1
|
Aouchiche K, Romanet P, Barlier A, Brue T, Pertuit M, Reynaud R, Saveanu A. CSNK2B Mutation: A Rare Cause of IGHD. Clin Endocrinol (Oxf) 2024. [PMID: 39676320 DOI: 10.1111/cen.15174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/05/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024]
Abstract
OBJECTIVE Poirier-Bienvenu neurodevelopmental syndrome (POBINDS) is a rare neurodevelopmental syndrome, resulting from germline heterozygous CSNKB2 pathogenic variants. The main presentations are severe epilepsy, delayed psychomotor development, and/or profound intellectual disability. More recently, CSNK2B pathogenic variants have been reported in patients with mild intellectual disability and no history of epileptic symptoms. Short stature is present in 66% of patients, in half of these cases due to proven growth hormone deficiency. METHODS Whole genome sequencing (WGS) was performed through a French genomic program for a patient with isolated growth hormone deficiency after negative next generation sequencing (NGS) results. NGS panel analysis of CSNK2B and genes involved in isolated growth hormone deficiency (IGHD) was performed in 44 patients from the Genhypopit network (n = 2144) with growth hormone deficiency (GHD) and intellectual disability (ID) or epilepsy and in a convenience cohort of 68 GHD patients. RESULTS We present the first case of POBINDS presenting mainly as growth delay due to GHD. Genome analysis revealed a de novo pathogenic variant in the translation initiation codon of CSNK2B (c.1 A > G, p.(Met1?)). The patient had mild intellectual disability and subsequent analysis of the patient's clinical history revealed that he had had febrile convulsions, compatible with POBINDS. No CSNK2B pathogenic variants were identified among the 44 selected patients with GHD and ID or epilepsy, or in a convenience cohort of 68 patients with GHD. CONCLUSION Although rare, pediatricians should be aware that POIBNDS syndrome may present as IGHD with mild ID.
Collapse
Affiliation(s)
- Karine Aouchiche
- Multidisciplinary Pediatric Department, Aix Marseille Univ, APHM, INSERM, MMG, UMR 1251, La Timone Children's Hospital, Marseille, France
| | - Pauline Romanet
- Aix Marseille Univ, APHM, INSERM, MMG, UMR 1251, La Timone University Hospital, Laboratory of Molecular Biology GEnOPé, Marseille, France
- GCS AURAGEN, Lyon, France
| | - Anne Barlier
- Aix Marseille Univ, APHM, INSERM, MMG, UMR 1251, La Timone University Hospital, Laboratory of Molecular Biology GEnOPé, Marseille, France
- Department of Endocrinology, Aix Marseille Univ, APHM, INSERM, MMG, MarMaRa Institute, UMR 1251, La Conception University Hospital, Marseille, France
| | - Thierry Brue
- Department of Endocrinology, Aix Marseille Univ, APHM, INSERM, MMG, MarMaRa Institute, UMR 1251, La Conception University Hospital, Marseille, France
| | - Morgane Pertuit
- Assistance-Publique des Hôpitaux de Marseille (AP-HM), La Timone University Hospital, Laboratory of Molecular Biology, Marseille, France
| | - Rachel Reynaud
- Multidisciplinary Pediatric Department, Aix Marseille Univ, APHM, INSERM, MMG, UMR 1251, La Timone Children's Hospital, Marseille, France
| | - Alexandru Saveanu
- Aix Marseille Univ, APHM, INSERM, MMG, UMR 1251, La Timone University Hospital, Laboratory of Molecular Biology GEnOPé, Marseille, France
- GCS AURAGEN, Lyon, France
| |
Collapse
|
2
|
Rumler H, Schmithals C, Werner C, Bollacke A, Aichele D, Götz C, Niefind K, Wünsch B, Jose J. Discovery of 7,9-Dibromo-dihydrodibenzofuran as a Potent Casein Kinase 2 (CK2) Inhibitor: Synthesis, Biological Evaluation, and Structural Studies on E-/ Z-Isomers. ACS Pharmacol Transl Sci 2024; 7:3846-3866. [PMID: 39698287 PMCID: PMC11651316 DOI: 10.1021/acsptsci.4c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024]
Abstract
The human protein kinase CK2 is a promising target for cancer treatment. Only two CK2 inhibitors have reached clinical trials until today. Among others, a dibenzofuran scaffold has emerged as highly prospective for the development of new CK2 inhibitors. Thirty-three newly synthesized dibenzofuran-based compounds were tested on their inhibitory potential in vitro. 7,9-Dichloro-8-hydroxy-4-[(phenylamino)methylene]-1,2-dihydro-dibenzo[b,d]furan-3(4H)-one (12b) and 7,9-dibromo-8-hydroxy-4-[(phenylamino)methylene]-1,2-dihydro-dibenzo[b,d]furan-3(4H)-one (12c) showed the lowest IC50 values with 5.8 nM for both. The dibenzofuran-based CK2 inhibitors crossed the cell membrane of LNCaP human prostate carcinoma cells and reduced intracellular CK2 activity. Among 70 kinases from different representative subgroups of the human kinome, CK2 was most strongly inhibited by compound 12c. Co-crystallization of 12c together with CK2α indicated a π-halogen bond of the bromine at position C9 with the gatekeeper amino acid Phe113. CK2α could bind both the E- and Z-isomers of 12c. Our results provide new insights into the structure-activity relationships of dibenzofuran derivatives.
Collapse
Affiliation(s)
- Hendrik Rumler
- University
of Münster, Institute of Pharmaceutical and Medicinal Chemistry,
Pharmacampus, Münster 48149, Germany
| | - Claudia Schmithals
- University
of Münster, Institute of Pharmaceutical and Medicinal Chemistry,
Pharmacampus, Münster 48149, Germany
| | - Christian Werner
- Institute
of Biochemistry, University of Cologne, Cologne 50674, Germany
| | - Andre Bollacke
- University
of Münster, Institute of Pharmaceutical and Medicinal Chemistry,
Pharmacampus, Münster 48149, Germany
| | - Dagmar Aichele
- University
of Münster, Institute of Pharmaceutical and Medicinal Chemistry,
Pharmacampus, Münster 48149, Germany
| | - Claudia Götz
- Medical Biochemistry
and Molecular Biology, Saarland University, Homburg 66421, Germany
| | - Karsten Niefind
- Institute
of Biochemistry, University of Cologne, Cologne 50674, Germany
| | - Bernhard Wünsch
- University
of Münster, Institute of Pharmaceutical and Medicinal Chemistry,
Pharmacampus, Münster 48149, Germany
| | - Joachim Jose
- University
of Münster, Institute of Pharmaceutical and Medicinal Chemistry,
Pharmacampus, Münster 48149, Germany
| |
Collapse
|
3
|
Ramadesikan S, Showpnil IA, Marhabaie M, Daley A, Varga EA, Gurusamy U, Pastore MT, Sites ER, Manickam M, Bartholomew DW, Hunter JM, White P, Wilson RK, Stottmann RW, Koboldt DC. Expanding the phenotypic spectrum of CSNK2A1-associated Okur-Chung neurodevelopmental syndrome. HGG ADVANCES 2024; 6:100379. [PMID: 39497417 PMCID: PMC11621934 DOI: 10.1016/j.xhgg.2024.100379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 12/09/2024] Open
Abstract
De novo variants in CSNK2A1 cause autosomal dominant Okur-Chung neurodevelopmental syndrome (OCNDS). OCNDS has an evolving clinical phenotype predominantly characterized by intellectual disability, global delays, dysmorphic features, and immunological manifestations. Microcephaly, defined as a small head circumference, is not widely recognized as a classical clinical presentation. Here, we describe four individuals from three unrelated families who shared several clinical features characteristic of an underlying syndromic neurodevelopmental condition. Trio clinical exome and research genome sequencing revealed that all affected individuals had heterozygous pathogenic missense variants in CSNK2A1. Two variants (c.468T>A p.Asp156Glu and c.149A>G p.Tyr50Cys) were de novo and previously reported, but the third variant (c.137G>T p.Gly46Val) is novel and segregated in two affected individuals in a family. This adds to growing evidence of inherited disease-causing variants in CSNK2A1, an observation reported only twice previously. A detailed phenotypic analysis of our cohort together with those individuals reported in the literature revealed that OCNDS individuals, on average, have a smaller head circumference with one-third presenting with microcephaly. We also show that the incidence of microcephaly is significantly correlated with the location of the variant in the encoded protein. Our findings suggest that small head circumference is a common but under-recognized feature of OCNDS, which may not be apparent at birth.
Collapse
Affiliation(s)
- Swetha Ramadesikan
- Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
| | - Iftekhar A Showpnil
- Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Mohammad Marhabaie
- Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Allison Daley
- Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Elizabeth A Varga
- Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Umamaheswaran Gurusamy
- Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Matthew T Pastore
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Emily R Sites
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Murugu Manickam
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Dennis W Bartholomew
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jesse M Hunter
- Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Peter White
- Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Richard K Wilson
- Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Rolf W Stottmann
- Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Daniel C Koboldt
- Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
4
|
Cossette ML, Stewart DT, Shafer ABA. Comparative Genomics of the World's Smallest Mammals Reveals Links to Echolocation, Metabolism, and Body Size Plasticity. Genome Biol Evol 2024; 16:evae225. [PMID: 39431406 PMCID: PMC11544316 DOI: 10.1093/gbe/evae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024] Open
Abstract
Originating 30 million years ago, shrews (Soricidae) have diversified into around 400 species worldwide. Shrews display a wide array of adaptations, with some species having developed distinctive traits such as echolocation, underwater diving, and venomous saliva. Accordingly, these tiny insectivores are ideal to study the genomic mechanisms of evolution and adaptation. We conducted a comparative genomic analysis of four shrew species and 16 other mammals to identify genomic variations unique to shrews. Using two existing shrew genomes and two de novo assemblies for the maritime (Sorex maritimensis) and smoky (Sorex fumeus) shrews, we identified mutations in conserved regions of the genomes, also known as accelerated regions, gene families that underwent significant expansion, and positively selected genes. Our analyses unveiled shrew-specific genomic variants in genes associated with the nervous, metabolic, and auditory systems, which can be linked to unique traits in shrews. Notably, genes suggested to be under convergent evolution in echolocating mammals exhibited accelerated regions in shrews, and pathways linked to putative body size plasticity were detected. These findings provide insight into the evolutionary mechanisms shaping shrew species, shedding light on their adaptation and divergence over time.
Collapse
Affiliation(s)
- Marie-Laurence Cossette
- Department of Environmental Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | | | - Aaron B A Shafer
- Department of Environmental Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
- Department of Forensic Science, Trent University, Peterborough, ON, Canada
| |
Collapse
|
5
|
Cruz-Gamero JM, Ballardin D, Lecis B, Zhang CL, Cobret L, Gast A, Morisset-Lopez S, Piskorowski R, Langui D, Jose J, Chevreux G, Rebholz H. Missense mutation in the activation segment of the kinase CK2 models Okur-Chung neurodevelopmental disorder and alters the hippocampal glutamatergic synapse. Mol Psychiatry 2024:10.1038/s41380-024-02762-8. [PMID: 39367055 DOI: 10.1038/s41380-024-02762-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 09/14/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024]
Abstract
Exome sequencing has enabled the identification of causative genes of monogenic forms of autism, amongst them, in 2016, CSNK2A1, the gene encoding the catalytic subunit of the kinase CK2, linking this kinase to Okur-Chung Neurodevelopmental Syndrome (OCNDS), a newly described neurodevelopmental condition with many symptoms resembling those of autism spectrum disorder. Thus far, no preclinical model of this condition exists. Here we describe a knock-in mouse model that harbors the K198R mutation in the activation segment of the α subunit of CK2. This region is a mutational hotspot, representing one-third of patients. These mice exhibit behavioral phenotypes that mirror patient symptoms. Homozygous knock-in mice die mid-gestation while heterozygous knock-in mice are born at half of the expected mendelian ratio and are smaller in weight and size than wildtype littermates. Heterozygous knock-in mice showed alterations in cognition and memory-assessing paradigms, enhanced stereotypies, altered circadian activity patterns, and nesting behavior. Phosphoproteome analysis from brain tissue revealed alterations in the phosphorylation status of major pre- and postsynaptic proteins of heterozygous knock-in mice. In congruence, we detect reduced synaptic maturation in hippocampal neurons and attenuated long-term potentiation in the hippocampus of knock-in mice. Taken together, heterozygous knock-in mice (CK2αK198R/+) exhibit significant face validity, presenting ASD-relevant phenotypes, synaptic deficits, and alterations in synaptic plasticity, all of which strongly validate this line as a mouse model of OCNDS.
Collapse
Affiliation(s)
- Jose M Cruz-Gamero
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Signaling mechanisms in neurological disorders, 75014, Paris, France
| | - Demetra Ballardin
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Signaling mechanisms in neurological disorders, 75014, Paris, France
| | - Barbara Lecis
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Signaling mechanisms in neurological disorders, 75014, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014, Paris, France
| | - Chun-Lei Zhang
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Signaling mechanisms in neurological disorders, 75014, Paris, France
| | - Laetitia Cobret
- Center for Molecular Biophysics-CNRS UPR 4301, Rue Charles Sadron, Orléans, France
| | - Alexander Gast
- Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, University of Münster, Münster, Germany
| | | | - Rebecca Piskorowski
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Signaling mechanisms in neurological disorders, 75014, Paris, France
| | - Dominique Langui
- Inserm, Institut du Cerveau, Plateforme ICM-Quant, Paris, France
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, University of Münster, Münster, Germany
| | | | - Heike Rebholz
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Signaling mechanisms in neurological disorders, 75014, Paris, France.
