma have received growing interest because genetic and environmental factors have been unable to independently explain the cause of asthma. RECENT FINDINGS Recent findings suggest that both the environment and underlying genetic sequence variation influence DNA methylation, which in turn seems to modify the risk conferred by genetic variants for various asthma phenotypes. In particular, DNA methylation may act as an archive of a variety of early developmental exposures, which then can modify the risk related to genetic variants. SUMMARY Current asthma treatments may control the symptoms of asthma but do not modify its natural history. Epigenetic mechanisms and novel explanatory models provide burgeoning approaches to significantly increase our understanding of the initiation and progression of asthma. Due to the inheritance of epigenetics, we anticipate a rapid emergence of critical information that will provide novel treatment strategies for asthma in the current generation and ultimately the prevention of asthma in future generations.
Collapse
|
42
|
Sex- and age-dependent DNA methylation at the 17q12-q21 locus associated with childhood asthma. Hum Genet 2013; 132:811-22. [PMID: 23546690 DOI: 10.1007/s00439-013-1298-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/18/2013] [Indexed: 12/31/2022]
Abstract
Chromosomal region 17q12-q21 is one of the best-replicated genome-wide association study (GWAS) hits and associated with childhood-onset asthma. However, the mechanism by which the genetic association is restricted to childhood-onset disease is unclear. During childhood, more boys than girls develop asthma. Therefore, we tested the hypothesis that the 17q12-q21 genetic association was sex-specific. Indeed, a TDT test showed that in the Saguenay-Lac-Saint-Jean familial collection, the 17q12-q21 association was significant among male, but not among female asthmatic subjects. We next hypothesized that the bias in the genetic association resulted from sex-specific and/or age-dependent DNA methylation at regulatory regions and determined the methylation profiles of five 17q12-q21 gene promoters using the bisulfite sequencing methylation assay. We identified a single regulatory region within the zona pellucida binding protein 2 (ZPBP2) gene, which showed statistically significant differences between males and females with respect to DNA methylation. DNA methylation also varied with age and was higher in adult males compared to boys. We have recently identified two functionally important polymorphisms, both within the ZPBP2 gene that influence expression levels of neighboring genes. Combined with the results of the present work, these data converge pointing to the same 5 kb region within the ZPBP2 gene as a critical region for both gene expression regulation and predisposition to asthma. Our data show that sex- and age-dependent DNA methylation may act as a modifier of genetic effects and influence the results of genetic association studies.
Collapse
|
43
|
Soto-Ramírez N, Arshad SH, Holloway JW, Zhang H, Schauberger E, Ewart S, Patil V, Karmaus W. The interaction of genetic variants and DNA methylation of the interleukin-4 receptor gene increase the risk of asthma at age 18 years. Clin Epigenetics 2013; 5:1. [PMID: 23286427 PMCID: PMC3544634 DOI: 10.1186/1868-7083-5-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 12/05/2012] [Indexed: 12/20/2022] Open
Abstract
Background The occurrence of asthma is weakly explained by known genetic variants. Epigenetic marks, DNA methylation (DNA-M) in particular, are considered to add to the explanation of asthma. However, no etiological model has yet been developed that integrates genetic variants and DNA-M. To explore a new model, we focused on one asthma candidate gene, the IL-4 receptor (IL4R). We hypothesized that genetic variants of IL4R in interaction with DNA-M at cytosine-phosphate-guanine (CpG) sites jointly alter the risk of asthma during adolescence. Blood samples were collected at age 18 years from 245 female cohort participants randomly selected for methylation analysis from a birth cohort (n = 1,456, Isle of Wight, UK). Genome-wide DNA-M was assessed using the Illumina Infinium HumanMethylation450 BeadChip. Results Thirteen single nucleotide polymorphisms (SNPs) and twelve CpG sites of IL4R gene were analyzed. Based on linkage