1
|
Bruhn-Olszewska B, Markljung E, Rychlicka-Buniowska E, Sarkisyan D, Filipowicz N, Dumanski JP. The effects of loss of Y chromosome on male health. Nat Rev Genet 2025:10.1038/s41576-024-00805-y. [PMID: 39743536 DOI: 10.1038/s41576-024-00805-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 01/04/2025]
Abstract
Loss of Y chromosome (LOY) is the most commonly occurring post-zygotic (somatic) mutation in male individuals. The past decade of research suggests that LOY has important effects in shaping the activity of the immune system, and multiple studies have shown the effects of LOY on a range of diseases, including cancer, neurodegeneration, cardiovascular disease and acute infection. Epidemiological findings have been corroborated by functional analyses providing insights into the mechanisms by which LOY modulates the immune system; in particular, a causal role for LOY in cardiac fibrosis, bladder cancer and Alzheimer disease has been indicated. These insights show that LOY is a highly dynamic mutation (such that LOY clones expand and contract with time) and has pleiotropic, cell-type-specific effects. Here, we review the status of the field and highlight the potential of LOY as a biomarker and target of new therapeutics that aim to counteract its negative effects on the immune system.
Collapse
Affiliation(s)
| | - Ellen Markljung
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Daniil Sarkisyan
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Jan P Dumanski
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
- 3P-Medicine Laboratory, Medical University of Gdańsk, Gdańsk, Poland.
| |
Collapse
|
2
|
Ochando I, Urbano A, Rueda J. Genetics in Reproductive Medicine. Arch Med Res 2024; 55:103092. [PMID: 39342776 DOI: 10.1016/j.arcmed.2024.103092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/08/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Thanks to advances in technology, genetic testing is now available to explore the causes of infertility and to assess the risk of a given couple passing on a genetic disorder to their offspring. This allows at-risk couples to make an informed decision when opting for assisted reproduction and allows professionals to offer pre-implantation diagnosis when appropriate. Genetic screening of an infertile couple has thus become standard practice for an appropriate diagnosis, treatment, and prognostic assessment. This review aims to highlight the conditions under which genetic screening plays a role in improving reproductive outcomes for infertile couples.
Collapse
Affiliation(s)
- Isabel Ochando
- Nuuma Genetics, Hospital HLA Vistahermosa, Alicante, Spain; Departamento de Histología y Anatomía, Universidad Miguel Hernández, Alicante, Spain.
| | - Antonio Urbano
- Nuuma Genetics, Hospital HLA Vistahermosa, Alicante, Spain; Departamento de Histología y Anatomía, Universidad Miguel Hernández, Alicante, Spain
| | - Joaquín Rueda
- Departamento de Histología y Anatomía, Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
3
|
Jensen A, Horton ER, Amboko J, Parke SA, Hart JA, Tosi AJ, Guschanski K, Detwiler KM. Y chromosome introgression between deeply divergent primate species. Nat Commun 2024; 15:10398. [PMID: 39613758 DOI: 10.1038/s41467-024-54719-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
Hybridization and introgression are widespread in nature, with important implications for adaptation and speciation. Since heterogametic hybrids often have lower fitness than homogametic individuals, a phenomenon known as Haldane's rule, loci inherited strictly through the heterogametic sex rarely introgress. We focus on the Y-chromosomal history of guenons, African primates that hybridized extensively in the past. Although our inferences suggest that Haldane's rule generally applies, we uncover a Y chromosome introgression event between two species ca. six million years after their initial divergence. Using simulations, we show that selection likely drove the introgressing Y chromosome to fixation from a low initial frequency. We identify non-synonymous substitutions on the novel Y chromosome as candidate targets of selection, and explore meiotic drive as an alternative mechanism. Our results provide a rare example of Y chromosome introgression, showing that the ability to produce fertile heterogametic hybrids likely persisted for six million years in guenons.
Collapse
Affiliation(s)
- Axel Jensen
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden.
| | - Emma R Horton
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Junior Amboko
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Stacy-Anne Parke
- Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - John A Hart
- Lukuru Wildlife Research Foundation, Kinshasa, Democratic Republic of Congo
| | - Anthony J Tosi
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Katerina Guschanski
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden.
- School of Biological Sciences, Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK.
| | - Kate M Detwiler
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, USA.
| |
Collapse
|
4
|
Darwish AM, Almehiza AA, Khattab AEN, Sharaf HA, Naglah AM, Bhat MA, Zen AA, Kalmouch A. Using Selenium-enriched Mutated Probiotics as Enhancer for Fertility Parameters in Mice. Biol Trace Elem Res 2024; 202:5118-5125. [PMID: 38321304 DOI: 10.1007/s12011-024-04067-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
Increasing fertility rates have become one of the factors that concern all people in the world. Therefore, the study aims to use two mutated strains of probiotics enriched with selenium (PSe40/60/1 and BSe50/20/1) to improve fertility. Thirty Swiss albino male mice were divided into three groups; control, LP + S was given Lactobacillus plantarum PSe40/60/1 plus selenium, and BL + S was given Bifidobacterium longum BSe50/20/1 plus selenium. Free testosterone, LH, and FSH were measured in serum by biochemical analysis. Testicular tissues were examined by histopathological analysis. The count and motility of sperm, and sperm abnormalities were determined by microscopic examination. The method of qRT-PCR was used to detect gene expression of Tspyl1, Hsd3b6, and Star genes. The biochemical results showed that serum content of free testosterone (FT) hormone had significantly increase in the BL + S and LP + S groups compared with control. Levels of LH and FSH hormones were the highest in the BL + S group. The treated groups showed all developmental stages of spermatogenesis, including spermatogenesis, spermatocytes, and seminiferous tubule spermatids, as well as intact Sertoli cells and Leydig cells without changes. When compared to the control group, sperm count and motility increased in the BL + S group, while sperm abnormalities decreased. The expression of Tspyl1 gene in testicular tissues decreased in the LP + S and BL + S groups, while the expression of Star and Hsd3b6 genes was higher in the BL + S group and lower in the LP + S group compared with the control group. Therefore, Bifidobacterium longum BSe50/20/1 enriched with selenium could be useful in enhancing male fertility.
Collapse
Affiliation(s)
- Ahmed Mohamed Darwish
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Abdulrahman A Almehiza
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. BOX 2457, 11451, Riyadh, Saudi Arabia
| | - Abd El-Nasser Khattab
- Genetics and Cytology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt.
| | - Hafiza A Sharaf
- Pathology Department, National Research Centre, Dokki, Giza, Egypt
| | - Ahmed M Naglah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. BOX 2457, 11451, Riyadh, Saudi Arabia
| | - Mashooq A Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. BOX 2457, 11451, Riyadh, Saudi Arabia
| | - Amer Alhaj Zen
- Chemistry & Forensics Department, Clifton Camus, Nottingham Trent University, Nottingham, Ng118NS, UK
| | - Atef Kalmouch
- Peptide Chemistry Department, Chemical Industries Institute, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
5
|
Osadchuk LV, Vasiliev GV, Ivanov MK, Prasolova MA, Kleshchev MA, Osadchuk AV. Prevalence of AZFс Y chromosome microdeletions and association with spermatogenesis in Russian men from the general population. Vavilovskii Zhurnal Genet Selektsii 2024; 28:780-791. [PMID: 39722664 PMCID: PMC11668820 DOI: 10.18699/vjgb-24-86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/01/2024] [Accepted: 08/08/2024] [Indexed: 12/28/2024] Open
Abstract
The Y chromosome contains a set of genes with testis-specific expression that are responsible for the development of testes and spermatogenesis, and it is the most important target in the search for genetic causes of male infertility. Most of these genes are located in the "azoospermia factor" AZF locus (regions AZFa, AZFb, and AZFc) on the long arm of the Y chromosome. Microdeletions of the Y chromosome, leading to the removal of the entire AZF locus as well as one or more regions (complete deletions), are one of the leading causes of spermatogenesis impairment and infertility. However, the role of partial AZFc deletions (gr/gr, b2/b3, b1/b3) in spermatogenesis failure is unclear, and their impact on spermatogenesis varies between populations. The aim of the present study was to assess the frequency of various types of AZFc microdeletions and to search for associations with spermatogenesis parameters in men of Slavic ethnicity from the general Russian population (n = 700, average age 25.8 years). To identify AZF microdeletions, the presence/absence of 15 STS markers was analyzed using multiplex real-time polymerase chain reaction. Age, weight, height, and the volume, concentration, total count, proportion of motile and morphologically normal spermatozoa in the ejaculate were recorded for all participants. In the studied sample, 19.9 % (139/700) of men were found to have AZFc microdeletions, of which 16.7 % (117/700) were carriers of a partial b2/b3 deletion, 3.0 % (21/700) had a partial gr/gr deletion, and 0.14 % (1/700) had a complete b2/b4 deletion. Neither AZFa nor AZFb microdeletions nor other types of AZF deletions were detected. The overall frequency of all types of AZFc deletions, as well as each type of partial microdeletion, b2/ b3 and gr/gr, did not differ in the groups of azoospermia, severe oligozoospermia (≤5.0 mill/ml), oligozoospermia (5.0 < SC <16.0 mill/ml), and normal sperm concentration (≥16.0 mill/ml). Comparison of semen parameters in groups with different types of partial AZFc deletions and the control group (without deletions) also did not reveal significant differences. Thus, partial AZFc microdeletions b2/b3 and gr/gr do not have a significant impact on spermatogenesis in Slavic men. It is suggested that in Slavs, partial AZFc microdeletions b2/b3 and gr/gr are fixed in Y haplogroups N3 and R1a, respectively, and their negative impact on spermatogenesis is balanced by other genetic factors. The higher frequency of partial AZFc deletions (19.7 %) in Slavs compared to European populations (7.3 %) established in our study may be explained by the widespread distribution of these Y haplogroups in the Slavic population of Russia.
Collapse
Affiliation(s)
- L V Osadchuk
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - G V Vasiliev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M K Ivanov
- Joint Stock Company Vector Best, Novosibirsk region, Russia
| | - M A Prasolova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Joint Stock Company Vector Best, Novosibirsk region, Russia
| | - M A Kleshchev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A V Osadchuk
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
6
|
Ou N, Wang Y, Xu S, Luo J, Zhang C, Zhang Y, Shi X, Xiong M, Zhao L, Ji Z, Zhang Y, Zhao J, Bai H, Tian R, Li P, Zhi E, Huang Y, Chen W, Wang R, Jin Y, Wang D, Li Z, Chen H, Yao C. Primate-Specific DAZ Regulates Translation of Cell Proliferation-Related mRNAs and is Essential for Maintenance of Spermatogonia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400692. [PMID: 38783578 PMCID: PMC11304246 DOI: 10.1002/advs.202400692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/05/2024] [Indexed: 05/25/2024]
Abstract
Primate-specific DAZ (deleted in azoospermia) has evolved in the azoospermia factor c (AZFc) locus on the Y chromosome. Loss of DAZ is associated with azoospermia in patients with deletion of the AZFc region (AZFc_del). However, the molecular mechanisms of DAZ in spermatogenesis remain uncertain. In this study, the molecular mechanism of DAZ is identified, which is unknown since it is identified 40 years ago because of the lack of a suitable model. Using clinical samples and cell models, it is shown that DAZ plays an important role in spermatogenesis and that loss of DAZ is associated with defective proliferation of c-KIT-positive spermatogonia in patients with AZFc_del. Mechanistically, it is shown that knockdown of DAZ significantly downregulated global translation and subsequently decreased cell proliferation. Furthermore, DAZ interacted with PABPC1 via the DAZ repeat domain to regulate global translation. DAZ targeted mRNAs that are involved in cell proliferation and cell cycle phase transition. These findings indicate that DAZ is a master translational regulator and essential for the maintenance of spermatogonia. Loss of DAZ may result in defective proliferation of c-KIT-positive spermatogonia and spermatogenic failure.