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014, Paris, France.
- Center of Neurodegeneration, Faculty of Medicine, Danube Private University, Krems, Austria.
| |
Collapse
|
6
|
Andjelkovic M, Klaassen K, Skakic A, Marjanovic I, Kravljanac R, Djordjevic M, Vucetic Tadic B, Kecman B, Pavlovic S, Stojiljkovic M. Characterization of 13 Novel Genetic Variants in Genes Associated with Epilepsy: Implications for Targeted Therapeutic Strategies. Mol Diagn Ther 2024; 28:645-663. [PMID: 39003674 PMCID: PMC11349789 DOI: 10.1007/s40291-024-00720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Childhood epilepsies are caused by heterogeneous underlying disorders where approximately 40% of the origins of epilepsy can be attributed to genetic factors. The application of next-generation sequencing (NGS) has revolutionized molecular diagnostics and has enabled the identification of disease-causing genes and variants in childhood epilepsies. The objective of this study was to use NGS to identify variants in patients with childhood epilepsy, to expand the variant spectrum and discover potential therapeutic targets. METHODS In our study, 55 children with epilepsy of unknown etiology were analyzed by combining clinical-exome and whole-exome sequencing. Novel variants were characterized using various in silico algorithms for pathogenicity and structure prediction. RESULTS The molecular genetic cause of epilepsy was identified in 28 patients and the overall diagnostic success rate was 50.9%. We identified variants in 22 different genes associated with epilepsy that correlate well with the described phenotype. SCN1A gene variants were found in five unrelated patients, while ALDH7A1 and KCNQ2 gene variants were found twice. In the other 19 genes, variants were found only in a single patient. This includes genes such as ASH1L, CSNK2B, RHOBTB2, and SLC13A5, which have only recently been associated with epilepsy. Almost half of diagnosed patients (46.4%) carried novel variants. Interestingly, we identified variants in ALDH7A1, KCNQ2, PNPO, SCN1A, and SCN2A resulting in gene-directed therapy decisions for 11 children from our study, including four children who all carried novel SCN1A genetic variants. CONCLUSIONS Described novel variants will contribute to a better understanding of the European genetic landscape, while insights into the genotype-phenotype correlation will contribute to a better understanding of childhood epilepsies worldwide. Given the expansion of molecular-based approaches, each newly identified genetic variant could become a potential therapeutic target.
Collapse
Affiliation(s)
- Marina Andjelkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Kristel Klaassen
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Anita Skakic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Irena Marjanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Ruzica Kravljanac
- Institute for Mother and Child Healthcare of Serbia, "Dr Vukan Cupic", Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Maja Djordjevic
- Institute for Mother and Child Healthcare of Serbia, "Dr Vukan Cupic", Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Biljana Vucetic Tadic
- Institute for Mother and Child Healthcare of Serbia, "Dr Vukan Cupic", Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Bozica Kecman
- Institute for Mother and Child Healthcare of Serbia, "Dr Vukan Cupic", Belgrade, Serbia
| | - Sonja Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Maja Stojiljkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia.
| |
Collapse
|
7
|
Blanc A, Bonnet C, Wandzel M, Roth V, Duffourd Y, Safraou H, Leheup B, Muller F, D Colne J, Feillet F, Schmitt E, Castro M, Savatt J, Burcheri A, Nemos C, Philippe C, Lambert L. Patient with a heterozygous pathogenic variant in CSNK2A1 gene: A new case to update the Okur-Chung neurodevelopmental syndrome. Am J Med Genet A 2024; 194:e63642. [PMID: 38711237 DOI: 10.1002/ajmg.a.63642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 05/08/2024]
Abstract
The autosomal dominant Okur-Chung neurodevelopmental syndrome (OCNDS: OMIM #617062) is a rare neurodevelopmental disorder first described in 2016. Features include developmental delay (DD), intellectual disability (ID), behavioral problems, hypotonia, language deficits, congenital heart abnormalities, and non-specific dysmorphic facial features. OCNDS is caused by heterozygous pathogenic variants in CSNK2A1 (OMIM *115440; NM_177559.3). To date, 160 patients have been diagnosed worldwide. The number will likely increase due to the growing use of exome sequencing (ES) and genome sequencing (GS). Here, we describe a novel OCNDS patient carrying a CSNK2A1 variant (NM_177559.3:c.140G>A; NP_808227.1:p.Arg47Gln). Phenotypically, he presented with DD, ID, generalized hypotonia, speech delay, short stature, microcephaly, and dysmorphic features such as low-set ears, hypertelorism, thin upper lip, and a round face. The patient showed several signs not yet described that may extend the phenotypic spectrum of OCNDS. These include prenatal bilateral clubfeet, exotropia, and peg lateral incisors. However, unlike the majority of descriptions, he did not present sleep disturbance, seizures or gait difficulties. A literature review shows phenotypic heterogeneity for OCNDS, whether these patients have the same variant or not. This case report is an opportunity to refine the phenotype of this syndrome and raise the question of the genotype-phenotype correlation.
Collapse
Affiliation(s)
- Albin Blanc
- Service de génétique clinique, CHRU de Nancy, Nancy, France
| | - Céline Bonnet
- Laboratoire de génétique médicale, CHRU Nancy, Nancy, France
- Université de Lorraine, INSERM UMR_S1256, NGERE, Nancy, France
| | - Marion Wandzel
- Laboratoire de génétique médicale, CHRU Nancy, Nancy, France
| | - Virginie Roth
- Laboratoire de génétique médicale, CHRU Nancy, Nancy, France
| | - Yannis Duffourd
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
- Université de Bourgogne, INSERM UMR_1231 GAD, Dijon, France
| | - Hanna Safraou
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
- Université de Bourgogne, INSERM UMR_1231 GAD, Dijon, France
| | - Bruno Leheup
- Université de Lorraine, INSERM UMR_S1256, NGERE, Nancy, France
| | - Florence Muller
- Service de Chirurgie orthopédique infantile, CHRU Nancy, Nancy, France
| | | | - François Feillet
- Université de Lorraine, INSERM UMR_S1256, NGERE, Nancy, France
- Centre de Référence des maladies métaboliques, CHRU Nancy, Nancy, France
| | | | - Matheus Castro
- Mendelics Genomic Analysis, São Paulo, Brazil
- Medical Genetics Unit, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo HCFMUSP, São Paulo, Brazil
| | - Jullian Savatt
- Autism & Developmental Medicine Institute, Danville, Pennsylvania, USA
| | - Adriano Burcheri
- Département de Biopathologie - Anatomie et Cytologie Pathologiques, CHRU de Nancy, Nancy, France
| | - Christophe Nemos
- Laboratoire de fœtopathologie et de placentologie, CHRU Nancy, Nancy, France
- Département d'histologie, embryologie et cytogénétique de la faculté de médecine, Université de Lorraine, Nancy, France
- Département de Génie Biologique Santé de l'IUT Nancy-Brabois, Université de Lorraine, Nancy, France
- Université de Lorraine Biofonctionnalités et Risques Neurotoxiques (Calbinotox), Nancy, France
| | - Christophe Philippe
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
- Université de Bourgogne, INSERM UMR_1231 GAD, Dijon, France
| | - Laëtitia Lambert
- Service de génétique clinique, CHRU de Nancy, Nancy, France
- Université de Lorraine, INSERM UMR_S1256, NGERE, Nancy, France
| |
Collapse
|
8
|
Goel H, O'Donnell S. Inherited loss of function variant in CSNK2A1: the oldest reported cases of Okur-Chung syndrome in a single family. Clin Dysmorphol 2024; 33:121-124. [PMID: 38818820 DOI: 10.1097/mcd.0000000000000502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Affiliation(s)
- Himanshu Goel
- General Genetics Service, Hunter Genetics, Waratah, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | | |
Collapse
|
9
|
Zhuri D, Dusenkalkan F, Tunca Alparslan G, Gurkan H. A Case of Okur-Chung Neurodevelopmental Syndrome with a Novel, de novo Variant on the CSNK2A1 Gene in a Turkish Patient. Mol Syndromol 2024; 15:43-50. [PMID: 38357263 PMCID: PMC10862324 DOI: 10.1159/000530585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/02/2023] [Indexed: 02/16/2024] Open
Abstract
Introduction Okur-Chung neurodevelopmental syndrome (OCNDS; #617062) has been associated with heterozygous mutations in the CSNK2A1 gene (*115440) mapped on the chromosome's 20p13 region. Case Presentation The analysis was performed on a 2-year-old patient who was admitted to our genetic diseases evaluation center by his family with a complaint of hypotonia. We detected a heterozygous NM_177559.3 (CSNK2A1):c.1139_1140dupGG (p.Met381GlyfsTer32) variant in the CSNK2A1 gene from a whole-exome sequence analysis. Conclusion The variant that we detected has not been reported in open-access databases to date, so it was evaluated as a novel likely pathogenic variant according to the ACMG-2015 criteria. No variant was detected upon segregation analysis of the patient's parents; therefore, the related variant was evaluated as de novo. In this study, we offer the first report of a pathogenic frameshift variant in the CSNK2A1 gene that has a relationship with OCNDS.
Collapse
Affiliation(s)
- Drenushe Zhuri
- Department of Medical Genetics, Trakya University Faculty of Medicine, Edirne, Turkey
| | - Fulya Dusenkalkan
- Department of Medical Genetics, Trakya University Faculty of Medicine, Edirne, Turkey
| | - Guzin Tunca Alparslan
- Department of Genetics and Bioengineering, Trakya University Faculty of Engineering, Edirne, Turkey
| | - Hakan Gurkan
- Department of Medical Genetics, Trakya University Faculty of Medicine, Edirne, Turkey
| |
Collapse
|
10
|
Rushing GV, Sills J. Patient organization perspective: a research roadmap for Okur-Chung Neurodevelopmental Syndrome. THERAPEUTIC ADVANCES IN RARE DISEASE 2024; 5:26330040241249763. [PMID: 39070093 PMCID: PMC11273705 DOI: 10.1177/26330040241249763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/05/2024] [Indexed: 07/30/2024]
Abstract
Okur-Chung neurodevelopmental syndrome (OCNDS) is an ultra-rare disorder caused by variants in the CSNK2A1 gene. CSNK2A1 encodes for the alpha subunit of casein kinase 2 (CK2), a serine/threonine kinase critical in neural development. CK2 is implicated in many human pathologies, including viral infections, cancer, inflammation, cardiovascular, neurodegenerative, and psychiatric diseases. However, the mechanism of action for the CSNK2A1 variants observed in OCNDS is not fully understood, although studies suggest a loss of function or altered substrate specificity. There are no approved treatments for OCNDS, and current treatments focus on symptom management. The CSNK2A1 Foundation was established in 2018 and aims to find a cure for OCNDS and provide support to affected individuals. OCNDS presents with symptoms at varying severity, including developmental delay/intellectual disabilities, autism, disrupted sleep, speech delays/inability to speak, short stature, and, in ~25% of cases, epilepsy. The foundation has developed a research toolbox that is readily available to researchers worldwide and has awarded ~$1 million in grant funding. These efforts have provided valuable insights into CK2 biology and the natural history of OCNDS. However, additional efforts are needed to fully characterize the disease mechanism and investigate potential treatment interventions. Continued investigation into CK2 and its role in neural development holds promise for a better understanding of OCNDS and related disorders in the future. To accelerate research, we have developed a research roadmap highlighting key focus areas of landscape analysis/toolbox expansion, biomarker development, and therapeutic testing through a series of steps that are nonlinear; we expect these efforts to guide decision-making for therapeutic exploration whether that be drug repurposing, gene therapy, novel drug discovery, or a combination. In this perspective article, we describe OCNDS and the CSNK2A1 gene, highlight gaps in OCNDS research, discuss the research roadmap, and offer the founder's perspective on our growth and future opportunities.
Collapse
|
11
|
Liu Y, Xia D, Zhong L, Chen L, Zhang L, Ai M, Mei R, Pang R. Casein Kinase 2 Affects Epilepsy by Regulating Ion Channels: A Potential Mechanism. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:894-905. [PMID: 37350003 DOI: 10.2174/1871527322666230622124618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 06/24/2023]
Abstract
Epilepsy, characterized by recurrent seizures and abnormal brain discharges, is the third most common chronic disorder of the Central Nervous System (CNS). Although significant progress has been made in the research on antiepileptic drugs (AEDs), approximately one-third of patients with epilepsy are refractory to these drugs. Thus, research on the pathogenesis of epilepsy is ongoing to find more effective treatments. Many pathological mechanisms are involved in epilepsy, including neuronal apoptosis, mossy fiber sprouting, neuroinflammation, and dysfunction of neuronal ion channels, leading to abnormal neuronal excitatory networks in the brain. CK2 (Casein kinase 2), which plays a critical role in modulating neuronal excitability and synaptic transmission, has been shown to be associated with epilepsy. However, there is limited research on the mechanisms involved. Recent studies have suggested that CK2 is involved in regulating the function of neuronal ion channels by directly phosphorylating them or their binding partners. Therefore, in this review, we will summarize recent research advances regarding the potential role of CK2 regulating ion channels in epilepsy, aiming to provide more evidence for future studies.
