1
|
Jin H, Han Y, Zenker J. Cellular mechanisms of monozygotic twinning: clues from assisted reproduction. Hum Reprod Update 2024; 30:692-705. [PMID: 38996087 DOI: 10.1093/humupd/dmae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/06/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Monozygotic (MZ) twins are believed to arise from the fission of a single fertilized embryo at different stages. Monochorionic MZ twins, who share one chorion, originate from the splitting of the inner cell mass (ICM) within a single blastocyst. In the classic model for dichorionic MZ twins, the embryo splits before compaction, developing into two blastocysts. However, there are a growing number of ART cases where a single blastocyst transfer results in dichorionic MZ twins, indicating that embryo splitting may occur even after blastocyst formation. OBJECTIVE AND RATIONALE For monochorionic MZ twins, we conducted a comprehensive analysis of the cellular mechanisms involved in ICM splitting, drawing from both ART cases and animal experiments. In addition, we critically re-examine the classic early splitting model for dichorionic MZ twins. We explore cellular mechanisms leading to two separated blastocysts in ART, potentially causing dichorionic MZ twins. SEARCH METHODS Relevant studies including research articles, reviews, and conference papers were searched in the PubMed database. Cases of MZ twins from IVF clinics were found by using combinations of terms including 'monozygotic twins' with 'IVF case report', 'ART', 'single embryo transfer', or 'dichorionic'. The papers retrieved were categorized based on the implicated mechanisms or as those with unexplained mechanisms. Animal experiments relating to MZ twins were found using 'mouse embryo monozygotic twins', 'mouse 8-shaped hatching', 'zebrafish janus mutant', and 'nine-banded armadillo embryo', along with literature collected through day-to-day reading. The search was limited to articles in English, with no restrictions on publication date or species. OUTCOMES For monochorionic MZ twins, ART cases and mouse experiments demonstrate evidence that a looser ICM in blastocysts has an increased chance of ICM separation. Physical forces facilitated by blastocoel formation or 8-shaped hatching are exerted on the ICM, resulting in monochorionic MZ twins. For dichorionic MZ twins, the classic model resembles artificial cloning of mouse embryos in vitro, requiring strictly controlled splitting forces, re-joining prevention, and proper aggregation, which allows the formation of two separate human blastocysts under physiological circumstances. In contrast, ART procedures involving the transfer of a single blastocysts after atypical hatching or vitrified-warmed cycles might lead to blastocyst separation. Differences in morphology, molecular mechanisms, and timing across various animal model systems for MZ twinning can impede this research field. As discussed in future directions, recent developments of innovative in vitro models of human embryos may offer promising avenues for providing fundamental novel insights into the cellular mechanisms of MZ twinning during human embryogenesis. WIDER IMPLICATIONS Twin pregnancies pose high risks to both the fetuses and the mother. While single embryo transfer is commonly employed to prevent dizygotic twin pregnancies in ART, it cannot prevent the occurrence of MZ twins. Drawing from our understanding of the cellular mechanisms underlying monochorionic and dichorionic MZ twinning, along with insights into the genetic mechanisms, could enable improved prediction, prevention, and even intervention strategies during ART procedures. REGISTRAITON NUMBER N/A.
Collapse
Affiliation(s)
- Hongbin Jin
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Yang Han
- Division of Cellular and Developmental Biology, Molecular and Cell Biology Department, University of California, Berkeley, CA, USA
| | - Jennifer Zenker
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
2
|
Zhou L, Yang X, Ren S, Pan Y, Zhou Z, Liu Y, Mo J, Zhang F, Zhang X, Wu Y. Novel Loss-of-function Variants of ZP3 Associated with Premature Ovarian Insufficiency. Reprod Sci 2024:10.1007/s43032-024-01732-3. [PMID: 39485610 DOI: 10.1007/s43032-024-01732-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/19/2024] [Indexed: 11/03/2024]
Abstract
Premature ovarian insufficiency (POI) is one of the leading causes of female infertility. To date, the genetic etiology of POI has been elucidated in approximately 20-25% of the total cases. The human zona pellucida (ZP) plays an important role in the organization and differentiation of granulosa cells, follicle formation, and sperm recognition. Mutations in ZP1, ZP2, and ZP3 have been reported to cause female infertility due to oocyte degeneration, empty follicle, or in vitro fertilization failure. In this study, we identified three novel missense mutations in ZP3 (NM_001110354.2): c.643G > A (p.Asp215Asn), c.215 C > T (p.Thr72Ile), and c.152T > C (p.Leu51Pro) in three sporadic Han Chinese POI patients through whole-exome sequencing. These variants are absent from population databases and were predicted to be deleterious by multiple in silico tools. Structure prediction analysis showed that the affected amino acid altered the ZP3 protein structure. Western blot further confirmed that these ZP3 variants reduced the expression and secretion of ZP components. In summary, this study reports three novel deleterious variants in ZP3 associated with POI, thereby broadening the mutation spectrum of ZP3 in POI patients.
Collapse
Affiliation(s)
- Lang Zhou
- School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Xi Yang
- School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Shuting Ren
- School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Yuncheng Pan
- School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Zixue Zhou
- School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Yiqing Liu
- School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Jitong Mo
- School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Feng Zhang
- School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Xiaojin Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China.
| | - Yanhua Wu
- School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China.
