1
|
Raun N, Jones SG, Kerr O, Keung C, Butler EF, Alka K, Krupski JD, Reid-Taylor RA, Ibrahim V, Williams M, Top D, Kramer JM. Trithorax regulates long-term memory in Drosophila through epigenetic maintenance of mushroom body metabolic state and translation capacity. PLoS Biol 2025; 23:e3003004. [PMID: 39869640 PMCID: PMC11835295 DOI: 10.1371/journal.pbio.3003004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/18/2025] [Accepted: 01/06/2025] [Indexed: 01/29/2025] Open
Abstract
The role of epigenetics and chromatin in the maintenance of postmitotic neuronal cell identities is not well understood. Here, we show that the histone methyltransferase Trithorax (Trx) is required in postmitotic memory neurons of the Drosophila mushroom body (MB) to enable their capacity for long-term memory (LTM), but not short-term memory (STM). Using MB-specific RNA-, ChIP-, and ATAC-sequencing, we find that Trx maintains homeostatic expression of several non-canonical MB-enriched transcripts, including the orphan nuclear receptor Hr51, and the metabolic enzyme lactate dehydrogenase (Ldh). Through these key targets, Trx facilitates a metabolic state characterized by high lactate levels in MBγ neurons. This metabolic state supports a high capacity for protein translation, a process that is essential for LTM, but not STM. These data suggest that Trx, a classic regulator of cell type specification during development, has additional functions in maintaining underappreciated aspects of postmitotic neuron identity, such as metabolic state. Our work supports a body of evidence suggesting that a high capacity for energy metabolism is an essential cell identity characteristic for neurons that mediate LTM.
Collapse
Affiliation(s)
- Nicholas Raun
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Spencer G. Jones
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Olivia Kerr
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Crystal Keung
- Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
| | - Emily F. Butler
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Kumari Alka
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Jonathan D. Krupski
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Robert A. Reid-Taylor
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Veyan Ibrahim
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - MacKayla Williams
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Deniz Top
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | - Jamie M. Kramer
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
| |
Collapse
|
2
|
Gogate A, Kaur K, Khalil R, Bashtawi M, Morris MA, Goodspeed K, Evans P, Chahrour MH. The genetic landscape of autism spectrum disorder in an ancestrally diverse cohort. NPJ Genom Med 2024; 9:62. [PMID: 39632905 PMCID: PMC11618689 DOI: 10.1038/s41525-024-00444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Autism spectrum disorder (ASD) comprises neurodevelopmental disorders with wide variability in genetic causes and phenotypes, making it challenging to pinpoint causal genes. We performed whole exome sequencing on a modest, ancestrally diverse cohort of 195 families, including 754 individuals (222 with ASD), and identified 38,834 novel private variants. In 68 individuals with ASD (~30%), we identified 92 potentially pathogenic variants in 73 known genes, including BCORL1, CDKL5, CHAMP1, KAT6A, MECP2, and SETD1B. Additionally, we identified 158 potentially pathogenic variants in 120 candidate genes, including DLG3, GABRQ, KALRN, KCTD16, and SLC8A3. We also found 34 copy number variants in 31 individuals overlapping known ASD loci. Our work expands the catalog of ASD genetics by identifying hundreds of variants across diverse ancestral backgrounds, highlighting convergence on nervous system development and signal transduction. These findings provide insights into the genetic underpinnings of ASD and inform molecular diagnosis and potential therapeutic targets.
Collapse
Affiliation(s)
- Ashlesha Gogate
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kiran Kaur
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Raida Khalil
- Department of Biotechnology and Genetic Engineering, Faculty of Science, University of Philadelphia, Amman, Jordan
| | - Mahmoud Bashtawi
- Department of Psychiatry, Jordan University of Science and Technology, King Abdullah University Hospital, Ramtha, Jordan
| | - Mary Ann Morris
- UT Southwestern and Children's Health Center for Autism Care, Children's Medical Center Dallas, Dallas, TX, 75247, USA
| | - Kimberly Goodspeed
- UT Southwestern and Children's Health Center for Autism Care, Children's Medical Center Dallas, Dallas, TX, 75247, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Patricia Evans
- UT Southwestern and Children's Health Center for Autism Care, Children's Medical Center Dallas, Dallas, TX, 75247, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Maria H Chahrour
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
3
|
Fard YA, Sadeghi EN, Pajoohesh Z, Gharehdaghi Z, Khatibi DM, Khosravifar S, Pishkari Y, Nozari S, Hijazi A, Pakmehr S, Shayan SK. Epigenetic underpinnings of the autistic mind: Histone modifications and prefrontal excitation/inhibition imbalance. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32986. [PMID: 38837296 DOI: 10.1002/ajmg.b.32986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/30/2024] [Accepted: 04/25/2024] [Indexed: 06/07/2024]
Abstract
Autism spectrum disorder (ASD) is complex neurobehavioral condition influenced by several cellular and molecular mechanisms that are often concerned with synaptogenesis and synaptic activity. Based on the excitation/inhibition (E/I) imbalance theory, ASD could be the result of disruption in excitatory and inhibitory synaptic transmission across the brain. The prefrontal cortex (PFC) is the chief regulator of executive function and can be affected by altered neuronal excitation and inhibition in the course of ASD. The molecular mechanisms involved in E/I imbalance are subject to epigenetic regulation. In ASD, altered enrichment and spreading of histone H3 and H4 modifications such as the activation-linked H3K4me2/3, H3K9ac, and H3K27ac, and repression-linked H3K9me2, H3K27me3, and H4K20me2 in the PFC result in dysregulation of molecules mediating synaptic excitation (ARC, EGR1, mGluR2, mGluR3, GluN2A, and GluN2B) and synaptic inhibition (BSN, EphA7, SLC6A1). Histone modifications are a dynamic component of the epigenetic regulatory elements with a pronounced effect on patterns of gene expression with regards to any biological process. The excitation/inhibition imbalance associated with ASD is based on the excitatory and inhibitory synaptic activity in different regions of the brain, including the PFC, the ultimate outcome of which is highly influenced by transcriptional activity of relevant genes.
Collapse
Affiliation(s)
| | | | - Zohreh Pajoohesh
- Faculty of Medicine, Zabol Univeristy of Medical Sciences, Zabol, Iran
| | - Zahra Gharehdaghi
- Department of Pharmacology, Zabol University of Medical Sciences, Zabol, Iran
| | | | | | - Yasamin Pishkari
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Nozari
- School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmed Hijazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Sepideh Karkon Shayan
- Student Research Committee, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
4
|
Ünsel-Bolat G, Bolat H. Phenotypes of autism spectrum disorder and schizoaffective disorder associated with SETD1B gene but without intellectual disability and seizures. Int J Dev Neurosci 2024; 84:720-726. [PMID: 39169470 DOI: 10.1002/jdn.10369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
The SETD1B gene, located on chromosome 12q24, is one of the chromatin-modifying genes involved in epigenetic regulation of gene transcription. The phenotype of pathogenic variants in the SETD1B gene includes intellectual disability, seizures, and language delay (IDDSELD, OMIM 619000). In this study, we present a family consisting of consanguineous parents who died of cancer and their offspring. This family includes two cases diagnosed with autism spectrum disorder (ASD); six cases diagnosed with schizophrenia, bipolar disorder, or schizoaffective disorder; there cases diagnosed with cancer; and five cases who died of unknown causes in early childhood. Three affected members of this family agreed to genetic testing. We used whole exome sequencing. We report a novel in-frame deletion variant of the SETD1B gene in a family with cases diagnosed with schizoaffective disorder and ASD without seizures and intellectual disability. It was found that the phenotypic features were inherited for at least three generations in the family we presented, and it was shown that the pathogenic variant of the SETD1B gene was transmitted from the affected parent to his affected children. In addition, the father was diagnosed with both schizoaffective disorder and leukemia. We proposed an association between rare variants of SETD1B and phenotypes of ASD and schizoaffective disorder without seizures and intellectual disability. The SETD1B gene is included in both the ASD genetic database of SFARI (https://gene.sfari.org/) and the cancer database of COSMIC (https://cancer.sanger.ac.uk/cosmic). However, there are very few reports of SETD1B gene variants as clinical entities. To our knowledge, the SETD1B gene variant has not been previously reported in an individual diagnosed with both a neuropsychiatric disorder and cancer.
Collapse
Affiliation(s)
- Gül Ünsel-Bolat
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Balıkesir University, Turkey
- Department of Neuroscience, Ege University, İzmir, Turkey
| | - Hilmi Bolat
- Department of Medical Genetics, Faculty of Medicine, Balıkesir University, Turkey
- Department of Medical Bioinformatics, Ege University, İzmir, Turkey
| |
Collapse
|
5
|
Scheffer IE, Zuberi S, Mefford HC, Guerrini R, McTague A. Developmental and epileptic encephalopathies. Nat Rev Dis Primers 2024; 10:61. [PMID: 39237642 DOI: 10.1038/s41572-024-00546-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/07/2024]
Abstract
Developmental and epileptic encephalopathies, the most severe group of epilepsies, are characterized by seizures and frequent epileptiform activity associated with developmental slowing or regression. Onset typically occurs in infancy or childhood and includes many well-defined epilepsy syndromes. Patients have wide-ranging comorbidities including intellectual disability, psychiatric features, such as autism spectrum disorder and behavioural problems, movement and musculoskeletal disorders, gastrointestinal and sleep problems, together with an increased mortality rate. Problems change with age and patients require substantial support throughout life, placing a high psychosocial burden on parents, carers and the community. In many patients, the aetiology can be identified, and a genetic cause is found in >50% of patients using next-generation sequencing technologies. More than 900 genes have been identified as monogenic causes of developmental and epileptic encephalopathies and many cell components and processes have been implicated in their pathophysiology, including ion channels and transporters, synaptic proteins, cell signalling and metabolism and epigenetic regulation. Polygenic risk score analyses have shown that common variants also contribute to phenotypic variability. Holistic management, which encompasses antiseizure therapies and care for multimorbidities, is determined both by epilepsy syndrome and aetiology. Identification of the underlying aetiology enables the development of precision medicines to improve the long-term outcome of patients with these devastating diseases.
Collapse
Affiliation(s)
- Ingrid E Scheffer
- Epilepsy Research Centre, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.
- Florey and Murdoch Children's Research Institutes, Melbourne, Victoria, Australia.
- Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.
| | - Sameer Zuberi
- Paediatric Neurosciences Research Group, School of Health & Wellbeing, University of Glasgow, Glasgow, UK
- Paediatric Neurosciences, Royal Hospital for Children, Glasgow, UK
| | - Heather C Mefford
- Center for Paediatric Neurological Disease Research, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Renzo Guerrini
- Neuroscience Department, Children's Hospital Meyer IRCCS, Florence, Italy
- University of Florence, Florence, Italy
| | - Amy McTague
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
6
|
Sun H, Yisi Shan, Cao L, Wu X, Chen J, Yuan R, Qian M. Unveiling the hidden dangers: a review of non-apoptotic programmed cell death in anesthetic-induced developmental neurotoxicity. Cell Biol Toxicol 2024; 40:63. [PMID: 39093513 PMCID: PMC11297112 DOI: 10.1007/s10565-024-09895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/21/2024] [Indexed: 08/04/2024]
Abstract
Anesthetic-induced developmental neurotoxicity (AIDN) can arise due to various factors, among which aberrant nerve cell death is a prominent risk factor. Animal studies have reported that repeated or prolonged anesthetic exposure can cause significant neuroapoptosis in the developing brain. Lately, non-apoptotic programmed cell deaths (PCDs), characterized by inflammation and oxidative stress, have gained increasing attention. Substantial evidence suggests that non-apoptotic PCDs are essential for neuronal cell death in AIDN compared to apoptosis. This article examines relevant publications in the PubMed database until April 2024. Only original articles in English that investigated the potential manifestations of non-apoptotic PCD in AIDN were analysed. Specifically, it investigates necroptosis, pyroptosis, ferroptosis, and parthanatos, elucidating the signaling mechanisms associated with each form. Furthermore, this study explores the potential relevance of these non-apoptotic PCDs pathways to the pathological mechanisms underlying AIDN, drawing upon their distinctive characteristics. Despite the considerable challenges involved in translating fundamental scientific knowledge into clinical therapeutic interventions, this comprehensive review offers a theoretical foundation for developing innovative preventive and treatment strategies targeting non-apoptotic PCDs in the context of AIDN.
Collapse
Affiliation(s)
- Haiyan Sun
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Yisi Shan
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
- Department of Neurology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Liyan Cao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Xiping Wu
- Department of Anesthesiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Jiangdong Chen
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Rong Yuan
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China.
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China.
| | - Min Qian
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China.
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China.
| |
Collapse
|
7
|
Van HT, Xie G, Dong P, Liu Z, Ge K. KMT2 Family of H3K4 Methyltransferases: Enzymatic Activity-dependent and -independent Functions. J Mol Biol 2024; 436:168453. [PMID: 38266981 PMCID: PMC10957308 DOI: 10.1016/j.jmb.2024.168453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Histone-lysine N-methyltransferase 2 (KMT2) methyltransferases are critical for gene regulation, cell differentiation, animal development, and human diseases. KMT2 biological roles are often attributed to their methyltransferase activities on lysine 4 of histone H3 (H3K4). However, recent data indicate that KMT2 proteins also possess non-enzymatic functions. In this review, we discuss the current understanding of KMT2 family, with a focus on their enzymatic activity-dependent and -independent functions. Six mammalian KMT2 proteins of three subgroups, KMT2A/B (MLL1/2), KMT2C/D (MLL3/4), and KMT2F/G (SETD1A/B or SET1A/B), have shared and distinct protein domains, catalytic substrates, genomic localizations, and associated complex subunits. Recent studies have revealed the importance of KMT2C/D in enhancer regulation, differentiation, development, tumor suppression and highlighted KMT2C/D enzymatic activity-dependent and -independent roles in mouse embryonic development and cell differentiation. Catalytic dependent and independent functions for KMT2A/B and KMT2F/G in gene regulation, differentiation, and development are less understood. Finally, we provide our perspectives and lay out future research directions that may help advance the investigation on enzymatic activity-dependent and -independent biological roles and working mechanisms of KMT2 methyltransferases.