Collapse
Affiliation(s)
- Ningjing Ou
- Department of AndrologyCenter for Men's HealthUrologic Medical CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Department of UrologyDepartment of Interventional MedicineGuangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhaiGuangdong519000China
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518000China
| | - Yuci Wang
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518000China
| | - Shuai Xu
- Department of AndrologyCenter for Men's HealthUrologic Medical CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Jiaqiang Luo
- Department of AndrologyCenter for Men's HealthUrologic Medical CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Chenwang Zhang
- Department of AndrologyCenter for Men's HealthUrologic Medical CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Yangyi Zhang
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518000China
| | - Xiaoyan Shi
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518000China
| | - Minggang Xiong
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518000China
| | - Liangyu Zhao
- Department of UrologyDepartment of Interventional MedicineGuangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhaiGuangdong519000China
| | - Zhiyong Ji
- Department of AndrologyCenter for Men's HealthUrologic Medical CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Yuxiang Zhang
- Department of AndrologyCenter for Men's HealthUrologic Medical CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Jingpeng Zhao
- Department of AndrologyCenter for Men's HealthUrologic Medical CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Haowei Bai
- Department of AndrologyCenter for Men's HealthUrologic Medical CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Ruhui Tian
- Department of AndrologyCenter for Men's HealthUrologic Medical CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Peng Li
- Department of AndrologyCenter for Men's HealthUrologic Medical CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Erlei Zhi
- Department of AndrologyCenter for Men's HealthUrologic Medical CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Yuhua Huang
- Department of AndrologyCenter for Men's HealthUrologic Medical CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Wei Chen
- Department of AndrologyCenter for Men's HealthUrologic Medical CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Ruiqi Wang
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518000China
| | - Yuxuan Jin
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518000China
| | - Dian Wang
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518000China
| | - Zheng Li
- Department of AndrologyCenter for Men's HealthUrologic Medical CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Hao Chen
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518000China
| | - Chencheng Yao
- Department of AndrologyCenter for Men's HealthUrologic Medical CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| |
Collapse
|
7
|
Liu P, Yu S, Zheng W, Zhang Q, Qiao J, Li Z, Deng Z, Zhang H. Identification and functional verification of Y-chromosome-specific gene typo-gyf in Bactrocera dorsalis. INSECT SCIENCE 2024; 31:1270-1284. [PMID: 38189161 DOI: 10.1111/1744-7917.13311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 01/09/2024]
Abstract
Genes on the Y chromosome play important roles in male sex determination and development. The identification of Y-chromosome-specific genes not only provides a theoretical basis for the study of male reproductive development, but also offers genetic control targets for agricultural pests. However, Y-chromosome genes are rarely characterized due to their high repeatability and high heterochromatinization, especially in the oriental fruit fly. In this study, 1 011 Y-chromosome-specific candidate sequences were screened from 2 to 4 h Bactrocera dorsalis embryo datasets with the chromosome quotient method, 6 of which were identified as Y-chromosome-specific sequences by polymerase chain reaction, including typo-gyf, a 19 126-bp DNA sequence containing a 575-amino acid open reading frame. Testicular deformation and a significant reduction in sperm number were observed after typo-gyf knockdown with RNA interference in embryos. After typo-gyf knockout with clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9 in the embryonic stage, the sex ratio of the emergent adults was unbalanced, with far more females than males. A genotype analysis of these females with the Y-chromosome gene MoY revealed no sex reversal. Typo-gyf knockout led to the death of XY individuals in the embryonic stage. We conclude that typo-gyf is an essential gene for male survival, and is also involved in testicular development and spermatogenesis. The identification of typo-gyf and its functional verification provide insight into the roles of Y-chromosome genes in male development.
Collapse
Affiliation(s)
- Peipei Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuning Yu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenping Zheng
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qiuyuan Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiao Qiao
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ziniu Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhurong Deng
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Krausz C, Navarro-Costa P, Wilke M, Tüttelmann F. EAA/EMQN best practice guidelines for molecular diagnosis of Y-chromosomal microdeletions: State of the art 2023. Andrology 2024; 12:487-504. [PMID: 37674303 DOI: 10.1111/andr.13514] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023]
Abstract
Testing for AZoospermia Factor (AZF) deletions of the Y chromosome is a key component of the diagnostic workup of azoospermic and severely oligozoospermic men. This revision of the 2013 European Academy of Andrology (EAA) and EMQN CIC (previously known as the European Molecular Genetics Quality Network) laboratory guidelines summarizes recent clinically relevant advances and provides an update on the results of the external quality assessment program jointly offered by both organizations. A basic multiplex PCR reaction followed by a deletion extension analysis remains the gold-standard methodology to detect and correctly interpret AZF deletions. Recent data have led to an update of the sY84 reverse primer sequence, as well as to a refinement of what were previously considered as interchangeable border markers for AZFa and AZFb deletion breakpoints. More specifically, sY83 and sY143 are no longer recommended for the deletion extension analysis, leaving sY1064 and sY1192, respectively, as first-choice markers. Despite the transition, currently underway in several countries, toward a diagnosis based on certified kits, it should be noted that many of these commercial products are not recommended due to an unnecessarily high number of tested markers, and none of those currently available are, to the best of our knowledge, in accordance with the new first-choice markers for the deletion extension analysis. The gr/gr partial AZFc deletion remains a population-specific risk factor for impaired sperm production and a predisposing factor for testicular germ cell tumors. Testing for this deletion type is, as before, left at the discretion of the diagnostic labs and referring clinicians. Annual participation in an external quality control program is strongly encouraged, as the 22-year experience of the EMQN/EAA scheme clearly demonstrates a steep decline in diagnostic errors and an improvement in reporting practice.
Collapse
Affiliation(s)
- Csilla Krausz
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, University Hospital Careggi, Florence, Italy
| | - Paulo Navarro-Costa
- EvoReproMed Lab, Environmental Health Institute (ISAMB), Associate Laboratory TERRA, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Gulbenkian Science Institute, Oeiras, Portugal
| | - Martina Wilke
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| |
Collapse
|
9
|
Ambar RF, Maziotis E, Simopoulou M. Sperm Concentration and Total Sperm Count. HUMAN SEMEN ANALYSIS 2024:31-60. [DOI: 10.1007/978-3-031-55337-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Lee TH, Song SH, Kim DK, Shim SH, Jeong D, Kim DS. An analysis of Y-chromosome microdeletion in infertile Korean men with severe oligozoospermia or azoospermia. Investig Clin Urol 2024; 65:77-83. [PMID: 38197754 PMCID: PMC10789543 DOI: 10.4111/icu.20230141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/19/2023] [Accepted: 10/16/2023] [Indexed: 01/11/2024] Open
Abstract
PURPOSE Infertility affects 10% to 15% of couples, and male factor accounts for 50% of the cases. The relevant male genetic factors, which account for at least 15% of male infertility, include Y-chromosome microdeletions. We investigated clinical data and patterns of Y-chromosome microdeletions in Korean infertile men. MATERIALS AND METHODS A total of 919 infertile men whose sperm concentration was ≤5 million/mL in two consecutive analyses were investigated for Y-chromosome microdeletion. Among them, 130 infertile men (14.1%) demonstrated Y-chromosome microdeletions. Medical records were retrospectively reviewed. RESULTS In 130 men with Y-chromosome microdeletions, 90 (69.2%) had azoospermia and 40 (30.8%) had severe oligozoospermia. The most frequent microdeletions were in the azoospermia factor (AZF) c region (77/130, 59.2%), followed by the AZFb+c (30/130, 23.1%), AZFa (8/130, 6.2%), AZFb (7/130, 5.4%), AZFa+b+c (7/130, 5.4%), and AZFa+c (1/130, 0.7%) regions. In men with oligozoospermia, 37 (92.5%) had AZFc microdeletion. Chromosomal abnormalities were detected in 30 patients (23.1%). Higher follicle-stimulating hormone level (23.2±13.5 IU/L vs. 15.1±9.0 IU/L, p<0.001), higher luteinizing hormone level (9.7±4.6 IU/L vs. 6.0±2.2 IU/L, p<0.001), and lower testis volume (10.6±4.8 mL vs. 13.3±3.8 mL, p<0.001) were observed in azoospermia patients compared to severe oligozoospermia patients. CONCLUSIONS Y-chromosome microdeletion is a common genetic cause of male infertility. Therefore, Y-chromosome microdeletion test is recommended for the accurate diagnosis of men with azoospermia or severe oligozoospermia. Appropriate genetic counseling is mandatory before the use of assisted reproduction technique in men with Y-chromosome microdeletion.
Collapse
Affiliation(s)
- Tae Ho Lee
- Department of Urology, Fertility Center, CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Seung-Hun Song
- Department of Urology, Fertility Center, CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Dae Keun Kim
- Department of Urology, CHA Fertility Center Seoul Station, CHA University, Seoul, Korea
| | - Sung Han Shim
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Daeun Jeong
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Dong Suk Kim
- Department of Urology, Fertility Center, CHA Gangnam Medical Center, CHA University, Seoul, Korea.
| |
Collapse
|
11
|
Zhang H, Li H, Ma S, Zhang S, Li W, Gu Y, Zhang E, Hu L. Very severe oligozoospermia with AZFc microdeletion patients may affect intracytoplasmic sperm injection clinical outcomes: A propensity score matching analysis. Reprod Med Biol 2024; 23:e12596. [PMID: 38983692 PMCID: PMC11232045 DOI: 10.1002/rmb2.12596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024] Open
Abstract
Purpose To explore whether spermatozoa from AZFc microdeletion patients affect their outcomes of intracytoplasmic sperm injection (ICSI). Methods Eighty-five patients with AZFc microdeletion were recruited. A control group of one hundred and forty patients with severe oligozoospermia but without AZF microdeletion was selected using propensity score matching analysis with a 1:2 nearest neighbor algorithm ratio. The ICSI outcomes of the two groups were compared. Results AZFc microdeletion had lower rates of normal fertilization (73% vs. 80%, p = 0.17) and high-quality embryos (44% vs. 58%, p = 0.07) than the control group. There was no significant difference in the clinical pregnancy rate, miscarriage rate, and live birth rate between the two groups. When the sperm concentration was <1 million/mL, the AZFc microdeletion group exhibited lower rates of fertilization (71% vs. 80%, p = 0.03), high-quality embryo (44% vs. 58%, p = 0.02), clinical pregnancy (57% vs. 76%, p = 0.02), and live birth (49% vs. 72%, p = 0.01) than the control group. However, if sperm concentration was ≥1 million/mL, no significant differences were found. Conclusion If the sperm concentration is <1 million/mL, AZFc microdeletion do have a detrimental effect on most outcomes of ICSI.
Collapse
Affiliation(s)
- Huan Zhang
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical SciencesCentral South UniversityChangshaHunanChina
| | - Huanzhu Li
- School of MedicineHunan Normal UniversityChangshaHunanChina
| | - Shujuan Ma
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical SciencesCentral South UniversityChangshaHunanChina
- Clinical Research Center for Reproduction and Genetics in Hunan ProvinceReproductive and Genetic Hospital of CITIC‐XiangyaChangshaHunanChina
| | - Shuoping Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan ProvinceReproductive and Genetic Hospital of CITIC‐XiangyaChangshaHunanChina
| | - Wen Li
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical SciencesCentral South UniversityChangshaHunanChina
- Clinical Research Center for Reproduction and Genetics in Hunan ProvinceReproductive and Genetic Hospital of CITIC‐XiangyaChangshaHunanChina
| | - Yifan Gu
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical SciencesCentral South UniversityChangshaHunanChina
- Clinical Research Center for Reproduction and Genetics in Hunan ProvinceReproductive and Genetic Hospital of CITIC‐XiangyaChangshaHunanChina
| | - Erchen Zhang
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical SciencesCentral South UniversityChangshaHunanChina
| | - Liang Hu
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical SciencesCentral South UniversityChangshaHunanChina
- School of MedicineHunan Normal UniversityChangshaHunanChina
- Clinical Research Center for Reproduction and Genetics in Hunan ProvinceReproductive and Genetic Hospital of CITIC‐XiangyaChangshaHunanChina
- National Engineering and Research Center of Human Stem CellsChangshaHunanChina
| |
Collapse
|
12
|
Asanad K, Greenfeld E, Scherer SW, Yuen R, Marshall CR, Lo K, Mullen B, Lau S, Jarvi KA, Samplaski MK. Uncovering the Association Between Complete AZFc Microduplications and Spermatogenic Ability: The First Reported Series. Cureus 2023; 15:e51140. [PMID: 38283528 PMCID: PMC10811380 DOI: 10.7759/cureus.51140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
Purpose This article aims to report the first series of men with complete AZFc microduplications and their clinical and reproductive characteristics. Methods We sampled 3000 men who presented for reproductive urology evaluation from 2012-2020, of which 104 men underwent high-resolution Y-chromosome microarray testing, and five men were identified to have complete AZFc microduplications. Medical, surgical, and reproductive histories were obtained. Semen and hormonal parameters as well as response to fertility therapies were recorded. Results Five men were identified as having complete AZFc microduplications. The mean age was 33.75 years, representing 0.2% (5/3000) of men presenting for fertility investigation, 4.8% (5/104) of men undergoing microarray testing, and 21% (5/24) of men with AZFc abnormalities. Two of the men had prior undescended testicles and one had several autoimmune processes. The mean follicle-stimulating hormone (FSH) was 5.5 IU/L, luteinizing hormone (LH) 3.6 IU/L, and testosterone 14.56 nmol/L. One man was azoospermic, one man alternated between severe oligospermia and rare non-motile sperm, one had variable parameters, with one semen analysis demonstrating azoospermia and a second demonstrating a total motile sperm count (TMSC) of 4 ×106, one man was persistently oligospermic with TMSCs ranging 3.96-12.6 ×106, and one man initially had severe oligospermia, with a mean TMSC of 1.5 ×106, which increased to 21.7 ×106 after intervention (varicocele embolization, clomiphene citrate). This last man then fathered a spontaneous pregnancy. Conclusion AZFc complete microduplications are a rare cause of spermatogenic failure but not an uncommon form of AZFc abnormality. Clinically, they represent a heterogeneous group, having a variable reproductive potential. Cases should be managed on an individual basis.