- National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
3
|
Yang S, Li Z, Ren X, Yue J. A Compound Heterozygous Pathogenic Variant in ZP2 Gene Causes Female Infertility. Reprod Sci 2024:10.1007/s43032-024-01729-y. [PMID: 39443359 DOI: 10.1007/s43032-024-01729-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
The oocyte maturation defect 6 is an autosomal recessive hereditary disease caused by a homozygous variant in ZP2 gene. It is characterized by female primary infertility due to an abnormally thin zona pellucida (ZP) and defective sperm binding. Here we identified a compound heterozygous variant (c.1924C > T and c.1695-2A > G) in ZP2 gene in a Chinese Han family. Quantitative real-time PCR showed that the variant c.1924C > T significantly decreased the expression of truncated ZP2 message RNA by the nonsense-mediated decay pathway. Minigene assays showed the c.1695-2A > G variant led to an extra-61-nt preservation of intron 15 at the junction between exons 15 and 16 during transcription. Both variants (c.1924C > T and c.1695-2A > G) resulted in truncated ZP2 proteins (p.R642X and p.C566Hfs*2) that lost the transmembrane domain, which prevented the secretion of the mutant ZP2 proteins and produced a structurally abnormal ZP, thus resulting in female infertility. This study further elucidated the pathogenic mechanism of these two variants and provided new support for the genetic diagnosis of female infertility.
Collapse
Affiliation(s)
- Shulin Yang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Zongzhe Li
- Division of Cardiology, Departments of Internal Medicine and Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinling Ren
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Jing Yue
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
4
|
He P, Liu S, Shi X, Huang C, Li W, Wu J, Li H, Liu J, Wen Y, Zhang W, Qiu Z, Luo C, Hua R. A Novel Homozygous Missense ZP1 Variant Result in Human Female Empty Follicle Syndrome. Clin Genet 2024. [PMID: 39380244 DOI: 10.1111/cge.14624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
Empty follicle syndrome (EFS) is a disorder characterised by the unsuccessful retrieval of oocytes from matured follicles following ovarian stimulation for in vitro fertilisation (IVF). Genetic factors significantly contribute to this pathology. To date, an increasing number of genetic mutations associated with GEFS have been documented, however, some cases still remain unexplained by these previously reported mutations. Here, we identified a novel homozygous missense ZP1 variant (c.1096 C > T, p.Arg366Trp) in a female patient with GEFS from a consanguineous family who failed to retrieve any oocytes during two cycles of IVF treatment. We conducted a molecular dynamics simulation analysis on the mutant ZP1 model, revealing that the mutant ZP1 protein has an altered 3D structure, lower fluctuation, higher compactness and higher instability than wild-type ZP1. Immunostaining, immunoblotting and co-immunoprecipitation results showed that the homozygous missense mutation in ZP1 impaired protein secretion and weakened interactions between ZP1 and other ZP proteins, which may affect the ZP assembly. This study contributes to a more comprehensive understanding of the genetic aetiopathogenesis of GEFS.
Collapse
Affiliation(s)
- Pei He
- The Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Siping Liu
- The Center for Prenatal and Hereditary Disease Diagnosis, Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao Shi
- The Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chuyu Huang
- The Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenfeng Li
- The Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiamin Wu
- The Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huixi Li
- The Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junting Liu
- The Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuyuan Wen
- The Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiqing Zhang
- The Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhuolin Qiu
- The Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chen Luo
- The Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Hua
- The Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Gu R, Wu T, Fu J, Sun YJ, Sun XX. Advances in the genetic etiology of female infertility. J Assist Reprod Genet 2024:10.1007/s10815-024-03248-w. [PMID: 39320554 DOI: 10.1007/s10815-024-03248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/07/2024] [Indexed: 09/26/2024] Open
Abstract
Human reproduction is a complex process involving gamete maturation, fertilization, embryo cleavage and development, blastocyst formation, implantation, and live birth. If any of these processes are abnormal or arrest, reproductive failure will occur. Infertility is a state of reproductive dysfunction caused by various factors. Advances in molecular genetics, including cell and molecular genetics, and high-throughput sequencing technologies, have found that genetic factors are important causes of infertility. Genetic variants have been identified in infertile women or men and can cause gamete maturation arrest, poor quality gametes, fertilization failure, and embryonic developmental arrest during assisted reproduction technology (ART), and thus reduce the clinical success rates of ART. This article reviews clinical studies on repeated in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) failures caused by ovarian dysfunction, oocyte maturation defects, oocyte abnormalities, fertilization disorders, and preimplantation embryonic development arrest due to female genetic etiology, the accumulation of pathogenic genes and gene pathogenic loci, and the functional mechanism and clinical significance of pathogenic genes in gametogenesis and early embryonic development.
Collapse
Affiliation(s)
- Ruihuan Gu
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China
| | - Tianyu Wu
- Institute of Pediatrics, State Key Laboratory of Genetic Engineering, Institutes of BiomedicalSciences, Shanghai Key Laboratory of Medical Epigenetics, Children's Hospital of Fudan University, Fudan University, Shanghai, 200032, China
| | - Jing Fu
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China
| | - Yi-Juan Sun
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China.
| | - Xiao-Xi Sun
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China.
| |
Collapse
|
6
|
Zhang X, Shi S, Wan Y, Song W, Jin H, Sun Y. Single-cell RNA sequencing of human oocytes reveals a differential transcriptomic profile associated with agar-like zona pellucida. J Ovarian Res 2024; 17:132. [PMID: 38926883 PMCID: PMC11200816 DOI: 10.1186/s13048-024-01463-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Agar-like zona pellucida (ZP) is the most common type of abnormal ZP, and is one of the causes of low fertility or infertility. However, the molecular mechanism of agar-like ZP is unclear. Single-cell RNA-sequencing (scRNA-seq) analysis was used to assess the cellular and molecular landscape of oocytes with agar-like ZP. METHODS Human metaphase I (MI) oocytes were collected from four patients with agar-like ZP and four healthy donors. Total RNA was isolated, cDNA was synthesized, and libraries were generated and subsequently sequenced on a HiSeq 2500 instrument. The scRNA-seq data were analyzed with R software. RESULTS We identified 1320 genes that were differentially expressed between agar-like ZP oocytes and healthy donor oocytes. Gene Ontology term enrichment results showed that the genes downregulated in agar-like ZP oocytes were significantly related to extracellular matrix organization, while the genes upregulated in agar-like ZP oocytes were significantly related to the regulation of response to DNA damage stimulus. The Kyoto Encyclopedia of Genes and Genomes enrichment results showed that genes were enriched in the ECM-receptor interaction pathway and focal adhesion pathway. Other signaling pathways important in oocyte development were also enriched, such as PI3K-Akt. Differential expression analysis identified UBC, TLR4, RELA, ANXA5, CAV1, KPNA2, CCNA2, ACTA2, FYN and ITGB3 as genetic markers of oocytes with agar-like ZP. CONCLUSIONS Our findings suggest that agar-like ZP oocytes exhibit significant downregulation of genes involved in the ECM-receptor interaction signaling pathway and focal adhesion pathway, which could lead to aberrant ZP formation, while the upregulated genes were significantly related to regulation of the response to DNA damage stimulus. Agar-like ZP formation may interfere with the normal exchange of signals between oocytes and perivitelline granulosa cells, thereby preventing cumulus cells from participating in oocyte DNA damage repair and causing MI arrest.