Collapse
Affiliation(s)
- Hieu T Van
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 50, Room 4149, 50 South Dr, Bethesda, MD 20892, USA.
| | - Guojia Xie
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 50, Room 4149, 50 South Dr, Bethesda, MD 20892, USA.
| | - Peng Dong
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| | - Zhe Liu
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| | - Kai Ge
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 50, Room 4149, 50 South Dr, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Chen S, Huang M, Xu D, Li M. Epigenetic regulation in epilepsy: A novel mechanism and therapeutic strategy for epilepsy. Neurochem Int 2024; 173:105657. [PMID: 38145842 DOI: 10.1016/j.neuint.2023.105657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023]
Abstract
Epilepsy is a common neurological disorder characterized by recurrent seizures with excessive and abnormal neuronal discharges. Epileptogenesis is usually involved in neuropathological processes such as ion channel dysfunction, neuronal injury, inflammatory response, synaptic plasticity, gliocyte proliferation and mossy fiber sprouting, currently the pathogenesis of epilepsy is not yet completely understood. A growing body of studies have shown that epigenetic regulation, such as histone modifications, DNA methylation, noncoding RNAs (ncRNAs), N6-methyladenosine (m6A) and restrictive element-1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) are also involved in epilepsy. Through epigenetic studies, we found that the synaptic dysfunction, nerve damage, cognitive dysfunction and brain development abnormalities are affected by epigenetic regulation of epilepsy-related genes in patients with epilepsy. However, the functional roles of epigenetics in pathogenesis and treatment of epilepsy are still to be explored. Therefore, profiling the array of genes that are epigenetically dysregulated in epileptogenesis is likely to advance our understanding of the mechanisms underlying the pathophysiology of epilepsy and may for the amelioration of these serious human conditions provide novel insight into therapeutic strategies and diagnostic biomarkers for epilepsy to improve serious human condition.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei University of Chinese Medicine, Wuhan, 430000, China
| | - Ming Huang
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei University of Chinese Medicine, Wuhan, 430000, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Man Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
9
|
Ding L, Wei LW, Li TS, Chen J. Mental retardation, seizures and language delay caused by new SETD1B mutations: Three case reports. World J Clin Cases 2024; 12:383-391. [PMID: 38313655 PMCID: PMC10835677 DOI: 10.12998/wjcc.v12.i2.383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND The SETD1B gene is instrumental in human intelligence and nerve development. Mutations in the SETD1B gene have been linked in recent studies to neurodevelopmental disorders, seizures, and language delay. CASE SUMMARY This study aimed to analyze the clinical manifestations and treatment of three patients suffering from mental retardation, epilepsy, and language delay resulting from a new mutation in the SETD1B gene. Three individuals with these symptoms were selected, and their clinical symptoms, gene test results, and treatment were analyzed. This article discusses the impact of the SETD1B gene mutation on patients and outlines the treatment approach. Among the three patients (two females and one male, aged 8, 4, and 1, respectively), all exhibited psychomotor retardation, attention deficit, and hyperactivity disorder, and two had epilepsy. Antiepileptic treatment with sodium tripolyvalproate halted the seizures in the affected child, although mental development remained somewhat delayed. Whole exome sequencing revealed new mutations in the SETD1B gene for all patients, specifically with c.5473C>T (p.Arg1825trp), c.4120C>T (p.Gln1374*, 593), c.14_15insC (p.His5Hisfs*33). CONCLUSION Possessing the SETD1B gene mutation may cause mental retardation accompanied by seizures and language delay. Although the exact mechanism is not fully understood, interventions such as drug therapy, rehabilitation training, and family support can assist patients in managing their symptoms and enhancing their quality of life. Furthermore, genetic testing supplies healthcare providers with more precise diagnostic and therapeutic guidance, informs families about genetic disease risks, and contributes to understanding disease pathogenesis and drug research and development.
Collapse
Affiliation(s)
- Le Ding
- Department of Neurology, Children’s Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Li-Wan Wei
- Chigene (Beijing) Translational Medical Research Center, Co. Ltd., Beijing 101111, China
| | - Tai-Song Li
- Chigene (Beijing) Translational Medical Research Center, Co. Ltd., Beijing 101111, China
| | - Jing Chen
- Department of Neurology, Children’s Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| |
Collapse
|
10
|
Lomeli C. S, Kristin B. A. Epigenetic regulation of craniofacial development and disease. Birth Defects Res 2024; 116:e2271. [PMID: 37964651 PMCID: PMC10872612 DOI: 10.1002/bdr2.2271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND The formation of the craniofacial complex relies on proper neural crest development. The gene regulatory networks (GRNs) and signaling pathways orchestrating this process have been extensively studied. These GRNs and signaling cascades are tightly regulated as alterations to any stage of neural crest development can lead to common congenital birth defects, including multiple syndromes affecting facial morphology as well as nonsyndromic facial defects, such as cleft lip with or without cleft palate. Epigenetic factors add a hierarchy to the regulation of transcriptional networks and influence the spatiotemporal activation or repression of specific gene regulatory cascades; however less is known about their exact mechanisms in controlling precise gene regulation. AIMS In this review, we discuss the role of epigenetic factors during neural crest development, specifically during craniofacial development and how compromised activities of these regulators contribute to congenital defects that affect the craniofacial complex.
Collapse
Affiliation(s)
- Shull Lomeli C.
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Artinger Kristin B.
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN, USA
| |
Collapse
|
11
|
Amin HM, Szabo B, Abukhairan R, Zeke A, Kardos J, Schad E, Tantos A. In Vivo and In Vitro Characterization of the RNA Binding Capacity of SETD1A (KMT2F). Int J Mol Sci 2023; 24:16032. [PMID: 38003223 PMCID: PMC10671326 DOI: 10.3390/ijms242216032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
For several histone lysine methyltransferases (HKMTs), RNA binding has been already shown to be a functionally relevant feature, but detailed information on the RNA interactome of these proteins is not always known. Of the six human KMT2 proteins responsible for the methylation of the H3K4 residue, two-SETD1A and SETD1B-contain RNA recognition domains (RRMs). Here we investigated the RNA binding capacity of SETD1A and identified a broad range of interacting RNAs within HEK293T cells. Our analysis revealed that similar to yeast Set1, SETD1A is also capable of binding several coding and non-coding RNAs, including RNA species related to RNA processing. We also show direct RNA binding activity of the individual RRM domain in vitro, which is in contrast with the RRM domain found in yeast Set1. Structural modeling revealed important details on the possible RNA recognition mode of SETD1A and highlighted some fundamental differences between SETD1A and Set1, explaining the differences in the RNA binding capacity of their respective RRMs.
Collapse
Affiliation(s)
- Harem Muhamad Amin
- Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (H.M.A.); (B.S.); (R.A.); (E.S.)
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
- Department of Biology, College of Science, University of Sulaimani, Sulaymaniyah 46001, Kurdistan Region, Iraq
| | - Beata Szabo
- Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (H.M.A.); (B.S.); (R.A.); (E.S.)
| | - Rawan Abukhairan
- Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (H.M.A.); (B.S.); (R.A.); (E.S.)
| | - Andras Zeke
- Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (H.M.A.); (B.S.); (R.A.); (E.S.)
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary;
| | - Eva Schad
- Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (H.M.A.); (B.S.); (R.A.); (E.S.)
| | - Agnes Tantos
- Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (H.M.A.); (B.S.); (R.A.); (E.S.)
| |
Collapse
|
12
|
Lee S, Menzies L, Hay E, Ochoa E, Docquier F, Rodger F, Deshpande C, Foulds NC, Jacquemont S, Jizi K, Kiep H, Kraus A, Löhner K, Morrison PJ, Popp B, Richardson R, van Haeringen A, Martin E, Toribio A, Li F, Jones WD, Sansbury FH, Maher ER. Epigenotype-genotype-phenotype correlations in SETD1A and SETD2 chromatin disorders. Hum Mol Genet 2023; 32:3123-3134. [PMID: 37166351 PMCID: PMC10630252 DOI: 10.1093/hmg/ddad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/12/2023] Open
Abstract
Germline pathogenic variants in two genes encoding the lysine-specific histone methyltransferase genes SETD1A and SETD2 are associated with neurodevelopmental disorders (NDDs) characterized by developmental delay and congenital anomalies. The SETD1A and SETD2 gene products play a critical role in chromatin-mediated regulation of gene expression. Specific methylation episignatures have been detected for a range of chromatin gene-related NDDs and have impacted clinical practice by improving the interpretation of variant pathogenicity. To investigate if SETD1A and/or SETD2-related NDDs are associated with a detectable episignature, we undertook targeted genome-wide methylation profiling of > 2 M CpGs using a next-generation sequencing-based assay. A comparison of methylation profiles in patients with SETD1A variants (n = 6) did not reveal evidence of a strong methylation episignature. A review of the clinical and genetic features of the SETD2 patient group revealed that, as reported previously, there were phenotypic differences between patients with truncating mutations (n = 4, Luscan-Lumish syndrome; MIM:616831) and those with missense codon 1740 variants [p.Arg1740Trp (n = 4) and p.Arg1740Gln (n = 2)]. Both SETD2 subgroups demonstrated a methylation episignature, which was characterized by hypomethylation and hypermethylation events, respectively. Within the codon 1740 subgroup, both the methylation changes and clinical phenotype were more severe in those with p.Arg1740Trp variants. We also noted that two of 10 cases with a SETD2-NDD had developed a neoplasm. These findings reveal novel epigenotype-genotype-phenotype correlations in SETD2-NDDs and predict a gain-of-function mechanism for SETD2 codon 1740 pathogenic variants.
Collapse
Affiliation(s)
- Sunwoo Lee
- Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Lara Menzies
- Department of Clinical Genetics, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Eleanor Hay
- Department of Clinical Genetics, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Eguzkine Ochoa
- Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - France Docquier
- Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Fay Rodger
- Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Charu Deshpande
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Saint Mary’s Hospital, Manchester, UK
| | - Nicola C Foulds
- Wessex Clinical Genetics Services, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Sébastien Jacquemont
- CHU Sainte-Justine Research Centre, Montreal, Quebec, Canada
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Khadije Jizi
- CHU Sainte-Justine Research Centre, Montreal, Quebec, Canada
| | - Henriette Kiep
- Department of Neuropediatrics, University Hospital for Children and Adolescents, Leipzig, Germany
| | - Alison Kraus
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds, UK
| | - Katharina Löhner
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Patrick J Morrison
- Patrick G Johnston Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, UK
| | - Bernt Popp
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center of Functional Genomics, Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Ruth Richardson
- Northern Genetics Service, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Arie van Haeringen
- Department of Clinical Genetics, Leiden University Hospital, Leiden, The Netherlands
| | - Ezequiel Martin
- Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Ana Toribio
- Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Fudong Li
- MOE Key Laboratory for Cellular Dynamics, The School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wendy D Jones
- Department of Clinical Genetics, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Francis H Sansbury
- All Wales Medical Genomics Service, NHS Wales Cardiff and Vale University Health Board and Institute of Medical Genetics, University Hospital of Wales, Heath Park, Cardiff, UK
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
13
|
Perlee S, Kikuchi S, Nakadai T, Masuda T, Ohtsuki S, Matsumoto M, Rahmutulla B, Fukuyo M, Cifani P, Kentsis A, Roeder RG, Kaneda A, Hoshii T. SETD1A function in leukemia is mediated through interaction with mitotic regulators BuGZ/BUB3. EMBO Rep 2023; 24:e57108. [PMID: 37535603 PMCID: PMC10561176 DOI: 10.15252/embr.202357108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023] Open
Abstract
The H3K4 methyltransferase SETD1A plays a crucial role in leukemia cell survival through its noncatalytic FLOS domain-mediated recruitment of cyclin K and regulation of DNA damage response genes. In this study, we identify a functional nuclear localization signal in and interaction partners of the FLOS domain. Our screen for FLOS domain-binding partners reveals that the SETD1A FLOS domain binds mitosis-associated proteins BuGZ/BUB3. Inhibition of both cyclin K and BuGZ/BUB3-binding motifs in SETD1A shows synergistic antileukemic effects. BuGZ/BUB3 localize to SETD1A-bound promoter-TSS regions and SETD1A-negative H3K4me1-positive enhancer regions adjacent to SETD1A target genes. The GLEBS motif and intrinsically disordered region of BuGZ are required for both SETD1A-binding and leukemia cell proliferation. Cell-cycle-specific SETD1A restoration assays indicate that SETD1A expression at the G1/S phase of the cell cycle promotes both the expression of DNA damage response genes and cell cycle progression in leukemia cells.
Collapse
Affiliation(s)
- Sarah Perlee
- Department of Cancer Biology and GeneticsMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Gerstner Graduate School of Biomedical SciencesMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Sota Kikuchi
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Tomoyoshi Nakadai
- Laboratory of Biochemistry and Molecular BiologyThe Rockefeller UniversityNew YorkNYUSA
| | - Takeshi Masuda
- Laboratory of Pharmaceutical Microbiology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
- Institute for Advanced BiosciencesKeio UniversityTsuruokaJapan
| | - Sumio Ohtsuki
- Laboratory of Pharmaceutical Microbiology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Makoto Matsumoto
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Paolo Cifani
- Molecular Pharmacology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Alex Kentsis
- Molecular Pharmacology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular BiologyThe Rockefeller UniversityNew YorkNYUSA
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Takayuki Hoshii
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityChibaJapan
| |
Collapse
|
14
|
Tsukahara T, Kethireddy S, Bonefas K, Chen A, Sutton BLM, Dou Y, Iwase S, Sutton MA. Division of labor among H3K4 Methyltransferases Defines Distinct Facets of Homeostatic Plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558734. [PMID: 37790395 PMCID: PMC10542164 DOI: 10.1101/2023.09.20.558734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Heterozygous mutations in any of the six H3K4 methyltransferases (KMT2s) result in monogenic neurodevelopmental disorders, indicating nonredundant yet poorly understood roles of this enzyme family in neurodevelopment. Recent evidence suggests that histone methyltransferase activity may not be central to KMT2 functions; however, the enzymatic activity is evolutionarily conserved, implicating the presence of selective pressure to maintain the catalytic activity. Here, we show that H3K4 methylation is dynamically regulated during prolonged alteration of neuronal activity. The perturbation of H3K4me by the H3.3K4M mutant blocks synaptic scaling, a form of homeostatic plasticity that buffers the impact of prolonged reductions or increases in network activity. Unexpectedly, we found that the six individual enzymes are all necessary for synaptic scaling and that the roles of KMT2 enzymes segregate into evolutionary-defined subfamilies: KMT2A and KMT2B (fly-Trx homologs) for synaptic downscaling, KMT2C and KMT2D (Trr homologs) for upscaling, and KMT2F and KMT2G (dSet homologs) for both directions. Selective blocking of KMT2A enzymatic activity by a small molecule and targeted disruption of the enzymatic domain both blocked the synaptic downscaling and interfered with the activity-dependent transcriptional program. Furthermore, our study revealed specific phases of synaptic downscaling, i.e., induction and maintenance, in which KMT2A and KMT2B play distinct roles. These results suggest that mammalian brains have co-opted intricate H3K4me installation to achieve stability of the expanding neuronal circuits.