Collapse
Affiliation(s)
- Kian Asanad
- Institute of Urology, University of Southern California Keck School of Medicine, Los Agneles, USA
| | - Elena Greenfeld
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital Joseph and Wolf Lebovic Health Complex, Toronto, CAN
| | - Stephen W Scherer
- McLaughlin Center and Department of Molecular Genetics, Mount Sinai Hospital, Toronto, CAN
| | - Ryan Yuen
- McLaughlin Center and Department of Molecular Genetics, Mount Sinai Hospital, Toronto, CAN
| | - Christian R Marshall
- McLaughlin Center and Department of Molecular Genetics, Mount Sinai Hospital, Toronto, CAN
| | - Kirk Lo
- Division of Urology, Department of Surgery, Mount Sinai Hospital, Toronto, CAN
| | - Brendan Mullen
- Division of Urology, Department of Surgery, Mount Sinai Hospital, Toronto, CAN
| | - Susan Lau
- Division of Urology, Department of Surgery, Mount Sinai Hospital, Toronto, CAN
| | - Keith A Jarvi
- Division of Urology, Department of Surgery, Mount Sinai Hospital, Toronto, CAN
| | - Mary K Samplaski
- Institute of Urology, University of Southern California Keck School of Medicine, Los Angeles, USA
| |
Collapse
|
13
|
Yuan J, Jin L, Wang M, Wei S, Zhu G, Xu B. Detection of chromosome aberrations in 17 054 individuals with fertility problems and their subsequent assisted reproductive technology treatments in Central China. Hum Reprod 2023; 38:ii34-ii46. [PMID: 37982417 DOI: 10.1093/humrep/dead076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/24/2023] [Indexed: 11/21/2023] Open
Abstract
STUDY QUESTION How do the types and frequency of chromosome aberrations in couples in central China affect fertility and ART treatment? SUMMARY ANSWER Men with chromosome aberrations or polymorphisms have an increased risk of semen quality impairment and infertility, and couples affected by reciprocal translocations had a lower pregnancy rate compared with other chromosome aberrations. WHAT IS KNOWN ALREADY Karyotyping is crucial for patients affected by infertility as chromosome aberrations play an important role in the etiology of male infertility. However, the influence of chromosome aberrations and polymorphisms on sperm motility and morphology remains controversial. Data on ART treatment outcomes in infertile couples affected by chromosome aberrations are insufficient. STUDY DESIGN, SIZE, DURATION We conducted a retrospective study involving 17 054 patients affected by infertility who underwent karyotyping in our center between January 2020 and May 2022. PARTICIPANTS/MATERIALS, SETTING, METHODS Karyotyping was performed on 17 054 patients with reproductive failure. All patients were from the central regions of China. The following data were collected from a medical records system using patient identification numbers: couples' ages, history of pregnancy and childbirth, type of infertility, years of infertility, cause of infertility, chromosome karyotypes, semen analysis results, assisted reproductive techniques performed, and treatment outcomes of ART. MAIN RESULTS AND THE ROLE OF CHANCE The incidence of chromosome aberrations was 2.04%; 2.49% in men and 1.57% in women. By analyzing the relationships between chromosome aberrations/polymorphisms and abnormal semen parameters, we found that there were significantly higher rates of asthenozoospermia, oligospermia, and teratozoospermia among men with Robertsonian translocations and sex chromosomal structural aberrations compared with those with normal karyotypes. Higher rates of asthenozoospermia and teratozoospermia were also observed among men with autosomal reciprocal translocations. The incidence of chromosome aberrations in azoospermic men (13.75%), and in men with cryptozoospermia or severe oligospermia (6.97%) was significantly higher than that in men with mild oligospermia or normospermia (0.88-2.12%). In addition, we found that the progressive movement of sperm is impaired in men with Chromosome 21 polymorphisms compared with men with normal karyotypes (39.46% ± 20.51% vs 48.61% ± 18.76%, P = 0.026). The percentage of morphologically normal forms was lower in the chromosomal polymorphism group than in the normal karyotype group (5.01% ± 2.41% vs 5.59% ± 2.14%, P = 0.001), especially in men with polymorphisms on Chromosome 9 (enlarged Chromosome 9 heterochromatin [9qh+]: 4.48% ± 2.22% vs 5.59% ± 2.14%, P = 0.006; pericentric inversion of Chromosome 9 [inv(9)]: 5.09% ± 3.11% vs 5.59% ± 2.14%, P = 0.008). ART treatment was successful in 36.00% of couples affected by chromosome aberrations. However, couples affected by reciprocal translocations achieved a lower pregnancy rate (24.07%), which may be due to the lower euploidy rates (27.31%) when compared with that in other chromosome aberrations. LIMITATIONS, REASONS FOR CAUTION First, although the initial cohort was large, chromosome aberrations were identified in a small number of patients. Second, the observational nature of the study design is limiting. Third, the couples affected by infertility in this study were all outpatients that did not undergo identical comprehensive examinations except for karyotyping, leading to the incomplete collection of medical records. Also, the population included in this study mainly focused on couples affected by infertility, which may not be included in the European Association of Urology (EAU) recommendation on male infertility. WIDER IMPLICATIONS OF THE FINDINGS Men with chromosome aberrations or polymorphisms have an increased risk of semen quality impairment and infertility. Constitutional chromosome analysis is recommended for men affected by infertility and severe oligospermia or azoospermia to facilitate early and appropriate guidance for the most suitable treatment. Carriers of chromosome aberrations can achieve acceptable pregnancy outcomes through IVF. However, couples affected by reciprocal translocations have lower pregnancy rates, and more treatment cycles are needed before a successful pregnancy. A possible explanation may be the fewer euploid embryos obtained. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by Grant 2021YFC2700603 from the National Key Research & Development Program of China. The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Jiaying Yuan
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Mengting Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shaman Wei
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Guijin Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Bei Xu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
14
|
Kaltsas A, Dimitriadis F, Zachariou D, Zikopoulos A, Symeonidis EN, Markou E, Tien DMB, Takenaka A, Sofikitis N, Zachariou A. From Diagnosis to Treatment: Comprehensive Care by Reproductive Urologists in Assisted Reproductive Technology. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1835. [PMID: 37893553 PMCID: PMC10608107 DOI: 10.3390/medicina59101835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
Infertility is a global health concern, with male factors playing an especially large role. Unfortunately, however, the contributions made by reproductive urologists in managing male infertility under assisted reproductive technology (ART) often go undervalued. This narrative review highlights the important role played by reproductive urologists in diagnosing and treating male infertility as well as any barriers they face when providing services. This manuscript presents a comprehensive review of reproductive urologists' role in managing male infertility, outlining their expertise in diagnosing and managing male infertility as well as reversible causes and performing surgical techniques such as sperm retrieval. This manuscript investigates the barriers limiting urologist involvement such as limited availability, awareness among healthcare professionals, and financial constraints. This study highlights a decrease in male fertility due to lifestyle factors like sedentary behavior, obesity, and substance abuse. It stresses the significance of conducting an evaluation process involving both male and female partners to identify any underlying factors contributing to infertility and to identify patients who do not require any interventions beyond ART. We conclude that engaging urologists more effectively in infertility management is key to optimizing fertility outcomes among couples undergoing assisted reproductive technology treatments and requires greater education among healthcare providers regarding the role urologists and lifestyle factors that could have an effect on male fertility.
Collapse
Affiliation(s)
- Aris Kaltsas
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (N.S.)
| | - Fotios Dimitriadis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (F.D.); (E.N.S.)
| | - Dimitrios Zachariou
- Third Orthopaedic Department, National and Kapodestrian University of Athens, KAT General Hospital, 14561 Athens, Greece;
| | - Athanasios Zikopoulos
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (N.S.)
| | - Evangelos N. Symeonidis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (F.D.); (E.N.S.)
| | - Eleftheria Markou
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| | - Dung Mai Ba Tien
- Department of Andrology, Binh Dan Hospital, Ho Chi Minh City 70000, Vietnam;
| | - Atsushi Takenaka
- Division of Urology, Department of Surgery, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan;
| | - Nikolaos Sofikitis
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (N.S.)
| | - Athanasios Zachariou
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (N.S.)
| |
Collapse
|
15
|
The Trinh S, Nguyen NN, Thi Thu Le H, Thi My Pham H, Tien Trieu S, Tran NTM, Sy Ho H, Van Tran D, Van Trinh T, Trong Hoang Nguyen H, Pham Minh N, Duc Dang T, Huu Dinh V, Thi Doan H. Screening Y Chromosome Microdeletion in 1121 Men with Low Sperm Concentration and the Outcomes of Microdissection Testicular Sperm Extraction (mTESE) for Sperm Retrieval from Azoospermic Patients. Appl Clin Genet 2023; 16:155-164. [PMID: 37663123 PMCID: PMC10473397 DOI: 10.2147/tacg.s420030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Background The Y chromosome has a specific region, namely the Azoospermia Factor (AZF) because azoospermia is typically reported in the microdeletion of the AZF region. This study aims to assess the characteristics of AZF microdeletion after screening a massive number of low sperm concentration men; and the Microdissection testicular sperm extraction (mTESE) outcomes for retrieving sperm from azoospermic patients. Materials and Methods This retrospective multiple-center study enrolled a total of 1121 men with azoospermia, cryptozoospermia, and severe oligozoospermia from December 2016 to June 2022. An extension analysis used a total of 17 STSs to detect the position-occurring microdeletion in the AZF region (AZFa, b, c, and/or d loci). Microdissection testicular sperm extraction (mTESE) was performed to retrieve sperm in azoospermic men diagnosed AZFc microdeletion. Results One hundred and fifty-three men carried AZF microdeletion were detected in the 1121 participants (13.64%). The incidences of AZF microdeletion were confined to AZF a, c, and d regions, both individual and concurrence, with the most common in the AZFc region accounting for 49.67%; There was no significant difference in clinical and paraclinical characteristics between the deleted regions, except FSH level (highest in AZFa microdeletion, p = 0.043). The AZFc region was the most common type of AZF microdeletion (49.67%), including complete microdeletion (4 patients) and gr/gr partial microdeletion (39 patients) with 50.00% and 63.63% in the success rate of mTESE, separately. Conclusion The absence of AZFa and/or AZFb regions often express the most severe phenotype - azoospermia and the increasing FSH level. The AZFc region played the most common microdeletion. Microdissection testicular sperm extraction (mTESE) was the possible therapy for sperm retrieval from the testis of azoospermia men having AZFc microdeletion.
Collapse
Affiliation(s)
- Son The Trinh
- Military Institute of Clinical Embryology and Histology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nhat Ngoc Nguyen
- Military Institute of Clinical Embryology and Histology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Hien Thi Thu Le
- Department of Andrology, Andrology and Fertility Hospital of Hanoi, Hanoi, Vietnam
| | - Hanh Thi My Pham
- Department of Andrology, Andrology and Fertility Hospital of Hanoi, Hanoi, Vietnam
| | - Sang Tien Trieu
- Department of Biology and Genetics, Vietnam Military Medical University, Hanoi, Vietnam
| | - Ngoc Thao My Tran
- Department of Life Sciences, Biosciences Division, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Hung Sy Ho
- Department of Obstetrics and Gynecology, Hanoi Medical University, Hanoi, Vietnam
| | - Danh Van Tran
- Respiratory Center, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Tam Van Trinh
- Department of Andrology, Andrology and Fertility Hospital of Hanoi, Hanoi, Vietnam
| | | | - Ngoc Pham Minh
- Department of Andrology, Andrology and Fertility Hospital of Hanoi, Hanoi, Vietnam
| | - Trinh Duc Dang
- Faculty of Mathematics and Computer Science, Vietnam Military Medical University, Hanoi, Vietnam
| | - Viet Huu Dinh
- Department of Andrology, Andrology and Fertility Hospital of Hanoi, Hanoi, Vietnam
| | - Hang Thi Doan
- Military Institute of Clinical Embryology and Histology, Vietnam Military Medical University, Hanoi, Vietnam
| |
Collapse
|
16
|
Hajiesmaeil M, Ravasini F, Risi F, Magnarini G, Olivieri A, D'Atanasio E, Galehdari H, Trombetta B, Cruciani F. High incidence of AZF duplications in clan-structured Iranian populations detected through Y chromosome sequencing read depth analysis. Sci Rep 2023; 13:11857. [PMID: 37481605 PMCID: PMC10363161 DOI: 10.1038/s41598-023-39069-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023] Open
Abstract
The ampliconic region of the human Y chromosome consists of large duplicated sequences that can undergo non-allelic homologous recombination (NAHR), resulting in structural rearrangements that may cause infertility, especially when they occur in the azoospermia factor b/c (AZFb/c) region. Although AZF duplications have long been neglected due to the technical limitations of STS-based studies that focused mainly on deletions, recent next generation sequencing (NGS) technologies provided evidence for their importance in fertility. In this study, a NGS read depth approach was used to detect AZFb/c rearrangements in 87 Iranians from different ethnic groups. The duplication frequency in Iran proved to be twice as high as in the "1000 Genomes" dataset. Interestingly, most duplications were found in patrilineal ethnic groups, possibly as a consequence of their lower male effective population size which can counteract negative selection. Moreover, we found a large 8.0 Mb duplication, resulting in a fourfold increase in the copy number of AZFc genes, which to our knowledge is the largest duplication ever reported in this region. Overall, our results suggest that it is important to consider not only AZF deletions but also duplications to investigate the causes of male infertility, especially in patrilineal clan-based populations.