Collapse
Affiliation(s)
- Xiangyang Zhang
- Reproductive Medical Center, Henan Province Key Laboratory for Reproduction and Genetics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China.
| | - Senlin Shi
- Reproductive Medical Center, Henan Province Key Laboratory for Reproduction and Genetics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Ying Wan
- Reproductive Medical Center, Henan Province Key Laboratory for Reproduction and Genetics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Wenyan Song
- Reproductive Medical Center, Henan Province Key Laboratory for Reproduction and Genetics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Haixia Jin
- Reproductive Medical Center, Henan Province Key Laboratory for Reproduction and Genetics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yingpu Sun
- Reproductive Medical Center, Henan Province Key Laboratory for Reproduction and Genetics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
7
|
Cao G, Yu L, Fang J, Shi R, Li H, Lu F, Shen X, Zhu X, Wang S, Kong N. ZP1-Y262C mutation causes abnormal zona pellucida formation and female infertility in humans. Front Genet 2024; 15:1407202. [PMID: 38966008 PMCID: PMC11222594 DOI: 10.3389/fgene.2024.1407202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024] Open
Abstract
Defective oocyte maturation is a common cause of female infertility. The loss of the zona pellucida (ZP) represents a specific condition of impaired oocyte maturation. The extracellular matrix known as the ZP envelops mammalian oocytes and preimplantation embryos, exerting significant influence on oogenesis, fertilization, and embryo implantation. However, the genetic factors leading to the loss of the ZP in oocytes are not well understood. This study focused on patients who underwent oocyte retrieval surgery after ovarian stimulation and were found to have abnormal oocyte maturation without the presence of the ZP. Ultrasonography was performed during the surgical procedure to evaluate follicle development. Peripheral blood samples from the patient were subjected to exome sequencing. Here, a novel, previously unreported heterozygous mutation in the ZP1 gene was identified. Within the ZP1 gene, we discovered a novel heterozygous mutation (ZP1 NM_207341.4:c.785A>G (p.Y262C)), specifically located in the trefoil domain. Bioinformatics comparisons further revealed conservation of the ZP1-Y262C mutation across different species. Model predictions of amino acid mutations on protein structure and cell immunofluorescence/western blot experiments collectively confirmed the detrimental effects of the ZP1-Y262C mutation on the function and expression of the ZP1 protein. The ZP1-Y262C mutation represents the novel mutation in the trefoil domain of the ZP1 protein, which is associated with defective oocyte maturation in humans. Our report enhances comprehension regarding the involvement of ZP-associated genes in female infertility and offers enriched understanding for the genetic diagnosis of this condition.
Collapse
Affiliation(s)
- Guangyi Cao
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
- Key Laboratory of Reproductive Medicine of Guangdong Province, Guangzhou, China
| | - Lina Yu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Junshun Fang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ruixin Shi
- Center for Reproductive Medicine and Obstetrics and Gynecology, Joint Institute of Nanjing Drum Tower Hospital for Life and Health, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Huijun Li
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Feifei Lu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaoyue Shen
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiangyu Zhu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shanshan Wang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Na Kong
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Pyle LC, Kim J, Bradfield J, Damrauer SM, D'Andrea K, Einhorn LH, Godse R, Hakonarson H, Kanetsky PA, Kember RL, Jacobs LA, Maxwell KN, Rader DJ, Vaughn DJ, Weathers B, Wubbenhorst B, Regeneron Genetics Center Research Team, Cancer Genomics Research Laboratory, Greene MH, Nathanson KL, Stewart DR. Germline Exome Sequencing for Men with Testicular Germ Cell Tumor Reveals Coding Defects in Chromosomal Segregation and Protein-targeting Genes. Eur Urol 2024; 85:337-345. [PMID: 37246069 PMCID: PMC10676450 DOI: 10.1016/j.eururo.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Testicular germ cell tumor (TGCT) is the most common cancer among young White men. TGCT is highly heritable, although there are no known high-penetrance predisposition genes. CHEK2 is associated with moderate TGCT risk. OBJECTIVE To identify coding genomic variants associated with predisposition to TGCT. DESIGN, SETTING, AND PARTICIPANTS The study involved 293 men with familial or bilateral (high risk; HR)-TGCT representing 228 unique families and 3157 cancer-free controls. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS We carried out exome sequencing and gene burden analysis to identify associations with TGCT risk. RESULTS AND LIMITATIONS Gene burden association identified several genes, including loss-of-function variants of NIN and QRSL1. We identified no statistically significant association with the sex- and germ-cell development pathways (hypergeometric overlap test: p = 0.65 for truncating variants, p = 0.47 for all variants) or evidence of associations with the regions previously identified via genome-wide association studies (GWAS). When considering all significant coding variants together with genes associated with TGCT on GWAS, there were associations with three major pathways: mitosis/cell cycle (Gene Ontology identity GO:1903047: observed/expected variant ratio [O/E] 6.17, false discovery rate [FDR] 1.53 × 10-11), co-translational protein targeting (GO:0006613: O/E 18.62, FDR 1.35 × 10-10), and sex differentiation (GO:0007548: O/E 5.25, FDR 1.90 × 10-4). CONCLUSIONS To the best of our knowledge, this study is the largest to date on men with HR-TGCT. As in previous studies, we identified associations with variants for several genes, suggesting multigenic heritability. We identified associations with co-translational protein targeting, and chromosomal segregation and sex determination, identified via GWAS. Our results suggest potentially druggable targets for TGCT prevention or treatment. PATIENT SUMMARY We searched for gene variations that increase the risk of testicular cancer and found numerous new specific variants that contribute to this risk. Our results support the idea that many gene variants inherited together contribute to the risk of testicular cancer.