Collapse
Affiliation(s)
- Takao Tsukahara
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Saini Kethireddy
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan
| | - Katherine Bonefas
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Alex Chen
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Brendan LM Sutton
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Yali Dou
- Department of Medicine and Department of Biochemistry and Molecular Medicine, Keck School of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Shigeki Iwase
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Michael A. Sutton
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
15
|
Ben-Mahmoud A, Kishikawa S, Gupta V, Leach NT, Shen Y, Moldovan O, Goel H, Hopper B, Ranguin K, Gruchy N, Maas SM, Lacassie Y, Kim SH, Kim WY, Quade BJ, Morton CC, Kim CH, Layman LC, Kim HG. A cryptic microdeletion del(12)(p11.21p11.23) within an unbalanced translocation t(7;12)(q21.13;q23.1) implicates new candidate loci for intellectual disability and Kallmann syndrome. Sci Rep 2023; 13:12984. [PMID: 37563198 PMCID: PMC10415337 DOI: 10.1038/s41598-023-40037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023] Open
Abstract
In a patient diagnosed with both Kallmann syndrome (KS) and intellectual disability (ID), who carried an apparently balanced translocation t(7;12)(q22;q24)dn, array comparative genomic hybridization (aCGH) disclosed a cryptic heterozygous 4.7 Mb deletion del(12)(p11.21p11.23), unrelated to the translocation breakpoint. This novel discovery prompted us to consider the possibility that the combination of KS and neurological disorder in this patient could be attributed to gene(s) within this specific deletion at 12p11.21-12p11.23, rather than disrupted or dysregulated genes at the translocation breakpoints. To further support this hypothesis, we expanded our study by screening five candidate genes at both breakpoints of the chromosomal translocation in a cohort of 48 KS patients. However, no mutations were found, thus reinforcing our supposition. In order to delve deeper into the characterization of the 12p11.21-12p11.23 region, we enlisted six additional patients with small copy number variations (CNVs) and analyzed eight individuals carrying small CNVs in this region from the DECIPHER database. Our investigation utilized a combination of complementary approaches. Firstly, we conducted a comprehensive phenotypic-genotypic comparison of reported CNV cases. Additionally, we reviewed knockout animal models that exhibit phenotypic similarities to human conditions. Moreover, we analyzed reported variants in candidate genes and explored their association with corresponding phenotypes. Lastly, we examined the interacting genes associated with these phenotypes to gain further insights. As a result, we identified a dozen candidate genes: TSPAN11 as a potential KS candidate gene, TM7SF3, STK38L, ARNTL2, ERGIC2, TMTC1, DENND5B, and ETFBKMT as candidate genes for the neurodevelopmental disorder, and INTS13, REP15, PPFIBP1, and FAR2 as candidate genes for KS with ID. Notably, the high-level expression pattern of these genes in relevant human tissues further supported their candidacy. Based on our findings, we propose that dosage alterations of these candidate genes may contribute to sexual and/or cognitive impairments observed in patients with KS and/or ID. However, the confirmation of their causal roles necessitates further identification of point mutations in these candidate genes through next-generation sequencing.
Collapse
Affiliation(s)
- Afif Ben-Mahmoud
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Shotaro Kishikawa
- Gene Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Vijay Gupta
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Natalia T Leach
- Integrated Genetics, Laboratory Corporation of America Holdings, 3400 Computer Drive, Westborough, MA, 01581, USA
| | - Yiping Shen
- Division of Genetics and Genomics at Boston Children's Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Oana Moldovan
- Medical Genetics Service, Pediatric Department, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Himanshu Goel
- Hunter Genetics, Waratah, NSW, 2298, Australia
- University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Bruce Hopper
- Forster Genetics-Hunter New England Local Health District, Forster, NSW, 2428, Australia
| | - Kara Ranguin
- Department of Genetics, Reference Center for Rare Diseases of Developmental anomalies and polymalformative syndrome, CHU de Caen Normandie, Caen, France
| | - Nicolas Gruchy
- Department of Genetics, Reference Center for Rare Diseases of Developmental anomalies and polymalformative syndrome, CHU de Caen Normandie, Caen, France
| | - Saskia M Maas
- Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, the Netherlands
| | - Yves Lacassie
- Division of Genetics, Department of Pediatrics, Louisiana State University, New Orleans, LA, 70118, USA
| | - Soo-Hyun Kim
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA
| | - Bradley J Quade
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Cynthia C Morton
- Departments of Obstetrics and Gynecology and of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, Manchester, UK
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, Korea
| | - Lawrence C Layman
- Section of Reproductive Endocrinology, Infertility and Genetics, Department of Obstetrics and Gynecology, Augusta University, Augusta, GA, USA
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, USA
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
16
|
Ben-Mahmoud A, Kishikawa S, Gupta V, Leach NT, Shen Y, Moldovan O, Goel H, Hopper B, Ranguin K, Gruchy N, Maas SM, Lacassie Y, Kim SH, Kim WY, Quade BJ, Morton CC, Kim CH, Layman LC, Kim HG. A microdeletion del(12)(p11.21p11.23) with a cryptic unbalanced translocation t(7;12)(q21.13;q23.1) implicates new candidate loci for intellectual disability and Kallmann syndrome. RESEARCH SQUARE 2023:rs.3.rs-2572736. [PMID: 37034680 PMCID: PMC10081357 DOI: 10.21203/rs.3.rs-2572736/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
In an apparently balanced translocation t(7;12)(q22;q24)dn exhibiting both Kallmann syndrome (KS) and intellectual disability (ID), we detected a cryptic heterozygous 4.7 Mb del(12)(p11.21p11.23) unrelated to the translocation breakpoint. This new finding raised the possibility that KS combined with neurological disorder in this patient could be caused by gene(s) within this deletion at 12p11.21-12p11.23 instead of disrupted or dysregulated genes at the genomic breakpoints. Screening of five candidate genes at both breakpoints in 48 KS patients we recruited found no mutation, corroborating our supposition. To substantiate this hypothesis further, we recruited six additional subjects with small CNVs and analyzed eight individuals carrying small CNVs in this region from DECIPHER to dissect 12p11.21-12p11.23. We used multiple complementary approaches including a phenotypic-genotypic comparison of reported cases, a review of knockout animal models recapitulating the human phenotypes, and analyses of reported variants in the interacting genes with corresponding phenotypes. The results identified one potential KS candidate gene ( TSPAN11 ), seven candidate genes for the neurodevelopmental disorder ( TM7SF3 , STK38L , ARNTL2 , ERGIC2 , TMTC1 , DENND5B , and ETFBKMT ), and four candidate genes for KS with ID ( INTS13 , REP15 , PPFIBP1 , and FAR2 ). The high-level expression pattern in the relevant human tissues further suggested the candidacy of these genes. We propose that the dosage alterations of the candidate genes may contribute to sexual and/or cognitive impairment in patients with KS and/or ID. Further identification of point mutations through next generation sequencing will be necessary to confirm their causal roles.
Collapse
Affiliation(s)
| | | | | | | | | | - Oana Moldovan
- Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte
| | | | - Bruce Hopper
- Forster Genetics-Hunter New England Local Health District
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fu MP, Merrill SM, Sharma M, Gibson WT, Turvey SE, Kobor MS. Rare diseases of epigenetic origin: Challenges and opportunities. Front Genet 2023; 14:1113086. [PMID: 36814905 PMCID: PMC9939656 DOI: 10.3389/fgene.2023.1113086] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
Rare diseases (RDs), more than 80% of which have a genetic origin, collectively affect approximately 350 million people worldwide. Progress in next-generation sequencing technology has both greatly accelerated the pace of discovery of novel RDs and provided more accurate means for their diagnosis. RDs that are driven by altered epigenetic regulation with an underlying genetic basis are referred to as rare diseases of epigenetic origin (RDEOs). These diseases pose unique challenges in research, as they often show complex genetic and clinical heterogeneity arising from unknown gene-disease mechanisms. Furthermore, multiple other factors, including cell type and developmental time point, can confound attempts to deconvolute the pathophysiology of these disorders. These challenges are further exacerbated by factors that contribute to epigenetic variability and the difficulty of collecting sufficient participant numbers in human studies. However, new molecular and bioinformatics techniques will provide insight into how these disorders manifest over time. This review highlights recent studies addressing these challenges with innovative solutions. Further research will elucidate the mechanisms of action underlying unique RDEOs and facilitate the discovery of treatments and diagnostic biomarkers for screening, thereby improving health trajectories and clinical outcomes of affected patients.
Collapse
Affiliation(s)
- Maggie P. Fu
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada,BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Sarah M. Merrill
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada,BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Mehul Sharma
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada,Department of Pediatrics, Faculty of Medicine, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - William T. Gibson
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Stuart E. Turvey
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada,Department of Pediatrics, Faculty of Medicine, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Michael S. Kobor
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada,BC Children’s Hospital Research Institute, Vancouver, BC, Canada,*Correspondence: Michael S. Kobor,
| |
Collapse
|
18
|
Ben-Mahmoud A, Jun KR, Gupta V, Shastri P, de la Fuente A, Park Y, Shin KC, Kim CA, da Cruz AD, Pinto IP, Minasi LB, Silva da Cruz A, Faivre L, Callier P, Racine C, Layman LC, Kong IK, Kim CH, Kim WY, Kim HG. A rigorous in silico genomic interrogation at 1p13.3 reveals 16 autosomal dominant candidate genes in syndromic neurodevelopmental disorders. Front Mol Neurosci 2022; 15:979061. [PMID: 36277487 PMCID: PMC9582330 DOI: 10.3389/fnmol.2022.979061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Genome-wide chromosomal microarray is extensively used to detect copy number variations (CNVs), which can diagnose microdeletion and microduplication syndromes. These small unbalanced chromosomal structural rearrangements ranging from 1 kb to 10 Mb comprise up to 15% of human mutations leading to monogenic or contiguous genomic disorders. Albeit rare, CNVs at 1p13.3 cause a variety of neurodevelopmental disorders (NDDs) including development delay (DD), intellectual disability (ID), autism, epilepsy, and craniofacial anomalies (CFA). Most of the 1p13.3 CNV cases reported in the pre-microarray era encompassed a large number of genes and lacked the demarcating genomic coordinates, hampering the discovery of positional candidate genes within the boundaries. In this study, we present four subjects with 1p13.3 microdeletions displaying DD, ID, autism, epilepsy, and CFA. In silico comparative genomic mapping with three previously reported subjects with CNVs and 22 unreported DECIPHER CNV cases has resulted in the identification of four different sub-genomic loci harboring five positional candidate genes for DD, ID, and CFA at 1p13.3. Most of these genes have pathogenic variants reported, and their interacting genes are involved in NDDs. RT-qPCR in various human tissues revealed a high expression pattern in the brain and fetal brain, supporting their functional roles in NDDs. Interrogation of variant databases and interacting protein partners led to the identification of another set of 11 potential candidate genes, which might have been dysregulated by the position effect of these CNVs at 1p13.3. Our studies define 1p13.3 as a genomic region harboring 16 NDD candidate genes and underscore the critical roles of small CNVs in in silico comparative genomic mapping for disease gene discovery. Our candidate genes will help accelerate the isolation of pathogenic heterozygous variants from exome/genome sequencing (ES/GS) databases.
Collapse
Affiliation(s)
- Afif Ben-Mahmoud
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Kyung Ran Jun
- Department of Laboratory Medicine, Inje University Haeundae Paik Hospital, Busan, South Korea
| | - Vijay Gupta
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Pinang Shastri
- Department of Cardiovascular Medicine, Cape Fear Valley Medical Center, Fayetteville, NC, United States
| | - Alberto de la Fuente
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Yongsoo Park
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Kyung Chul Shin
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Chong Ae Kim
- Faculdade de Medicina, Unidade de Genética do Instituto da Criança – Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Aparecido Divino da Cruz
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Irene Plaza Pinto
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Lysa Bernardes Minasi
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Alex Silva da Cruz
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Laurence Faivre
- Inserm UMR 1231 GAD, Genetics of Developmental Disorders, Université de Bourgogne-Franche Comté, Dijon, France
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d’Enfants, Dijon, France
| | - Patrick Callier
- UMR 1231 GAD, Inserm – Université Bourgogne-Franche Comté, Dijon, France
| | - Caroline Racine
- UMR 1231 GAD, Inserm – Université Bourgogne-Franche Comté, Dijon, France
| | - Lawrence C. Layman
- Section of Reproductive Endocrinology, Infertility and Genetics, Department of Obstetrics and Gynecology, Augusta University, Augusta, GA, United States
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, United States
| | - Il-Keun Kong
- Department of Animal Science, Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, South Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, South Korea
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
- *Correspondence: Hyung-Goo Kim,
| |
Collapse
|
19
|
Connectome Analysis in an Individual with SETD1B -Related Neurodevelopmental Disorder and Epilepsy. J Dev Behav Pediatr 2022; 43:e419-e422. [PMID: 35385430 DOI: 10.1097/dbp.0000000000001079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/08/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Causative variants in SETD1B , encoding a lysine-specific methyltransferase, have recently been associated with a neurodevelopmental phenotype encompassing intellectual disability, autistic features, pronounced language delay, and epilepsy. It has been noted that long-term and deep phenotype data are needed to further delineate this rare condition. METHODS In this study, we provide an in-depth clinical characterization with long-term follow-up and trio exome sequencing findings to describe one additional individual affected by SETD1B -related disorder. The diagnostic workup was complemented by a functional magnetic resonance imaging (fMRI) study. RESULTS We report a 24-year-old male individual with an early-onset neurodevelopmental disorder with epilepsy due to the de novo missense variant c.5699A>G, p.(Tyr1900Cys) in SETD1B (NM_015048.1). He exhibited delayed speech development, autism spectrum disorder, and early-onset epilepsy with absence and generalized tonic-clonic seizures. Despite profoundly impaired communication skills, ongoing improvements regarding language production have been noted in adulthood. fMRI findings demonstrate abnormal language activation and resting-state connectivity structure. CONCLUSION Our report expands the previously delineated phenotype of SETD1B -related disorder and provides novel insights into underlying disease mechanisms.
Collapse
|
20
|
Epigenetic genes and epilepsy - emerging mechanisms and clinical applications. Nat Rev Neurol 2022; 18:530-543. [PMID: 35859062 DOI: 10.1038/s41582-022-00693-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 12/21/2022]
Abstract
An increasing number of epilepsies are being attributed to variants in genes with epigenetic functions. The products of these genes include factors that regulate the structure and function of chromatin and the placing, reading and removal of epigenetic marks, as well as other epigenetic processes. In this Review, we provide an overview of the various epigenetic processes, structuring our discussion around five function-based categories: DNA methylation, histone modifications, histone-DNA crosstalk, non-coding RNAs and chromatin remodelling. We provide background information on each category, describing the general mechanism by which each process leads to altered gene expression. We also highlight key clinical and mechanistic aspects, providing examples of genes that strongly associate with epilepsy within each class. We consider the practical applications of these findings, including tissue-based and biofluid-based diagnostics and precision medicine-based treatments. We conclude that variants in epigenetic genes are increasingly found to be causally involved in the epilepsies, with implications for disease mechanisms, treatments and diagnostics.