Collapse
Affiliation(s)
- Mogge Hajiesmaeil
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Francesco Ravasini
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Flavia Risi
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Giorgia Magnarini
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Anna Olivieri
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', Pavia University, Pavia, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - Eugenia D'Atanasio
- Institute of Molecular Biology and Pathology (IBPM), CNR, 00185, Rome, Italy
| | - Hamid Galehdari
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Beniamino Trombetta
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Fulvio Cruciani
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
- Institute of Molecular Biology and Pathology (IBPM), CNR, 00185, Rome, Italy.
| |
Collapse
|
17
|
Lucotte EA, Guðmundsdóttir VB, Jensen JM, Skov L, Macià MC, Almstrup K, Schierup MH, Helgason A, Stefansson K. Characterizing the evolution and phenotypic impact of ampliconic Y chromosome regions. Nat Commun 2023; 14:3990. [PMID: 37414752 PMCID: PMC10326017 DOI: 10.1038/s41467-023-39644-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/22/2023] [Indexed: 07/08/2023] Open
Abstract
A major part of the human Y chromosome consists of palindromes with multiple copies of genes primarily expressed in testis, many of which have been claimed to affect male fertility. Here we examine copy number variation in these palindromes based on whole genome sequence data from 11,527 Icelandic men. Using a subset of 7947 men grouped into 1449 patrilineal genealogies, we infer 57 large scale de novo copy number mutations affecting palindrome 1. This corresponds to a mutation rate of 2.34 × 10-3 mutations per meiosis, which is 4.1 times larger than our phylogenetic estimate of the mutation rate (5.72 × 10-4), suggesting that de novo mutations on the Y are lost faster than expected under neutral evolution. Although simulations indicate a selection coefficient of 1.8% against non-reference copy number carriers, we do not observe differences in fertility among sequenced men associated with their copy number genotype, but we lack statistical power to detect differences resulting from weak negative selection. We also perform association testing of a diverse set of 341 traits to palindromic copy number without any significant associations. We conclude that large-scale palindrome copy number variation on the Y chromosome has little impact on human phenotype diversity.
Collapse
Affiliation(s)
- Elise A Lucotte
- Bioinformatics Research Centre, Aarhus University, Dk-8000, Aarhus C., Denmark.
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91198, Gif-sur-Yvette, France.
| | - Valdís Björt Guðmundsdóttir
- deCODE genetics/Amgen Inc., 101, Reykjavik, Iceland
- Department of Anthropology, University of Iceland, 101, Reykjavik, Iceland
| | - Jacob M Jensen
- Bioinformatics Research Centre, Aarhus University, Dk-8000, Aarhus C., Denmark
| | - Laurits Skov
- Bioinformatics Research Centre, Aarhus University, Dk-8000, Aarhus C., Denmark
| | - Moisès Coll Macià
- Bioinformatics Research Centre, Aarhus University, Dk-8000, Aarhus C., Denmark
| | - Kristian Almstrup
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark
| | - Mikkel H Schierup
- Bioinformatics Research Centre, Aarhus University, Dk-8000, Aarhus C., Denmark
| | - Agnar Helgason
- deCODE genetics/Amgen Inc., 101, Reykjavik, Iceland.
- Department of Anthropology, University of Iceland, 101, Reykjavik, Iceland.
| | - Kari Stefansson
- deCODE genetics/Amgen Inc., 101, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, 101, Reykjavik, Iceland
| |
Collapse
|
18
|
Cui Y, Zhou M, He Q, He Z. Zbtb40 Deficiency Leads to Morphological and Phenotypic Abnormalities of Spermatocytes and Spermatozoa and Causes Male Infertility. Cells 2023; 12:cells12091264. [PMID: 37174664 PMCID: PMC10177581 DOI: 10.3390/cells12091264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Studies on the gene regulation of spermatogenesis are of unusual significance for maintaining male reproduction and treating male infertility. Here, we have demonstrated, for the first time, that a loss of ZBTB40 function leads to abnormalities in the morphological and phenotypic characteristics of mouse spermatocytes and spermatids as well as male infertility. We revealed that Zbtb40 was expressed in spermatocytes of mouse testes, and it was co-localized with γH2AX in mouse secondary spermatocytes. Interestingly, spermatocytes of Zbtb40 knockout mice had longer telomeres, compromised double-strand break (DSB) repair in the sex chromosome, and a higher apoptosis ratio compared to wild-type (WT) mice. The testis weight, testicular volume, and cauda epididymis body weight of the Zbtb40+/- male mice were significantly lower than in WT mice. Mating tests indicated that Zbtb40+/- male mice were able to mate normally, but they failed to produce any pups. Notably, sperm of Zbtb40+/- mice showed flagellum deformities and abnormal acrosome biogenesis. Furthermore, a ZBTB40 mutation was associated with non-obstructive azoospermia. Our results implicate that ZBTB40 deficiency leads to morphological and phenotypic abnormalities of spermatocytes and spermatids and causes male infertility. This study thus offers a new genetic mechanism regulating mammalian spermatogenesis and provides a novel target for gene therapy in male infertility.
Collapse
Affiliation(s)
- Yinghong Cui
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
- The Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha 410013, China
- The Manufacture-Based Learning & Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha 410013, China
| | - Mingqing Zhou
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Quanyuan He
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Zuping He
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
- The Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha 410013, China
- The Manufacture-Based Learning & Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha 410013, China
| |
Collapse
|
19
|
Wang X, Liu X, Qu M, Li H. Sertoli cell-only syndrome: advances, challenges, and perspectives in genetics and mechanisms. Cell Mol Life Sci 2023; 80:67. [PMID: 36814036 PMCID: PMC11072804 DOI: 10.1007/s00018-023-04723-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/11/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023]
Abstract
Male infertility can be caused by quantitative and/or qualitative abnormalities in spermatogenesis, which affects men's physical and mental health. Sertoli cell-only syndrome (SCOS) is the most severe histological phenotype of male infertility characterized by the depletion of germ cells with only Sertoli cells remaining in the seminiferous tubules. Most SCOS cases cannot be explained by the already known genetic causes including karyotype abnormalities and microdeletions of the Y chromosome. With the development of sequencing technology, studies on screening new genetic causes for SCOS are growing in recent years. Directly sequencing of target genes in sporadic cases and whole-exome sequencing applied in familial cases have identified several genes associated with SCOS. Analyses of the testicular transcriptome, proteome, and epigenetics in SCOS patients provide explanations regarding the molecular mechanisms of SCOS. In this review, we discuss the possible relationship between defective germline development and SCOS based on mouse models with SCO phenotype. We also summarize the advances and challenges in the exploration of genetic causes and mechanisms of SCOS. Knowing the genetic factors of SCOS offers a better understanding of SCO and human spermatogenesis, and it also has practical significance for improving diagnosis, making appropriate medical decisions, and genetic counseling. For therapeutic implications, SCOS research, along with the achievements in stem cell technologies and gene therapy, build the foundation to develop novel therapies for SCOS patients to produce functional spermatozoa, giving them hope to father children.
Collapse
Affiliation(s)
- Xiaotong Wang
- Institute of Reproductive Health/Center of Reproductive Medicine, Huazhong University of Science and Technology, Wuhan, 430000, China
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xinyu Liu
- Institute of Reproductive Health/Center of Reproductive Medicine, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Mengyuan Qu
- Institute of Reproductive Health/Center of Reproductive Medicine, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Honggang Li
- Institute of Reproductive Health/Center of Reproductive Medicine, Huazhong University of Science and Technology, Wuhan, 430000, China.
- Wuhan Tongji Reproductive Medicine Hospital, Wuhan, 430000, China.
| |
Collapse
|
20
|
Sciorio R, Tramontano L, Rapalini E, Bellaminutti S, Bulletti FM, D'Amato A, Manna C, Palagiano A, Bulletti C, Esteves SC. Risk of genetic and epigenetic alteration in children conceived following ART: Is it time to return to nature whenever possible? Clin Genet 2023; 103:133-145. [PMID: 36109352 DOI: 10.1111/cge.14232] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 01/07/2023]
Abstract
Assisted reproductive technology may influence epigenetic signature as the procedures coincide with the extensive epigenetic modification occurring from fertilization to embryo implantation. However, it is still unclear to what extent ART alters the embryo epigenome. In vivo fertilization occurs in the fallopian tube, where a specific and natural environment enables the embryo's healthy development. During this dynamic period, major waves of epigenetic reprogramming, crucial for the normal fate of the embryo, take place. Over the past decade, concerns relating to the raised incidence of epigenetic anomalies and imprinting following ART have been raised by several authors. Epigenetic reprogramming is particularly susceptible to environmental conditions during the periconceptional period; therefore, unphysiological conditions, including ovarian stimulation, in vitro fertilization, embryo culture, cryopreservation of gametes and embryos, parental lifestyle, and underlying infertility, have the potential to contribute to epigenetic dysregulation independently or collectively. This review critically appraises the evidence relating to the association between ART and genetic and epigenetic modifications that may be transmitted to the offspring.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Edinburgh Assisted Conception Programme, EFREC, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Luca Tramontano
- Department of Women, Infants and Adolescents, Division of Obstetrics, Geneva University Hospitals, Geneva, Switzerland
| | - Erika Rapalini
- IVF Department, Versilia Hospital Lido di Camaiore, Lucca, Italy
| | - Serena Bellaminutti
- Department of Gynaecology and Obstetrics, Ospedale Regionale di Lugano, Lugano, Switzerland
- Gynecology and Fertility Unit, Procrea Institute, Lugano, Switzerland
- Gynecology Unit, Centro Medico, Lugano, Switzerland
| | | | - Antonio D'Amato
- Obstetrics and Gynaecology Clinic, University of Bari, Bari, Italy
| | - Claudio Manna
- Biofertility IVF and Infertility Center, Rome, Italy
| | - Antonio Palagiano
- CFA Napoli, Italy, CFA: Centro Fecondazione Assistita Napoli, Naples, Italy
| | - Carlo Bulletti
- Ostetricia e Ginecologia, EXTRA OMNES Medicina e Salute Riproduttiva, Cattolica, Italy
| | - Sandro C Esteves
- Andrology and Human Reproduction Clinic, Campinas, Brazil
- Department of Surgery (Division of Urology), University of Campinas (UNICAMP), Campinas, Brazil
- Faculty of Health, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
21
|
Bonito M, Ravasini F, Novelletto A, D'Atanasio E, Cruciani F, Trombetta B. Disclosing complex mutational dynamics at a Y chromosome palindrome evolving through intra- and inter-chromosomal gene conversion. Hum Mol Genet 2023; 32:65-78. [PMID: 35921243 DOI: 10.1093/hmg/ddac144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 01/17/2023] Open
Abstract
The human MSY ampliconic region is mainly composed of large duplicated sequences that are organized in eight palindromes (termed P1-P8), and may undergo arm-to-arm gene conversion. Although the importance of these elements is widely recognized, their evolutionary dynamics are still nuanced. Here, we focused on the P8 palindrome, which shows a complex evolutionary history, being involved in intra- and inter-chromosomal gene conversion. To disclose its evolutionary complexity, we performed a high-depth (50×) targeted next-generation sequencing of this element in 157 subjects belonging to the most divergent lineages of the Y chromosome tree. We found a total of 72 polymorphic paralogous sequence variants that have been exploited to identify 41 Y-Y gene conversion events that occurred during recent human history. Through our analysis, we were able to categorize P8 arms into three portions, whose molecular diversity was modelled by different evolutionary forces. Notably, the outer region of the palindrome is not involved in any gene conversion event and evolves exclusively through the action of mutational pressure. The inner region is affected by Y-Y gene conversion occurring at a rate of 1.52 × 10-5 conversions/base/year, with no bias towards the retention of the ancestral state of the sequence. In this portion, GC-biased gene conversion is counterbalanced by a mutational bias towards AT bases. Finally, the middle region of the arms, in addition to intra-chromosomal gene conversion, is involved in X-to-Y gene conversion (at a rate of 6.013 × 10-8 conversions/base/year) thus being a major force in the evolution of the VCY/VCX gene family.