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Di Xia
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Lianmei Zhong
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Ling Chen
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, 650032, China
| | - Linming Zhang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Mingda Ai
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Rong Mei
- Department of Neurology, the First People's Hospital of Yunnan Province, Kunming, Yunnan, 650034, China
| | - Ruijing Pang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| |
Collapse
|
12
|
Brauner R, Bignon-Topalovic J, Bashamboo A, McElreavey K. Exome sequencing in 16 patients with pituitary stalk interruption syndrome: A monocentric study. PLoS One 2023; 18:e0292664. [PMID: 38096238 PMCID: PMC10721018 DOI: 10.1371/journal.pone.0292664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/26/2023] [Indexed: 12/17/2023] Open
Abstract
Pituitary stalk interruption syndrome (PSIS) is a rare disorder characterized by an absent or ectopic posterior pituitary, absent or interrupted pituitary stalk and anterior pituitary hypoplasia on magnetic resonance imaging (MRI), as well in some cases a range of heterogeneous somatic anomalies. The triad can be incomplete. Here, we performed exome sequencing on 16 sporadic patients, aged 0.4 to 13.7 years diagnosed with isolated or complex PSIS. Growth hormone deficiency was isolated in 10 cases, or associated with thyrotropin deficiency in 6 others (isolated (2 cases), associated with adrenocorticotropin deficiency (1 case), gonadotropins deficiency (1 case), or multiple deficiencies (2 cases)). Additional phenotypic anomalies were present in six cases (37.5%) including four with ophthalmic disorders. In 13 patients variants were identified that may contribute to the phenotype. However, only a single individual carried a variant classified as pathogenic. This child presented with the typical clinical presentation of Okur-Chung neurodevelopmental syndrome due to a CSNK2A1 missense variant. We also identified variants in the holoprosencephaly associated genes GLI2 and PTCH1. A likely pathogenic novel splice site variant in the GLI2 gene was observed in a child with PSIS and megacisterna magna. In the remaining 11 cases 26 variants in genes associated with pituitary development or function were identified and were classified of unknown significance. Compared with syndromic forms the diagnostic yield in the isolated forms of PSIS is low. Although we identified rare or novel missense variants in several hypogonadotropic hypogonadism genes (e.g. FGF17, HS6ST1, KISS1R, CHD7, IL17RD) definitively linking them to the PSIS phenotype is premature. A major challenge remains to identify pathogenic variants in cases with isolated PSIS.
Collapse
Affiliation(s)
- Raja Brauner
- Pediatric Endocrinology Unit, Hôpital Fondation Adolphe de Rothschild and Université Paris Cité, Paris, France
| | | | - Anu Bashamboo
- Human Developmental Genetic Unit, Institut Pasteur, Paris, France
| | - Ken McElreavey
- Human Developmental Genetic Unit, Institut Pasteur, Paris, France
| |
Collapse
|
13
|
Wafik M, Kuoppamaa H, Hirani P, Hignett J, Lillis S, Lascelles K, Sardesai S, Gomez K, Holder-Espinasse M. Two novel CSNK2A1 variants associated with mild Okur-Chung neurodevelopmental syndrome phenotype. Clin Dysmorphol 2023; 32:116-123. [PMID: 37195306 DOI: 10.1097/mcd.0000000000000456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Mohamed Wafik
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust
| | | | | | - John Hignett
- Viapath LLP, Guy's Hospital, 5th Floor Tower Wing
| | | | | | - Shweta Sardesai
- Community Paediatrics Medical Service, Oxleas NHS Foundation Trust
| | - Kumudini Gomez
- Department of Paediatrics, University Hospital Lewisham, London, UK
| | | |
Collapse
|
14
|
Al-Ayadhi L, Bhat RS, Alghamdi FA, Alhadlaq AS, El-Ansary A. Influence of Auditory Integrative Training on Casein Kinase 2 and Its Impact on Behavioral and Social Interaction in Children with Autism Spectrum Disorder. Curr Issues Mol Biol 2023; 45:4317-4330. [PMID: 37232743 DOI: 10.3390/cimb45050274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
Considerable disturbances in post-translational protein phosphorylation have recently been discovered in multiple neurological disorders. Casein kinase-2 (CK2) is a tetrameric Ser/Thr protein kinase that phosphorylates a large number of substrates and contributes in several cellular physiological and pathological processes. CK2 is highly expressed in the mammalian brain and catalyzes the phosphorylation of a large number of substrates that are crucial in neuronal or glial homeostasis and inflammatory signaling processes across synapses. In this study, we investigated the impact of auditory integration therapy (AIT) for the treatment of sensory processing abnormalities in autism on plasma CK2 levels. A total of 25 ASD children, aged between 5 and 12 years, were enrolled and participated in the present research study. AIT was performed for two weeks, for a period of 30 min, twice a day, with a 3 h interval between sessions. Before and after AIT, the Childhood Autism Rating Scale (CARS), Social Responsiveness Scale (SRS), and Short Sensory Profile (SSP) scores were calculated, and plasma CK2 levels were assayed using an ELISA test. The CARS and SRS indices of autism severity improved as a result of AIT, which could be related to the decreased level of plasma CK2. However, the mean value of the SSP scores was not significantly increased after AIT. The relationship between CK2 downregulation and glutamate excitotoxicity, neuro-inflammation, and leaky gut, as etiological mechanisms in ASD, was proposed and discussed. Further research, conducted on a larger scale and with a longer study duration, are required to assess whether the cognitive improvement in ASD children after AIT is related to the downregulation of CK2.
Collapse
Affiliation(s)
- Laila Al-Ayadhi
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh 11495, Saudi Arabia
- Autism Research and Treatment Center, Riyadh 12713, Saudi Arabia
| | - Ramesa Shafi Bhat
- Biochemistry Department, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Farah Ali Alghamdi
- College of Medicine, Dar Al Uloom University, Riyadh 13314, Saudi Arabia
| | | | - Afaf El-Ansary
- Autism Research and Treatment Center, Riyadh 12713, Saudi Arabia
- Autism Center, Lotus Holistic Medical Center, Abu Dhabi 110281, United Arab Emirates
| |
Collapse
|
15
|
Chen Y, Wang Y, Wang J, Zhou Z, Cao S, Zhang J. Strategies of Targeting CK2 in Drug Discovery: Challenges, Opportunities, and Emerging Prospects. J Med Chem 2023; 66:2257-2281. [PMID: 36745746 DOI: 10.1021/acs.jmedchem.2c01523] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CK2 (casein kinase 2) is a serine/threonine protein kinase that is ubiquitous in eukaryotic cells and plays important roles in a variety of cellular functions, including cell growth, apoptosis, circadian rhythms, DNA damage repair, transcription, and translation. CK2 is involved in cancer pathogenesis and the occurrence of many diseases. Therefore, targeting CK2 is a promising therapeutic strategy. Although many CK2-specific small-molecule inhibitors have been developed, only CX-4945 has progressed to clinical trials. In recent years, novel CK2 inhibitors have gradually become a research hotspot, which is expected to overcome the limitations of traditional inhibitors. Herein, we summarize the structure, biological functions, and disease relevance of CK2 and emphatically analyze the structure-activity relationship (SAR) and binding modes of small-molecule CK2 inhibitors. We also discuss the latest progress of novel strategies, providing insights into new drugs targeting CK2 for clinical practice.
Collapse
Affiliation(s)
- Yijia Chen
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yuxi Wang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Tianfu Jincheng Laboratory, Chengdu, Sichuan 610041, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Zhilan Zhou
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shu Cao
- West China School of Stomatology Sichuan University, Chengdu, Sichuan 610064, China
| | - Jifa Zhang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Tianfu Jincheng Laboratory, Chengdu, Sichuan 610041, China
| |
Collapse
|
16
|
Dissection of mendelian predisposition and complex genetic architecture of craniovertebral junction malformation. Hum Genet 2023; 142:89-101. [PMID: 36098810 DOI: 10.1007/s00439-022-02474-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/15/2022] [Indexed: 01/18/2023]
Abstract
The craniovertebral junction (CVJ) is an anatomically complex region of the axial skeleton that provides protection of the brainstem and the upper cervical spinal cord. Structural malformation of the CVJ gives rise to life-threatening neurological deficits, such as quadriplegia and dyspnea. Unfortunately, genetic studies on human subjects with CVJ malformation are limited and the pathogenesis remains largely elusive. In this study, we recruited 93 individuals with CVJ malformation and performed exome sequencing. Manual interpretation of the data identified three pathogenic variants in genes associated with Mendelian diseases, including CSNK2A1, MSX2, and DDX3X. In addition, the contribution of copy number variations (CNVs) to CVJ malformation was investigated and three pathogenic CNVs were identified in three affected individuals. To further dissect the complex mutational architecture of CVJ malformation, we performed a gene-based rare variant association analysis utilizing 4371 in-house exomes as control. Rare variants in LGI4 (carrier rate = 3.26%, p = 3.3 × 10-5) and BEST1 (carrier rate = 5.43%, p = 5.77 × 10-6) were identified to be associated with CVJ malformation. Furthermore, gene set analyses revealed that extracellular matrix- and RHO GTPase-associated biological pathways were found to be involved in the etiology of CVJ malformation. Overall, we comprehensively dissected the genetic underpinnings of CVJ malformation and identified several novel disease-associated genes and biological pathways.
Collapse
|
17
|
Unni P, Friend J, Weinberg J, Okur V, Hochscherf J, Dominguez I. Predictive functional, statistical and structural analysis of CSNK2A1 and CSNK2B variants linked to neurodevelopmental diseases. Front Mol Biosci 2022; 9:851547. [PMID: 36310603 PMCID: PMC9608649 DOI: 10.3389/fmolb.2022.851547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/29/2022] [Indexed: 12/02/2022] Open
Abstract
Okur-Chung Neurodevelopmental Syndrome (OCNDS) and Poirier-Bienvenu Neurodevelopmental Syndrome (POBINDS) were recently identified as rare neurodevelopmental disorders. OCNDS and POBINDS are associated with heterozygous mutations in the CSNK2A1 and CSNK2B genes which encode CK2α, a serine/threonine protein kinase, and CK2β, a regulatory protein, respectively, which together can form a tetrameric enzyme called protein kinase CK2. A challenge in OCNDS and POBINDS is to understand the genetic basis of these diseases and the effect of the various CK2⍺ and CK2β mutations. In this study we have collected all variants available to date in CSNK2A1 and CSNK2B, and identified hotspots. We have investigated CK2⍺ and CK2β missense mutations through prediction programs which consider the evolutionary conservation, functionality and structure or these two proteins, compared these results with published experimental data on CK2α and CK2β mutants, and suggested prediction programs that could help predict changes in functionality of CK2α mutants. We also investigated the potential effect of CK2α and CK2β mutations on the 3D structure of the proteins and in their binding to each other. These results indicate that there are functional and structural consequences of mutation of CK2α and CK2β, and provide a rationale for further study of OCNDS and POBINDS-associated mutations. These data contribute to understanding the genetic and functional basis of these diseases, which is needed to identify their underlying mechanisms.
Collapse
Affiliation(s)
- Prasida Unni
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston University, Boston, MA, United States
| | - Jack Friend
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston University, Boston, MA, United States
| | - Janice Weinberg
- Department of Biostatistics, Boston University School of Public Health, Boston University, Boston, MA, United States
| | - Volkan Okur
- New York Genome Center, New York, NY, United States
| | - Jennifer Hochscherf
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Isabel Dominguez
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston University, Boston, MA, United States
- *Correspondence: Isabel Dominguez,
| |
Collapse
|
18
|
Schobers G, Schieving JH, Yntema HG, Pennings M, Pfundt R, Derks R, Hofste T, de Wijs I, Wieskamp N, van den Heuvel S, Galbany JC, Gilissen C, Nelen M, Brunner HG, Kleefstra T, Kamsteeg EJ, Willemsen MAAP, Vissers LELM. Reanalysis of exome negative patients with rare disease: a pragmatic workflow for diagnostic applications. Genome Med 2022; 14:66. [PMID: 35710456 PMCID: PMC9204949 DOI: 10.1186/s13073-022-01069-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background Approximately two third of patients with a rare genetic disease remain undiagnosed after exome sequencing (ES). As part of our post-test counseling procedures, patients without a conclusive diagnosis are advised to recontact their referring clinician to discuss new diagnostic opportunities in due time. We performed a systematic study of genetically undiagnosed patients 5 years after their initial negative ES report to determine the efficiency of diverse reanalysis strategies. Methods We revisited a cohort of 150 pediatric neurology patients originally enrolled at Radboud University Medical Center, of whom 103 initially remained genetically undiagnosed. We monitored uptake of physician-initiated routine clinical and/or genetic re-evaluation (ad hoc re-evaluation) and performed systematic reanalysis, including ES-based resequencing, of all genetically undiagnosed patients (systematic re-evaluation). Results Ad hoc re-evaluation was initiated for 45 of 103 patients and yielded 18 diagnoses (including 1 non-genetic). Subsequent systematic re-evaluation identified another 14 diagnoses, increasing the diagnostic yield in our cohort from 31% (47/150) to 53% (79/150). New genetic diagnoses were established by reclassification of previously identified variants (10%, 3/31), reanalysis with enhanced bioinformatic pipelines (19%, 6/31), improved coverage after resequencing (29%, 9/31), and new disease-gene associations (42%, 13/31). Crucially, our systematic study also showed that 11 of the 14 further conclusive genetic diagnoses were made in patients without a genetic diagnosis that did not recontact their referring clinician. Conclusions We find that upon re-evaluation of undiagnosed patients, both reanalysis of existing ES data as well as resequencing strategies are needed to identify additional genetic diagnoses. Importantly, not all patients are routinely re-evaluated in clinical care, prolonging their diagnostic trajectory, unless systematic reanalysis is facilitated. We have translated our observations into considerations for systematic and ad hoc reanalysis in routine genetic care. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01069-z.