Collapse
Affiliation(s)
- Louise C Pyle
- Rare Disease Institute, Center for Genetic Medicine, Children's National Hospital, Washington, DC, USA; Department of Precision Medicine, George Washington University, Washington, DC, USA; Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jung Kim
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | | | - Scott M Damrauer
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kurt D'Andrea
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Rama Godse
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Peter A Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Rachel L Kember
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Linda A Jacobs
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kara N Maxwell
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Rader
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Vaughn
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benita Weathers
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bradley Wubbenhorst
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Mark H Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Katherine L Nathanson
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| |
Collapse
|
9
|
Fang J, Sun H, Chen L, Wang J, Lin F, Xu Z, Zhu L, Wang S. Embryological characteristics and clinical outcomes of oocytes with different degrees of abnormal zona pellucida during assisted reproductive treatment. ZYGOTE 2024; 32:7-13. [PMID: 38018399 DOI: 10.1017/s0967199423000515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Abnormalities in the zona pellucida (ZP) adversely affect oocyte maturation, embryo development and pregnancy outcomes. However, the assessment of severity is challenging. To evaluate the effects of different degrees of ZP abnormalities on embryo development and clinical outcomes, in total, 590 retrieval cycles were scored and divided into four categories (control, mild, moderate and severe) based on three parameters: perivitelline space, percentage of immature oocytes and percentage of oocytes with abnormal morphology. As the severity of abnormal ZP increased, both the number of retrieved oocytes and mature oocytes decreased. The fertilization rate did not differ significantly among groups. The rates of embryo cleavage and day-3 high-quality embryos in the mild group and the moderate group did not vary significantly between the two groups but were significantly higher than those in the severe group. The blastulation rates of the abnormal ZP groups were similar; however, they were lower than those of the control group. Moreover, the cycle cancellation rate of the severe abnormal ZP group was as high as 66.20%, which was significantly higher than that of the other three groups. Although the rates of cumulative clinical pregnancy and live births were lower than those in the control group, they were comparable among the abnormal ZP groups. There were no differences in the neonatal outcomes of the different groups. Together, ZP abnormalities show various degrees of severity, and in all patients regardless of the degree of ZP abnormalities who achieve available embryos, there will be an opportunity to eventually give birth.
Collapse
Affiliation(s)
- Junshun Fang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing210008, China
| | - Hua Sun
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing210008, China
| | - Linjun Chen
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing210008, China
| | - Jie Wang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing210008, China
| | - Fei Lin
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing210008, China
| | - Zhipeng Xu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing210008, China
| | - Lihua Zhu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing210008, China
| | - Shanshan Wang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing210008, China
| |
Collapse
|
10
|
Wei Y, Wang J, Qu R, Zhang W, Tan Y, Sha Y, Li L, Yin T. Genetic mechanisms of fertilization failure and early embryonic arrest: a comprehensive review. Hum Reprod Update 2024; 30:48-80. [PMID: 37758324 DOI: 10.1093/humupd/dmad026] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/07/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND Infertility and pregnancy loss are longstanding problems. Successful fertilization and high-quality embryos are prerequisites for an ongoing pregnancy. Studies have proven that every stage in the human reproductive process is regulated by multiple genes and any problem, at any step, may lead to fertilization failure (FF) or early embryonic arrest (EEA). Doctors can diagnose the pathogenic factors involved in FF and EEA by using genetic methods. With the progress in the development of new genetic technologies, such as single-cell RNA analysis and whole-exome sequencing, a new approach has opened up for us to directly study human germ cells and reproductive development. These findings will help us to identify the unique mechanism(s) that leads to FF and EEA in order to find potential treatments. OBJECTIVE AND RATIONALE The goal of this review is to compile current genetic knowledge related to FF and EEA, clarifying the mechanisms involved and providing clues for clinical diagnosis and treatment. SEARCH METHODS PubMed was used to search for relevant research articles and reviews, primarily focusing on English-language publications from January 1978 to June 2023. The search terms included fertilization failure, early embryonic arrest, genetic, epigenetic, whole-exome sequencing, DNA methylation, chromosome, non-coding RNA, and other related keywords. Additional studies were identified by searching reference lists. This review primarily focuses on research conducted in humans. However, it also incorporates relevant data from animal models when applicable. The results were presented descriptively, and individual study quality was not assessed. OUTCOMES A total of 233 relevant articles were included in the final review, from 3925 records identified initially. The review provides an overview of genetic factors and mechanisms involved in the human reproductive process. The genetic mutations and other genetic mechanisms of FF and EEA were systematically reviewed, for example, globozoospermia, oocyte activation failure, maternal effect gene mutations, zygotic genome activation abnormalities, chromosome abnormalities, and epigenetic abnormalities. Additionally, the review summarizes progress in treatments for different gene defects, offering new insights for clinical diagnosis and treatment. WIDER IMPLICATIONS The information provided in this review will facilitate the development of more accurate molecular screening tools for diagnosing infertility using genetic markers and networks in human reproductive development. The findings will also help guide clinical practice by identifying appropriate interventions based on specific gene mutations. For example, when an individual has obvious gene mutations related to FF, ICSI is recommended instead of IVF. However, in the case of genetic defects such as phospholipase C zeta1 (PLCZ1), actin-like7A (ACTL7A), actin-like 9 (ACTL9), and IQ motif-containing N (IQCN), ICSI may also fail to fertilize. We can consider artificial oocyte activation technology with ICSI to improve fertilization rate and reduce monetary and time costs. In the future, fertility is expected to be improved or restored by interfering with or supplementing the relevant genes.