Collapse
|
21
|
Poreba E, Lesniewicz K, Durzynska J. Histone-lysine N-methyltransferase 2 (KMT2) complexes - a new perspective. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108443. [PMID: 36154872 DOI: 10.1016/j.mrrev.2022.108443] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/25/2022] [Accepted: 09/19/2022] [Indexed: 01/01/2023]
Abstract
Histone H3 Lys4 (H3K4) methylation is catalyzed by the Histone-Lysine N-Methyltransferase 2 (KMT2) protein family, and its members are required for gene expression control. In vertebrates, the KMT2s function in large multisubunit complexes known as COMPASS or COMPASS-like complexes (COMplex of Proteins ASsociated with Set1). The activity of these complexes is critical for proper development, and mutation-induced defects in their functioning have frequently been found in human cancers. Moreover, inherited or de novo mutations in KMT2 genes are among the etiological factors in neurodevelopmental disorders such as Kabuki and Kleefstra syndromes. The canonical role of KMT2s is to catalyze H3K4 methylation, which results in a permissive chromatin environment that drives gene expression. However, current findings described in this review demonstrate that these enzymes can regulate processes that are not dependent on methylation: noncatalytic functions of KMT2s include DNA damage response, cell division, and metabolic activities. Moreover, these enzymes may also methylate non-histone substrates and play a methylation-dependent function in the DNA damage response. In this review, we present an overview of the new, noncanonical activities of KMT2 complexes in a variety of cellular processes. These discoveries may have crucial implications for understanding the functions of these methyltransferases in developmental processes, disease, and epigenome-targeting therapeutic strategies in the future.
Collapse
Affiliation(s)
- Elzbieta Poreba
- Department of Genetics, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Krzysztof Lesniewicz
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Julia Durzynska
- Department of Genetics, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| |
Collapse
|
22
|
Ojaimi MA, Banimortada BJ, Othman A, Riedhammer KM, Almannai M, El-Hattab AW. Disorders of histone methylation: molecular basis and clinical syndromes. Clin Genet 2022; 102:169-181. [PMID: 35713103 DOI: 10.1111/cge.14181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/01/2022]
Abstract
Epigenetic modifications of DNA and histone tails are essential for gene expression regulation. They play an essential role in neurodevelopment as nervous system development is a complex process requiring a dynamic pattern of gene expression. Histone methylation is one of the vital epigenetic regulators and mostly occurs on lysine residues of histones H3 and H4. Histone methylation is catalyzed by two sets of enzymes: histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs). KMT2 enzymes form a distinct multi-subunit complex known as COMPASS to enhance their catalytic activity and diversify their biologic functions. Several neurodevelopmental syndromes result from defects of histone methylation which can be caused by deficiencies in histone methyltransferases and demethylases, loss of the histone methyltransferase activator TASP1, or derangements in COMPASS formation. In this review article, the molecular mechanism of histone methylation is discussed followed by summarizing clinical syndromes caused by monogenic defects in histone methylation.
Collapse
Affiliation(s)
- Mode Al Ojaimi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Amna Othman
- Genetics and Genomic Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Korbinian M Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Mohammed Almannai
- Genetics and Precision Medicine Department, King Abdullah Specialized Children's Hospital, Riyadh, Saudi Arabia
| | - Ayman W El-Hattab
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Pediatrics Department, University Hospital Sharjah, Sharjah, United Arab Emirates.,Genetics and Metabolic Department, KidsHeart Medical Center, Abu Dhabi, United Arab Emirates
| |
Collapse
|
23
|
Meuwissen M, Verstraeten A, Ranza E, Iwaszkiewicz J, Bastiaansen M, Mateiu L, Nemegeer M, Meester JAN, Afenjar A, Amaral M, Ballhausen D, Barnett S, Barth M, Asselbergh B, Spaas K, Heeman B, Bassetti J, Blackburn P, Schaer M, Blanc X, Zoete V, Casas K, Courtin T, Doummar D, Guerry F, Keren B, Pappas J, Rabin R, Begtrup A, Shinawi M, Vulto-van Silfhout AT, Kleefstra T, Wagner M, Ziegler A, Schaefer E, Gerard B, De Bie CI, Holwerda SJB, Abbot MA, Antonarakis SE, Loeys B. Heterozygous variants in CTR9, which encodes a major component of the PAF1 complex, are associated with a neurodevelopmental disorder. Genet Med 2022; 24:1583-1591. [PMID: 35499524 DOI: 10.1016/j.gim.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE CTR9 is a subunit of the PAF1 complex (PAF1C) that plays a crucial role in transcription regulation by binding CTR9 to RNA polymerase II. It is involved in transcription-coupled histone modification through promoting H3K4 and H3K36 methylation. We describe the clinical and molecular studies in 13 probands, harboring likely pathogenic CTR9 missense variants, collected through GeneMatcher. METHODS Exome sequencing was performed in all individuals. CTR9 variants were assessed through 3-dimensional modeling of the activated human transcription complex Pol II-DSIF-PAF-SPT6 and the PAF1/CTR9 complex. H3K4/H3K36 methylation analysis, mitophagy assessment based on tetramethylrhodamine ethyl ester perchlorate immunofluorescence, and RNA-sequencing in skin fibroblasts from 4 patients was performed. RESULTS Common clinical findings were variable degrees of intellectual disability, hypotonia, joint hyperlaxity, speech delay, coordination problems, tremor, and autism spectrum disorder. Mild dysmorphism and cardiac anomalies were less frequent. For 11 CTR9 variants, de novo occurrence was shown. Three-dimensional modeling predicted a likely disruptive effect of the variants on local CTR9 structure and protein interaction. Additional studies in fibroblasts did not unveil the downstream functional consequences of the identified variants. CONCLUSION We describe a neurodevelopmental disorder caused by (mainly) de novo variants in CTR9, likely affecting PAF1C function.
Collapse
Affiliation(s)
- Marije Meuwissen
- Center for Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | - Aline Verstraeten
- Center for Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | - Emmanuelle Ranza
- Medigenome, Swiss Institute of Genomic Medicine, Geneva, Switzerland
| | - Justyna Iwaszkiewicz
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Maaike Bastiaansen
- Center for Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | - Ligia Mateiu
- Center for Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | - Merlijn Nemegeer
- Center for Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | - Josephina A N Meester
- Center for Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | - Alexandra Afenjar
- Centre de Référence Malformations et Maladies Congénitales du Cervelet et Déficiences Intellectuelles de Causes Rares, Département de Génétique et Embryologie Médicale, Hôpital Trousseau, Sorbonne Université, AP-HP, Paris, France
| | | | - Diana Ballhausen
- Pediatric Metabolic Unit, Pediatrics, Woman-Mother-Child Department, University of Lausanne and University Hospital of Lausanne, Lausanne, Switzerland
| | - Sarah Barnett
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Magalie Barth
- Biochemistry and Genetics Department, University Hospital of Angers, Angers, France
| | - Bob Asselbergh
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Katrien Spaas
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Bavo Heeman
- Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium; Applied and Translational Neurogenomics, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - Jennifer Bassetti
- Division of Medical Genetics, Department of Pediatrics, Weill Cornell Medicine, New York, NY
| | - Patrick Blackburn
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Marie Schaer
- Autism Brain & Behavior Laboratory, Department Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Xavier Blanc
- Medigenome, Swiss Institute of Genomic Medicine, Geneva, Switzerland
| | - Vincent Zoete
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland; Ludwig Institute for Cancer Research, Department of Fundamental Oncology, Faculty of Biology and Medicine, Lausanne University, Epalinges, Lausanne, Switzerland
| | - Kari Casas
- Medical Genetics, Sanford Broadway Clinic, Fargo, ND
| | - Thomas Courtin
- Department of Genetics, AP-HP, La Pitié-Salpêtrière Hospital, Sorbonne Université, Paris
| | - Diane Doummar
- Neuropédiatrie, AP-HP, Hôpital d'enfants Armand Trousseau, Sorbonne Université, Paris
| | - Frédéric Guerry
- Medigenome, Swiss Institute of Genomic Medicine, Geneva, Switzerland
| | - Boris Keren
- Department of Genetics, AP-HP, La Pitié-Salpêtrière Hospital, Sorbonne Université, Paris
| | | | | | | | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | | | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Matias Wagner
- Institute of Human Genetics, Technical University München, Munich, Germany; Institute for Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Alban Ziegler
- Biochemistry and Genetics Department, University Hospital of Angers, Angers, France
| | - Elise Schaefer
- Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace, Hopitaux Universitaires de Strasbourg, Strasbourg, France
| | - Benedicte Gerard
- Laboratoires de Diagnostic Génétique, Institut de Génétique Médicale d'Alsace, Hopitaux Universitaires de Strasbourg, Strasbourg, France
| | - Charlotte I De Bie
- Department of Clinical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sjoerd J B Holwerda
- Department of Clinical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mary Alice Abbot
- Medical Genetics, Department of Pediatrics, University of Massachusetts Medical School-Baystate, Springfield, MA
| | | | - Bart Loeys
- Center for Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Edegem, Belgium; Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
24
|
Takahashi Y, Date H, Oi H, Adachi T, Imanishi N, Kimura E, Takizawa H, Kosugi S, Matsumoto N, Kosaki K, Matsubara Y, Mizusawa H. Six years' accomplishment of the Initiative on Rare and Undiagnosed Diseases: nationwide project in Japan to discover causes, mechanisms, and cures. J Hum Genet 2022; 67:505-513. [PMID: 35318459 PMCID: PMC9402437 DOI: 10.1038/s10038-022-01025-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 11/09/2022]
Abstract
The identification of causative genetic variants for hereditary diseases has revolutionized clinical medicine and an extensive collaborative framework with international cooperation has become a global trend to understand rare disorders. The Initiative on Rare and Undiagnosed Diseases (IRUD) was established in Japan to provide accurate diagnosis, discover causes, and ultimately provide cures for rare and undiagnosed diseases. The fundamental IRUD system consists of three pillars: IRUD diagnostic coordination, analysis centers (IRUD-ACs), and a data center (IRUD-DC). IRUD diagnostic coordination consists of clinical centers (IRUD-CLs) and clinical specialty subgroups (IRUD-CSSs). In addition, the IRUD coordinating center (IRUD-CC) manages the entire IRUD system and temporarily operates the IRUD resource center (IRUD-RC). By the end of March 2021, 6301 pedigrees consisting of 18,136 individuals were registered in the IRUD. The whole-exome sequencing method was completed in 5136 pedigrees, and a final diagnosis was established in 2247 pedigrees (43.8%). The total number of aberrated genes and pathogenic variants was 657 and 1718, among which 1113 (64.8%) were novel. In addition, 39 novel disease entities or phenotypes with 41 aberrated genes were identified. The 6-year endeavor of IRUD has been an overwhelming success, establishing an all-Japan comprehensive diagnostic and research system covering all geographic areas and clinical specialties/subspecialties. IRUD has accurately diagnosed diseases, identified novel aberrated genes or disease entities, discovered many candidate genes, and enriched phenotypic and pathogenic variant databases. Further promotion of the IRUD is essential for determining causes and developing cures for rare and undiagnosed diseases.
Collapse
Affiliation(s)
- Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Hidetoshi Date
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Hideki Oi
- Department of Clinical Data Science, Clinical Research and Education Promotion Division, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Takeya Adachi
- Keio Frontier Research & Education Collaborative Square (K-FRECS) at Tonomachi, Keio University, Kawasaki, Japan.,Department of Medical Regulatory Science, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan.,Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Noriaki Imanishi
- Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.,Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Suita, Japan
| | - En Kimura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan.,Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.,Astellas Pharma Incorporated, Tokyo, Japan
| | - Hotake Takizawa
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan.,Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Shinji Kosugi
- Department of Medical Ethics/Medical Genetics, Kyoto University School of Public Health, Kyoto, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | | | | | - Hidehiro Mizusawa
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan.
| |
Collapse
|
25
|
Kurata K, Hosono K, Takayama M, Katsuno M, Saitsu H, Ogata T, Hotta Y. Retinitis pigmentosa with optic neuropathy and COQ2 mutations: A case report. Am J Ophthalmol Case Rep 2022; 25:101298. [PMID: 35112026 PMCID: PMC8789597 DOI: 10.1016/j.ajoc.2022.101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 07/28/2021] [Accepted: 01/17/2022] [Indexed: 10/26/2022] Open
|
26
|
Wilson KD, Porter EG, Garcia BA. Reprogramming of the epigenome in neurodevelopmental disorders. Crit Rev Biochem Mol Biol 2022; 57:73-112. [PMID: 34601997 PMCID: PMC9462920 DOI: 10.1080/10409238.2021.1979457] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The etiology of neurodevelopmental disorders (NDDs) remains a challenge for researchers. Human brain development is tightly regulated and sensitive to cellular alterations caused by endogenous or exogenous factors. Intriguingly, the surge of clinical sequencing studies has revealed that many of these disorders are monogenic and monoallelic. Notably, chromatin regulation has emerged as highly dysregulated in NDDs, with many syndromes demonstrating phenotypic overlap, such as intellectual disabilities, with one another. Here we discuss epigenetic writers, erasers, readers, remodelers, and even histones mutated in NDD patients, predicted to affect gene regulation. Moreover, this review focuses on disorders associated with mutations in enzymes involved in histone acetylation and methylation, and it highlights syndromes involving chromatin remodeling complexes. Finally, we explore recently discovered histone germline mutations and their pathogenic outcome on neurological function. Epigenetic regulators are mutated at every level of chromatin organization. Throughout this review, we discuss mechanistic investigations, as well as various animal and iPSC models of these disorders and their usefulness in determining pathomechanism and potential therapeutics. Understanding the mechanism of these mutations will illuminate common pathways between disorders. Ultimately, classifying these disorders based on their effects on the epigenome will not only aid in prognosis in patients but will aid in understanding the role of epigenetic machinery throughout neurodevelopment.
Collapse
Affiliation(s)
- Khadija D. Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Elizabeth G. Porter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
27
|
Michurina A, Sakib MS, Kerimoglu C, Krüger DM, Kaurani L, Islam MR, Joshi PD, Schröder S, Centeno TP, Zhou J, Pradhan R, Cha J, Xu X, Eichele G, Zeisberg EM, Kranz A, Stewart AF, Fischer A. Postnatal expression of the lysine methyltransferase SETD1B is essential for learning and the regulation of neuron-enriched genes. EMBO J 2022; 41:e106459. [PMID: 34806773 PMCID: PMC8724770 DOI: 10.15252/embj.2020106459] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/04/2021] [Accepted: 10/15/2021] [Indexed: 01/04/2023] Open
Abstract
In mammals, histone 3 lysine 4 methylation (H3K4me) is mediated by six different lysine methyltransferases. Among these enzymes, SETD1B (SET domain containing 1b) has been linked to syndromic intellectual disability in human subjects, but its role in the mammalian postnatal brain has not been studied yet. Here, we employ mice deficient for Setd1b in excitatory neurons of the postnatal forebrain, and combine neuron-specific ChIP-seq and RNA-seq approaches to elucidate its role in neuronal gene expression. We observe that Setd1b controls the expression of a set of genes with a broad H3K4me3 peak at their promoters, enriched for neuron-specific genes linked to learning and memory function. Comparative analyses in mice with conditional deletion of Kmt2a and Kmt2b histone methyltransferases show that SETD1B plays a more pronounced and potent role in regulating such genes. Moreover, postnatal loss of Setd1b leads to severe learning impairment, suggesting that SETD1B-dependent regulation of H3K4me levels in postnatal neurons is critical for cognitive function.