disequilibrium and association with asthma, eight SNPs and one CpG site were selected for further analyses. Of the twelve CpG sites in the IL4R gene, only methylation levels of cg09791102 showed an association with asthma at age 18 years (Wilcoxon test: P = 0.01). Log-linear models were used to estimate risk ratios (RRs) for asthma adjusting for uncorrelated SNPs within the IL4R gene and covariates. Testing for interaction between the eight SNPs and the methylation levels of cg09791102 on the risk for asthma at age 18 years, we identified the statistically significant interaction term of SNP rs3024685 × methylation levels of cg09791102 (P = 0.002; after adjusting for false discovery rate). A total of 84 participants had methylation levels ≤0.88, 112 participants between 0.89 and 0.90, and 35 between 0.91 and 0.92. For the SNP rs3024685 (‘CC’ vs. ‘TT’) at methylation levels of ≤0.85, 0.86, 0.90, 0.91, and 0.92, the RRs were 0.01, 0.04, 4.65, 14.76, 14.90, respectively (interaction effect, P = 0.0003). Conclusions Adjusting for multiple testing, our results suggest that DNA-M modulates the risk of asthma related to genetic variants in the IL4R gene. The strong interaction of one SNP and DNA-M is encouraging and provides a novel model of how a joint effect of genetic variants and DNA-M can explain occurrence of asthma.
Collapse
Affiliation(s)
- Nelís Soto-Ramírez
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 800 Sumter Street, Columbia, SC, 29208, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Yang IV, Schwartz DA. Epigenetic mechanisms and the development of asthma. J Allergy Clin Immunol 2012; 130:1243-55. [PMID: 23026498 PMCID: PMC3518374 DOI: 10.1016/j.jaci.2012.07.052] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/26/2012] [Accepted: 07/27/2012] [Indexed: 12/19/2022]
Abstract
Asthma is heritable, influenced by the environment, and modified by in utero exposures and aging; all of these features are also common to epigenetic regulation. Furthermore, the transcription factors that are involved in the development of mature T cells that are critical to the T(H)2 immune phenotype in asthmatic patients are regulated by epigenetic mechanisms. Epigenetic marks (DNA methylation, modifications of histone tails, and noncoding RNAs) work in concert with other components of the cellular regulatory machinery to control the spatial and temporal levels of expressed genes. Technology to measure epigenetic marks on a genomic scale and comprehensive approaches to data analysis have recently emerged and continue to improve. Alterations in epigenetic marks have been associated with exposures relevant to asthma, particularly air pollution and tobacco smoke, as well as asthma phenotypes, in a few population-based studies. On the other hand, animal studies have begun to decipher the role of epigenetic regulation of gene expression associated with the development of allergic airway disease. Epigenetic mechanisms represent a promising line of inquiry that might, in part, explain the inheritance and immunobiology of asthma.
Collapse
Affiliation(s)
- Ivana V Yang
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | | |
Collapse
|
45
|
Kabesch M, Adcock IM. Epigenetics in asthma and COPD. Biochimie 2012; 94:2231-41. [PMID: 22874820 DOI: 10.1016/j.biochi.2012.07.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 07/20/2012] [Indexed: 12/20/2022]
Abstract
Epigenetic mechanisms are likely to play a role in many complex diseases, the extent of which we only beginning to understand. COPD and asthma are two respiratory diseases subject to strong environmental influences depending on underlying genetic susceptibility. Epigenetic mechanisms such as DNA methylation, histone modification and microRNA may be involved in these processes by modulating environmental effects to influence disease development. Given their demonstrated modifiable nature, epigenetic mechanisms may open new possibilities for therapeutic intervention. Here we give an overview of recent developments in the field of respiratory epigenetics in relation to asthma and COPD in the context of our current understanding of mechanisms leading to such diseases.
Collapse
Affiliation(s)
- Michael Kabesch
- Department of Pediatric Pneumology, Hannover Medical School, Allergy and Neonatology, Hannover, Germany.
| | | |
Collapse
|