Collapse
Affiliation(s)
- Yiqiu Wei
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingxuan Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rui Qu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weiqian Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiling Tan
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanwei Sha
- Department of Andrology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Schultz IJ, Zimmerman Y, Moelans CB, Chrusciel M, Krijgh J, van Diest PJ, Huhtaniemi IT, Coelingh Bennink HJT. A tumor cell specific Zona Pellucida glycoprotein 3 RNA transcript encodes an intracellular cancer antigen. Front Oncol 2023; 13:1233039. [PMID: 38125942 PMCID: PMC10731367 DOI: 10.3389/fonc.2023.1233039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Background Expression of Zona Pellucida glycoprotein 3 (ZP3) in healthy tissue is restricted to the extracellular Zona Pellucida layer surrounding oocytes of ovarian follicles and to specific cells of the spermatogenic lineage. Ectopic expression of ZP3 has been observed in various types of cancer, rendering it a possible therapeutic target. Methods To support its validity as therapeutic target, we extended the cancer related data by investigating ZP3 expression using immunohistochemistry (IHC) of tumor biopsies. We performed a ZP3 transcript specific analysis of publicly available RNA-sequencing (RNA-seq) data of cancer cell lines (CCLs) and tumor and normal tissues, and validated expression data by independent computational analysis and real-time quantitative PCR (qPCR). A correlation between the ZP3 expression level and pathological and clinical parameters was also investigated. Results IHC data for several cancer types showed abundant ZP3 protein staining, which was confined to the cytoplasm, contradicting the extracellular protein localization in oocytes. We noticed that an alternative ZP3 RNA transcript, which we term 'ZP3-Cancer', was annotated in gene databases that lacks the genetic information encoding the N-terminal signal peptide that governs entry into the secretory pathway. This explains the intracellular localization of ZP3 in tumor cells. Analysis of publicly available RNA-seq data of 1339 cancer cell lines (CCLs), 10386 tumor tissues (The Cancer Genome Atlas) and 7481 healthy tissues (Genotype-Tissue Expression) indicated that ZP3-Cancer is the dominant ZP3 RNA transcript in tumor cells and is highly enriched in many cancer types, particularly in rectal, ovarian, colorectal, prostate, lung and breast cancer. Expression of ZP3-Cancer in tumor cells was confirmed by qPCR. Higher levels of the ZP3-Cancer transcript were associated with more aggressive tumors and worse survival of patients with various types of cancer. Conclusion The cancer-restricted expression of ZP3-Cancer renders it an attractive tumor antigen for the development of a therapeutic cancer vaccine, particularly using mRNA expression technologies.
Collapse
Affiliation(s)
| | | | - Cathy B. Moelans
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Jan Krijgh
- Pantarhei Oncology BV, Zeist, Netherlands
| | - Paul J. van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ilpo T. Huhtaniemi
- Institute of Biomedicine, University of Turku, Turku, Finland
- Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | | |
Collapse
|
12
|
Liu SL, Zuo HY, Zhao BW, Guo JN, Liu WB, Lei WL, Li YY, Ouyang YC, Hou Y, Han ZM, Wang WZ, Sun QY, Wang ZB. A heterozygous ZP2 mutation causes zona pellucida defects and female infertility in mouse and human. iScience 2023; 26:107828. [PMID: 37736051 PMCID: PMC10509300 DOI: 10.1016/j.isci.2023.107828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023] Open
Abstract
The zona pellucida (ZP) is an extracellular glycoprotein matrix surrounding mammalian oocytes. Recently, numerous mutations in genes encoding ZP proteins have been shown to be possibly related to oocyte abnormality and female infertility; few reports have confirmed the functions of these mutations in living animal models. Here, we identified a novel heterozygous missense mutation (NM_001376231.1:c.1616C>T, p.Thr539Met) in ZP2 from a primary infertile female. We showed that the mutation reduced ZP2 expression and impeded ZP2 secretion in cell lines. Furthermore, we constructed the mouse model with the mutation (Zp2T541M) using CRISPR-Cas9. Zp2WT/T541M female mice had normal fertility though generated oocytes with the thin ZP, whereas Zp2T541M female mice were completely infertile due to degeneration of oocytes without ZP. Additionally, ZP deletion impaired folliculogenesis and caused female infertility in Zp2T541M mice. Our study not only expands the spectrum of ZP2 mutation sites but also, more importantly, increases the understanding of pathogenic mechanisms of ZP2 mutations.
Collapse
Affiliation(s)
- Sai-Li Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hai-Yang Zuo
- The Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100048, China
| | - Bing-Wang Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jia-Ni Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wen-Bo Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuan-Yuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi-Ming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Wei-Zhou Wang
- The Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100048, China
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
13
|
Kong N, Xu Q, Shen X, Zhu X, Cao G. Case report: A novel homozygous variant in ZP3 is associated with human empty follicle syndrome. Front Genet 2023; 14:1256549. [PMID: 37908588 PMCID: PMC10613883 DOI: 10.3389/fgene.2023.1256549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/11/2023] [Indexed: 11/02/2023] Open
Abstract
Empty follicle syndrome (EFS) is a rare condition in female infertility. It is characterized by the inability to retrieve oocytes from visibly large, normally developing follicles in the ovaries, despite ovarian stimulation. The genetic factors contributing to this syndrome remain unclear. This study focused on patients who underwent three consecutive ovarian stimulation procedures for oocyte retrieval but experienced unsuccessful outcomes, despite the presence of observable large follicles. Ultrasound examinations were conducted to assess follicular development during each procedure. In order to investigate potential genetic causes, we performed whole exome sequencing on peripheral blood samples from the patient. Interestingly, we identified that this patient carries a homozygous mutation in the ZP3 genes. Within the ZP3 gene, we identified a homozygous variant [NM_001110354.2, c.176T>A (p.L59H)] specifically located in the zona pellucida (ZP) domain. Further analysis, including bioinformatics methods and protein structure modeling, was carried out to investigate the conservation of the ZP3L59H variant across different species. This homozygous variant exhibited a high degree of conservation across various species. Importantly, the homozygous ZP3L59H variant was associated with the occurrence of empty follicle syndrome in affected female patients. The homozygous ZP3L59H variant represents a newly discovered genetic locus implicated in the development of human empty follicle syndrome. Our findings contribute to a deeper understanding of the role of zona pellucida-related genes in infertility and provide valuable insights for the genetic diagnosis of female infertility.