Collapse
Affiliation(s)
- Alexandra Michurina
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - M Sadman Sakib
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Cemil Kerimoglu
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Dennis Manfred Krüger
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Lalit Kaurani
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Md Rezaul Islam
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Parth Devesh Joshi
- Department for Gene and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Sophie Schröder
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Tonatiuh Pena Centeno
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Jiayin Zhou
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Ranjit Pradhan
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Julia Cha
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Xingbo Xu
- Department of Cardiology and PneumologyUniversity Medical Center of GöttingenGeorg‐August UniversityGöttingenGermany
- German Centre for Cardiovascular Research (DZHK)Partner Site GöttingenGöttingenGermany
| | - Gregor Eichele
- Department for Gene and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Elisabeth M Zeisberg
- Department of Cardiology and PneumologyUniversity Medical Center of GöttingenGeorg‐August UniversityGöttingenGermany
- German Centre for Cardiovascular Research (DZHK)Partner Site GöttingenGöttingenGermany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC)University of GöttingenGermany
| | - Andrea Kranz
- Biotechnology CenterCenter for Molecular and Cellular BioengineeringDresden University of TechnologyDresdenGermany
| | - A Francis Stewart
- Biotechnology CenterCenter for Molecular and Cellular BioengineeringDresden University of TechnologyDresdenGermany
- Max‐Planck‐Institute for Cell Biology and GeneticsDresdenGermany
| | - André Fischer
- Department for Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC)University of GöttingenGermany
- Department of Psychiatry and PsychotherapyUniversity Medical Center GöttingenGöttingenGermany
| |
Collapse
|
28
|
Stanley K, Hostyk J, Tran L, Amengual-Gual M, Dugan P, Clark J, Choi H, Tchapyjnikov D, Perucca P, Fernandes C, Andrade D, Devinsky O, Cavalleri GL, Depondt C, Sen A, O'Brien T, Heinzen E, Loddenkemper T, Goldstein DB, Mikati MA, Delanty N. Genomic analysis of "microphenotypes" in epilepsy. Am J Med Genet A 2021; 188:138-146. [PMID: 34569149 DOI: 10.1002/ajmg.a.62505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/22/2021] [Accepted: 07/23/2021] [Indexed: 11/07/2022]
Abstract
Large international consortia examining the genomic architecture of the epilepsies focus on large diagnostic subgroupings such as "all focal epilepsy" and "all genetic generalized epilepsy". In addition, phenotypic data are generally entered into these large discovery databases in a unidirectional manner at one point in time only. However, there are many smaller phenotypic subgroupings in epilepsy, many of which may have unique genomic risk factors. Such a subgrouping or "microphenotype" may be defined as an uncommon or rare phenotype that is well recognized by epileptologists and the epilepsy community, and which may or may not be formally recognized within the International League Against Epilepsy classification system. Here we examine the genetic structure of a number of such microphenotypes and report in particular on two interesting clinical phenotypes, Jeavons syndrome and pediatric status epilepticus. Although no single gene reached exome-wide statistical significance to be associated with any of the diagnostic categories, we observe enrichment of rare damaging variants in established epilepsy genes among Landau-Kleffner patients (GRIN2A) and pediatric status epilepticus patients (MECP2, SCN1A, SCN2A, SCN8A).
Collapse
Affiliation(s)
- Kate Stanley
- Columbia Presbyterian Medical Center, New York, New York, USA
| | - Joseph Hostyk
- Institute for Genomic Medicine, Columbia Presbyterian Medical Center, New York, New York, USA
| | - Linh Tran
- Duke University School of Medicine, Durham, North Carolina, USA
| | - Marta Amengual-Gual
- Division of Epilepsy and Clinical Neurophysiology, Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Patricia Dugan
- Department of Neurology, NYU Langone Medical Center, New York, New York, USA
| | - Justice Clark
- Boston Children's Hospital, Boston, Massachusetts, USA
| | - Hyunmi Choi
- Department of Neurology, Columbia Presbyterian Medical Center, New York, New York, USA
| | | | - Piero Perucca
- Department of Neurology, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | | | - Danielle Andrade
- Division of Neurology, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Orrin Devinsky
- Department of Neurology, School of Medicine, New York University, New York, New York, USA
| | | | - Gianpiero L Cavalleri
- School of Pharmacy and Biomedical Sciences, and FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Arjune Sen
- Department of Clinical Neurosciences - Neurology, University of Oxford Nuffield, Oxford, UK
| | - Terence O'Brien
- Department of Medicine, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Erin Heinzen
- Pharmacy and Genetics, University of North Carolina System, Chapel Hill, North Carolina, USA
| | - Tobias Loddenkemper
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia Presbyterian Medical Center, New York, New York, USA
| | - Mohamed A Mikati
- Division of Pediatric Neurology and Developmental Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Norman Delanty
- Department of Neurology, Beaumont Hospital, School of Pharmacy and Biomedical Sciences, and FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
29
|
Anashkina AA, Erlykina EI. Molecular Mechanisms of Aberrant Neuroplasticity in Autism Spectrum Disorders (Review). Sovrem Tekhnologii Med 2021; 13:78-91. [PMID: 34513070 PMCID: PMC8353687 DOI: 10.17691/stm2021.13.1.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Indexed: 01/03/2023] Open
Abstract
This review presents the analysis and systematization of modern data on the molecular mechanisms of autism spectrum disorders (ASD) development. Polyetiology and the multifactorial nature of ASD have been proved. The attempt has been made to jointly review and systematize current hypotheses of ASD pathogenesis at the molecular level from the standpoint of aberrant brain plasticity. The mechanism of glutamate excitotoxicity formation, the effect of imbalance of neuroactive amino acids and their derivatives, neurotransmitters, and hormones on the ASD formation have been considered in detail. The strengths and weaknesses of the proposed hypotheses have been analyzed from the standpoint of evidence-based medicine. The conclusion has been drawn on the leading role of glutamate excitotoxicity as a biochemical mechanism of aberrant neuroplasticity accompanied by oxidative stress and mitochondrial dysfunction. The mechanism of aberrant neuroplasticity has also been traced at the critical moments of the nervous system development taking into account the influence of various factors of the internal and external environment. New approaches to searching for ASD molecular markers have been considered.
Collapse
Affiliation(s)
- A A Anashkina
- Senior Teacher, Department of Biochemistry named after G.Y. Gorodisskaya; Senior Researcher, Central Scientific Research Laboratory, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - E I Erlykina
- Professor, Head of the Department of Biochemistry named after G.Y. Gorodisskaya, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| |
Collapse
|
30
|
Hamdan N, Mehawej C, Sebaaly G, Jalkh N, Corbani S, Abou-Ghoch J, De Backer O, Chouery E. A homozygous stop gain mutation in BOD1 gene in a Lebanese patient with syndromic intellectual disability. Clin Genet 2021; 98:288-292. [PMID: 32578875 DOI: 10.1111/cge.13799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/16/2020] [Accepted: 06/20/2020] [Indexed: 12/13/2022]
Abstract
Intellectual disability (ID) is a neurodevelopmental disorder characterized by limitations in both intellectual and behavioral functioning. It can occur in non-syndromic and syndromic forms involving multiple organs. While the majority of genetic variants linked to ID are de novo, inherited variants are also detected in some forms. Here, we report a consanguineous Lebanese family presenting with an autosomal recessive syndromic ID characterized by neurodevelopmental delay, mild dysmorphic features, hearing impairment and endocrine dysfunction. Whole exome sequencing enabled the detection of the homozygous nonsense mutation in BOD1, p.R151X, in the proband. BOD1 is required for chromosomes biorientation during cell division. It also contributes to the regulation of cell survival and to the modulation of fatty acid metabolism. Another nonsense mutation in BOD1 was linked to ID in a consanguineous Iranian family. This is the second report of BOD1 mutations in humans and the first in a syndromic ID including gonadal dysfunction and high-frequency hearing impairment. Our findings confirm the involvement of BOD1 in cognitive functioning and expand the clinical spectrum of BOD1 deficiency.
Collapse
Affiliation(s)
- Nadine Hamdan
- Medical Genetics Unit, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Cybel Mehawej
- Medical Genetics Unit, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Ghada Sebaaly
- Endocrinology Department, Bellevue Medical Center, Mansourieh, Lebanon
| | - Nadine Jalkh
- Medical Genetics Unit, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Sandra Corbani
- Medical Genetics Unit, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Joelle Abou-Ghoch
- Medical Genetics Unit, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - O De Backer
- URPHYM (Unité de Recherche en Physiologie Moléculaire), NARILIS (Namur Research Institute for Life Sciences), Université de Namur, Namur, Belgium
| | - Eliane Chouery
- Medical Genetics Unit, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| |
Collapse
|
31
|
Kummeling J, Stremmelaar DE, Raun N, Reijnders MRF, Willemsen MH, Ruiterkamp-Versteeg M, Schepens M, Man CCO, Gilissen C, Cho MT, McWalter K, Sinnema M, Wheless JW, Simon MEH, Genetti CA, Casey AM, Terhal PA, van der Smagt JJ, van Gassen KLI, Joset P, Bahr A, Steindl K, Rauch A, Keller E, Raas-Rothschild A, Koolen DA, Agrawal PB, Hoffman TL, Powell-Hamilton NN, Thiffault I, Engleman K, Zhou D, Bodamer O, Hoefele J, Riedhammer KM, Schwaibold EMC, Tasic V, Schubert D, Top D, Pfundt R, Higgs MR, Kramer JM, Kleefstra T. Characterization of SETD1A haploinsufficiency in humans and Drosophila defines a novel neurodevelopmental syndrome. Mol Psychiatry 2021; 26:2013-2024. [PMID: 32346159 DOI: 10.1038/s41380-020-0725-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022]
Abstract
Defects in histone methyltransferases (HMTs) are major contributing factors in neurodevelopmental disorders (NDDs). Heterozygous variants of SETD1A involved in histone H3 lysine 4 (H3K4) methylation were previously identified in individuals with schizophrenia. Here, we define the clinical features of the Mendelian syndrome associated with haploinsufficiency of SETD1A by investigating 15 predominantly pediatric individuals who all have de novo SETD1A variants. These individuals present with a core set of symptoms comprising global developmental delay and/or intellectual disability, subtle facial dysmorphisms, behavioral and psychiatric problems. We examined cellular phenotypes in three patient-derived lymphoblastoid cell lines with three variants: p.Gly535Alafs*12, c.4582-2_4582delAG, and p.Tyr1499Asp. These patient cell lines displayed DNA damage repair defects that were comparable to previously observed RNAi-mediated depletion of SETD1A. This suggested that these variants, including the p.Tyr1499Asp in the catalytic SET domain, behave as loss-of-function (LoF) alleles. Previous studies demonstrated a role for SETD1A in cell cycle control and differentiation. However, individuals with SETD1A variants do not show major structural brain defects or severe microcephaly, suggesting that defective proliferation and differentiation of neural progenitors is unlikely the single underlying cause of the disorder. We show here that the Drosophila melanogaster SETD1A orthologue is required in postmitotic neurons of the fly brain for normal memory, suggesting a role in post development neuronal function. Together, this study defines a neurodevelopmental disorder caused by dominant de novo LoF variants in SETD1A and further supports a role for H3K4 methyltransferases in the regulation of neuronal processes underlying normal cognitive functioning.
Collapse
Affiliation(s)
- Joost Kummeling
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Diante E Stremmelaar
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Nicholas Raun
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| | - Margot R F Reijnders
- Department of Clinical Genetics and School for Oncology & Developmental Biology (GROW), Maastricht University Medical Center, 6229 ER, Maastricht, The Netherlands
| | - Marjolein H Willemsen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Martina Ruiterkamp-Versteeg
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Marga Schepens
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Calvin C O Man
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | | | - Margje Sinnema
- Department of Clinical Genetics and School for Oncology & Developmental Biology (GROW), Maastricht University Medical Center, 6229 ER, Maastricht, The Netherlands
| | - James W Wheless
- Division of Pediatric Neurology, University of Tennessee Health Science Center, Memphis, TN, USA.,Neuroscience Institute & Le Bonheur Comprehensive Epilepsy Program, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Marleen E H Simon
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Casie A Genetti
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Alicia M Casey
- Division of Pulmonary and Respiratory Diseases, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Paulien A Terhal
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jasper J van der Smagt
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Koen L I van Gassen
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Pascal Joset
- Institute of Medical Genetics, University of Zurich, Schlieren, 8952, Zurich, Switzerland
| | - Angela Bahr
- Institute of Medical Genetics, University of Zurich, Schlieren, 8952, Zurich, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Schlieren, 8952, Zurich, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren, 8952, Zurich, Switzerland
| | - Elmar Keller
- Division of Neuropediatrics, Cantonal Hospital Graubuenden, Chur, Switzerland
| | - Annick Raas-Rothschild
- Institute of Rare Disease, Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - David A Koolen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Pankaj B Agrawal
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Trevor L Hoffman
- Regional Department of Genetics, Southern California Kaiser Permanente Medical Group, 1188N. Euclid Street, Anaheim, CA, 92801, USA
| | - Nina N Powell-Hamilton
- Division of Medical Genetics, Alfred I. duPont Hospital for Children, Wilmington, DE, 19803, USA.,Department of Pathology and Laboratory Medicine, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Isabelle Thiffault
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA.,Division of Clinical Genetics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Kendra Engleman
- Department of Pediatrics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Dihong Zhou
- Department of Pediatrics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Olaf Bodamer
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Korbinian M Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Velibor Tasic
- Medical School Skopje, University Children's Hospital, Skopje, North Macedonia
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Deniz Top
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Martin R Higgs
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jamie M Kramer
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| | - Tjitske Kleefstra
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
32
|
Hiraide T, Yamoto K, Masunaga Y, Asahina M, Endoh Y, Ohkubo Y, Matsubayashi T, Tsurui S, Yamada H, Yanagi K, Nakashima M, Hirano K, Sugimura H, Fukuda T, Ogata T, Saitsu H. Genetic and phenotypic analysis of 101 patients with developmental delay or intellectual disability using whole-exome sequencing. Clin Genet 2021; 100:40-50. [PMID: 33644862 DOI: 10.1111/cge.13951] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 12/20/2022]
Abstract
Whole-exome sequencing (WES) enables identification of pathogenic variants, including copy number variants (CNVs). In this study, we performed WES in 101 Japanese patients with unexplained developmental delay (DD) or intellectual disability (ID) (63 males and 38 females), 98 of them with trio-WES. Pathogenic variants were identified in 54 cases (53.5%), including four cases with pathogenic CNVs. In one case, a pathogenic variant was identified by reanalysis of exome data; and in two cases, two molecular diagnoses were identified. Among 58 pathogenic variants, 49 variants occurred de novo in 48 patients, including two somatic variants. The accompanying autism spectrum disorder and external ear anomalies were associated with detection of pathogenic variants with odds ratios of 11.88 (95% confidence interval [CI] 2.52-56.00) and 3.46 (95% CI 1.23-9.73), respectively. These findings revealed the importance of reanalysis of WES data and detection of CNVs and somatic variants in increasing the diagnostic yield for unexplained DD/ID. In addition, genetic testing is recommended when patients suffer from the autism spectrum disorder or external ear anomalies, which potentially suggests the involvement of genetic factors associated with gene expression regulation.