Collapse
Affiliation(s)
- Gaby Schobers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Jolanda H Schieving
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Department of Pediatric Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Helger G Yntema
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maartje Pennings
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronny Derks
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom Hofste
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ilse de Wijs
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nienke Wieskamp
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Simone van den Heuvel
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jordi Corominas Galbany
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Marcel Nelen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Han G Brunner
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michèl A A P Willemsen
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Department of Pediatric Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands. .,Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| |
Collapse
|
19
|
Ballardin D, Cruz-Gamero JM, Bienvenu T, Rebholz H. Comparing Two Neurodevelopmental Disorders Linked to CK2: Okur-Chung Neurodevelopmental Syndrome and Poirier-Bienvenu Neurodevelopmental Syndrome—Two Sides of the Same Coin? Front Mol Biosci 2022; 9:850559. [PMID: 35693553 PMCID: PMC9182197 DOI: 10.3389/fmolb.2022.850559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/01/2022] [Indexed: 12/27/2022] Open
Abstract
In recent years, variants in the catalytic and regulatory subunits of the kinase CK2 have been found to underlie two different, yet symptomatically overlapping neurodevelopmental disorders, termed Okur-Chung neurodevelopmental syndrome (OCNDS) and Poirier-Bienvenu neurodevelopmental syndrome (POBINDS). Both conditions are predominantly caused by de novo missense or nonsense mono-allelic variants. They are characterized by a generalized developmental delay, intellectual disability, behavioral problems (hyperactivity, repetitive movements and social interaction deficits), hypotonia, motricity and verbalization deficits. One of the main features of POBINDS is epilepsies, which are present with much lower prevalence in patients with OCNDS. While a role for CK2 in brain functioning and development is well acknowledged, these findings for the first time clearly link CK2 to defined brain disorders. Our review will bring together patient data for both syndromes, aiming to link symptoms with genotypes, and to rationalize the symptoms through known cellular functions of CK2 that have been identified in preclinical and biochemical contexts. We will also compare the symptomatology and elaborate the specificities that distinguish the two syndromes.
Collapse
Affiliation(s)
- Demetra Ballardin
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Jose M. Cruz-Gamero
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
| | - Thierry Bienvenu
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
- Service de Médecine Génomique des Maladies de Système et d’organe, Hôpital Cochin, APHP, Centre Université de Paris, Paris, France
| | - Heike Rebholz
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
- Center of Neurodegeneration, Faculty of Medicine, Danube Private University, Krems, Austria
- *Correspondence: Heike Rebholz,
| |
Collapse
|
20
|
Caefer DM, Phan NQ, Liddle JC, Balsbaugh JL, O'Shea JP, Tzingounis AV, Schwartz D. The Okur-Chung Neurodevelopmental Syndrome Mutation CK2 K198R Leads to a Rewiring of Kinase Specificity. Front Mol Biosci 2022; 9:850661. [PMID: 35517865 PMCID: PMC9062000 DOI: 10.3389/fmolb.2022.850661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Okur-Chung Neurodevelopmental Syndrome (OCNDS) is caused by heterozygous mutations to the CSNK2A1 gene, which encodes the alpha subunit of protein kinase CK2. The most frequently occurring mutation is lysine 198 to arginine (K198R). To investigate the impact of this mutation, we first generated a high-resolution phosphorylation motif of CK2WT, including the first characterization of specificity for tyrosine phosphorylation activity. A second high resolution motif representing CK2K198R substrate specificity was also generated. Here we report the impact of the OCNDS associated CK2K198R mutation. Contrary to prior speculation, the mutation does not result in a complete loss of function, but rather shifts the substrate specificity of the kinase. Broadly speaking the mutation leads to 1) a decreased preference for acidic residues in the +1 position, 2) a decreased preference for threonine phosphorylation, 3) an increased preference for tyrosine phosphorylation, and 4) an alteration of the tyrosine phosphorylation specificity motif. To further investigate the result of this mutation we have developed a probability-based scoring method, allowing us to predict shifts in phosphorylation in the K198R mutant relative to the wild type kinase. As an initial step we have applied the methodology to the set of axonally localized ion channels in an effort to uncover potential alterations of the phosphoproteome associated with the OCNDS disease condition.
Collapse
Affiliation(s)
- Danielle M Caefer
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Nhat Q Phan
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Jennifer C Liddle
- Center for Open Research Resources and Equipment, Proteomics and Metabolomics Facility, University of Connecticut, Storrs, CT, United States
| | - Jeremy L Balsbaugh
- Center for Open Research Resources and Equipment, Proteomics and Metabolomics Facility, University of Connecticut, Storrs, CT, United States
| | - Joseph P O'Shea
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Anastasios V Tzingounis
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Daniel Schwartz
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
21
|
Werner C, Gast A, Lindenblatt D, Nickelsen A, Niefind K, Jose J, Hochscherf J. Structural and Enzymological Evidence for an Altered Substrate Specificity in Okur-Chung Neurodevelopmental Syndrome Mutant CK2αLys198Arg. Front Mol Biosci 2022; 9:831693. [PMID: 35445078 PMCID: PMC9014129 DOI: 10.3389/fmolb.2022.831693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Specific de novo mutations in the CSNK2A1 gene, which encodes CK2α, the catalytic subunit of protein kinase CK2, are considered as causative for the Okur-Chung neurodevelopmental syndrome (OCNDS). OCNDS is a rare congenital disease with a high phenotypic diversity ranging from neurodevelopmental disabilities to multi-systemic problems and characteristic facial features. A frequent OCNDS mutation is the exchange of Lys198 to Arg at the center of CK2α′s P+1 loop, a key element of substrate recognition. According to preliminary data recently made available, this mutation causes a significant shift of the substrate specificity of the enzyme. We expressed the CK2αLys198Arg recombinantly and characterized it biophysically and structurally. Using isothermal titration calorimetry (ITC), fluorescence quenching and differential scanning fluorimetry (Thermofluor), we found that the mutation does not affect the interaction with CK2β, the non-catalytic CK2 subunit, and that the thermal stability of the protein is even slightly increased. However, a CK2αLys198Arg crystal structure and its comparison with wild-type structures revealed a significant shift of the anion binding site harboured by the P+1 loop. This observation supports the notion that the Lys198Arg mutation causes an alteration of substrate specificity which we underpinned here with enzymological data.
Collapse
Affiliation(s)
- Christian Werner
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Alexander Gast
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Dirk Lindenblatt
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Anna Nickelsen
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Karsten Niefind
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Jennifer Hochscherf
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
- *Correspondence: Jennifer Hochscherf,
| |
Collapse
|
22
|
Murakami H, Uehara T, Enomoto Y, Nishimura N, Kumaki T, Kuroda Y, Asano M, Aida N, Kosaki K, Kurosawa K. Persistent Hyperplastic Primary Vitreous with Microphthalmia and Coloboma in a Patient with Okur-Chung Neurodevelopmental Syndrome. Mol Syndromol 2022; 13:75-79. [PMID: 35221879 PMCID: PMC8832215 DOI: 10.1159/000517977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/18/2021] [Indexed: 07/23/2024] Open
Abstract
Okur-Chung neurodevelopmental syndrome is a rare autosomal dominant disorder caused by pathogenic variants in CSNK2A1, which encodes the alpha 1 catalytic subunit of -casein kinase II. This syndrome is characterized by intellectual disability, developmental delay, and multisystemic -abnormalities including those of the brain, extremities, and skin as well as cardiovascular, gastrointestinal, and immune systems. In this study, we describe a 5-year-old boy with a de novo novel nonsense variant in CSNK2A1, NM_001895.3:c.319C>T (p.Arg107*). He showed bilateral persistent hyperplastic primary vitreous with microphthalmia, lens dysplasia, and coloboma. Ocular manifestations are very rare in this syndrome, and this study expands the spectrum of the clinical presentations of this syndrome.
Collapse
Affiliation(s)
- Hiroaki Murakami
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Tomoko Uehara
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Yumi Enomoto
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Naoto Nishimura
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Tatsuro Kumaki
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yukiko Kuroda
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Mizuki Asano
- Department of Ophthalmology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Noriko Aida
- Department of Radiology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| |
Collapse
|
23
|
Ranganath P, Ranganath P, Vineeth VS, Dalal A, Patil SJ. Report of an Asian-Indian patient with Okur-Chung Syndrome and comparison of the clinical phenotype in different ethnic groups. Clin Dysmorphol 2021; 30:209-212. [PMID: 34417372 DOI: 10.1097/mcd.0000000000000383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Priya Ranganath
- Department of Medical genetics, Nizam's Institute of Medical Sciences
| | - Prajnya Ranganath
- Department of Medical genetics, Nizam's Institute of Medical Sciences
| | - V S Vineeth
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana
| | - Ashwin Dalal
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana
| | - Siddaramappa J Patil
- Division of Medical Genetics, Mazumdar Shaw Medical Centre, Narayana Hrudayalaya Hospitals, Bangalore, Karnataka, India
| |
Collapse
|
24
|
CK2 Regulation: Perspectives in 2021. Biomedicines 2021; 9:biomedicines9101361. [PMID: 34680478 PMCID: PMC8533506 DOI: 10.3390/biomedicines9101361] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/20/2022] Open
Abstract
The protein kinase CK2 (CK2) family encompasses a small number of acidophilic serine/threonine kinases that phosphorylate substrates involved in numerous biological processes including apoptosis, cell proliferation, and the DNA damage response. CK2 has also been implicated in many human malignancies and other disorders including Alzheimer′s and Parkinson’s diseases, and COVID-19. Interestingly, no single mechanism describes how CK2 is regulated, including activation by external proteins or domains, phosphorylation, or dimerization. Furthermore, the kinase has an elongated activation loop that locks the kinase into an active conformation, leading CK2 to be labelled a constitutively active kinase. This presents an interesting paradox that remains unanswered: how can a constitutively active kinase regulate biological processes that require careful control? Here, we highlight a selection of studies where CK2 activity is regulated at the substrate level, and discuss them based on the regulatory mechanism. Overall, this review describes numerous biological processes where CK2 activity is regulated, highlighting how a constitutively active kinase can still control numerous cellular activities. It is also evident that more research is required to fully elucidate the mechanisms that regulate CK2 and what causes aberrant CK2 signaling in disease.
Collapse
|
25
|
Wu RH, Tang WT, Qiu KY, Li XJ, Tang DX, Meng Z, He ZW. Identification of novel CSNK2A1 variants and the genotype-phenotype relationship in patients with Okur-Chung neurodevelopmental syndrome: a case report and systematic literature review. J Int Med Res 2021; 49:3000605211017063. [PMID: 34038195 PMCID: PMC8161887 DOI: 10.1177/03000605211017063] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
De novo germline variants of the casein kinase 2α subunit (CK2α) gene (CSNK2A1) have been reported in individuals with the congenital neuropsychiatric disorder Okur-Chung neurodevelopmental syndrome (OCNS). Here, we report on two unrelated children with OCNS and review the literature to explore the genotype-phenotype relationship in OCNS. Both children showed facial dysmorphism, growth retardation, and neuropsychiatric disorders. Using whole-exome sequencing, we identified two novel de novo CSNK2A1 variants: c.479A>G p.(H160R) and c.238C>T p.(R80C). A search of the literature identified 12 studies that provided information on 35 CSNK2A1 variants in various protein-coding regions of CK2α. By quantitatively analyzing data related to these CSNK2A1 variants and their corresponding phenotypes, we showed for the first time that mutations in protein-coding CK2α regions appear to influence the phenotypic spectrum of OCNS. Mutations altering the ATP/GTP-binding loop were more likely to cause the widest range of phenotypes. Therefore, any assessment of clinical spectra for this disorder should be extremely thorough. This study not only expands the mutational spectrum of OCNS, but also provides a comprehensive overview to improve our understanding of the genotype-phenotype relationship in OCNS.