Collapse
Affiliation(s)
- Maria Bonito
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome 00185, Italy
| | - Francesco Ravasini
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome 00185, Italy
| | - Andrea Novelletto
- Department of Biology, University of Rome Tor Vergata, Rome 00133, Italy
| | - Eugenia D'Atanasio
- Institute of Molecular Biology and Pathology (IBPM), CNR, Rome 00185, Italy
| | - Fulvio Cruciani
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome 00185, Italy.,Institute of Molecular Biology and Pathology (IBPM), CNR, Rome 00185, Italy
| | - Beniamino Trombetta
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome 00185, Italy
| |
Collapse
|
22
|
Tomaiuolo G, Fellico F, Preziosi V, Guido S. Semen rheology and its relation to male infertility. Interface Focus 2022; 12:20220048. [PMID: 36330323 PMCID: PMC9560795 DOI: 10.1098/rsfs.2022.0048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/30/2022] [Indexed: 08/01/2023] Open
Abstract
Infertility affects 15% of couples of reproductive age worldwide. In spite of many advances in understanding and treating male infertility, there is still a number of issues that need further investigation and translation to the clinic. Here, we review the current knowledge and practice concerning semen rheology and its relation with pathological states affecting male infertility. Although it is well recognized that altered rheological properties of semen can impair normal sperm movement in the female reproductive tract, routine semen analysis is mostly focused on number, motility and morphology of spermatozoa, and includes only an approximate, operator-dependent measure of semen viscosity. The latter is based on the possible formation of a liquid thread from a pipette where a semen sample has been aspirated, a method that is sensitive not only to viscosity but also to elongational properties and surface tension of semen. The formation of a liquid thread is usually associated with a gel-like consistency of the sample and changes in spermatozoa motility in such a complex medium are still to be fully elucidated. The aim of this review is to point out that a more quantitative and reliable characterization of semen rheology is in order to improve the current methods of semen analysis and to develop additional tools for the diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
- Giovanna Tomaiuolo
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
- CEINGE Advanced Biotechnologies, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Fiammetta Fellico
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
- CEINGE Advanced Biotechnologies, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Valentina Preziosi
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
- CEINGE Advanced Biotechnologies, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Stefano Guido
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
- CEINGE Advanced Biotechnologies, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| |
Collapse
|
23
|
Wang HY, Liu X, Chen JY, Huang Y, Lu Y, Tan F, Liu Q, Yang M, Li S, Zhang X, Qin Y, Ma W, Yang Y, Meng L, Liu K, Wang Q, Fan G, Nóbrega RH, Liu S, Piferrer F, Shao C. Single-cell-resolution transcriptome map revealed novel genes involved in testicular germ cell progression and somatic cells specification in Chinese tongue sole with sex reversal. SCIENCE CHINA LIFE SCIENCES 2022; 66:1151-1169. [PMID: 36437386 DOI: 10.1007/s11427-021-2236-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
Female-to-male sex reversals (pseudomales) are common in lower vertebrates and have been found in natural populations, which is a concern under rapid changes in environmental conditions. Pseudomales can exhibit altered spermatogenesis. However, the regulatory mechanisms underlying pseudomale spermatogenesis remain unclear. Here, we characterized spermatogenesis in Chinese tongue sole (Cynoglossus semilaevis), a species with genetic and environmental sex determination, based on a high-resolution single-cell RNA-seq atlas of cells derived from the testes of genotypic males and pseudomales. We identified five germ cell types and six somatic cell types and obtained a single-cell atlas of dynamic changes in gene expression during spermatogenesis in Chinese tongue sole, including alterations in pseudomales. We detected decreased levels of Ca2+ signaling pathway-related genes in spermatogonia, insufficient meiotic initiation in spermatocytes, and a malfunction of somatic niche cells in pseudomales. However, a cluster of CaSR genes and MAPK signaling factors were upregulated in undifferentiated spermatogonia of pseudomales. Additionally, we revealed that Z chromosome-specific genes, such as piwil2, dhx37, and ehmt1, were important for spermatogenesis. These results improve our understanding of reproduction after female-to-male sex-reversal and provide new insights into the adaptability of reproductive strategies in lower vertebrates.
Collapse
|
24
|
Yang R, Stendahl AM, Vigh-Conrad KA, Held M, Lima AC, Conrad DF. SATINN: an automated neural network-based classification of testicular sections allows for high-throughput histopathology of mouse mutants. Bioinformatics 2022; 38:5288-5298. [PMID: 36214638 PMCID: PMC9710558 DOI: 10.1093/bioinformatics/btac673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION The mammalian testis is a complex organ with a cellular composition that changes smoothly and cyclically in normal adults. While testis histology is already an invaluable tool for identifying and describing developmental differences in evolution and disease, methods for standardized, digital image analysis of testis are needed to expand the utility of this approach. RESULTS We developed SATINN (Software for Analysis of Testis Images with Neural Networks), a multi-level framework for automated analysis of multiplexed immunofluorescence images from mouse testis. This approach uses residual learning to train convolutional neural networks (CNNs) to classify nuclei from seminiferous tubules into seven distinct cell types with an accuracy of 81.7%. These cell classifications are then used in a second-level tubule CNN, which places seminiferous tubules into one of 12 distinct tubule stages with 57.3% direct accuracy and 94.9% within ±1 stage. We further describe numerous cell- and tubule-level statistics that can be derived from wild-type testis. Finally, we demonstrate how the classifiers and derived statistics can be used to rapidly and precisely describe pathology by applying our methods to image data from two mutant mouse lines. Our results demonstrate the feasibility and potential of using computer-assisted analysis for testis histology, an area poised to evolve rapidly on the back of emerging, spatially resolved genomic and proteomic technologies. AVAILABILITY AND IMPLEMENTATION The source code to reproduce the results described here and a SATINN standalone application with graphic-user interface are available from http://github.com/conradlab/SATINN. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ran Yang
- To whom correspondence should be addressed. or or
| | - Alexandra M Stendahl
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR 97006, USA
| | - Katinka A Vigh-Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR 97006, USA
| | - Madison Held
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR 97006, USA
| | - Ana C Lima
- To whom correspondence should be addressed. or or
| | | |
Collapse
|
25
|
Xu Y, Pang Q. Repetitive DNA Sequences in the Human Y Chromosome and Male Infertility. Front Cell Dev Biol 2022; 10:831338. [PMID: 35912115 PMCID: PMC9326358 DOI: 10.3389/fcell.2022.831338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The male-specific Y chromosome, which is well known for its diverse and complex repetitive sequences, has different sizes, genome structures, contents and evolutionary trajectories from other chromosomes and is of great significance for testis development and function. The large number of repetitive sequences and palindrome structure of the Y chromosome play an important role in maintaining the stability of male sex determining genes, although they can also cause non-allelic homologous recombination within the chromosome. Deletion of certain Y chromosome sequences will lead to spermatogenesis disorders and male infertility. And Y chromosome genes are also involved in the occurrence of reproductive system cancers and can increase the susceptibility of other tumors. In addition, the Y chromosome has very special value in the personal identification and parentage testing of male-related cases in forensic medicine because of its unique paternal genetic characteristics. In view of the extremely high frequency and complexity of gene rearrangements and the limitations of sequencing technology, the analysis of Y chromosome sequences and the study of Y-gene function still have many unsolved problems. This article will introduce the structure and repetitive sequence of the Y chromosome, summarize the correlation between Y chromosome various sequence deletions and male infertility for understanding the repetitive sequence of Y chromosome more systematically, in order to provide research motivation for further explore of the molecules mechanism of Y-deletion and male infertility and theoretical foundations for the transformation of basic research into applications in clinical medicine and forensic medicine.
Collapse
Affiliation(s)
- Yong Xu
- Department of Emergency Surgery, Jining NO 1 People’s Hospital, Jining, China
| | - Qianqian Pang
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
- *Correspondence: Qianqian Pang,
| |
Collapse
|
26
|
Chernykh VB, Ryzhkova OP, Kuznetsova IA, Kazaryan MS, Sorokina TM, Kurilo LF, Schagina OA, Polyakov AV. Deletions in AZFc Region of Y Chromosome in Russian Fertile Men. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422070043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Vogt PH, Rauschendorf MA, Zimmer J, Drummer C, Behr R. AZFa Y gene, DDX3Y, evolved novel testis transcript variants in primates with proximal 3´UTR polyadenylation for germ cell specific translation. Sci Rep 2022; 12:8954. [PMID: 35624115 PMCID: PMC9142519 DOI: 10.1038/s41598-022-12474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/31/2022] [Indexed: 01/15/2023] Open
Abstract
Translational control is a major level of gene expression regulation in the male germ line. DDX3Y located in the AZFa region of the human Y chromosome encodes a conserved RNA helicase important for translational control at the G1-S phase of the cell cycle. In human, DDX3Y protein is expressed only in premeiotic male germ cells. In primates, DDX3Y evolved a second promoter producing novel testis-specific transcripts. Here, we show primate species-specific use of alternative polyadenylation (APA) sites for these testis-specific DDX3Y transcript variants. They have evolved subsequently in the 3´UTRs of the primates´ DDX3Y transcripts. Whereas a distal APA site (PAS4) is still used for polyadenylation of most DDX3Y testis transcripts in Callithrix jacchus; two proximal APAs (PAS1; PAS2) are used predominantly in Macaca mulatta, in Pan trogloydates and in human. This shift corresponds with a significant increase of DDX3Y protein expression in the macaque testis tissue. In chimpanzee and human, shift to predominant use of the most proximal APA site (PAS1) is associated with translation of these DDX3Y transcripts in only premeiotic male germ cells. We therefore assume evolution of a positive selection process for functional DDX3Y testis transcripts in these primates which increase their stability and translation efficiency to promote its cell cycle balancing function in the human male germ line.
Collapse
Affiliation(s)
- P. H. Vogt
- Division of Reproduction Genetics, Department of Gynecological Endocrinology and Fertility Disorders, University Women Hospital, Im Neuenheimer Feld 440, D-69120 Heidelberg, Germany
| | - M-A. Rauschendorf
- Molecular Health GmbH, Kurfürsten-Anlage 21, D-69115 Heidelberg, Germany
| | - J. Zimmer
- Division of Reproduction Genetics, Department of Gynecological Endocrinology and Fertility Disorders, University Women Hospital, Im Neuenheimer Feld 440, D-69120 Heidelberg, Germany
| | - C. Drummer
- grid.418215.b0000 0000 8502 7018Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, D-37077 Göttingen, Germany
| | - R. Behr
- grid.418215.b0000 0000 8502 7018Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, D-37077 Göttingen, Germany
| |
Collapse
|
28
|
Vogt PH, Besikoglu B, Bettendorf M, Frank-Herrmann P, Zimmer J, Bender U, Knauer-Fischer S, Choukair D, Sinn P, Doerr HG, Woelfle J, Heidemann PH, Lau YFC, Strowitzki T. Sex chromosome DSD individuals with mosaic 45,X0 and aberrant Y chromosomes in 46,XY cells: distinct gender phenotypes and germ cell tumour risks §. Syst Biol Reprod Med 2022; 68:247-257. [PMID: 35481403 DOI: 10.1080/19396368.2022.2057258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
"Differences of Sexual Development (DSD)," individuals with rearranged Y chromosome breaks in their 46,XY cells are reported with male and female gender phenotypes and differences in germ cell tumour (GCT) risk. This raised the question of whether male or female gender and GCT risk depends on the site of the break and/or rearrangement of the individual´s Y chromosome. In this paper, we report molecular mapping of the breakpoint on the aberrant Y chromosome of 22 DSD individuals with a 45,X/46,XY karyotype reared with a different gender. Their Y chromosome breaks are found at different sites on the long and short Y arms. Our data indicate that gender rearing is, neither dependent on the site of Y breakage, nor on the amount of 45,X0 cells in the individuals' leukocytes. Most prominent are secondary rearrangements of the Y chromosome breaks forming di-centric Y-structures ("dic-Y"). Duplications of the short Y arm and the proximal part of the long Y arm are the results. A putative GCT risk has been analysed with immunohistochemical experiments on some dysgenetic gonadal tissue sections. With specific antibodies for OCT3/4 expression, we marked the pluripotent germ cell fraction being potential tumour precursor cells. With specific antibodies for DDX3Y, TSPY, and UTY we analyzed their putative Gonadoblastoma Y (GBY) tumour susceptibility function in the same specimen. We conclude GBY expression is only diagnostic for GCT development in the aberrant germ cells of these DSD individuals when strong OCT3/4 expression has marked their pluripotency.