Collapse
Affiliation(s)
- Takuya Hiraide
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kaori Yamoto
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yohei Masunaga
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Miki Asahina
- Department of Pediatrics, Hamamatsu City Welfare and Medical Center for Development, Hamamatsu, Japan
| | - Yusaku Endoh
- Department of Pediatrics, Hamamatsu City Welfare and Medical Center for Development, Hamamatsu, Japan
| | - Yumiko Ohkubo
- Department of Pediatrics, Shizuoka Saiseikai Hospital, Shizuoka, Japan
| | - Tomoko Matsubayashi
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Pediatric Neurology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Satoshi Tsurui
- Department of Pediatrics, Seirei-Numazu Hospital, Numazu, Japan
| | - Hidetaka Yamada
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kumiko Yanagi
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kouichi Hirano
- Department of Pediatrics, Hamamatsu City Welfare and Medical Center for Development, Hamamatsu, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tokiko Fukuda
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
33
|
Indika NLR, Deutz NEP, Engelen MPKJ, Peiris H, Wijetunge S, Perera R. Sulfur amino acid metabolism and related metabotypes of autism spectrum disorder: A review of biochemical evidence for a hypothesis. Biochimie 2021; 184:143-157. [PMID: 33675854 DOI: 10.1016/j.biochi.2021.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
There are multiple lines of evidence for an impaired sulfur amino acid (SAA) metabolism in autism spectrum disorder (ASD). For instance, the concentrations of methionine, cysteine and S-adenosylmethionine (SAM) in body fluids of individuals with ASD is significantly lower while the concentration of S-adenosylhomocysteine (SAH) is significantly higher as compared to healthy individuals. Reduced methionine and SAM may reflect impaired remethylation pathway whereas increased SAH may reflect reduced S-adenosylhomocysteine hydrolase activity in the catabolic direction. Reduced SAM/SAH ratio reflects an impaired methylation capacity. We hypothesize multiple mechanisms to explain how the interplay of oxidative stress, neuroinflammation, mercury exposure, maternal use of valproate, altered gut microbiome and certain genetic variants may lead to these SAA metabotypes. Furthermore, we also propose a number of mechanisms to explain the metabolic consequences of abnormal SAA metabotypes. For instance in the brain, reduced SAM/SAH ratio will result in melatonin deficiency and hypomethylation of a number of biomolecules such as DNA, RNA and histones. In addition to previously proposed mechanisms, we propose that impaired activity of "radical SAM" enzymes will result in reduced endogenous lipoic acid synthesis, reduced molybdenum cofactor synthesis and impaired porphyrin metabolism leading to mitochondrial dysfunction, porphyrinuria and impaired sulfation capacity. Furthermore depletion of SAM may also lead to the disturbed mTOR signaling pathway in a subgroup of ASD. The proposed "SAM-depletion hypothesis" is an inclusive model to explain the relationship between heterogeneous risk factors and metabotypes observed in a subset of children with ASD.
Collapse
Affiliation(s)
- Neluwa-Liyanage R Indika
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
| | - Nicolaas E P Deutz
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA
| | - Marielle P K J Engelen
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA
| | - Hemantha Peiris
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Swarna Wijetunge
- Child and Adolescent Mental Health Service, Lady Ridgeway Hospital for Children, Colombo 8, Sri Lanka
| | - Rasika Perera
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
34
|
Biallelic CDK9 variants as a cause of a new multiple-malformation syndrome with retinal dystrophy mimicking the CHARGE syndrome. J Hum Genet 2021; 66:1021-1027. [PMID: 33640901 PMCID: PMC8472910 DOI: 10.1038/s10038-021-00909-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 11/26/2022]
Abstract
CDK9 has been considered a candidate gene involved in the CHARGE-like syndrome in a pair of cousins. We report an 8-year-old boy with a strikingly similar phenotype including facial asymmetry, microtia with preauricular tags and bilateral hearing loss, cleft lip and palate, cardiac dysrhythmia, and undescended testes. Joint contracture, no finger flexion creases, and large halluces were the same as those of a previously reported patient with homozygous CDK9 variants. The ocular phenotype included blepharophimosis, lacrimal duct obstruction, eyelid dermoids, Duane syndrome-like abduction deficit, and congenital cataracts. Optical coherence tomography and electroretinography evaluations revealed severe retinal dystrophy had developed at an early age. Trio-based whole-exome sequencing identified compound heterozygous variants in CDK9 [p.(A288T) of maternal origin and p.(R303C) of paternal origin] in the patient. Variants’ kinase activities were reduced compared with wild type. We concluded that CDK9 biallelic variants cause a CHARGE-like malformation syndrome with retinal dystrophy as a distinguishing feature.
Collapse
|
35
|
Provenzano A, La Barbera A, Scagnet M, Pagliazzi A, Traficante G, Pantaleo M, Tiberi L, Vergani D, Kurtas NE, Guarducci S, Bargiacchi S, Forzano G, Artuso R, Palazzo V, Kura A, Giordano F, di Feo D, Mortilla M, De Filippi C, Mattei G, Garavelli L, Giusti B, Genitori L, Zuffardi O, Giglio S. Chiari 1 malformation and exome sequencing in 51 trios: the emerging role of rare missense variants in chromatin-remodeling genes. Hum Genet 2020; 140:625-647. [PMID: 33337535 PMCID: PMC7981314 DOI: 10.1007/s00439-020-02231-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
Type 1 Chiari malformation (C1M) is characterized by cerebellar tonsillar herniation of 3–5 mm or more, the frequency of which is presumably much higher than one in 1000 births, as previously believed. Its etiology remains undefined, although a genetic basis is strongly supported by C1M presence in numerous genetic syndromes associated with different genes. Whole-exome sequencing (WES) in 51 between isolated and syndromic pediatric cases and their relatives was performed after confirmation of the defect by brain magnetic resonance image (MRI). Moreover, in all the cases showing an inherited candidate variant, brain MRI was performed in both parents and not only in the carrier one to investigate whether the defect segregated with the variant. More than half of the variants were Missense and belonged to the same chromatin-remodeling genes whose protein truncation variants are associated with severe neurodevelopmental syndromes. In the remaining cases, variants have been detected in genes with a role in cranial bone sutures, microcephaly, neural tube defects, and RASopathy. This study shows that the frequency of C1M is widely underestimated, in fact many of the variants, in particular those in the chromatin-remodeling genes, were inherited from a parent with C1M, either asymptomatic or with mild symptoms. In addition, C1M is a Mendelian trait, in most cases inherited as dominant. Finally, we demonstrate that modifications of the genes that regulate chromatin architecture can cause localized anatomical alterations, with symptoms of varying degrees.
Collapse
Affiliation(s)
- Aldesia Provenzano
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| | - Andrea La Barbera
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Mirko Scagnet
- Department of Neurosurgery, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Angelica Pagliazzi
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Giovanna Traficante
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Marilena Pantaleo
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Lucia Tiberi
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Debora Vergani
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Nehir Edibe Kurtas
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Silvia Guarducci
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Sara Bargiacchi
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Giulia Forzano
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Rosangela Artuso
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Viviana Palazzo
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Ada Kura
- Department of Experimental and Clinical Medicine, Atherothrombotic Diseases Center, University of Florence, Careggi Hospital, Florence, Italy
| | - Flavio Giordano
- Department of Neurosurgery, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Daniele di Feo
- Department of Radiology, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Marzia Mortilla
- Department of Radiology, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Claudio De Filippi
- Department of Radiology, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Gianluca Mattei
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Department of Mother and Child, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Betti Giusti
- Department of Experimental and Clinical Medicine, Atherothrombotic Diseases Center, University of Florence, Careggi Hospital, Florence, Italy
| | - Lorenzo Genitori
- Department of Neurosurgery, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Orsetta Zuffardi
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Sabrina Giglio
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.,Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| |
Collapse
|
36
|
Abstract
The Trithorax group (TrxG) of proteins is a large family of epigenetic regulators that form multiprotein complexes to counteract repressive developmental gene expression programmes established by the Polycomb group of proteins and to promote and maintain an active state of gene expression. Recent studies are providing new insights into how two crucial families of the TrxG - the COMPASS family of histone H3 lysine 4 methyltransferases and the SWI/SNF family of chromatin remodelling complexes - regulate gene expression and developmental programmes, and how misregulation of their activities through genetic abnormalities leads to pathologies such as developmental disorders and malignancies.
Collapse
|
37
|
Abay-Nørgaard S, Attianese B, Boreggio L, Salcini AE. Regulators of H3K4 methylation mutated in neurodevelopmental disorders control axon guidance in Caenorhabditis elegans. Development 2020; 147:dev.190637. [PMID: 32675280 PMCID: PMC7420840 DOI: 10.1242/dev.190637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
Abstract
Post-translational histone modifications regulate chromatin compaction and gene expression to control many aspects of development. Mutations in genes encoding regulators of H3K4 methylation are causally associated with neurodevelopmental disorders characterized by intellectual disability and deficits in motor functions. However, it remains unclear how H3K4 methylation influences nervous system development and contributes to the aetiology of disease. Here, we show that the catalytic activity of set-2, the Caenorhabditis elegans homologue of the H3K4 methyltransferase KMT2F/G (SETD1A/B) genes, controls embryonic transcription of neuronal genes and is required for establishing proper axon guidance, and for neuronal functions related to locomotion and learning. Moreover, we uncover a striking correlation between components of the H3K4 regulatory machinery mutated in neurodevelopmental disorders and the process of axon guidance in C. elegans. Thus, our study supports an epigenetic-based model for the aetiology of neurodevelopmental disorders, based on an aberrant axon guidance process originating from deregulated H3K4 methylation. Summary: Analysis of mutants lacking many known H3K4 regulators reveals the role of H3K4 methylation in C. elegans neuronal functions and suggests that aberrant axon guidance is a shared trait in neurodevelopmental diseases.
Collapse
Affiliation(s)
- Steffen Abay-Nørgaard
- BRIC, University of Copenhagen, Biotech Research and Innovation Centre, Ole Maaloes vej 5, 2200, Copenhagen, Denmark
| | - Benedetta Attianese
- BRIC, University of Copenhagen, Biotech Research and Innovation Centre, Ole Maaloes vej 5, 2200, Copenhagen, Denmark
| | - Laura Boreggio
- BRIC, University of Copenhagen, Biotech Research and Innovation Centre, Ole Maaloes vej 5, 2200, Copenhagen, Denmark
| | - Anna Elisabetta Salcini
- BRIC, University of Copenhagen, Biotech Research and Innovation Centre, Ole Maaloes vej 5, 2200, Copenhagen, Denmark
| |
Collapse
|
38
|
Roston A, Evans D, Gill H, McKinnon M, Isidor B, Cogné B, Mwenifumbo J, van Karnebeek C, An J, Jones SJM, Farrer M, Demos M, Connolly M, Gibson WT. SETD1B-associated neurodevelopmental disorder. J Med Genet 2020; 58:196-204. [PMID: 32546566 DOI: 10.1136/jmedgenet-2019-106756] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/11/2020] [Accepted: 04/14/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Dysfunction of histone methyltransferases and chromatin modifiers has been implicated in complex neurodevelopmental syndromes and cancers. SETD1B encodes a lysine-specific methyltransferase that assists in transcriptional activation of genes by depositing H3K4 methyl marks. Previous reports of patients with rare variants in SETD1B describe a distinctive phenotype that includes seizures, global developmental delay and intellectual disability. METHODS Two of the patients described herein were identified via genome-wide and exome-wide testing, with microarray and research-based exome, through the CAUSES (Clinical Assessment of the Utility of Sequencing and Evaluation as a Service) Research Clinic at the University of British Columbia. The third Vancouver patient had clinical trio exome sequencing through Blueprint Genetics. The fourth patient underwent singleton exome sequencing in Nantes, with subsequent recruitment to this cohort through GeneMatcher. RESULTS Here we present clinical reports of four patients with rare coding variants in SETD1B that demonstrate a shared phenotype, including intellectual disability, language delay, conserved musculoskeletal findings and seizures that may be treatment-refractory. We include supporting evidence from next-generation sequencing among a cohort of paediatric patients with epilepsy. CONCLUSION Rare coding variants in SETD1B can cause a diagnosable syndrome and could contribute as a risk factor for epilepsy, autism and other neurodevelopmental phenotypes. In the long term, some patients may also be at increased risk for cancers and other complex diseases. Thus, longitudinal studies are required to further elucidate the precise role of SETD1B in neurodevelopmental disorders and other systemic disease.
Collapse
Affiliation(s)
- Alexandra Roston
- Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Dan Evans
- Centre for Applied Neurogenetics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Harinder Gill
- Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada.,Provincial Medical Genetics Program, BC Women's Hospital and Health Centre, Vancouver, British Columbia, Canada
| | - Margaret McKinnon
- Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Bertrand Isidor
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, Pays de la Loire, France
| | - Benjamin Cogné
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, Pays de la Loire, France.,INSERM, CNRS, UNIV Nantes, l'institut du thorax, Nantes, Frances
| | - Jill Mwenifumbo
- Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Clara van Karnebeek
- Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatrics, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Jianghong An
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Matthew Farrer
- Centre for Applied Neurogenetics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Michelle Demos
- Division of Neurology, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mary Connolly
- Division of Neurology, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - William T Gibson
- Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
39
|
Kranz A, Anastassiadis K. The role of SETD1A and SETD1B in development and disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194578. [PMID: 32389824 DOI: 10.1016/j.bbagrm.2020.194578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/16/2020] [Accepted: 05/03/2020] [Indexed: 12/13/2022]
Abstract
The Trithorax-related Set1 H3K4 methyltransferases are conserved from yeast to human. In yeast loss of Set1 causes pleiotropic effects but is compatible with life. In contrast, both mammalian Set1 orthologs: SETD1A and SETD1B are essential for embryonic development, however they have distinct functions. SETD1A is required shortly after epiblast formation whereas SETD1B becomes indispensible during early organogenesis. In adult mice both SETD1A and SETD1B regulate hematopoiesis differently: SETD1A is required for the establishment of definitive hematopoiesis whereas SETD1B is important for the maintenance of long-term hematopoietic stem cells. Both are implicated in different diseases with accumulating evidence for the association of SETD1A variants in neurological disorders and SETD1B variants with cancer. Why the two paralogs cannot or only partially compensate for the loss of each other is part of the puzzle that we try to sort out in this review.