Collapse
Affiliation(s)
- Ruo-Hao Wu
- Department of Children's Neuroendocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, P. R. China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong High Education Institutes, Sun Yat-sen University Guangzhou, P. R. China
| | - Wen-Ting Tang
- Department of Research and Molecular Diagnostics, Sun Yat-sen Cancer Center, Sun Yat-sen University Guangzhou, P. R. China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 71067Sun Yat-sen University Cancer Center Guangzhou, P. R. China
| | - Kun-Yin Qiu
- Department of Children's Neuroendocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, P. R. China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong High Education Institutes, Sun Yat-sen University Guangzhou, P. R. China
| | - Xiao-Juan Li
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong High Education Institutes, Sun Yat-sen University Guangzhou, P. R. China.,Department of Research and Molecular Diagnostics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, P. R. China
| | - Dan-Xia Tang
- Department of Children's Neuroendocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, P. R. China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong High Education Institutes, Sun Yat-sen University Guangzhou, P. R. China
| | - Zhe Meng
- Department of Children's Neuroendocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, P. R. China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong High Education Institutes, Sun Yat-sen University Guangzhou, P. R. China
| | - Zhan-Wen He
- Department of Children's Neuroendocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, P. R. China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong High Education Institutes, Sun Yat-sen University Guangzhou, P. R. China
| |
Collapse
|
26
|
Ernst ME, Baugh EH, Thomas A, Bier L, Lippa N, Stong N, Mulhern MS, Kushary S, Akman CI, Heinzen EL, Yeh R, Bi W, Hanchard NA, Burrage LC, Leduc MS, Chong JSC, Bend R, Lyons MJ, Lee JA, Suwannarat P, Brilstra E, Simon M, Koopmans M, van Binsbergen E, Groepper D, Fleischer J, Nava C, Keren B, Mignot C, Mathieu S, Mancini GMS, Madan-Khetarpal S, Infante EM, Bluvstein J, Seeley A, Bachman K, Klee EW, Schultz-Rogers LE, Hasadsri L, Barnett S, Ellingson MS, Ferber MJ, Narayanan V, Ramsey K, Rauch A, Joset P, Steindl K, Sheehan T, Poduri A, Vasquez A, Ruivenkamp C, White SM, Pais L, Monaghan KG, Goldstein DB, Sands TT, Aggarwal V. CSNK2B: A broad spectrum of neurodevelopmental disability and epilepsy severity. Epilepsia 2021; 62:e103-e109. [PMID: 34041744 DOI: 10.1111/epi.16931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/29/2022]
Abstract
CSNK2B has recently been implicated as a disease gene for neurodevelopmental disability (NDD) and epilepsy. Information about developmental outcomes has been limited by the young age and short follow-up for many of the previously reported cases, and further delineation of the spectrum of associated phenotypes is needed. We present 25 new patients with variants in CSNK2B and refine the associated NDD and epilepsy phenotypes. CSNK2B variants were identified by research or clinical exome sequencing, and investigators from different centers were connected via GeneMatcher. Most individuals had developmental delay and generalized epilepsy with onset in the first 2 years. However, we found a broad spectrum of phenotypic severity, ranging from early normal development with pharmacoresponsive seizures to profound intellectual disability with intractable epilepsy and recurrent refractory status epilepticus. These findings suggest that CSNK2B should be considered in the diagnostic evaluation of patients with a broad range of NDD with treatable or intractable seizures.
Collapse
Affiliation(s)
- Michelle E Ernst
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA.,Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Evan H Baugh
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Amanda Thomas
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Louise Bier
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Natalie Lippa
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Nicholas Stong
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Maureen S Mulhern
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Sulagna Kushary
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Cigdem I Akman
- Department of Neurology, The Neurological Institute of New York, Columbia University Irving Medical Center, New York, NY, USA
| | - Erin L Heinzen
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA.,Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Raymond Yeh
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Neil A Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Magalie S Leduc
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Josephine S C Chong
- Joint CUHK-Baylor Center of Medical Genetics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Renee Bend
- Greenwood Genetic Center, Greenwood, SC, USA
| | | | | | - Pim Suwannarat
- Mid-Atlantic Permanente Medical Group, Rockville, MD, USA
| | - Eva Brilstra
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marleen Simon
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marije Koopmans
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ellen van Binsbergen
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Daniel Groepper
- Department of Pediatrics, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Julie Fleischer
- Department of Pediatrics, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Caroline Nava
- Department of Genetics, APHP Sorbonne University, Paris, France
| | - Boris Keren
- Department of Genetics, APHP Sorbonne University, Paris, France
| | - Cyril Mignot
- Department of Genetics, APHP Sorbonne University, Paris, France.,Reference Center for Intellectual Disabilities of Rare Causes, Paris, France
| | - Sophie Mathieu
- Department of Neuropediatrics, APHP Sorbonne University, Trousseau Hospital, Paris, France
| | - Grazia M S Mancini
- Department of Clinical Genetics, ErasmusMC University Medical Center, Rotterdam, The Netherlands
| | | | - Elena M Infante
- Department of Medical Genetics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Laura E Schultz-Rogers
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Linda Hasadsri
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Sarah Barnett
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Marissa S Ellingson
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Matthew J Ferber
- Clinical Genome Sequencing Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Keri Ramsey
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Anita Rauch
- Institute of Medical Genetics, University of Zürich, Schlieren, Zürich, Switzerland
| | - Pascal Joset
- Institute of Medical Genetics, University of Zürich, Schlieren, Zürich, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zürich, Schlieren, Zürich, Switzerland
| | - Theodore Sheehan
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Annapurna Poduri
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Alejandra Vasquez
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Division of Child and Adolescent Neurology, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Claudia Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Susan M White
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Lynn Pais
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Tristan T Sands
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA.,Department of Neurology, The Neurological Institute of New York, Columbia University Irving Medical Center, New York, NY, USA
| | - Vimla Aggarwal
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
27
|
Protein kinase CK2: a potential therapeutic target for diverse human diseases. Signal Transduct Target Ther 2021; 6:183. [PMID: 33994545 PMCID: PMC8126563 DOI: 10.1038/s41392-021-00567-7] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/04/2023] Open
Abstract
CK2 is a constitutively active Ser/Thr protein kinase, which phosphorylates hundreds of substrates, controls several signaling pathways, and is implicated in a plethora of human diseases. Its best documented role is in cancer, where it regulates practically all malignant hallmarks. Other well-known functions of CK2 are in human infections; in particular, several viruses exploit host cell CK2 for their life cycle. Very recently, also SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has been found to enhance CK2 activity and to induce the phosphorylation of several CK2 substrates (either viral and host proteins). CK2 is also considered an emerging target for neurological diseases, inflammation and autoimmune disorders, diverse ophthalmic pathologies, diabetes, and obesity. In addition, CK2 activity has been associated with cardiovascular diseases, as cardiac ischemia-reperfusion injury, atherosclerosis, and cardiac hypertrophy. The hypothesis of considering CK2 inhibition for cystic fibrosis therapies has been also entertained for many years. Moreover, psychiatric disorders and syndromes due to CK2 mutations have been recently identified. On these bases, CK2 is emerging as an increasingly attractive target in various fields of human medicine, with the advantage that several very specific and effective inhibitors are already available. Here, we review the literature on CK2 implication in different human pathologies and evaluate its potential as a pharmacological target in the light of the most recent findings.
Collapse
|
28
|
Dominguez I, Cruz-Gamero JM, Corasolla V, Dacher N, Rangasamy S, Urbani A, Narayanan V, Rebholz H. Okur-Chung neurodevelopmental syndrome-linked CK2α variants have reduced kinase activity. Hum Genet 2021; 140:1077-1096. [PMID: 33944995 DOI: 10.1007/s00439-021-02280-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/31/2021] [Indexed: 12/22/2022]
Abstract
The Okur-Chung neurodevelopmental syndrome, or OCNDS, is a newly discovered rare neurodevelopmental disorder. It is characterized by developmental delay, intellectual disability, behavioral problems (hyperactivity, repetitive movements and social interaction deficits), hypotonia, epilepsy and language/verbalization deficits. OCNDS is linked to de novo mutations in CSNK2A1, that lead to missense or deletion/truncating variants in the encoded protein, the protein kinase CK2α. Eighteen different missense CK2α mutations have been identified to date; however, no biochemical or cell biological studies have yet been performed to clarify the functional impact of such mutations. Here, we show that 15 different missense CK2α mutations lead to varying degrees of loss of kinase activity as recombinant purified proteins and when mutants are ectopically expressed in mammalian cells. We further detect changes in the phosphoproteome of three patient-derived fibroblast lines and show that the subcellular localization of CK2α is altered for some of the OCNDS-linked variants and in patient-derived fibroblasts. Our data argue that reduced kinase activity and abnormal localization of CK2α may underlie the OCNDS phenotype.
Collapse
Affiliation(s)
- I Dominguez
- Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - J M Cruz-Gamero
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR S1266, INSERM, Université de Paris, Paris, France
| | - V Corasolla
- Laboratorio di Proteomica e Metabonomica, CERC-Fondazione S.Lucia, Via del Fosso di Fiorano 64, 00143, Roma, Italy
| | - N Dacher
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR S1266, INSERM, Université de Paris, Paris, France
| | - S Rangasamy
- Translational Genomics Research Institute (TGen), Phoenix, AZ, 85004, USA
| | - A Urbani
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Roma, Italy.,Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168, Roma, Italy
| | - V Narayanan
- Translational Genomics Research Institute (TGen), Phoenix, AZ, 85004, USA
| | - H Rebholz
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR S1266, INSERM, Université de Paris, Paris, France. .,Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Roma, Italy. .,GHU Psychiatrie et Neurosciences, Paris, France. .,Center of Neurodegeneration, Faculty of Medicine, Danube Private University, Krems, Austria.
| |
Collapse
|
29
|
A complex of distal appendage-associated kinases linked to human disease regulates ciliary trafficking and stability. Proc Natl Acad Sci U S A 2021; 118:2018740118. [PMID: 33846249 PMCID: PMC8072220 DOI: 10.1073/pnas.2018740118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Primary cilia (PC) are sensory organelles essential for the development and maintenance of adult tissues. Accordingly, dysfunction of PC causes human disorders called ciliopathies. Hence, a thorough understanding of the molecular regulation of PC is critical. Our findings highlight CSNK2A1 as a modulator of cilia trafficking and stability, tightly related to TTBK2 function. Enriched at the centrosome, CSNK2A1 prevents abnormal accumulation of key ciliary proteins, instability at the tip, and aberrant activation of the Sonic Hedgehog pathway. Furthermore, we establish that Csnk2a1 mutations associated with Okur-Chung neurodevelopmental disorder (OCNDS) alter cilia morphology. Thus, we report a potential linkage between CSNK2A1 ciliary function and OCNDS. Cilia biogenesis is a complex, multistep process involving the coordination of multiple cellular trafficking pathways. Despite the importance of ciliogenesis in mediating the cellular response to cues from the microenvironment, we have only a limited understanding of the regulation of cilium assembly. We previously identified Tau tubulin kinase 2 (TTBK2) as a key regulator of ciliogenesis. Here, using CRISPR kinome and biotin identification screening, we identify the CK2 catalytic subunit CSNK2A1 as an important modulator of TTBK2 function in cilia trafficking. Superresolution microscopy reveals that CSNK2A1 is a centrosomal protein concentrated at the mother centriole and associated with the distal appendages. Csnk2a1 mutant cilia are longer than those of control cells, showing instability at the tip associated with ciliary actin cytoskeleton changes. These cilia also abnormally accumulate key cilia assembly and SHH-related proteins. De novo mutations of Csnk2a1 were recently linked to the human genetic disorder Okur-Chung neurodevelopmental syndrome (OCNDS). Consistent with the role of CSNK2A1 in cilium stability, we find that expression of OCNDS-associated Csnk2a1 variants in wild-type cells causes ciliary structural defects. Our findings provide insights into mechanisms involved in ciliary length regulation, trafficking, and stability that in turn shed light on the significance of cilia instability in human disease.
Collapse
|
30
|
Yener C, Sayın C, İnan C, Gürkan H, Atlı Eİ, Atlı E, Altan E, Ateş S, Varol F. Prenatal diagnosis of 20p13 microdeletion syndrome. Taiwan J Obstet Gynecol 2021; 60:350-354. [PMID: 33678341 DOI: 10.1016/j.tjog.2021.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE The objective of this study was to report the first case of prenatal diagnosis of the fetal 20p13 microdeletion syndrome in the literature. CASE REPORT The mother was 31 years old and had a first trimester serum screening that indicated the fetus was at low risk. The prenatal ultrasound at 23 weeks of gestation showed mild ventriculomegaly (10.2 mm) and absent septum pellucidum. She underwent amniocentesis because of the abnormal imaging results. Karyotype analysis revealed normal results. Chromosome microarray analysis (CMA) was then performed to provide genetic analysis of the fetus and parents. CMA detected 317.902 kb deletion of 20p13 in fetus. Finally, pregnancy was terminated at 32 weeks of gestation. CONCLUSION This study is the first to report the prenatal diagnosis of a 20p13 microdeletion syndrome. Our results further confirmed that genes in this region, including SOX12, NRSN2 are essential for normal fetal growth and TBC1D20 for normal brain development.