Collapse
Affiliation(s)
- Na Kong
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Qian Xu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaoyue Shen
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xiangyu Zhu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Guangyi Cao
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| |
Collapse
|
14
|
Kang I, Koo M, Yoon H, Park BS, Jun JH, Lee J. Ovastacin: An oolemma protein that cleaves the zona pellucida to prevent polyspermy. Clin Exp Reprod Med 2023; 50:154-159. [PMID: 37643828 PMCID: PMC10477413 DOI: 10.5653/cerm.2023.05981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 08/31/2023] Open
Abstract
Monospermy occurs in the process of normal fertilization where a single sperm fuses with the egg, resulting in the formation of a diploid zygote. During the process of fertilization, the sperm must penetrate the zona pellucida (ZP), the outer layer of the egg, to reach the egg's plasma membrane. Once a sperm binds to the ZP, it undergoes an acrosomal reaction, which involves the release of enzymes from the sperm's acrosome that help it to penetrate the ZP. Ovastacin is one of the enzymes that is involved in breaking down the ZP. Studies have shown that ovastacin is necessary for the breakdown of the ZP and for successful fertilization to occur. However, the activity of ovastacin is tightly regulated to ensure that only one sperm can fertilize the egg. One way in which ovastacin helps to prevent polyspermy (the fertilization of an egg by more than one sperm) is by rapidly degrading the ZP after a sperm has penetrated it. This makes it difficult for additional sperm to penetrate the ZP and fertilize the egg. Ovastacin is also thought to play a role in the block to polyspermy, a mechanism that prevents additional sperm from fusing with the egg's plasma membrane after fertilization has occurred. In summary, the role of ovastacin in monospermic fertilization is to help ensure that only one sperm can fertilize the egg, while preventing polyspermy and ensuring successful fertilization.
Collapse
Affiliation(s)
- Inyoung Kang
- Department of Biomedical Laboratory Sciences, Eulji University, Seongnam, Republic of Korea
| | - Myoungjoo Koo
- Department of Biomedical Laboratory Sciences, Eulji University, Seongnam, Republic of Korea
| | - Hyejin Yoon
- Department of Senior Healthcare, Graduate School of Eulji University, Seongnam, Republic of Korea
| | - Beom Seok Park
- Department of Biomedical Laboratory Sciences, Eulji University, Seongnam, Republic of Korea
- Department of Senior Healthcare, Graduate School of Eulji University, Seongnam, Republic of Korea
| | - Jin Hyun Jun
- Department of Biomedical Laboratory Sciences, Eulji University, Seongnam, Republic of Korea
- Department of Senior Healthcare, Graduate School of Eulji University, Seongnam, Republic of Korea
- Eulji Medi-Bio Research Institute (EMBRI), Eulji University, Daejeon, Republic of Korea
| | - Jaewang Lee
- Department of Biomedical Laboratory Sciences, Eulji University, Seongnam, Republic of Korea
| |
Collapse
|
15
|
Ben-Mahmoud A, Kishikawa S, Gupta V, Leach NT, Shen Y, Moldovan O, Goel H, Hopper B, Ranguin K, Gruchy N, Maas SM, Lacassie Y, Kim SH, Kim WY, Quade BJ, Morton CC, Kim CH, Layman LC, Kim HG. A cryptic microdeletion del(12)(p11.21p11.23) within an unbalanced translocation t(7;12)(q21.13;q23.1) implicates new candidate loci for intellectual disability and Kallmann syndrome. Sci Rep 2023; 13:12984. [PMID: 37563198 PMCID: PMC10415337 DOI: 10.1038/s41598-023-40037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023] Open
Abstract
In a patient diagnosed with both Kallmann syndrome (KS) and intellectual disability (ID), who carried an apparently balanced translocation t(7;12)(q22;q24)dn, array comparative genomic hybridization (aCGH) disclosed a cryptic heterozygous 4.7 Mb deletion del(12)(p11.21p11.23), unrelated to the translocation breakpoint. This novel discovery prompted us to consider the possibility that the combination of KS and neurological disorder in this patient could be attributed to gene(s) within this specific deletion at 12p11.21-12p11.23, rather than disrupted or dysregulated genes at the translocation breakpoints. To further support this hypothesis, we expanded our study by screening five candidate genes at both breakpoints of the chromosomal translocation in a cohort of 48 KS patients. However, no mutations were found, thus reinforcing our supposition. In order to delve deeper into the characterization of the 12p11.21-12p11.23 region, we enlisted six additional patients with small copy number variations (CNVs) and analyzed eight individuals carrying small CNVs in this region from the DECIPHER database. Our investigation utilized a combination of complementary approaches. Firstly, we conducted a comprehensive phenotypic-genotypic comparison of reported CNV cases. Additionally, we reviewed knockout animal models that exhibit phenotypic similarities to human conditions. Moreover, we analyzed reported variants in candidate genes and explored their association with corresponding phenotypes. Lastly, we examined the interacting genes associated with these phenotypes to gain further insights. As a result, we identified a dozen candidate genes: TSPAN11 as a potential KS candidate gene, TM7SF3, STK38L, ARNTL2, ERGIC2, TMTC1, DENND5B, and ETFBKMT as candidate genes for the neurodevelopmental disorder, and INTS13, REP15, PPFIBP1, and FAR2 as candidate genes for KS with ID. Notably, the high-level expression pattern of these genes in relevant human tissues further supported their candidacy. Based on our findings, we propose that dosage alterations of these candidate genes may contribute to sexual and/or cognitive impairments observed in patients with KS and/or ID. However, the confirmation of their causal roles necessitates further identification of point mutations in these candidate genes through next-generation sequencing.