Collapse
Affiliation(s)
- Andrea Kranz
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
| | - Konstantinos Anastassiadis
- Stem Cell Engineering, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany.
| |
Collapse
|
40
|
Lindner P, Paul S, Eckstein M, Hampel C, Muenzner JK, Erlenbach-Wuensch K, Ahmed HP, Mahadevan V, Brabletz T, Hartmann A, Vera J, Schneider-Stock R. EMT transcription factor ZEB1 alters the epigenetic landscape of colorectal cancer cells. Cell Death Dis 2020; 11:147. [PMID: 32094334 PMCID: PMC7040187 DOI: 10.1038/s41419-020-2340-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023]
Abstract
Epigenetic deregulation remarkably triggers mechanisms associated with tumor aggressiveness like epithelial-mesenchymal transition (EMT). Since EMT is a highly complex, but also reversible event, epigenetic processes such as DNA methylation or chromatin alterations must be involved in its regulation. It was recently described that loss of the cell cycle regulator p21 was associated with a gain in EMT characteristics and an upregulation of the master EMT transcription factor ZEB1. In this study, in silico analysis was performed in combination with different in vitro and in vivo techniques to identify and verify novel epigenetic targets of ZEB1, and to proof the direct transcriptional regulation of SETD1B by ZEB1. The chorioallantoic-membrane assay served as an in vivo model to analyze the ZEB1/SETD1B interaction. Bioinformatical analysis of CRC patient data was used to examine the ZEB1/SETD1B network under clinical conditions and the ZEB1/SETD1B network was modeled under physiological and pathological conditions. Thus, we identified a self-reinforcing loop for ZEB1 expression and found that the SETD1B associated active chromatin mark H3K4me3 was enriched at the ZEB1 promoter in EMT cells. Moreover, clinical evaluation of CRC patient data showed that the simultaneous high expression of ZEB1 and SETD1B was correlated with the worst prognosis. Here we report that the expression of chromatin modifiers is remarkably dysregulated in EMT cells. SETD1B was identified as a new ZEB1 target in vitro and in vivo. Our study demonstrates a novel example of an activator role of ZEB1 for the epigenetic landscape in colorectal tumor cells.
Collapse
Affiliation(s)
- Pablo Lindner
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Bavaria, Germany.,Experimental Tumorpathology, Universitätsklinikum Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Bavaria, Germany
| | - Sushmita Paul
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Bavaria, Germany
| | - Markus Eckstein
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Bavaria, Germany
| | - Chuanpit Hampel
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Bavaria, Germany.,Experimental Tumorpathology, Universitätsklinikum Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Bavaria, Germany
| | - Julienne K Muenzner
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Bavaria, Germany.,Experimental Tumorpathology, Universitätsklinikum Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Bavaria, Germany
| | - Katharina Erlenbach-Wuensch
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Bavaria, Germany
| | - Husayn P Ahmed
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bangalore, India
| | | | - Thomas Brabletz
- Experimental Medicine I, Nikolaus-Fiebiger-Center for Molecular Medicine, Comprehensice Cancer Center, Universitätsklinikum Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Bavaria, Germany
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Bavaria, Germany
| | - Regine Schneider-Stock
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Bavaria, Germany. .,Experimental Tumorpathology, Universitätsklinikum Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Bavaria, Germany.
| |
Collapse
|
41
|
Windheuser IC, Becker J, Cremer K, Hundertmark H, Yates LM, Mangold E, Peters S, Degenhardt F, Ludwig KU, Zink AM, Lessel D, Bierhals T, Herget T, Johannsen J, Denecke J, Wohlleber E, Strom TM, Wieczorek D, Bertoli M, Colombo R, Hempel M, Engels H. Nine newly identified individuals refine the phenotype associated with
MYT1L
mutations. Am J Med Genet A 2020; 182:1021-1031. [DOI: 10.1002/ajmg.a.61515] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/16/2020] [Accepted: 01/28/2020] [Indexed: 12/13/2022]
Affiliation(s)
| | - Jessica Becker
- Institute of Human GeneticsUniversity of Bonn, University Hospital Bonn Bonn Germany
| | - Kirsten Cremer
- Institute of Human GeneticsUniversity of Bonn, University Hospital Bonn Bonn Germany
| | - Hela Hundertmark
- Institute of Human GeneticsUniversity of Bonn, University Hospital Bonn Bonn Germany
| | - Laura M. Yates
- Northern Genetics Service, Institute of Genetic MedicineInternational Centre for Life, Central Parkway Newcastle upon Tyne UK
- Laura M. Yates, Inkosi Albert Letholi Central Hospital and KRISPUniversity of KwaZulu‐Natal, KwaZulu‐Natal South Africa
| | - Elisabeth Mangold
- Institute of Human GeneticsUniversity of Bonn, University Hospital Bonn Bonn Germany
| | - Sophia Peters
- Institute of Human GeneticsUniversity of Bonn, University Hospital Bonn Bonn Germany
| | - Franziska Degenhardt
- Institute of Human GeneticsUniversity of Bonn, University Hospital Bonn Bonn Germany
- Department of Genomics, Life & Brain CenterRheinische Friedrich‐Wilhelms‐University Bonn Germany
| | - Kerstin U. Ludwig
- Institute of Human GeneticsUniversity of Bonn, University Hospital Bonn Bonn Germany
- Department of Genomics, Life & Brain CenterRheinische Friedrich‐Wilhelms‐University Bonn Germany
| | - Alexander M. Zink
- Institute of Human GeneticsUniversity of Bonn, University Hospital Bonn Bonn Germany
- Department of Genomics, Life & Brain CenterRheinische Friedrich‐Wilhelms‐University Bonn Germany
| | - Davor Lessel
- Institute of Human GeneticsUniversity Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Tatjana Bierhals
- Institute of Human GeneticsUniversity Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Theresia Herget
- Institute of Human GeneticsUniversity Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Jessika Johannsen
- Department of PediatricsUniversity Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Jonas Denecke
- Department of PediatricsUniversity Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Eva Wohlleber
- Institute of Human GeneticsUniversity of Bonn, University Hospital Bonn Bonn Germany
| | - Tim M. Strom
- Institute of Human GeneticsHelmholtz Zentrum München Neuherberg Germany
| | - Dagmar Wieczorek
- Institut für HumangenetikUniversitätsklinikum Düsseldorf, Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
- Institut für HumangenetikUniversitätsklinikum Essen Essen Germany
| | - Marta Bertoli
- Northern Genetics Service, Institute of Genetic MedicineInternational Centre for Life, Central Parkway Newcastle upon Tyne UK
| | - Roberto Colombo
- Faculty of Medicine "Agostino Gemelli"Catholic University of the Sacred Heart Rome Italy
- Center for the Study of Rare Hereditary DiseasesCeSMER, Niguarda Ca' Granda Metropolitan Hospital Milan Italy
| | - Maja Hempel
- Institute of Human GeneticsUniversity Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Hartmut Engels
- Institute of Human GeneticsUniversity of Bonn, University Hospital Bonn Bonn Germany
| |
Collapse
|
42
|
Krzyzewska IM, Maas SM, Henneman P, Lip KVD, Venema A, Baranano K, Chassevent A, Aref-Eshghi E, van Essen AJ, Fukuda T, Ikeda H, Jacquemont M, Kim HG, Labalme A, Lewis SME, Lesca G, Madrigal I, Mahida S, Matsumoto N, Rabionet R, Rajcan-Separovic E, Qiao Y, Sadikovic B, Saitsu H, Sweetser DA, Alders M, Mannens MMAM. A genome-wide DNA methylation signature for SETD1B-related syndrome. Clin Epigenetics 2019; 11:156. [PMID: 31685013 PMCID: PMC6830011 DOI: 10.1186/s13148-019-0749-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/22/2019] [Indexed: 01/02/2023] Open
Abstract
SETD1B is a component of a histone methyltransferase complex that specifically methylates Lys-4 of histone H3 (H3K4) and is responsible for the epigenetic control of chromatin structure and gene expression. De novo microdeletions encompassing this gene as well as de novo missense mutations were previously linked to syndromic intellectual disability (ID). Here, we identify a specific hypermethylation signature associated with loss of function mutations in the SETD1B gene which may be used as an epigenetic marker supporting the diagnosis of syndromic SETD1B-related diseases. We demonstrate the clinical utility of this unique epi-signature by reclassifying previously identified SETD1B VUS (variant of uncertain significance) in two patients.
Collapse
Affiliation(s)
- I M Krzyzewska
- Amsterdam UMC, Department of Clinical Genetics, Genome Diagnostics laboratory Amsterdam, Reproduction & Development, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - S M Maas
- Amsterdam UMC, Department of Pediatrics, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - P Henneman
- Amsterdam UMC, Department of Clinical Genetics, Genome Diagnostics laboratory Amsterdam, Reproduction & Development, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - K V D Lip
- Amsterdam UMC, Department of Clinical Genetics, Genome Diagnostics laboratory Amsterdam, Reproduction & Development, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - A Venema
- Amsterdam UMC, Department of Clinical Genetics, Genome Diagnostics laboratory Amsterdam, Reproduction & Development, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - K Baranano
- Kennedy Krieger Institute, Department of Neurogenetics, 801 N. Broadway, Rm 564, Baltimore, MD, 21205, USA
| | - A Chassevent
- Kennedy Krieger Institute, Department of Neurogenetics, 801 N. Broadway, Rm 564, Baltimore, MD, 21205, USA
| | - E Aref-Eshghi
- Department of Pathology and Laboratory Medicine, Western University, 800 Commissioner's Road E, London, ON, N6A 5W9, Canada
| | - A J van Essen
- University Medical Centre Groningen, University of Groningen, Department of Medical Genetics, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - T Fukuda
- Department of Pediatrics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - H Ikeda
- National Epilepsy Centre, NHO, Shizuoka Institute of Epilepsy and Neurological Disorders, 886 Urushiyama, Aoi-ku, Shizuoka, 420-8688, Japan
| | - M Jacquemont
- Department of medical genetics, CHU La Reunion-Groupe Hospitalier Sud Reunion, La Reunion, France
| | - H-G Kim
- Neurological Disorder Center Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - A Labalme
- Department of medical genetics, Hospices Civils de Lyon, Bron, France
| | - S M E Lewis
- Department of Medical Genetics, Children's & Women's Health Centre of British Columbia University of British Columbia, C234-4500 Oak Street, Vancouver, British Columbia, V6H 3N1, Canada
| | - G Lesca
- Department of medical genetics, Hospices Civils de Lyon, Bron, France
| | - I Madrigal
- Biochemistry and Molecular Genetics Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Center for Biomedical Network Research on Rare Diseases (CIBERER), Barcelona, Spain
| | - S Mahida
- Kennedy Krieger Institute, Department of Neurogenetics, 801 N. Broadway, Rm 564, Baltimore, MD, 21205, USA
| | - N Matsumoto
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - R Rabionet
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, av diagonal 643, 08028, Barcelona, Spain
| | - E Rajcan-Separovic
- Department of Medical Genetics, Children's & Women's Health Centre of British Columbia University of British Columbia, C234-4500 Oak Street, Vancouver, British Columbia, V6H 3N1, Canada
| | - Y Qiao
- Department of Medical Genetics, Children's & Women's Health Centre of British Columbia University of British Columbia, C234-4500 Oak Street, Vancouver, British Columbia, V6H 3N1, Canada
| | - B Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, 800 Commissioner's Road E, London, ON, N6A 5W9, Canada
| | - H Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - D A Sweetser
- MassGeneral Hospital, Division of Medical Genetics and Metabolism, 175 Cambridge St, Suite 500, Boston, Massachusetts, 02114, USA
| | - M Alders
- Amsterdam UMC, Department of Clinical Genetics, Genome Diagnostics laboratory Amsterdam, Reproduction & Development, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
| | - M M A M Mannens
- Amsterdam UMC, Department of Clinical Genetics, Genome Diagnostics laboratory Amsterdam, Reproduction & Development, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| |
Collapse
|
43
|
Fukuda T, Hiraide T, Yamoto K, Nakashima M, Kawai T, Yanagi K, Ogata T, Saitsu H. Exome reports A de novo GNB2 variant associated with global developmental delay, intellectual disability, and dysmorphic features. Eur J Med Genet 2019; 63:103804. [PMID: 31698099 DOI: 10.1016/j.ejmg.2019.103804] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/22/2019] [Accepted: 11/02/2019] [Indexed: 11/30/2022]
Abstract
Heterotrimeric G proteins are composed of α, β, and γ subunits and are involved in integrating signals between receptors and effector proteins. The 5 human Gβ proteins (encoded by GNB1, GNB2, GNB3, GNB4, and GNB5) are highly similar. Variants in GNB1 were identified as a genetic cause of developmental delay. De novo variant in GNB2 has recently been reported as a cause of sinus node dysfunction and atrioventricular block but not as a cause of developmental delay. Trio-based whole-exome sequencing was performed on an individual with global developmental delay, muscle hypotonia, multiple congenital joint contractures and dysmorphism such as brachycephalus, thick eyebrows, thin upper lip, micrognathia, prominent chin, and bilateral tapered fingers. We identified a de novo GNB2 variant c.229G>A, p.(Gly77Arg). Notably, pathogenic substitutions of the homologous Gly77 residue including an identical variant (p.Gly77Arg, p.Gly77Val, p.Gly77Ser, p.Gly77Ala) of GNB1, a paralog of GNB2, was reported in individuals with global developmental delay and hypotonia. Clinical features of our case overlap with those of GNB1 variants. Our study suggests that a GNB2 variant may be associated with syndromic global developmental delay.
Collapse
Affiliation(s)
- Tokiko Fukuda
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Takuya Hiraide
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan; Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kaori Yamoto
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoko Kawai
- Department of Maternal-Fetal Biology and National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kumiko Yanagi
- Department of Genome Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
44
|
Hiraide T, Hattori A, Ieda D, Hori I, Saitoh S, Nakashima M, Saitsu H. De novo variants in SETD1B cause intellectual disability, autism spectrum disorder, and epilepsy with myoclonic absences. Epilepsia Open 2019; 4:476-481. [PMID: 31440728 PMCID: PMC6698685 DOI: 10.1002/epi4.12339] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/27/2019] [Accepted: 05/09/2019] [Indexed: 02/02/2023] Open
Abstract
Epilepsy with myoclonic absences is a specific seizure type characterized by bilateral rhythmic clonic jerks with impairment of consciousness. Here, we report an individual with epilepsy with myoclonic absences, mild intellectual disabilities, language disorder, and autism spectrum disorder. His interictal electroencephalogram revealed a spike-and-slow wave complex dominant in the frontal area. His ictal polygraphic and video-electroencephalogram showed a characteristic diffuse synchronous 3-Hz spike-and-wave burst associated with bilateral upper limb myoclonic jerks with impairment of consciousness. Using whole-exome sequencing, we found a novel de novo variant, c.386T>G, p.(Val129Gly), in SETD1B (SET domain containing 1B). We previously reported that two individuals with a de novo SETD1B variant showed intellectual disability, epilepsy, and autism. Of note, one of those individuals and the present case showed epilepsy with myoclonic absences. Therefore, this report supports the indication that SETD1B may be a causative gene for neurodevelopmental disorders and suggests that epilepsy with myoclonic absences may be a characteristic feature of SETD1B-related disorders.