Collapse
Affiliation(s)
- Cem Yener
- Trakya University Faculty of Medicine, Department of Obstetrics and Gynecology, Division of Perinatology, Edirne, Turkey.
| | - Cenk Sayın
- Trakya University Faculty of Medicine, Department of Obstetrics and Gynecology, Division of Perinatology, Edirne, Turkey
| | - Cihan İnan
- Trakya University Faculty of Medicine, Department of Obstetrics and Gynecology, Division of Perinatology, Edirne, Turkey
| | - Hakan Gürkan
- Trakya University Faculty of Medicine, Department of Medical Genetics, Edirne, Turkey
| | - Emine İkbal Atlı
- Trakya University Faculty of Medicine, Department of Medical Genetics, Edirne, Turkey
| | - Engin Atlı
- Trakya University Faculty of Medicine, Department of Medical Genetics, Edirne, Turkey
| | - Esra Altan
- Trakya University Faculty of Medicine, Department of Obstetrics and Gynecology, Division of Perinatology, Edirne, Turkey
| | - Sinan Ateş
- Trakya University Faculty of Medicine, Department of Obstetrics and Gynecology, Division of Perinatology, Edirne, Turkey
| | - Füsun Varol
- Trakya University Faculty of Medicine, Department of Obstetrics and Gynecology, Division of Perinatology, Edirne, Turkey
| |
Collapse
|
31
|
Yang S, Yu W, Chen Q, Wang X. A novel variant of CDK19 causes a severe neurodevelopmental disorder with infantile spasms. Cold Spring Harb Mol Case Stud 2021; 7:mcs.a006082. [PMID: 33568421 PMCID: PMC8040737 DOI: 10.1101/mcs.a006082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/19/2021] [Indexed: 11/25/2022] Open
Abstract
Infantile spasms are a potentially catastrophic form of epilepsy syndrome that are usually associated with substantial developmental delay and commonly occur in children younger than 1 yr. Recent reports on four cases revealed that variants harbored in a novel gene CDK19 were causative for the syndrome. We report a fifth affected individual, a 10-mo-old male patient who presented with a neurodevelopmental syndrome characterized by infantile spasms. We identified a novel de novo missense variant c.92C > A (p.Thr31Asn) in CDK19 that was classified as a likely pathogenic disease-causing variant. The characterized clinical phenotypes of the proband were similar to the previously reported four patients, but he had few variable features including earlier seizure onset age and earlier occurring developmental abnormality. Protein structure modeling analysis revealed that CDK19 variants may disable its kinase activity, which would further impede the transcriptional regulation, thus leading to detrimental pathologies. Our report expanded CDK19 genotype spectrum and further demonstrated that a CDK19 missense variant was causative of neurodevelopmental disorder clinically marked by infantile spasms.
Collapse
Affiliation(s)
- Shenghai Yang
- Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | | | - Qian Chen
- Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | | |
Collapse
|
32
|
Montenarh M, Götz C. Protein kinase CK2 and ion channels (Review). Biomed Rep 2020; 13:55. [PMID: 33082952 PMCID: PMC7560519 DOI: 10.3892/br.2020.1362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
Protein kinase CK2 appears as a tetramer or higher molecular weight oligomer composed of catalytic CK2α, CK2α' subunits and non-catalytic regulatory CK2β subunits or as individual subunits. It is implicated in a variety of different regulatory processes, such as Akt signalling, splicing and DNA repair within eukaryotic cells. The present review evaluates the influence of CK2 on ion channels in the plasma membrane. CK2 phosphorylates platform proteins such as calmodulin and ankyrin G, which bind to channel proteins for a physiological transport to and positioning into the membrane. In addition, CK2 directly phosphorylates a variety of channel proteins directly to regulate opening and closing of the channels. Thus, modulation of CK2 activities by specific inhibitors, by siRNA technology or by CRISPR/Cas technology has an influence on intracellular ion concentrations and thereby on cellular signalling. The physiological regulation of the intracellular ion concentration is important for cell survival and correct intracellular signalling. Disturbance of this regulation results in a variety of different diseases including epilepsy, heart failure, cystic fibrosis and diabetes. Therefore, these effects should be considered when using CK2 inhibition as a treatment option for cancer.
Collapse
Affiliation(s)
- Mathias Montenarh
- Medical Biochemistry and Molecular Biology, Saarland University, D-66424 Homburg, Saarland, Germany
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, D-66424 Homburg, Saarland, Germany
| |
Collapse
|
33
|
Xu S, Lian Q, Wu J, Li L, Song J. Dual molecular diagnosis of tricho-rhino-phalangeal syndrome type I and Okur-Chung neurodevelopmental syndrome in one Chinese patient: a case report. BMC MEDICAL GENETICS 2020; 21:158. [PMID: 32746809 PMCID: PMC7398275 DOI: 10.1186/s12881-020-01096-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/26/2020] [Indexed: 11/30/2022]
Abstract
Background Okur-Chung neurodevelopmental syndrome (OCNDS) and tricho-rhino-phalangeal syndrome type I (TRPSI) are rare Mendelian diseases. OCNDS is caused by CSNK2A1 gene variants and TRPSI is caused by the TRPS1gene. However, to have two Mendelian diseases in one patient is even rarer. Case presentation A 6-year-10-month-old boy characterized by special facial features, short stature and mental retardation was referred to our pediatric endocrinology department. Whole-exome sequencing (WES) was done to detect the molecular basis of his disease. This patient was confirmed to carry two variants in the CSNK2A1 gene and one in the TRPS1 gene. The variant in the CSNK2A1 gene was vertically transmitted from his father, and the variant in TRPS1 gene from his mother. These two variants are classified as pathogenic and the causes of the presentation in this child. This patient’s father and mother have subsequently been diagnosed as having OCNDS and TRPSI respectively. Conclusion This is the first reported case of a dual molecular diagnosis of tricho-rhino-phalangeal syndrome type I and Okur-Chung neurodevelopmental syndrome in the same patient. This patient is the first published example of vertical transmission of this recurrent CSN2A1 variant from parent to child. A novel variant in the TRPS1 gene that is pathogenic was also identified. In conclusion, identification of the variants in this patient expands the phenotypes and molecular basis of dual Mendelian diseases.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 316003, Fujian Province, China.,Pediatric Key Laboratory of Xiamen, No.55 Zhenhai Road, Xiamen, 361003, China.,Institute of Pediatrics, School of Medicine, Xiamen University, No.55 Zhenhai Road, Xiamen, 361003, China
| | - Qun Lian
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 316003, Fujian Province, China. .,Pediatric Key Laboratory of Xiamen, No.55 Zhenhai Road, Xiamen, 361003, China. .,Institute of Pediatrics, School of Medicine, Xiamen University, No.55 Zhenhai Road, Xiamen, 361003, China.
| | - Jinzhun Wu
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 316003, Fujian Province, China.,Pediatric Key Laboratory of Xiamen, No.55 Zhenhai Road, Xiamen, 361003, China.,Institute of Pediatrics, School of Medicine, Xiamen University, No.55 Zhenhai Road, Xiamen, 361003, China
| | - Lingli Li
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 316003, Fujian Province, China.,Pediatric Key Laboratory of Xiamen, No.55 Zhenhai Road, Xiamen, 361003, China.,Institute of Pediatrics, School of Medicine, Xiamen University, No.55 Zhenhai Road, Xiamen, 361003, China
| | - Jia Song
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 316003, Fujian Province, China.,Pediatric Key Laboratory of Xiamen, No.55 Zhenhai Road, Xiamen, 361003, China.,Institute of Pediatrics, School of Medicine, Xiamen University, No.55 Zhenhai Road, Xiamen, 361003, China
| |
Collapse
|
34
|
Overrepresentation of genetic variation in the AnkyrinG interactome is related to a range of neurodevelopmental disorders. Eur J Hum Genet 2020; 28:1726-1733. [PMID: 32651551 DOI: 10.1038/s41431-020-0682-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 05/28/2020] [Accepted: 06/15/2020] [Indexed: 12/30/2022] Open
Abstract
Upon the discovery of numerous genes involved in the pathogenesis of neurodevelopmental disorders, several studies showed that a significant proportion of these genes converge on common pathways and protein networks. Here, we used a reversed approach, by screening the AnkyrinG protein-protein interaction network for genetic variation in a large cohort of 1009 cases with neurodevelopmental disorders. We identified a significant enrichment of de novo potentially disease-causing variants in this network, confirming that this protein network plays an important role in the emergence of several neurodevelopmental disorders.
Collapse
|
35
|
Lettieri A, Borgo C, Zanieri L, D’Amore C, Oleari R, Paganoni A, Pinna LA, Cariboni A, Salvi M. Protein Kinase CK2 Subunits Differentially Perturb the Adhesion and Migration of GN11 Cells: A Model of Immature Migrating Neurons. Int J Mol Sci 2019; 20:ijms20235951. [PMID: 31779225 PMCID: PMC6928770 DOI: 10.3390/ijms20235951] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Protein kinase CK2 (CK2) is a highly conserved and ubiquitous kinase is involved in crucial biological processes, including proliferation, migration, and differentiation. CK2 holoenzyme is a tetramer composed by two catalytically active (α/α’) and two regulatory (β) subunits and exerts its function on a broad range of targets. In the brain, it regulates different steps of neurodevelopment, such as neural differentiation, neuritogenesis, and synaptic plasticity. Interestingly, CK2 mutations have been recently linked to neurodevelopmental disorders; however, the functional requirements of the individual CK2 subunits in neurodevelopment have not been yet investigated. Here, we disclose the role of CK2 on the migration and adhesion properties of GN11 cells, an established model of mouse immortalized neurons, by different in vitro experimental approaches. Specifically, the cellular requirement of this kinase has been assessed pharmacologically and genetically by exploiting CK2 inhibitors and by generating subunit-specific CK2 knockout GN11 cells (with a CRISPR/Cas9-based approach). We show that CK2α’ subunit has a primary role in increasing cell adhesion and reducing migration properties of GN11 cells by activating the Akt-GSK3β axis, whereas CK2α subunit is dispensable. Further, the knockout of the CK2β regulatory subunits counteracts cell migration, inducing dramatic alterations in the cytoskeleton not observed in CK2α’ knockout cells. Collectively taken, our data support the view that the individual subunits of CK2 play different roles in cell migration and adhesion properties of GN11 cells, supporting independent roles of the different subunits in these processes.
Collapse
Affiliation(s)
- Antonella Lettieri
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (A.L.); (L.Z.); (R.O.); (A.P.)
| | - Christian Borgo
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy; (C.B.); (C.D.)
| | - Luca Zanieri
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (A.L.); (L.Z.); (R.O.); (A.P.)
| | - Claudio D’Amore
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy; (C.B.); (C.D.)
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (A.L.); (L.Z.); (R.O.); (A.P.)
| | - Alyssa Paganoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (A.L.); (L.Z.); (R.O.); (A.P.)
| | - Lorenzo A. Pinna
- CNR Institute of Neurosciences, Via U. Bassi 58/B, 35131 Padova, Italy;
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (A.L.); (L.Z.); (R.O.); (A.P.)
- Correspondence: (A.C.); (M.S.)
| | - Mauro Salvi
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy; (C.B.); (C.D.)
- Correspondence: (A.C.); (M.S.)
| |
Collapse
|
36
|
Martinez-Monseny AF, Casas-Alba D, Arjona C, Bolasell M, Casano P, Muchart J, Ramos F, Martorell L, Palau F, García-Alix A, Serrano M. Okur-Chung neurodevelopmental syndrome in a patient from Spain. Am J Med Genet A 2019; 182:20-24. [PMID: 31729156 DOI: 10.1002/ajmg.a.61405] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022]
Abstract
Okur-Chung neurodevelopmental syndrome (OCNS, MIM#617062) is a rare autosomal dominant syndrome related to CSNK2A1 mutations. It is characterized by intellectual disability, hypotonia, feeding and speech difficulties, dysmorphic features, and multisystem involvement. To date, less than 30 patients with OCNS have been described in detail in the literature, primarily in Asian populations. Here, we report a 5-year-old Spanish female with OCNS arising from a novel CSNK2A1 mutation c.149A>G, p.Tyr50Cys. Although her clinical features were compatible with OCNS syndrome, magnetic resonance imaging unexpectedly showed a duplication of the pituitary gland, a clinical finding not previously related to any known genetic condition. Other novel signs were an absence of the olfactory bulbs and multiple duplications of cervical vertebrae. We suggest that the midline abnormalities may be a significant part of this condition and lead to diagnostic suspicion. However, further descriptions are needed.