Collapse
Affiliation(s)
- Afif Ben-Mahmoud
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Shotaro Kishikawa
- Gene Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Vijay Gupta
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Natalia T Leach
- Integrated Genetics, Laboratory Corporation of America Holdings, 3400 Computer Drive, Westborough, MA, 01581, USA
| | - Yiping Shen
- Division of Genetics and Genomics at Boston Children's Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Oana Moldovan
- Medical Genetics Service, Pediatric Department, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Himanshu Goel
- Hunter Genetics, Waratah, NSW, 2298, Australia
- University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Bruce Hopper
- Forster Genetics-Hunter New England Local Health District, Forster, NSW, 2428, Australia
| | - Kara Ranguin
- Department of Genetics, Reference Center for Rare Diseases of Developmental anomalies and polymalformative syndrome, CHU de Caen Normandie, Caen, France
| | - Nicolas Gruchy
- Department of Genetics, Reference Center for Rare Diseases of Developmental anomalies and polymalformative syndrome, CHU de Caen Normandie, Caen, France
| | - Saskia M Maas
- Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, the Netherlands
| | - Yves Lacassie
- Division of Genetics, Department of Pediatrics, Louisiana State University, New Orleans, LA, 70118, USA
| | - Soo-Hyun Kim
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA
| | - Bradley J Quade
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Cynthia C Morton
- Departments of Obstetrics and Gynecology and of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, Manchester, UK
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, Korea
| | - Lawrence C Layman
- Section of Reproductive Endocrinology, Infertility and Genetics, Department of Obstetrics and Gynecology, Augusta University, Augusta, GA, USA
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, USA
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
16
|
Zhang X, Hu C, Wu L. Advances in the study of genetic factors and clinical interventions for fertilization failure. J Assist Reprod Genet 2023; 40:1787-1805. [PMID: 37289376 PMCID: PMC10371943 DOI: 10.1007/s10815-023-02810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/18/2023] [Indexed: 06/09/2023] Open
Abstract
Fertilization failure refers to the failure in the pronucleus formation, evaluating 16-18 h post in vitro fertilization or intracytoplasmic sperm injection. It can be caused by sperm, oocytes, and sperm-oocyte interaction and lead to great financial and physical stress to the patients. Recent advancements in genetics, molecular biology, and clinical-assisted reproductive technology have greatly enhanced research into the causes and treatment of fertilization failure. Here, we review the causes that have been reported to lead to fertilization failure in fertilization processes, including the sperm acrosome reaction, penetration of the cumulus and zona pellucida, recognition and fusion of the sperm and oocyte membranes, oocyte activation, and pronucleus formation. Additionally, we summarize the progress of corresponding treatment methods of fertilization failure. This review will provide the latest research advances in the genetic aspects of fertilization failure and will benefit both researchers and clinical practitioners in reproduction and genetics.
Collapse
Affiliation(s)
- Xiangjun Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Congyuan Hu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Limin Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
17
|
Jin H, Yang H, Zheng J, Zhou J, Yu R. Risk factors for low oocyte retrieval in patients with polycystic ovarian syndrome undergoing in vitro fertilization. Reprod Biol Endocrinol 2023; 21:66. [PMID: 37468927 DOI: 10.1186/s12958-023-01118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 07/09/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND The number of oocytes retrieved does not always coincide with the number of follicles aspirated in in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) treatment. Patients with high expectation of retrieval sometimes obtain few oocytes, which may be induced by improper operation or therapeutic factors. The purpose of this study was to evaluate the distribution data of oocyte retrieval rate (ORR) and to explore the risk factors for low ORR in patients with polycystic ovary syndrome (PCOS) undergoing IVF/ICSI. METHODS A total of 2478 patients with PCOS undergoing IVF/ICSI were involved in this retrospective case-control study from March 2016 to October 2021. The oocyte retrieval rate was calculated as the ratio of the number of obtained oocytes to the number of follicles (≥ 12 mm) on the trigger day. Patients were divided into a low ORR and a normal ORR group with the boundary of one standard deviation from the mean value of ORR. The patient characteristics, treatment protocols, serum hormone levels, and embryonic and pregnancy outcomes were analyzed. RESULTS The ORR exhibited a non-normal distribution, with a median of 0.818. The incidence of complete empty follicle syndrome was 0.12% (3/2478). The proportion of patients in the low ORR group who received the progestin-primed protocol was significantly higher than that in the normal ORR group (30.30% vs. 17.69%). A logistic regression analysis showed that the serum estradiol level/follicle (≥ 12 mm) ratio (OR: 0.600 (0.545-0.661)) and progesterone level (OR: 0.783 (0.720-0.853)) on the trigger day were significant factors in the development of a low ORR, with optimal cutoff values of 172.85 pg/ml and 0.83 ng/ml, respectively, as determined by receiver operating curve. Fewer high-quality embryos (2 vs. 5) and more cycles with no available embryos (5.42% vs. 0.43%) were found in the low ORR group. CONCLUSIONS For patients with PCOS, low estradiol levels/follicles (≥ 12 mm) and progesterone levels on the trigger day and the use of the progestin-primed protocol could be risk factors for low ORR, which leads to a limited number of embryos and more cycle cancellations.