Collapse
Affiliation(s)
- Peter H Vogt
- Division of Reproduction Genetics, Department of Gynaecological Endocrinology & Infertility Disorders, Women Hospital, University of Heidelberg, Heidelberg, Germany
| | - Banu Besikoglu
- Division of Reproduction Genetics, Department of Gynaecological Endocrinology & Infertility Disorders, Women Hospital, University of Heidelberg, Heidelberg, Germany.,Novum, Center for Reproductive Medicine, Essen, Germany
| | - Markus Bettendorf
- Division of Paediatric Endocrinology and Diabetes, Children Hospital, University of Heidelberg, Heidelberg, Germany
| | - Petra Frank-Herrmann
- Department of Gynaecological Endocrinology & Infertility Disorders, Women Hospital, University of Heidelberg, Heidelberg, Germany
| | - Jutta Zimmer
- Division of Reproduction Genetics, Department of Gynaecological Endocrinology & Infertility Disorders, Women Hospital, University of Heidelberg, Heidelberg, Germany
| | - Urike Bender
- Division of Reproduction Genetics, Department of Gynaecological Endocrinology & Infertility Disorders, Women Hospital, University of Heidelberg, Heidelberg, Germany
| | - Sabine Knauer-Fischer
- Division of Paediatric Endocrinology and Diabetes, Children Hospital, University of Heidelberg, Heidelberg, Germany
| | - Daniela Choukair
- Division of Paediatric Endocrinology and Diabetes, Children Hospital, University of Heidelberg, Heidelberg, Germany
| | - Peter Sinn
- Division of Gynaecopathology, Department of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Joachim Woelfle
- Children Hospital; University of Erlangen, Erlangen, Germany
| | - Peter H Heidemann
- Children Hospital Augsburg I, Academic Hospital of University of Munich, Augsburg, Germany
| | - Yun-Fai Chris Lau
- Department of Medicine, VA Medical Center 111C5, University of California, San Francisco, USA
| | - Thomas Strowitzki
- Department of Gynaecological Endocrinology & Infertility Disorders, Women Hospital, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
29
|
Nordenström A, Ahmed SF, van den Akker E, Blair J, Bonomi M, Brachet C, Broersen LHA, Claahsen-van der Grinten HL, Dessens AB, Gawlik A, Gravholt CH, Juul A, Krausz C, Raivio T, Smyth A, Touraine P, Vitali D, Dekkers OM. Pubertal induction and transition to adult sex hormone replacement in patients with congenital pituitary or gonadal reproductive hormone deficiency: an Endo-ERN clinical practice guideline. Eur J Endocrinol 2022; 186:G9-G49. [PMID: 35353710 PMCID: PMC9066594 DOI: 10.1530/eje-22-0073] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022]
Abstract
An Endo-European Reference Network guideline initiative was launched including 16 clinicians experienced in endocrinology, pediatric and adult and 2 patient representatives. The guideline was endorsed by the European Society for Pediatric Endocrinology, the European Society for Endocrinology and the European Academy of Andrology. The aim was to create practice guidelines for clinical assessment and puberty induction in individuals with congenital pituitary or gonadal hormone deficiency. A systematic literature search was conducted, and the evidence was graded according to the Grading of Recommendations, Assessment, Development and Evaluation system. If the evidence was insufficient or lacking, then the conclusions were based on expert opinion. The guideline includes recommendations for puberty induction with oestrogen or testosterone. Publications on the induction of puberty with follicle-stimulation hormone and human chorionic gonadotrophin in hypogonadotropic hypogonadism are reviewed. Specific issues in individuals with Klinefelter syndrome or androgen insensitivity syndrome are considered. The expert panel recommends that pubertal induction or sex hormone replacement to sustain puberty should be cared for by a multidisciplinary team. Children with a known condition should be followed from the age of 8 years for girls and 9 years for boys. Puberty induction should be individualised but considered at 11 years in girls and 12 years in boys. Psychological aspects of puberty and fertility issues are especially important to address in individuals with sex development disorders or congenital pituitary deficiencies. The transition of these young adults highlights the importance of a multidisciplinary approach, to discuss both medical issues and social and psychological issues that arise in the context of these chronic conditions.
Collapse
Affiliation(s)
- A Nordenström
- Pediatric Endocrinology, Department of Women’s and Children’s Health Karolinska Institutet, and Department of Pediatric Endocrinology and Inborn Errors of Metabolism, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
- Correspondence should be addressed to A Nordenström;
| | - S F Ahmed
- Developmental Endocrinology Research Group, School of Medicine, Dentistry & Nursing, University of Glasgow, Royal Hospital for Children, Glasgow, UK
| | - E van den Akker
- Division of Pediatric Endocrinology and Obesity Center CGG, Department of Pediatrics, Erasmus MC Sophia Children’s Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J Blair
- Department of Endocrinology, Alder Hey Children’s Hospital, Liverpool, UK
| | - M Bonomi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - C Brachet
- Pediatric Endocrinology Unit, Hôpital Universitaire des Enfants HUDERF, Université Libre de Bruxelles, Bruxelles, Belgium
| | - L H A Broersen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - H L Claahsen-van der Grinten
- Department of Pediatric Endocrinology, Amalia Childrens Hospital, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - A B Dessens
- Department of Child and Adolescent Psychiatry and Psychology, Sophia Children’s Hospital Erasmus Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University Ghent, Ghent, Belgium
| | - A Gawlik
- Department of Pediatrics and Pediatric Endocrinology, Faculty of Medical Sciences, Medical University of Silesia, Katowice, Poland
| | - C H Gravholt
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - A Juul
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- International Research and Research Training Centre for Endocrine Disruption in Male Reproduction and Child Health (EDMaRC) and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - C Krausz
- Department of Biochemical, Experimental and Clinical Sciences ‘Mario Serio’, University of Florence, Florence, Italy
| | - T Raivio
- New Children’s Hospital, Pediatric Research Center, Helsinki University Hospital, and Research Program Unit, Faculty of Medicine, Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - A Smyth
- Turner Syndrome Support Society in the UK, ePAG ENDO-ERN, UK
| | - P Touraine
- Department of Endocrinology and Reproductive Medicine, Pitié Salpêtriere Hospital, Paris, France
- Sorbonne Université Médecine and Center for Endocrine Rare Disorders of Growth and Development and Center for Rare Gynecological Disorders, Paris, France
| | - D Vitali
- SOD ITALIA APS – Italian Patient Organization for Septo Optic Dysplasia and Other Neuroendocrine Disorders – ePAG ENDO-ERN, Rome, Italy
| | - O M Dekkers
- Department of Clinical Epidemiology, LUMC Leiden, Leiden, The Netherlands
- Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
30
|
Osadchuk LV, Osadchuk AV. Role of CAG and GGC Polymorphism of the Androgen Receptor Gene in Male Fertility. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422020119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Qin S, Wang X, Wang J, Zhang Z, Chen X, Yin Y, Ye M, Li-Ling J. Verification of a cryptic t(Y;15) translocation in a male with an apparent 45,X karyotype. Mol Cytogenet 2022; 15:3. [PMID: 35164811 PMCID: PMC8842983 DOI: 10.1186/s13039-022-00581-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/28/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
A rare disease is that an individual with a non-chimeric karyotype of 45,X develops into a male. We explored the genetic aetiology of an infertile male with an apparent 45,X karyotype, which was subsequently verified as cryptic translocation between chromosomes Y and 15.
Methods
DNA was extracted from the patient's peripheral blood. A range of genetic testing was performed, including conventional chromosomal karyotyping, short tandem repeat (STR) analysis for azoospermia factor (AZF) region, fluorescence in situ hybridization (FISH) with specific probes groups of DXZ1/DYZ3, DYZ3/D15Z1/PML and SRY/D15Z1/PML, and chromosomal microarray analysis (CMA) for genomic copy number variations (CNVs).
Results
The patient was found to have an apparent 45,X karyotype. STR analysis showed that he possessed a short arm of the Y chromosome, including the SRY gene; however, he was missing the long arm of the Y chromosome, including AZFa + b + c and Yqter. A FISH assay of DXZ1 and DYZ3 probes showed a green signal of the X centromere and a red of the Y centromeric signal on a D-group-sized chromosome. By FISH assaying with D15Z1 and DYZ3 probes, chromosomes 15 and Y centromeric signals appeared closely on a single chromosome, as the PML control probe ascertained. A further FISH assay with D15Z1 and SRY probes revealed a signal of the SRY gene at the end of one arm of chromosome 15. The result of the CMA indicated a deletion with an approximate size of 45.31 Mb spanning from Yq11 to Yter.
Conclusion
Our study enriched the karyotype-phenotype correlation of Y and 15 chromosomes translocation. It strengthened the critical roles of molecular genetic techniques in identifying the chromosomal breakpoints and regions involved. Genetic aetiology can guide early intervention in childhood and assisted reproduction in adulthood.
Collapse
|
32
|
Lee SR, Lee TH, Song SH, Kim DS, Choi KH, Lee JH, Kim DK. Update on genetic screening and treatment for infertile men with genetic disorders in the era of assisted reproductive technology. Clin Exp Reprod Med 2021; 48:283-294. [PMID: 34875735 PMCID: PMC8651766 DOI: 10.5653/cerm.2021.04476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
A genetic etiology of male infertility is identified in fewer than 25% of infertile men, while 30% of infertile men lack a clear etiology, resulting in a diagnosis of idiopathic male infertility. Advances in reproductive genetics have provided insights into the mechanisms of male infertility, and a characterization of the genetic basis of male infertility may have broad implications for understanding the causes of infertility and determining the prognosis, optimal treatment, and management of couples. In a substantial proportion of patients with azoospermia, known genetic factors contribute to male infertility. Additionally, the number of identified genetic anomalies in other etiologies of male infertility is growing through advances in whole-genome amplification and next-generation sequencing. In this review, we present an up-to-date overview of the indications for appropriate genetic tests, summarize the characteristics of chromosomal and genetic diseases, and discuss the treatment of couples with genetic infertility by microdissection-testicular sperm extraction, personalized hormone therapy, and in vitro fertilization with pre-implantation genetic testing.
Collapse
Affiliation(s)
- Seung Ryeol Lee
- Department of Urology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Tae Ho Lee
- Department of Urology, Fertility Center, CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Seung-Hun Song
- Department of Urology, Fertility Center, CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Dong Suk Kim
- Department of Urology, Fertility Center, CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Kyung Hwa Choi
- Department of Urology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Jae Ho Lee
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, Korea
| | - Dae Keun Kim
- Department of Urology, CHA Fertility Center Seoul Station, CHA University School of Medicine, Seoul, Korea
| |
Collapse
|
33
|
Sudhakar DVS, Shah R, Gajbhiye RK. Genetics of Male Infertility - Present and Future: A Narrative Review. J Hum Reprod Sci 2021; 14:217-227. [PMID: 34759610 PMCID: PMC8527069 DOI: 10.4103/jhrs.jhrs_115_21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Infertility affects 8%–12% of couples worldwide with a male factor contributing to nearly 50% of couples either as a primary or contributing cause. Several genetic factors that include single-gene and multiple-gene defects associated with male infertility were reported in the past two decades. However, the etiology remains ambiguous in a majority of infertile men (~40%). The objective of this narrative review is to provide an update on the genetic factors associated with idiopathic male infertility and male reproductive system abnormalities identified in the last two decades. We performed a thorough literature search in online databases from January 2000 to July 2021. We observed a total of 13 genes associated with nonobstructive azoospermia due to maturation/meiotic arrest. Several studies that reported novel genes associated with multiple morphological abnormalities of the sperm flagella are also discussed in this review. ADGRG2, PANK2, SCNN1B, and CA12 genes are observed in non-CFTR-related vas aplasia. The genomic analysis should be quickly implemented in clinical practice as the detection of gene abnormalities in different male infertility phenotypes will facilitate genetic counseling.
Collapse
Affiliation(s)
- Digumarthi V S Sudhakar
- Department of Gamete Immunobiology, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Rupin Shah
- Lilavati Hospital and Research Centre, Mumbai, Maharashtra, India
| | - Rahul K Gajbhiye
- Clinical Research Lab and Andrology Clinic, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| |
Collapse
|
34
|
Huang Z, Chen F, Xie M, Zhang H, Zhuang Y, Huang C, Li X, Liu H, Chen Z. The I510V mutation in KLHL10 in a patient with oligoasthenoteratozoospermia. J Reprod Dev 2021; 67:313-318. [PMID: 34433733 PMCID: PMC8568611 DOI: 10.1262/jrd.2021-063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Oligoasthenoteratozoospermia is a human infertility syndrome caused by defects in spermatogenesis, spermiogenesis, and sperm maturation, and its etiology remains unclear. Kelch-like 10
(KLHL10) is a component of ubiquitin ligase E3 10 (KLHL10) and plays an important role in male fertility. Deletion or mutation of the Klhl10 gene in
Drosophila or mice results in defects in spermatogenesis or sperm maturation. However, the molecular mechanisms by which KLHL10 functions remain elusive. In this study, we
identified a missense mutation (c.1528A→G, p.I510V) in exon 5 of KLHL10, which is associated with oligoasthenoteratozoospermia in humans. To investigate the effects of this
mutation on KLHL10 function and spermatogenesis and/or spermiogenesis, we generated mutant mice duplicating the amino acid conversion using the clustered regularly interspaced palindromic
repeat/caspase 9 (CRISPR/Cas9) system and designated them Klhl10I510V mice. However, the Klhl10I510V mice did not exhibit any defects in testis development,
spermatogenesis, or sperm motility at ten-weeks-of-age, suggesting that this mutation does not disrupt the KLHL10 function, and may not be the cause of male infertility in the affected
individual with oligoasthenoteratozoospermia.
Collapse
Affiliation(s)
- Zicong Huang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Feilong Chen
- Department of Pathology, Panyu Maternal and Child Care Service Centre of Guangzhou, Guangzhou 511499, P. R. China
| | - Minyu Xie
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Hanbin Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yuge Zhuang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Chuyu Huang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Xuemei Li
- Reproductive center, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University (Shenzhen Maternity & Child Healthcare Hospital), Shenzhen 518017, P. R. China
| | - Hong Liu
- Reproductive center, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University (Shenzhen Maternity & Child Healthcare Hospital), Shenzhen 518017, P. R. China
| | - Zhenguo Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
35
|
Krausz C, Cioppi F. Genetic Factors of Non-Obstructive Azoospermia: Consequences on Patients' and Offspring Health. J Clin Med 2021; 10:jcm10174009. [PMID: 34501457 PMCID: PMC8432470 DOI: 10.3390/jcm10174009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022] Open
Abstract
Non-Obstructive Azoospermia (NOA) affects about 1% of men in the general population and is characterized by clinical heterogeneity implying the involvement of several different acquired and genetic factors. NOA men are at higher risk to be carriers of known genetic anomalies such as karyotype abnormalities and Y-chromosome microdeletions in respect to oligo-normozoospermic men. In recent years, a growing number of novel monogenic causes have been identified through Whole Exome Sequencing (WES). Genetic testing is useful for diagnostic and pre-TESE prognostic purposes as well as for its potential relevance for general health. Several epidemiological observations show a link between azoospermia and higher morbidity and mortality rate, suggesting a common etiology for NOA and some chronic diseases, including cancer. Since on average 50% of NOA patients has a positive TESE outcome, the identification of genetic factors in NOA patients has relevance also to the offspring's health. Although still debated, the observed increased risk of certain neurodevelopmental disorders, as well as impaired cardiometabolic and reproductive health profile in children conceived with ICSI from NOA fathers may indicate the involvement of transmissible genetic factors. This review provides an update on the reproductive and general health consequences of known genetic factors causing NOA, including offspring's health.