Collapse
Affiliation(s)
- Antonio F Martinez-Monseny
- Department of Genetic and Molecular Medicine IPER, Institut de Recerca, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Dídac Casas-Alba
- Pediatric Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain
| | - César Arjona
- Department of Genetic and Molecular Medicine IPER, Institut de Recerca, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Mercè Bolasell
- Department of Genetic and Molecular Medicine IPER, Institut de Recerca, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Paula Casano
- Endocrinology Department, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Jordi Muchart
- Radiology Department, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Federico Ramos
- Pediatric Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Loreto Martorell
- Department of Genetic and Molecular Medicine IPER, Institut de Recerca, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Francesc Palau
- Department of Genetic and Molecular Medicine IPER, Institut de Recerca, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.,Division of Pediatrics, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Clinic Institute of Medicine and Dermatology (ICMiD), Hospital Clínic, Barcelona, Spain
| | - Alfredo García-Alix
- Department of Genetic and Molecular Medicine IPER, Institut de Recerca, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.,Division of Pediatrics, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Clinic Institute of Medicine and Dermatology (ICMiD), Hospital Clínic, Barcelona, Spain
| | - Mercedes Serrano
- Pediatric Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
37
|
Dissecting the genetic basis of comorbid epilepsy phenotypes in neurodevelopmental disorders. Genome Med 2019; 11:65. [PMID: 31653223 PMCID: PMC6815046 DOI: 10.1186/s13073-019-0678-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/15/2019] [Indexed: 12/22/2022] Open
Abstract
Background Neurodevelopmental disorders (NDDs) such as autism spectrum disorder, intellectual disability, developmental disability, and epilepsy are characterized by abnormal brain development that may affect cognition, learning, behavior, and motor skills. High co-occurrence (comorbidity) of NDDs indicates a shared, underlying biological mechanism. The genetic heterogeneity and overlap observed in NDDs make it difficult to identify the genetic causes of specific clinical symptoms, such as seizures. Methods We present a computational method, MAGI-S, to discover modules or groups of highly connected genes that together potentially perform a similar biological function. MAGI-S integrates protein-protein interaction and co-expression networks to form modules centered around the selection of a single “seed” gene, yielding modules consisting of genes that are highly co-expressed with the seed gene. We aim to dissect the epilepsy phenotype from a general NDD phenotype by providing MAGI-S with high confidence NDD seed genes with varying degrees of association with epilepsy, and we assess the enrichment of de novo mutation, NDD-associated genes, and relevant biological function of constructed modules. Results The newly identified modules account for the increased rate of de novo non-synonymous mutations in autism, intellectual disability, developmental disability, and epilepsy, and enrichment of copy number variations (CNVs) in developmental disability. We also observed that modules seeded with genes strongly associated with epilepsy tend to have a higher association with epilepsy phenotypes than modules seeded at other neurodevelopmental disorder genes. Modules seeded with genes strongly associated with epilepsy (e.g., SCN1A, GABRA1, and KCNB1) are significantly associated with synaptic transmission, long-term potentiation, and calcium signaling pathways. On the other hand, modules found with seed genes that are not associated or weakly associated with epilepsy are mostly involved with RNA regulation and chromatin remodeling. Conclusions In summary, our method identifies modules enriched with de novo non-synonymous mutations and can capture specific networks that underlie the epilepsy phenotype and display distinct enrichment in relevant biological processes. MAGI-S is available at https://github.com/jchow32/magi-s.
Collapse
|
38
|
12 new susceptibility loci for prostate cancer identified by genome-wide association study in Japanese population. Nat Commun 2019; 10:4422. [PMID: 31562322 PMCID: PMC6764957 DOI: 10.1038/s41467-019-12267-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/02/2019] [Indexed: 12/24/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified ~170 genetic loci associated with prostate cancer (PCa) risk, but most of them were identified in European populations. We here performed a GWAS and replication study using a large Japanese cohort (9,906 cases and 83,943 male controls) to identify novel susceptibility loci associated with PCa risk. We found 12 novel loci for PCa including rs1125927 (TMEM17, P = 3.95 × 10−16), rs73862213 (GATA2, P = 5.87 × 10−23), rs77911174 (ZMIZ1, P = 5.28 × 10−20), and rs138708 (SUN2, P = 1.13 × 10−15), seven of which had crucially low minor allele frequency in European population. Furthermore, we stratified the polygenic risk for Japanese PCa patients by using 82 SNPs, which were significantly associated with Japanese PCa risk in our study, and found that early onset cases and cases with family history of PCa were enriched in the genetically high-risk population. Our study provides important insight into genetic mechanisms of PCa and facilitates PCa risk stratification in Japanese population. More than 170 genetic loci have been linked to prostate cancer risk, primarily based on genome-wide association studies (GWAS) in European population. Here, the authors performed a GWAS on a Japanese cohort of prostate cancer patients, finding 12 new susceptibility loci, and identifying a polygenic risk for Japanese prostate cancer.
Collapse
|
39
|
Calpena E, Hervieu A, Kaserer T, Swagemakers SM, Goos JA, Popoola O, Ortiz-Ruiz MJ, Barbaro-Dieber T, Bownass L, Brilstra EH, Brimble E, Foulds N, Grebe TA, Harder AV, Lees MM, Monaghan KG, Newbury-Ecob RA, Ong KR, Osio D, Reynoso Santos FJ, Ruzhnikov MR, Telegrafi A, van Binsbergen E, van Dooren MF, van der Spek PJ, Blagg J, Twigg SR, Mathijssen IM, Clarke PA, Wilkie AO, Wilkie AOM. De Novo Missense Substitutions in the Gene Encoding CDK8, a Regulator of the Mediator Complex, Cause a Syndromic Developmental Disorder. Am J Hum Genet 2019; 104:709-720. [PMID: 30905399 PMCID: PMC6451695 DOI: 10.1016/j.ajhg.2019.02.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/04/2019] [Indexed: 12/27/2022] Open
Abstract
The Mediator is an evolutionarily conserved, multi-subunit complex that regulates multiple steps of transcription. Mediator activity is regulated by the reversible association of a four-subunit module comprising CDK8 or CDK19 kinases, together with cyclin C, MED12 or MED12L, and MED13 or MED13L. Mutations in MED12, MED13, and MED13L were previously identified in syndromic developmental disorders with overlapping phenotypes. Here, we report CDK8 mutations (located at 13q12.13) that cause a phenotypically related disorder. Using whole-exome or whole-genome sequencing, and by international collaboration, we identified eight different heterozygous missense CDK8 substitutions, including 10 shown to have arisen de novo, in 12 unrelated subjects; a recurrent mutation, c.185C>T (p.Ser62Leu), was present in five individuals. All predicted substitutions localize to the ATP-binding pocket of the kinase domain. Affected individuals have overlapping phenotypes characterized by hypotonia, mild to moderate intellectual disability, behavioral disorders, and variable facial dysmorphism. Congenital heart disease occurred in six subjects; additional features present in multiple individuals included agenesis of the corpus callosum, ano-rectal malformations, seizures, and hearing or visual impairments. To evaluate the functional impact of the mutations, we measured phosphorylation at STAT1-Ser727, a known CDK8 substrate, in a CDK8 and CDK19 CRISPR double-knockout cell line transfected with wild-type (WT) or mutant CDK8 constructs. These experiments demonstrated a reduction in STAT1 phosphorylation by all mutants, in most cases to a similar extent as in a kinase-dead control. We conclude that missense mutations in CDK8 cause a developmental disorder that has phenotypic similarity to syndromes associated with mutations in other subunits of the Mediator kinase module, indicating probable overlap in pathogenic mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Andrew O M Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
40
|
Nakashima M, Tohyama J, Nakagawa E, Watanabe Y, Siew CG, Kwong CS, Yamoto K, Hiraide T, Fukuda T, Kaname T, Nakabayashi K, Hata K, Ogata T, Saitsu H, Matsumoto N. Identification of de novo CSNK2A1 and CSNK2B variants in cases of global developmental delay with seizures. J Hum Genet 2019; 64:313-322. [PMID: 30655572 DOI: 10.1038/s10038-018-0559-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 12/18/2018] [Accepted: 12/27/2018] [Indexed: 12/22/2022]
Abstract
Casein kinase 2 (CK2) is a serine threonine kinase ubiquitously expressed in eukaryotic cells and involved in various cellular processes. In recent studies, de novo variants in CSNK2A1 and CSNK2B, which encode the subunits of CK2, have been identified in individuals with intellectual disability syndrome. In this study, we describe four patients with neurodevelopmental disorders possessing de novo variants in CSNK2A1 or CSNK2B. Using whole-exome sequencing, we detected two de novo variants in CSNK2A1 in two unrelated Japanese patients, a novel variant c.571C>T, p.(Arg191*) and a recurrent variant c.593A>G, p.(Lys198Arg), and two novel de novo variants in CSNK2B in Japanese and Malaysian patients, c.494A>G, p.(His165Arg) and c.533_534insGT, p.(Pro179Tyrfs*49), respectively. All four patients showed mild to profound intellectual disabilities, developmental delays, and various types of seizures. This and previous studies have found a total of 20 CSNK2A1 variants in 28 individuals with syndromic intellectual disability. The hotspot variant c.593A>G, p.(Lys198Arg) was found in eight of 28 patients. Meanwhile, only five CSNK2B variants were identified in five individuals with neurodevelopmental disorders. We reviewed the previous literature to verify the phenotypic spectrum of CSNK2A1- and CSNK2B-related syndromes.
Collapse
Affiliation(s)
- Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan. .,Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Jun Tohyama
- Department of Child Neurology, Nishi-Niigata Chuo National Hospital, Niigata, Japan
| | - Eiji Nakagawa
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yoshihiro Watanabe
- Department of Pediatrics, Yokohama City University Medical Center, Yokohama, Japan
| | - Ch'ng Gaik Siew
- Department of Genetics, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| | - Chieng Siik Kwong
- Department of Pediatrics, Sarawak General Hospital, Sarawak, Malaysia
| | - Kaori Yamoto
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takuya Hiraide
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tokiko Fukuda
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
41
|
The chromatin basis of neurodevelopmental disorders: Rethinking dysfunction along the molecular and temporal axes. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:306-327. [PMID: 29309830 DOI: 10.1016/j.pnpbp.2017.12.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/19/2017] [Accepted: 12/24/2017] [Indexed: 12/13/2022]
Abstract
The complexity of the human brain emerges from a long and finely tuned developmental process orchestrated by the crosstalk between genome and environment. Vis à vis other species, the human brain displays unique functional and morphological features that result from this extensive developmental process that is, unsurprisingly, highly vulnerable to both genetically and environmentally induced alterations. One of the most striking outcomes of the recent surge of sequencing-based studies on neurodevelopmental disorders (NDDs) is the emergence of chromatin regulation as one of the two domains most affected by causative mutations or Copy Number Variations besides synaptic function, whose involvement had been largely predicted for obvious reasons. These observations place chromatin dysfunction at the top of the molecular pathways hierarchy that ushers in a sizeable proportion of NDDs and that manifest themselves through synaptic dysfunction and recurrent systemic clinical manifestation. Here we undertake a conceptual investigation of chromatin dysfunction in NDDs with the aim of systematizing the available evidence in a new framework: first, we tease out the developmental vulnerabilities in human corticogenesis as a structuring entry point into the causation of NDDs; second, we provide a much needed clarification of the multiple meanings and explanatory frameworks revolving around "epigenetics", highlighting those that are most relevant for the analysis of these disorders; finally we go in-depth into paradigmatic examples of NDD-causing chromatin dysregulation, with a special focus on human experimental models and datasets.
Collapse
|
42
|
Akahira-Azuma M, Tsurusaki Y, Enomoto Y, Mitsui J, Kurosawa K. Refining the clinical phenotype of Okur-Chung neurodevelopmental syndrome. Hum Genome Var 2018; 5:18011. [PMID: 29619237 PMCID: PMC5874396 DOI: 10.1038/hgv.2018.11] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/16/2018] [Accepted: 01/22/2018] [Indexed: 12/30/2022] Open
Abstract
We describe an 8-year-old Japanese boy with a de novo recurrent missense mutation in CSNK2A1, c.593A>G, that is causative of Okur–Chung neurodevelopmental syndrome. He exhibited distinctive facial features, severe growth retardation with relative macrocephaly, and friendly, hyperactive behavior. His dysmorphic features might suggest a congenital histone modification defect syndrome, such as Kleefstra, Coffin–Siris, or Rubinstein–Taybi syndromes, which are indicative of functional interactions between the casein kinase II, alpha 1 gene and histone modification factors.
Collapse
Affiliation(s)
- Moe Akahira-Azuma
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yoshinori Tsurusaki
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yumi Enomoto
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| |
Collapse
|
43
|
Colavito D, Del Giudice E, Ceccato C, Dalle Carbonare M, Leon A, Suppiej A. Are CSNK2A1 gene mutations associated with retinal dystrophy? Report of a patient carrier of a novel de novo splice site mutation. J Hum Genet 2018; 63:779-781. [PMID: 29568000 DOI: 10.1038/s10038-018-0434-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/19/2018] [Accepted: 02/15/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Davide Colavito
- Research & Innovation Srl, Corso Stati Uniti 4, Padua, Italy.
| | | | | | | | - Alberta Leon
- Research & Innovation Srl, Corso Stati Uniti 4, Padua, Italy
| | - Agnese Suppiej
- Robert Hollman Foundation, Via Siena, 1, Padua, Italy.,Pediatric Neurology, Neurophysiology and Neurophtalmology, University Hospital of Padua, Via Giustiniani 3, Padua, Italy
| |
Collapse
|
44
|
Chiu ATG, Pei SLC, Mak CCY, Leung GKC, Yu MHC, Lee SL, Vreeburg M, Pfundt R, van der Burgt I, Kleefstra T, Frederic TMT, Nambot S, Faivre L, Bruel AL, Rossi M, Isidor B, Küry S, Cogne B, Besnard T, Willems M, Reijnders MRF, Chung BHY. Okur-Chung neurodevelopmental syndrome: Eight additional cases with implications on phenotype and genotype expansion. Clin Genet 2018; 93:880-890. [PMID: 29240241 DOI: 10.1111/cge.13196] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/20/2017] [Accepted: 12/10/2017] [Indexed: 12/27/2022]
Abstract
Okur-Chung syndrome is a neurodevelopmental condition attributed to germline CSNK2A1 pathogenic missense variants. We present 8 unreported subjects with the above syndrome, who have recognizable dysmorphism, varying degrees of developmental delay and multisystem involvement. Together with 6 previously reported cases, we present a case series of 7 female and 7 male subjects, highlighting the recognizable facial features of the syndrome (microcephaly, hypertelorism, epicanthic fold, ptosis, arched eyebrows, low set ears, ear fold abnormality, broad nasal bridge and round face) as well as frequently occurring clinical features including neurodevelopmental delay (93%), gastrointestinal (57%), musculoskeletal (57%) and immunological (43%) abnormalities. The variants reported in this study are evolutionary conserved and absent in the normal population. We observed that the CSNK2A1 gene is relatively intolerant to missense genetic changes, and most variants are within the protein kinase domain. All except 1 variant reported in this cohort are spatially located on the binding pocket of the holoenzyme. We further provide key recommendations on the management of Okur-Chung syndrome. To conclude, this is the second case series on Okur-Chung syndrome, and an in-depth review of the phenotypic features and genomic findings of the condition with suggestions on clinical management.