Collapse
Affiliation(s)
- Takuya Hiraide
- Department of BiochemistryHamamatsu University School of MedicineHamamatsuJapan
- Department of PediatricsHamamatsu University School of MedicineHamamatsuJapan
| | - Ayako Hattori
- Department of Pediatrics and NeonatologyNagoya City University, Graduate School of Medical SciencesAichiJapan
| | - Daisuke Ieda
- Department of Pediatrics and NeonatologyNagoya City University, Graduate School of Medical SciencesAichiJapan
| | - Ikumi Hori
- Department of Pediatrics and NeonatologyNagoya City University, Graduate School of Medical SciencesAichiJapan
| | - Shinji Saitoh
- Department of Pediatrics and NeonatologyNagoya City University, Graduate School of Medical SciencesAichiJapan
| | - Mitsuko Nakashima
- Department of BiochemistryHamamatsu University School of MedicineHamamatsuJapan
| | - Hirotomo Saitsu
- Department of BiochemistryHamamatsu University School of MedicineHamamatsuJapan
| |
Collapse
|
45
|
Miyamoto S, Nakashima M, Ohashi T, Hiraide T, Kurosawa K, Yamamoto T, Takanashi J, Osaka H, Inoue K, Miyazaki T, Wada Y, Okamoto N, Saitsu H. A case of de novo splice site variant in SLC35A2 showing developmental delays, spastic paraplegia, and delayed myelination. Mol Genet Genomic Med 2019; 7:e814. [PMID: 31231989 PMCID: PMC6687661 DOI: 10.1002/mgg3.814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Congenital disorders of glycosylation (CDGs) are genetic diseases caused by pathogenic variants of genes involved in protein or lipid glycosylation. De novo variants in the SLC35A2 gene, which encodes a UDP-galactose transporter, are responsible for CDGs with an X-linked dominant manner. Common symptoms related to SLC35A2 variants include epilepsy, psychomotor developmental delay, hypotonia, abnormal facial and skeletal features, and various magnetic resonance imaging (MRI) findings. METHODS Whole-exome sequencing was performed on the patient's DNA, and candidate variants were confirmed by Sanger sequencing. cDNA analysis was performed to assess the effect of the splice site variant using peripheral leukocytes. The X-chromosome inactivation pattern was studied using the human androgen receptor assay. RESULTS We identified a de novo splice site variant in SLC35A2 (NM_005660.2: c.274+1G>A) in a female patient who showed severe developmental delay, spastic paraplegia, mild cerebral atrophy, and delayed myelination on MRI, but no seizures. The variant led to an aberrant splicing resulting in an in-frame 33-bp insertion, which caused an 11-amino acid insertion in the presumptive cytoplasmic loop. X-inactivation pattern was random. Partial loss of galactose and sialic acid of the N-linked glycans of serum transferrin was observed. CONCLUSION This case would expand the phenotypic spectrum of SLC35A2-related disorders to delayed myelination with spasticity and no seizures.
Collapse
Affiliation(s)
- Sachiko Miyamoto
- Department of BiochemistryHamamatsu University School of MedicineHamamatsuJapan
| | - Mitsuko Nakashima
- Department of BiochemistryHamamatsu University School of MedicineHamamatsuJapan
| | - Tsukasa Ohashi
- Department of PediatricsNiigata University Medical and Dental HospitalNiigataJapan
| | - Takuya Hiraide
- Department of BiochemistryHamamatsu University School of MedicineHamamatsuJapan
| | - Kenji Kurosawa
- Division of Medical GeneticsKanagawa Children's Medical CenterYokohamaJapan
| | - Toshiyuki Yamamoto
- Tokyo Women's Medical University Institute for Integrated Medical SciencesTokyoJapan
| | - Junichi Takanashi
- Department of Pediatrics and Pediatric NeurologyTokyo Women's Medical University, Yachiyo Medical CenterYachiyoJapan
| | - Hitoshi Osaka
- Department of PediatricsJichi Medical UniversityTochigiJapan
| | - Ken Inoue
- Department of Mental Retardation & Birth Defect ResearchNational Institute of NeuroscienceNational Center of Neurology & PsychiatryJapan
| | - Takehiro Miyazaki
- Department of BiochemistryHamamatsu University School of MedicineHamamatsuJapan
| | - Yoshinao Wada
- Department of Molecular MedicineOsaka Women's and Children's HospitalOsakaJapan
| | - Nobuhiko Okamoto
- Department of Molecular MedicineOsaka Women's and Children's HospitalOsakaJapan
- Department of Medical GeneticsOsaka Women's and Children's HospitalOsakaJapan
| | - Hirotomo Saitsu
- Department of BiochemistryHamamatsu University School of MedicineHamamatsuJapan
| |
Collapse
|
46
|
Yamoto K, Saitsu H, Nishimura G, Kosaki R, Takayama S, Haga N, Tonoki H, Okumura A, Horii E, Okamoto N, Suzumura H, Ikegawa S, Kato F, Fujisawa Y, Nagata E, Takada S, Fukami M, Ogata T. Comprehensive clinical and molecular studies in split-hand/foot malformation: identification of two plausible candidate genes (LRP6 and UBA2). Eur J Hum Genet 2019; 27:1845-1857. [PMID: 31332306 DOI: 10.1038/s41431-019-0473-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/27/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
Split-hand/foot malformation (SHFM) is a clinically and genetically heterogeneous condition. We sequentially performed screening of the previously identified Japanese founder 17p13.3 duplication/triplication involving BHLHA9, array comparative genomic hybridization, and whole exome sequencing (WES) in newly recruited 41 Japanese families with non-syndromic and syndromic SHFM. We also carried out WES in seven families with nonsyndromic and syndromic SHFM in which underlying genetic causes including pathogenic copy-number variants (CNVs) remained undetected in our previous studies of 56 families. Consequently, we identified not only known pathogenic CNVs (17p13.3 duplications/triplications [n = 21], 2q31 deletion [n = 1], and 10q24 duplications [n = 3]) and rare variants in known causative genes (TP63 [n = 3], DLX5 [n = 1], IGF2 [n = 1], WNT10B [n = 3], WNT10B/PORCN [n = 1], and PORCN [n = 1]), but also a de novo 19q13.11 deletion disrupting UBA2 (n = 1) and variants that probably affect function in LRP6 (n = 1) and UBA2 (n = 1). Thus, together with our previous data based on testing of 56 families, molecular studies for a total of 97 families with SHFM revealed underlying genetic causes in 75 families, and clinical studies for the 75 families indicated a certain degree of correlation between genetic causes and phenotypes. The results imply that SHFM primarily occurs as a genetic disorder with genotype-phenotype correlations. Furthermore, the results together with previous data such as the development of SHFM in Lrp6 knockout mice, the presence of SHFM in two subjects with 19q13 deletions involving UBA2, and strong mouse Uba2 expression in the developing limb buds, imply that LRP6 and UBA2 represent plausible candidate genes for SHFM.
Collapse
Affiliation(s)
- Kaori Yamoto
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Gen Nishimura
- Center for Intractable Diseases, Saitama Medical University Hospital, Iruma, Japan
| | - Rika Kosaki
- Division of Medical Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Shinichiro Takayama
- Division of Orthopedic Surgery, National Center for Child Health and Development, Tokyo, Japan
| | - Nobuhiko Haga
- Department of Rehabilitation Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hidefumi Tonoki
- Department of Pediatrics, Sapporo Tenshi Hospital, Sapporo, Japan
| | - Akihisa Okumura
- Department of Pediatrics, Aichi Medical University, Nagakute, Japan
| | - Emiko Horii
- Department of Orthopedic Surgery, Nagoya First Red Cross Hospital, Nagoya, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Hiroshi Suzumura
- Department of Pediatrics, Dokkyo Medical University School of Medicine, Mibu, Japan
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan
| | - Fumiko Kato
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasuko Fujisawa
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Eiko Nagata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan. .,Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
47
|
Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol 2019; 20:625-641. [PMID: 31267065 DOI: 10.1038/s41580-019-0151-1] [Citation(s) in RCA: 342] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2019] [Indexed: 12/26/2022]
Abstract
Histone methylation can occur at various sites in histone proteins, primarily on lysine and arginine residues, and it can be governed by multiple positive and negative regulators, even at a single site, to either activate or repress transcription. It is now apparent that histone methylation is critical for almost all stages of development, and its proper regulation is essential for ensuring the coordinated expression of gene networks that govern pluripotency, body patterning and differentiation along appropriate lineages and organogenesis. Notably, developmental histone methylation is highly dynamic. Early embryonic systems display unique histone methylation patterns, prominently including the presence of bivalent (both gene-activating and gene-repressive) marks at lineage-specific genes that resolve to monovalent marks during differentiation, which ensures that appropriate genes are expressed in each tissue type. Studies of the effects of methylation on embryonic stem cell pluripotency and differentiation have helped to elucidate the developmental roles of histone methylation. It has been revealed that methylation and demethylation of both activating and repressive marks are essential for establishing embryonic and extra-embryonic lineages, for ensuring gene dosage compensation via genomic imprinting and for establishing body patterning via HOX gene regulation. Not surprisingly, aberrant methylation during embryogenesis can lead to defects in body patterning and in the development of specific organs. Human genetic disorders arising from mutations in histone methylation regulators have revealed their important roles in the developing skeletal and nervous systems, and they highlight the overlapping and unique roles of different patterns of methylation in ensuring proper development.
Collapse
|
48
|
A novel de novo frameshift variant in SETD1B causes epilepsy. J Hum Genet 2019; 64:821-827. [DOI: 10.1038/s10038-019-0617-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 01/03/2023]
|
49
|
Yang P, Huang X, Lai C, Li L, Li T, Huang P, Ouyang S, Yan J, Cheng S, Lei G, Wang Z, Yu L, Hong Z, Li R, Dong H, Wang C, Yu Y, Wang X, Li X, Wang L, Lv F, Yin Y, Yang H, Song J, Gao Q, Wang X, Zhang S. SET domain containing 1B gene is mutated in primary hepatic neuroendocrine tumors. Int J Cancer 2019; 145:2986-2995. [PMID: 30977120 DOI: 10.1002/ijc.32334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/27/2019] [Indexed: 11/09/2022]
Abstract
Primary hepatic neuroendocrine tumors (PHNETs) are extremely rare NETs originating from the liver. These tumors are associated with heterogeneous prognosis, and few treatment targets for PHNETs have been identified. Because the major genetic alterations in PHNET are still largely unknown, we performed whole-exome sequencing of 22 paired tissues from PHNET patients and identified 22 recurring mutations of somatic genes involved in the following activities: epigenetic modification (BPTF, MECP2 and WDR5), cell cycle (TP53, ATM, MED12, DIDO1 and ATAD5) and neural development (UBR4, MEN1, GLUL and GIGYF2). Here, we show that TP53 and the SET domain containing the 1B gene (SETD1B) are the most frequently mutated genes in this set of samples (3/22 subjects, 13.6%). A biological analysis suggests that one of the three SETD1B mutants, A1054del, promotes cell proliferation, migration and invasion compared to wild-type SETD1B. Our work unveils that SETD1B A1054del mutant is functional in PHNET and implicates genes including TP53 in the disease. Our findings thus characterize the mutational landscapes of PHNET and implicate novel gene mutations linked to PHNET pathogenesis and potential therapeutic targets.
Collapse
Affiliation(s)
- Penghui Yang
- Beijing 302 Hospital/5th Medical Center of Chinese PLA General of Hospital, Beijing, China.,State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | | | - Chengcai Lai
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lin Li
- BGI-Shenzhen, Shenzhen, China.,Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Tieling Li
- Chinese PLA General Hospital, Beijing, China
| | - Peide Huang
- BGI-Shenzhen, Shenzhen, China.,Section of Molecular Disease Biology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Songying Ouyang
- The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China.,Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jin Yan
- Beijing 302 Hospital/5th Medical Center of Chinese PLA General of Hospital, Beijing, China
| | - Sijie Cheng
- Beijing 302 Hospital/5th Medical Center of Chinese PLA General of Hospital, Beijing, China
| | - Guanglin Lei
- Beijing 302 Hospital/5th Medical Center of Chinese PLA General of Hospital, Beijing, China
| | - Zhaohai Wang
- Beijing 302 Hospital/5th Medical Center of Chinese PLA General of Hospital, Beijing, China
| | - Linxiang Yu
- Beijing 302 Hospital/5th Medical Center of Chinese PLA General of Hospital, Beijing, China
| | - Zhixian Hong
- Beijing 302 Hospital/5th Medical Center of Chinese PLA General of Hospital, Beijing, China
| | - Ruisheng Li
- Beijing 302 Hospital/5th Medical Center of Chinese PLA General of Hospital, Beijing, China
| | - Hui Dong
- Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
| | - Cheng Wang
- Chinese PLA General Hospital, Beijing, China.,Beijing 307 Hospital Affiliated with the Academy of Medical Sciences, Beijing, China
| | - Yinghao Yu
- Fuzhou General Hospital of Nanjing Military Command of Chinese PLA, Fuzhou, China
| | - Xuan Wang
- The 81st Hospital of PLA, Nanjing, China
| | - Xianghong Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Liming Wang
- Cancer Hospital Chinese Academy of Medical Science, Beijing, China
| | - Fudong Lv
- Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Ye Yin
- BGI-Shenzhen, Shenzhen, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China.,James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Jianxun Song
- Microbial pathogenesis and Immunology, Texas A&M University College of Medicine, Bryan, TX
| | | | - Xiliang Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shaogeng Zhang
- Beijing 302 Hospital/5th Medical Center of Chinese PLA General of Hospital, Beijing, China
| |
Collapse
|
50
|
Nakashima M, Negishi Y, Hori I, Hattori A, Saitoh S, Saitsu H. A case of early-onset epileptic encephalopathy with a homozygous TBC1D24 variant caused by uniparental isodisomy. Am J Med Genet A 2019; 179:645-649. [PMID: 30680869 DOI: 10.1002/ajmg.a.61056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/03/2018] [Accepted: 01/06/2019] [Indexed: 11/11/2022]
Abstract
TBC1D24-related disorders are rare neurodevelopmental disorders that show a broad range of neuropsychiatric deficits and are mostly inherited in an autosomal recessive manner. Here we describe a case with early-onset epileptic encephalopathy, in whom exome sequencing detected a novel pathogenic homozygous c.442G>A, p.(Glu148Lys) variant in TBC1D24. She showed severe developmental delay, congenital sensorineural hearing loss and seizures, but the combination of a high dose phenobarbital and potassium bromide was very effective for the seizures. Sanger sequencing revealed that her mother was a heterozygous carrier of the TBC1D24 variant, but her father showed only wild-type alleles. Homozygosity mapping analysis using exome data showed loss of the heterozygosity region at 16p13.3-p13.13 encompassing TBC1D24. Genotyping analysis using rare variants within loss of the heterozygosity region indicated that the patient has a homozygous haplotype inherited from her mother, indicating maternal segmental uniparental isodisomy (UPiD). These data clearly show that exome sequencing is a powerful tool to perform comprehensive genetic analysis.
Collapse
Affiliation(s)
- Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yutaka Negishi
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ikumi Hori
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ayako Hattori
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|