Collapse
|
36
|
Liu Y, Wang G, Zhang F, Dai L. An NGS-based approach to identify Y-chromosome variation in non-obstructive azoospermia. Andrologia 2021; 53:e14201. [PMID: 34350635 DOI: 10.1111/and.14201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 11/29/2022] Open
Abstract
Copy number variations (CNVs), including deletions and duplications on the Y chromosome, are known genetic factors in azoospermia. Therefore, it is important to identify novel pathogenic CNVs related to azoospermia. In this study, we compared CNVs detected by STS-PCR and NGS in 107 individuals with nonobstructive azoospermia (NOA). STS-PCR analysis revealed that 8.14% (9/107) of patients had AZF deletions. The highest percentage of deletions was located in the AZFc region, followed by AZFa and AZFb+c. Positive CNVs, including four duplications, six deletions and three complex CNVs, were detected using NGS methods in 12.15% (13/107) of NOA patients. Both the duplications and deletions detected in q11.223 were confirmed to increase the genetic risk for NOA. A comparison between the STS-PCR results and NGS methods revealed concordant CNV-positive results in 4 of 107 cases (3.74%). The discrepancies included 6 cases with CNVs identified by NGS but not detected by STS-PCR, and two cases were detected by STS-PCR but not by NGS. Notably, four duplications were not identified and three complex CNVs were detected as simple deletions using STS-PCR analysis. The NGS method provides comprehensive results in detecting Y chromosome-linked CNVs, including deletions and duplications, which might broaden our understanding of NOA.
Collapse
Affiliation(s)
- Yongjie Liu
- Reproductive Center, Yinchuan Maternity and Child Health Care Hospital, Yinchuan, China
| | - Guoping Wang
- Reproductive Center, Yinchuan Maternity and Child Health Care Hospital, Yinchuan, China
| | - Fan Zhang
- Reproductive Center, Yinchuan Maternity and Child Health Care Hospital, Yinchuan, China
| | - Liang Dai
- Reproductive Center, Yinchuan Maternity and Child Health Care Hospital, Yinchuan, China
| |
Collapse
|
37
|
Iijima M, Shigehara K, Igarashi H, Kyono K, Suzuki Y, Tsuji Y, Kobori Y, Kobayashi H, Mizokami A. Y chromosome microdeletion screening using a new molecular diagnostic method in 1030 Japanese males with infertility. Asian J Androl 2021; 22:368-371. [PMID: 31603142 PMCID: PMC7406102 DOI: 10.4103/aja.aja_97_19] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The azoospermia factor (AZF) region is important for spermatogenesis, and deletions within these regions are a common cause of oligozoospermia and azoospermia. Although several studies have reported this cause, the present research, to the best of our knowledge, is the first large-scale study assessing this factor in Japan. In this study, 1030 male patients with infertility who were examined for Y chromosome microdeletion using the polymerase chain reaction-reverse sequence-specific oligonucleotide (PCR-rSSO) method, a newly developed method for Y chromosome microdeletion screening, were included. The study enrolled 250 patients with severe oligospermia and 717 patients with azoospermia. Among the 1030 patients, 4, 4, 10, and 52 had AZFa, AZFb, AZFb+c, and AZFc deletions, respectively. The sperm recovery rate (SRR) of microdissection testicular sperm extraction in patients with AZFc deletions was significantly higher than that in those without AZF deletions (60.0% vs 28.7%, P = 0.04). In patients with gr/gr deletion, SRR was 18.7%, which was lower than that in those without gr/gr deletion, but was not statistically significant. In conclusion, our study showed that the frequency of Y chromosome microdeletion in male patients in Japan was similar to that reported in patients from other countries, and SRR was higher in patients with AZFc deletion.
Collapse
Affiliation(s)
- Masashi Iijima
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan
| | - Kazuyoshi Shigehara
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan
| | | | - Koichi Kyono
- Kyono ART Clinic, Takanawa, Tokyo 108-0074, Japan
| | - Yasuo Suzuki
- Suzuki Lady's Hospital, Kanazawa 921-8033, Japan
| | - Yuji Tsuji
- Ebisu Tsuji Clinic, Tokyo 150-0021, Japan.,Tenjin Tsuji Clinic, Fukuoka 810-0001, Japan
| | - Yoshitomo Kobori
- Dokkyo Medical University Koshigaya Hospital, Saitama 343-8555, Japan
| | - Hideyuki Kobayashi
- Department of Urology, Faculty of Medicine, Toho University, Tokyo 143-8541, Japan
| | - Atsushi Mizokami
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan
| |
Collapse
|
38
|
Shukla V, Høffding MK, Hoffmann ER. Genome diversity and instability in human germ cells and preimplantation embryos. Semin Cell Dev Biol 2021; 113:132-147. [PMID: 33500205 PMCID: PMC8097364 DOI: 10.1016/j.semcdb.2020.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/18/2020] [Indexed: 12/26/2022]
Abstract
Genome diversity is essential for evolution and is of fundamental importance to human health. Generating genome diversity requires phases of DNA damage and repair that can cause genome instability. Humans have a high incidence of de novo congenital disorders compared to other organisms. Recent access to eggs, sperm and preimplantation embryos is revealing unprecedented rates of genome instability that may result in infertility and de novo mutations that cause genomic imbalance in at least 70% of conceptions. The error type and incidence of de novo mutations differ during developmental stages and are influenced by differences in male and female meiosis. In females, DNA repair is a critical factor that determines fertility and reproductive lifespan. In males, aberrant meiotic recombination causes infertility, embryonic failure and pregnancy loss. Evidence suggest germ cells are remarkably diverse in the type of genome instability that they display and the DNA damage responses they deploy. Additionally, the initial embryonic cell cycles are characterized by a high degree of genome instability that cause congenital disorders and may limit the use of CRISPR-Cas9 for heritable genome editing.
Collapse
Affiliation(s)
- Vallari Shukla
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Miya Kudo Høffding
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
39
|
Molecular characterization of the Yp11.2 region deletion in the Chinese Han population. Int J Legal Med 2021; 135:1351-1358. [PMID: 33903958 PMCID: PMC8205872 DOI: 10.1007/s00414-021-02596-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/03/2021] [Indexed: 12/28/2022]
Abstract
The Y chromosome is male-specific and is important for spermatogenesis and male fertility. However, the Y chromosome is poorly characterized due to massive palindromes and inverted repeats, which increase the likelihood of genomic rearrangements, resulting in short tandem repeats on the Y chromosome or long fragment deletions. The present study reports a large-scale (2.573~2.648 Mb) deletion in the Yp11.2 region in a Chinese population based on the analysis of 34 selected Y-specific sequence-tagged sites and subsequent sequencing of the breakpoint junctions on the Y chromosome from 5,068,482–5,142,391 bp to 7,715,462–7,716,695 bp. The results of sequence analysis indicated that the deleted region included part or all of the following five genes: PCDH11Y, TSPY, AMELY, TBL1Y, and RKY. These genes are associated with spermatogenesis or amelogenesis and various other processes; however, specific physiological functions and molecular mechanisms of these genes remain unclear. Notably, individuals with this deletion pattern did not have an obvious pathological phenotype but manifested some degree of amelogenesis imperfecta.
Collapse
|
40
|
Ravasini F, D'Atanasio E, Bonito M, Bonucci B, Della Rocca C, Berti A, Trombetta B, Cruciani F. Sequence Read Depth Analysis of a Monophyletic Cluster of Y Chromosomes Characterized by Structural Rearrangements in the AZFc Region Resulting in DYS448 Deletion and DYF387S1 Duplication. Front Genet 2021; 12:669405. [PMID: 33936180 PMCID: PMC8085532 DOI: 10.3389/fgene.2021.669405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/29/2021] [Indexed: 12/26/2022] Open
Abstract
The azoospermia factor c region (AZFc), located in the long arm of the human Y chromosome, is frequently involved in chromosome rearrangements, mainly due to non-allelic homologous recombination events that occur between the nearly identical sequences (amplicon) that comprises it. These rearrangements may have major phenotypic effects like spermatogenic failure or other pathologies linked to male infertility. Moreover, they may also be relevant in forensic genetics, since some of the Y chromosome short tandem repeats (Y-STRs) commonly used in forensic analysis are located in amplicons or in inter-amplicon sequences of the AZFc. In a previous study, we identified four phylogenetically related samples with a null allele at DYS448 and a tetrallelic pattern at DYF387S1, two Y-STRs located in the AZFc. Through NGS read depth analysis, we found that the unusual Y-STR pattern may be due to a 1.6 Mb deletion arising concurrently or after a 3.5 Mb duplication event. The observed large genomic rearrangement results in copy number reduction for the RBMY gene family as well as duplication of other AZFc genes. Based on the diversity of 16 additional Y-STRs, we estimated that the duplication/deletion event occurred at least twenty generations ago, suggesting that it has not been affected by negative selection.
Collapse
Affiliation(s)
- Francesco Ravasini
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Eugenia D'Atanasio
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Maria Bonito
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Biancamaria Bonucci
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Chiara Della Rocca
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Andrea Berti
- Sezione di Biologia, Reparto CC Investigazioni Scientifiche di Roma, Rome, Italy
| | - Beniamino Trombetta
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Fulvio Cruciani
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy.,Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Rome, Italy
| |
Collapse
|
41
|
Katagiri Y, Tamaki Y. Genetic counseling prior to assisted reproductive technology. Reprod Med Biol 2021; 20:133-143. [PMID: 33850446 PMCID: PMC8022097 DOI: 10.1002/rmb2.12361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Reproductive medicine deals with fertility and is closely related to heredity. In reproductive medicine, it is necessary to provide genetic information for the patients prior to assisted reproductive technology (ART). Japan Society for Reproductive Medicine (JSRM) requires doctors involved in reproductive medicine to have standard knowledge of reproductive genetics and knowledge of reproductive medicine, which is covered in their publication, "required knowledge of reproductive medicine." METHODS With the aim of providing straightforward explanations to patients in the clinical situation at pre-ART counseling, we provide the following five topics, such as (a) risk of birth defects in children born with ART, (b) chromosomal abnormalities, (c) Y chromosome microdeletions (YCMs), (d) possible chromosomal abnormal pregnancy in oligospermatozoa requiring ICSI (intracytoplasmic sperm injection), and (e) epigenetic alterations. MAIN FINDINGS The frequency of chromosome abnormalities in infertile patients is 0.595%-0.64%. YCMs are observed in 2%-10% of severe oligospermic men. High incidence of spermatozoa with chromosomal abnormalities has been reported in advanced oligospermia and asthenozoospermia that require ICSI. Some epigenetic alterations were reported in the children born with ART. CONCLUSION Certain genetic knowledge is important for professionals involved in reproductive medicine, even if they are not genetic experts.
Collapse
Affiliation(s)
- Yukiko Katagiri
- Department of Obstetrics and GynecologyFaculty of MedicineToho UniversityTokyoJapan
- Division of Clinical GeneticsToho University Omori Medical CenterTokyoJapan
- Reproduction CenterToho University Omori Medical CenterTokyoJapan
| | - Yuko Tamaki
- Department of Obstetrics and GynecologyFaculty of MedicineToho UniversityTokyoJapan
- Division of Clinical GeneticsToho University Omori Medical CenterTokyoJapan
- Reproduction CenterToho University Omori Medical CenterTokyoJapan
| |
Collapse
|
42
|
Hallast P, Kibena L, Punab M, Arciero E, Rootsi S, Grigorova M, Flores R, Jobling MA, Poolamets O, Pomm K, Korrovits P, Rull K, Xue Y, Tyler-Smith C, Laan M. A common 1.6 mb Y-chromosomal inversion predisposes to subsequent deletions and severe spermatogenic failure in humans. eLife 2021; 10:65420. [PMID: 33781384 PMCID: PMC8009663 DOI: 10.7554/elife.65420] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Male infertility is a prevalent condition, affecting 5–10% of men. So far, few genetic factors have been described as contributors to spermatogenic failure. Here, we report the first re-sequencing study of the Y-chromosomal Azoospermia Factor c (AZFc) region, combined with gene dosage analysis of the multicopy DAZ, BPY2, and CDYgenes and Y-haplogroup determination. In analysing 2324 Estonian men, we uncovered a novel structural variant as a high-penetrance risk factor for male infertility. The Y lineage R1a1-M458, reported at >20% frequency in several European populations, carries a fixed ~1.6 Mb r2/r3 inversion, destabilizing the AZFc region and predisposing to large recurrent microdeletions. Such complex rearrangements were significantly enriched among severe oligozoospermia cases. The carrier vs non-carrier risk for spermatogenic failure was increased 8.6-fold (p=6.0×10−4). This finding contributes to improved molecular diagnostics and clinical management of infertility. Carrier identification at young age will facilitate timely counselling and reproductive decision-making.