Collapse
Affiliation(s)
- A T G Chiu
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, Hong Kong.,Department of Paediatrics, Duchess of Kent Children's Hospital, Hong Kong, Hong Kong
| | - S L C Pei
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, Hong Kong
| | - C C Y Mak
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, Hong Kong
| | - G K C Leung
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, Hong Kong
| | - M H C Yu
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, Hong Kong
| | - S L Lee
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, Hong Kong.,Department of Paediatrics, Duchess of Kent Children's Hospital, Hong Kong, Hong Kong
| | - M Vreeburg
- Department of Clinical Genetics and School for Oncology & Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, the Netherlands
| | - R Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - I van der Burgt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - T Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - T M-T Frederic
- Centre de Génétique et Centre de référence, Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, Dijon, France.,Laboratoire de Génétique Moléculaire, Plateau Technique de Biologie, Centre Hospitalier Universitaire de Dijon, Dijon, France.,INSERM UMR 1231 GAD, Génétique des Anomalies du Développement, Dijon, France
| | - S Nambot
- Centre de Génétique et Centre de référence, Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, Dijon, France.,Laboratoire de Génétique Moléculaire, Plateau Technique de Biologie, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - L Faivre
- Centre de Génétique et Centre de référence, Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - A-L Bruel
- INSERM UMR 1231 GAD, Génétique des Anomalies du Développement, Dijon, France
| | - M Rossi
- Service de Génétique, Centre de Référence Anomalies du Développement, Hospices Civils de Lyon, Lyon, France.,GENDEV Team, Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, Lyon, France
| | - B Isidor
- Service de Génétique Médicale, CHU Nantes, Nantes, France.,INSERM, UMR-S 957, Nantes, France
| | - S Küry
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - B Cogne
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - T Besnard
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - M Willems
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Plateforme Recherche de Microremaniements Chromosomiques, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Faculté de Médecine Montpellier-Nîmes, Université de Montpellier, Montpellier, France
| | - M R F Reijnders
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - B H Y Chung
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, Hong Kong.,Department of Paediatrics, Duchess of Kent Children's Hospital, Hong Kong, Hong Kong
| |
Collapse
|
45
|
Owen CI, Bowden R, Parker MJ, Patterson J, Patterson J, Price S, Sarkar A, Castle B, Deshpande C, Splitt M, Ghali N, Dean J, Green AJ, Crosby C, Tatton-Brown K. Extending the phenotype associated with the CSNK2A1-related Okur-Chung syndrome-A clinical study of 11 individuals. Am J Med Genet A 2018; 176:1108-1114. [PMID: 29383814 DOI: 10.1002/ajmg.a.38610] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/22/2017] [Accepted: 12/16/2017] [Indexed: 02/03/2023]
Abstract
Variants in the Protein Kinase CK2 alpha subunit, encoding the CSNK2A1 gene, have previously been reported in children with an intellectual disability and dysmorphic facial features syndrome: now termed the Okur-Chung neurodevelopmental syndrome. More recently, through trio-based exome sequencing undertaken by the Deciphering Developmental Disorders Study (DDD study), a further 11 children with de novo CSNK2A1 variants have been identified. We have undertaken detailed phenotyping of these patients. Consistent with previously reported patients, patients in this series had apparent intellectual disability, swallowing difficulties, and hypotonia. While there are some shared facial characteristics, the gestalt is neither consistent nor readily recognized. Congenital heart abnormalities were identified in nearly 30% of the patients, representing a newly recognized CSNK2A1 clinical association. Based upon the clinical findings from this study and the previously reported patients, we suggest an initial approach to the management of patients with this recently described intellectual disability syndrome.
Collapse
Affiliation(s)
- Ceris I Owen
- Medical Research Council, London Institute for Medical Sciences, Hammersmith Hospital, London, UK
| | - Ramsay Bowden
- East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Michael J Parker
- Sheffield Children's NHS Foundation Trust, Sheffield Clinical Genetics Service, Sheffield, South Yorkshire, UK
| | - Jo Patterson
- Sheffield Children's NHS Foundation Trust, Sheffield Clinical Genetics Service, Sheffield, South Yorkshire, UK
| | - Joan Patterson
- East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sue Price
- Department of Clinical Genetics, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Ajoy Sarkar
- Department of Clinical Genetics, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Bruce Castle
- Peninsula Genetics Service, Royal Devon and Exeter Hospitals NHS Trust, Exeter, UK
| | - Charulatha Deshpande
- South East Thames Regional Genetics Unit, Guys and St Thomas NHS Trust, London, UK
| | - Miranda Splitt
- Northern Genetics Service, Newcastle Upon Tyne Hospital NHS Foundation Trust, Newcastle, UK
| | - Neeti Ghali
- North West Thames Regional Genetics Service, North West London Healthcare NHS Trust, Harrow, UK
| | - John Dean
- Department of Clinical Genetics, NHS Grampian, Aberdeen, UK
| | - Andrew J Green
- National Centre for Medical Genetics, Our Lady's Hospital, Dublin, Republic of Ireland
| | - Charlene Crosby
- South West Thames Regional Genetics Service, St George's University Hospitals NHS Foundation Trust, London, UK
| | -
- Deciphering Developmental Disorders Study, Wellcome Trust Sanger Institute, Cambridge, UK
| | - Katrina Tatton-Brown
- South West Thames Regional Genetics Service, St George's University Hospitals NHS Foundation Trust, London, UK.,St George's University of London, London, UK
| |
Collapse
|
46
|
Hochscherf J, Lindenblatt D, Witulski B, Birus R, Aichele D, Marminon C, Bouaziz Z, Le Borgne M, Jose J, Niefind K. Unexpected Binding Mode of a Potent Indeno[1,2-b]indole-Type Inhibitor of Protein Kinase CK2 Revealed by Complex Structures with the Catalytic Subunit CK2α and Its Paralog CK2α'. Pharmaceuticals (Basel) 2017; 10:ph10040098. [PMID: 29236079 PMCID: PMC5748653 DOI: 10.3390/ph10040098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022] Open
Abstract
Protein kinase CK2, a member of the eukaryotic protein kinase superfamily, is associated with cancer and other human pathologies and thus an attractive drug target. The indeno[1,2-b]indole scaffold is a novel lead structure to develop ATP-competitive CK2 inhibitors. Some indeno[1,2-b]indole-based CK2 inhibitors additionally obstruct ABCG2, an ABC half transporter overexpressed in breast cancer and co-responsible for drug efflux and resistance. Comprehensive derivatization studies revealed substitutions of the indeno[1,2-b]indole framework that boost either the CK2 or the ABCG2 selectivity or even support the dual inhibition potential. The best indeno[1,2-b]indole-based CK2 inhibitor described yet (IC50 = 25 nM) is 5-isopropyl-4-(3-methylbut-2-enyl-oxy)-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (4p). Herein, we demonstrate the membrane permeability of 4p and describe co-crystal structures of 4p with CK2α and CK2α′, the paralogs of human CK2 catalytic subunit. As expected, 4p occupies the narrow, hydrophobic ATP site of CK2α/CK2α′, but surprisingly with a unique orientation: its hydrophobic substituents point towards the solvent while its two oxo groups are hydrogen-bonded to a hidden water molecule. An equivalent water molecule was found in many CK2α structures, but never as a critical mediator of ligand binding. This unexpected binding mode is independent of the interdomain hinge/helix αD region conformation and of the salt content in the crystallization medium.
Collapse
Affiliation(s)
- Jennifer Hochscherf
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany.
| | - Dirk Lindenblatt
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany.
| | - Benedict Witulski
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany.
| | - Robin Birus
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
| | - Dagmar Aichele
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
| | - Christelle Marminon
- EA4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453-INSERM US7, Faculté de Pharmacie-ISPB, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, F-69373 Lyon CEDEX 8, France.
| | - Zouhair Bouaziz
- EA4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453-INSERM US7, Faculté de Pharmacie-ISPB, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, F-69373 Lyon CEDEX 8, France.
| | - Marc Le Borgne
- EA4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453-INSERM US7, Faculté de Pharmacie-ISPB, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, F-69373 Lyon CEDEX 8, France.
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
| | - Karsten Niefind
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany.
| |
Collapse
|
47
|
Trinh J, Hüning I, Budler N, Hingst V, Lohmann K, Gillessen-Kaesbach G. A novel de novo mutation in CSNK2A1: reinforcing the link to neurodevelopmental abnormalities and dysmorphic features. J Hum Genet 2017; 62:1005-1006. [PMID: 28725024 DOI: 10.1038/jhg.2017.73] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Irina Hüning
- Institut für Humangenetik, Universität zu Lübeck, Lübeck, Germany
| | - Nadja Budler
- Institut für Humangenetik, Universität zu Lübeck, Lübeck, Germany
| | - Volker Hingst
- Institut für Diagnostische und Interventionelle Radiologie, Universitätsmedizin Rostock, Rostock, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | |
Collapse
|
48
|
Poirier K, Hubert L, Viot G, Rio M, Billuart P, Besmond C, Bienvenu T. CSNK2B splice site mutations in patients cause intellectual disability with or without myoclonic epilepsy. Hum Mutat 2017; 38:932-941. [PMID: 28585349 DOI: 10.1002/humu.23270] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 11/06/2022]
Abstract
De novo mutations are a frequent cause of disorders related to brain development. We report the results from the screening of two patients diagnosed with intellectual disability (ID) using exome sequencing to identify new causative de novo mutations. Exome sequencing was conducted in two patient-parent trios to identify de novo variants. In silico and expression studies were also performed to evaluate the functional consequences of these variants. The two patients presented developmental delay with minor facial dysmorphy. One of them presented pharmacoresistant myoclonic epilepsy. We identified two de novo splice variants (c.175+2T>G; c.367+2T>C) in the CSNK2B gene encoding the β subunit of the Caseine kinase 2 (CK2). CK2 is a ubiquitously expressed kinase that is present in high levels in brain and it appears to be constitutively active. The mRNA transcripts were abnormal and significantly reduced in affected fibroblasts and most likely produced truncated proteins. Taking into account that mutations in CSNK2A1, encoding the α subunit of CK2, were previously identified in patients with neurodevelopmental disorders and dysmorphic features, our study confirmed that the protein kinase CK2 plays a major role in brain, and showed that CSNK2, encoding the β subunit, is a novel ID gene. This study adds knowledge to the increasingly growing list of causative and candidate genes in ID and epilepsy, and highlights CSNK2B as a new gene for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Karine Poirier
- Inserm, Paris, France.,Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Laurence Hubert
- Laboratoire de Génétique Translationnelle, Inserm, Paris, France
| | - Géraldine Viot
- Gynécologie Obstétrique, HUPC, Hôpital Cochin, HUPC, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Marlène Rio
- Génétique Médicale, Hôpital Necker-Enfants Malades, - Hôpitaux de Paris, Paris, France
| | - Pierre Billuart
- Inserm, Paris, France.,Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Claude Besmond
- Laboratoire de Génétique Translationnelle, Inserm, Paris, France
| | - Thierry Bienvenu
- Inserm, Paris, France.,Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Laboratoire de Génétique et Biologie Moléculaires, Hôpital Cochin, HUPC, Assistance Publique - Hôpitaux de Paris, Paris, France
| |
Collapse
|
49
|
Abstract
The genomes of individuals with severe, undiagnosed developmental disorders are enriched in damaging de novo mutations (DNMs) in developmentally important genes. Here we have sequenced the exomes of 4,293 families containing individuals with developmental disorders, and meta-analysed these data with data from another 3,287 individuals with similar disorders. We show that the most important factors influencing the diagnostic yield of DNMs are the sex of the affected individual, the relatedness of their parents, whether close relatives are affected and the parental ages. We identified 94 genes enriched in damaging DNMs, including 14 that previously lacked compelling evidence of involvement in developmental disorders. We have also characterized the phenotypic diversity among these disorders. We estimate that 42% of our cohort carry pathogenic DNMs in coding sequences; approximately half of these DNMs disrupt gene function and the remainder result in altered protein function. We estimate that developmental disorders caused by DNMs have an average prevalence of 1 in 213 to 1 in 448 births, depending on parental age. Given current global demographics, this equates to almost 400,000 children born per year.
Collapse
|