Collapse
Affiliation(s)
- Pille Hallast
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Wellcome Genome Campus, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Laura Kibena
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Margus Punab
- Andrology Unit, Tartu University Hospital, Tartu, Estonia.,Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Elena Arciero
- Wellcome Genome Campus, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Siiri Rootsi
- Institute of Genomics, Estonian Biocentre, University of Tartu, Tartu, Estonia
| | - Marina Grigorova
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Rodrigo Flores
- Institute of Genomics, Estonian Biocentre, University of Tartu, Tartu, Estonia
| | - Mark A Jobling
- Department of Genetics & Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Olev Poolamets
- Andrology Unit, Tartu University Hospital, Tartu, Estonia
| | - Kristjan Pomm
- Andrology Unit, Tartu University Hospital, Tartu, Estonia
| | - Paul Korrovits
- Andrology Unit, Tartu University Hospital, Tartu, Estonia
| | - Kristiina Rull
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Women's Clinic, Tartu University Hospital, Tartu, Estonia
| | - Yali Xue
- Wellcome Genome Campus, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Chris Tyler-Smith
- Wellcome Genome Campus, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Maris Laan
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
43
|
Genetics of Azoospermia. Int J Mol Sci 2021; 22:ijms22063264. [PMID: 33806855 PMCID: PMC8004677 DOI: 10.3390/ijms22063264] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Azoospermia affects 1% of men, and it can be due to: (i) hypothalamic-pituitary dysfunction, (ii) primary quantitative spermatogenic disturbances, (iii) urogenital duct obstruction. Known genetic factors contribute to all these categories, and genetic testing is part of the routine diagnostic workup of azoospermic men. The diagnostic yield of genetic tests in azoospermia is different in the different etiological categories, with the highest in Congenital Bilateral Absence of Vas Deferens (90%) and the lowest in Non-Obstructive Azoospermia (NOA) due to primary testicular failure (~30%). Whole-Exome Sequencing allowed the discovery of an increasing number of monogenic defects of NOA with a current list of 38 candidate genes. These genes are of potential clinical relevance for future gene panel-based screening. We classified these genes according to the associated-testicular histology underlying the NOA phenotype. The validation and the discovery of novel NOA genes will radically improve patient management. Interestingly, approximately 37% of candidate genes are shared in human male and female gonadal failure, implying that genetic counselling should be extended also to female family members of NOA patients.
Collapse
|
44
|
Krausz C. Editorial for the special issue on the molecular genetics of male infertility. Hum Genet 2021; 140:1-5. [PMID: 33337534 DOI: 10.1007/s00439-020-02245-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Csilla Krausz
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| |
Collapse
|
45
|
Witherspoon L, Dergham A, Flannigan R. Y-microdeletions: a review of the genetic basis for this common cause of male infertility. Transl Androl Urol 2021; 10:1383-1390. [PMID: 33850774 PMCID: PMC8039600 DOI: 10.21037/tau-19-599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The human Y-chromosome contains genetic material responsible for normal testis development and spermatogenesis. The long arm (Yq) of the Y-chromosome has been found to be susceptible to self-recombination during spermatogenesis predisposing this area to deletions. The incidence of these deletions is estimated to be 1/4,000 in the general population but has been found to be much higher in infertile men. Currently, Y-microdeletions are the second most commonly identified genetic cause of male infertility after Klinefelter syndrome. This has led to testing for these deletions becoming standard practice in men with azoospermia and severe oligospermia. There are three commonly identified Y-microdeletions in infertile males, termed azoospermia factor (AZF) microdeletions AZFa, AZFb and AZFc. With increased understanding and investigation of this genetic basis for infertility a more comprehensive understanding of these deletions has evolved, with several other deletion subtypes being identified. Understanding the genetic basis and pathology behind these Y-microdeletions is essential for any clinician involved in reproductive medicine. In this review we discuss the genetic basis of Y-microdeletions, the various subtypes of deletions, and current technologies available for testing. Our understanding of this issue is evolving in many areas, and in this review we highlight future testing opportunities that may allow us to stratify men with Y-microdeletion associated infertility more accurately
Collapse
Affiliation(s)
- Luke Witherspoon
- Division of Urology, Department of Surgery, The Ottawa Hospital and University of Ottawa, Ottawa, ON, Canada
| | - Ali Dergham
- School of Medicine, Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Ryan Flannigan
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.,Department of Urology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
46
|
Yuen W, Golin AP, Flannigan R, Schlegel PN. Histology and sperm retrieval among men with Y chromosome microdeletions. Transl Androl Urol 2021; 10:1442-1456. [PMID: 33850779 PMCID: PMC8039602 DOI: 10.21037/tau.2020.03.35] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
In this review of Y chromosome microdeletions, azoospermia factor (AZF) deletion subtypes, histological features and microTESE sperm retrieval rates are summarized after a systematic literature review. PubMed was searched and papers were identified using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Approximately half of infertile couples have a male factor contributing to their infertility. One of the most common genetic etiologies are Y chromosome microdeletions. Men with Y chromosome microdeletions may have rare sperm available in the ejaculate or undergo surgical sperm retrieval and subsequent intracytoplasmic sperm injection to produce offspring. Azoospermia or severe oligozoospermia are the most common semen analysis findings found in men with Y chromosome microdeletions, associated with impaired spermatogenesis. Men with complete deletions of azoospermia factor a, b, or a combination of any loci have severely impaired spermatogenesis and are nearly always azoospermic with no sperm retrievable from the testis. Deletions of the azoospermia factor c or d often have sperm production and the highest likelihood of a successful sperm retrieval. In men with AZFc deletions, histologically, 46% of men demonstrate Sertoli cell only syndrome on biopsy, whereas 38.2% have maturation arrest and 15.7% have hypospermatogenesis. The microTESE sperm retrieval rates in AZFc-deleted men range from 13-100% based on the 32 studies analyzed, with a mean sperm retrieval rate of 47%.
Collapse
Affiliation(s)
- Wallace Yuen
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Andrew P Golin
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ryan Flannigan
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.,Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Peter N Schlegel
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
47
|
Rogers MJ. Y chromosome copy number variation and its effects on fertility and other health factors: a review. Transl Androl Urol 2021; 10:1373-1382. [PMID: 33850773 PMCID: PMC8039628 DOI: 10.21037/tau.2020.04.06] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Y chromosome is essential for testis development and spermatogenesis. It is a chromosome with the lowest gene density owing to its medium size but paucity of coding genes. The Y chromosome is unique in that the majority of its structure is highly repetitive sequences, with the majority of these limited genes occurring in 9 amplionic sequences throughout the chromosome. The repetitive nature has its benefits as it can be protective against gene loss over many generations, but it can also predispose the Y chromosome to having wide variations of the number of gene copies present in these repeated sequences. This is known as copy number variation. Copy number variation is not unique to the Y chromosome but copy number variation is a well-known cause of male infertility and having effects on spermatogenesis. This is most commonly seen as deletions of the AZF sequences on the Y chromosome. However, there are other implications for copy number variation beyond just the AZF deletions that can affect spermatogenesis and potentially have other health implications. Copy number variations of TSPY1, DAZ, CDY1, RBMY1, the DYZ1 array, along with minor deletions of gr/gr, b1/b3, and b2/b3 have all be implicated in affecting spermatogenesis. UTY copy number variations have been implicated in risk for cardiovascular disease, and other deletions within gr/gr and the AZF sequences have been implicated in cancer and neuropsychiatric diseases. This review sets out to describe the Y chromosome and unique susceptibility to copy number variation and then to examine how this growing body of research impacts spermatogenesis and other health factors.
Collapse
Affiliation(s)
- Marc J Rogers
- Department of Urology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
48
|
Rabinowitz MJ, Huffman PJ, Haney NM, Kohn TP. Y-Chromosome Microdeletions: A Review of Prevalence, Screening, and Clinical Considerations. Appl Clin Genet 2021; 14:51-59. [PMID: 33603438 PMCID: PMC7886244 DOI: 10.2147/tacg.s267421] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/18/2021] [Indexed: 11/24/2022] Open
Abstract
Deletions within the male-specific region of the Y-chromosome, known as Y-Chromosome Microdeletions (YCMs), are present in as many as 5% and 10% of severe oligospermic and azoospermic men, respectively. These microdeletions are distinguished by which segment of the Y chromosome is absent, identified as AZFa (the most proximal segment), AZFb (middle), and AZFc (distal). The reported prevalence of YCMs within the world’s populations of infertile men displays vast heterogeneity, ranging from less than 2% to over 24% based on region and ethnicity. AZFc is the most commonly identified YCM, and its phenotypic presentation provides for the highest chance for fertility through artificial reproductive techniques. Conversely, deletions identified in the subregions of AZFa, AZFb, or any combination of regions containing these segments, are associated with low probabilities of achieving pregnancy. A putative mechanism explaining this discrepancy lies within the expression of autosomal, DAZ-like genes which could serve to “rescue” wild type AZFc gene expression and hence spermatogenesis. Nevertheless, recent reports challenge this dogma and stress the importance of further analysis when an AZFb deletion is detected. The screening thresholds to determine which oligospermic and azoospermic men are tested for potential YCMs has been recently contested. More recent literature supports lowering the threshold from 5 million sperm/mL of ejaculate to 1 million/mL as the frequency of YCMs in men with sperm concentrations between 1 and 5 million sperm/mL is very low (~0.8%). As such, subsequent guidelines should recommend a lower screening threshold. While YCMs are extremely common globally, the understanding of their clinical significance in the field remains scattered and without consensus. Furthermore, very little is currently known about partial deletions within the AZFc region, such as b1/b3, b2/b3, and gr/gr. Hence, this review aimed to summarize and discuss modern trends in the epidemiology, screening guidelines, and clinical considerations pertaining to YCMs.
Collapse
Affiliation(s)
- Matthew J Rabinowitz
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Phillip J Huffman
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nora M Haney
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Taylor P Kohn
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
49
|
Wu X, Lin D, Sun F, Cheng CY. Male Infertility in Humans: An Update on Non-obstructive Azoospermia (NOA) and Obstructive Azoospermia (OA). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:161-173. [PMID: 34453736 DOI: 10.1007/978-3-030-77779-1_8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Non-obstructive azoospermia (NOA) and obstructive azoospermia (OA) are two common causes of infertility that affect a considerable number of men. However, few studies were performed to understand the molecular etiology of these disorders. Studies based on bioinformatics and genetic analyses in recent years, however, have yielded insightful information and have identified a number of genes that are involved in these disorders. In this review, we briefly summarize and evaluate these findings. We also discuss findings based on epigenetic modifications of sperm DNAs that affect a number of genes pertinent to NOA and OA. The information summarized in this Chapter should be helpful to investigators in future functional studies of NOA and OA.
Collapse
Affiliation(s)
- Xiaolong Wu
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Dengfeng Lin
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Fei Sun
- Sir Run Run Shaw Hospital (SRRSH), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - C Yan Cheng
- Sir Run Run Shaw Hospital (SRRSH), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
50
|
Seyedin A, Kazeroun MH, Namipashaki A, Qobadi-Nasr S, Zamanian M, Ansari-Pour N. Association of MSY haplotype background with nonobstructive azoospermia is AZF-dependent: A case-control study. Andrologia 2021; 53:e13946. [PMID: 33386637 DOI: 10.1111/and.13946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/18/2020] [Accepted: 12/03/2020] [Indexed: 11/28/2022] Open
Abstract
Identifying causal genes of spermatogenic failure on the male-specific region of Y chromosome (MSY) has been a challenging process. Due to the nonrecombining nature of MSY, haplotype-based approaches have recently been shown to be promising in identifying associated MSY haplogroups. We conducted an MSY analysis of nonobstructive azoospermia (NOA) patients in a case-control setting (N = 278 and 105 respectively) to identify modal haplogroups strongly associated with NOA. Patients with AZF deletions (AZF+) and no AZF deletions (AZF-) were compared with the control group. Given the larger sample set of AZF- NOA patients, we further investigated the association based on histopathological severity, namely Sertoli cell-only syndrome and maturation arrest subtypes. We observed no significant enrichment of MSY haplogroups in AZF- azoospermic patients (or its subtypes). However, we observed a strongly significant association between haplogroup J2a* and AZF+ patients (FDR-corrected p = .0056; OR = 7.02, 95%CI 1.89 to 39.20), a haplogroup which also showed significant enrichment for AZFa/b deletions (p = 4x10-4 ). We conclude that unlike AZF+ patients, AZF- NOA are less likely to have an MSY causative factor with large effect size, thus indicating that the aetiology of AZF- NOA, and to some extent AZFc NOA, is more likely to be based on non-MSY factors.
Collapse
Affiliation(s)
- Atieh Seyedin
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Atefeh Namipashaki
- Turner Institute for Brain and Mental Health and the School of Psychological Sciences, Monash University, Melbourne, Vic., Australia
| | - Samaneh Qobadi-Nasr
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mohammadreza Zamanian
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Naser Ansari-Pour
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|