Collapse
Affiliation(s)
- Hao Jin
- The Urological Surgical Department, The First Affiliated Hospital of Wenzhou Medical University, No. 96, Fuxue Road, Lucheng District, Wenzhou, China
| | - Haiyan Yang
- The Reproductive Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiujia Zheng
- The Reproductive Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiechun Zhou
- The Reproductive Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rong Yu
- The Reproductive Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
18
|
Dong J, Pei K, Xu W, Gong M, Zhu W, Liu S, Tang M, Liu J, Xia X, Bu X, Nie L. Zona pellucida family genes in Chinese pond turtle: identification, expression profiles, and role in the spermatozoa acrosome reaction†. Biol Reprod 2023; 109:97-106. [PMID: 37140246 DOI: 10.1093/biolre/ioad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/12/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023] Open
Abstract
The zona pellucida (ZP) is an extracellular matrix that surrounds all vertebrate eggs, and it is involved in fertilization and species-specific recognition. Numerous in-depth studies of the ZP proteins of mammals, birds, amphibians, and fishes have been conducted, but systematic investigation of the ZP family genes and their role during fertilization in reptiles has not been reported to date. In this study, we identified six turtle ZP (Tu-ZP) gene subfamilies (Tu-ZP1, Tu-ZP2, Tu-ZP3, Tu-ZP4, Tu-ZPD, and Tu-ZPAX) based on whole genome sequence data from Mauremys reevesii. We found that Tu-ZP4 had large segmental duplication and was distributed on three chromosomes, and we also detected gene duplication in the other Tu-ZP genes. To evaluate the role of Tu-ZP proteins in sperm-egg binding, we assessed the expression pattern of these Tu-ZP proteins and their ability to induce the spermatozoa acrosome reaction in M. reevesii. In conclusion, this is the first report of the existence of gene duplication of Tu-ZP genes and that Tu-ZP2, Tu-ZP3, and Tu-ZPD can induce acrosome exocytosis of spermatogenesis in the reptile.
Collapse
Affiliation(s)
- Jinxiu Dong
- Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Kejiao Pei
- Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Wannan Xu
- Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Mengmeng Gong
- Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Wenrui Zhu
- Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Siqi Liu
- Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Min Tang
- Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Jianjun Liu
- Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Xingquan Xia
- Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Xinjiang Bu
- Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Liuwang Nie
- Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| |
Collapse
|
19
|
Xia XH, Liang N, Ma XY, Qin L, Wang SY, Chang ZJ. Inhibition of the NF-κB signaling pathway affects gonadal differentiation and leads to male bias in Paramisgurnus dabryanus. Theriogenology 2023; 207:82-95. [PMID: 37269599 DOI: 10.1016/j.theriogenology.2023.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/05/2023]
Abstract
In recent years, sex-controlled breeding has emerged as an effective strategy to enhance the yields of economic animals with different growth characteristics, while increasing the economic benefits of aquaculture. It is known that the NF-κB pathway participates in gonadal differentiation and reproduction. Therefore, we used the large-scale loach as a research model for the present study and selected an effective inhibitor of the NF-κB signaling pathway (QNZ). This, to investigates the impacts of the NF-κB signaling pathway on gonadal differentiation during a critical period of gonad development and after maturation. Simultaneously, the sex ratio bias and the reproductive capacities of adult fish were analyzed. Our results indicated that the inhibition of the NF-κB signaling pathway influenced the expression of genes related to gonad development, regulated the gene expression related to the brain-gonad-liver axis of juvenile loaches, and finally impacted the gonadal differentiation of the large-scale loach and promoted a male-biased sex ratio. Meanwhile, high QNZ concentrations affected the reproductive abilities of adult loaches and inhibited the growth performance of offspring. Thus, our results deepened the exploration of sex control in fish and provided a certain research basis for the sustainable development of the aquaculture industry.
Collapse
Affiliation(s)
- Xiao-Hua Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Ning Liang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Xiao-Yu Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Lu Qin
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Song-Yun Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Zhong-Jie Chang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
20
|
Zeng J, Sun Y, Zhang J, Wu X, Wang Y, Quan R, Song W, Guo D, Wang S, Chen J, Xiao H, Huang HL. Identification of zona pellucida defects revealed a novel loss-of-function mutation in ZP2 in humans and rats. Front Endocrinol (Lausanne) 2023; 14:1169378. [PMID: 37293489 PMCID: PMC10244809 DOI: 10.3389/fendo.2023.1169378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/05/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Human zona pellucida (ZP) plays an important role in reproductive process. Several rare mutations in the encoding genes (ZP1, ZP2, and ZP3) have been demonstrated to cause women infertility. Mutations in ZP2 have been reported to cause ZP defects or empty follicle syndrome. We aimed to identify pathogenic variants in an infertile woman with a thin zona pellucida (ZP) phenotype and investigated the effect of ZP defects on oocyte gene transcription. Methods We performed whole-exome sequencing and Sanger sequencing of genes were performed for infertilite patients characterized by fertilization failure in routine in vitro fertilization (IVF). Immunofluorescence (IF) and intracytoplasmic sperm injection (ICSI) were used in the mutant oocytes. Single-cell RNA sequencing was used to investigate transcriptomes of the gene-edited (Zp2mut/mut) rat model. Biological function enrichment analysis, quantitative real-time PCR (qRT-PCR), and IF were performed. Results We identified a novel homozygous nonsense mutation of ZP2 (c.1924C > T, p.Arg642X) in a patient with non-consanguineous married parents. All oocytes showed a thin or no ZP under a light microscope and were fertilized after ICSI. The patient successfully conceived by receiving the only two embryos that developed to the blastocyst stage. The immunofluorescence staining showed an apparently abnormal form of the stopped oocytes. We further demonstrated a total of 374 differentially expressed genes (DEGs) in the transcriptome profiles of Zp2mut/mut rats oocytes and highlighted the signal communication between oocytes and granulosa cells. The pathway enrichment results of DEGs showed that they were enriched in multiple signaling pathways, especially the transforming growth factor-β (TGF-β) signaling pathway in oocyte development. qRT-PCR, IF, and phosphorylation analysis showed significantly downregulated expressions of Acvr2b, Smad2, p38MAPK, and Bcl2 and increased cleaved-caspase 3 protein expression. Discussion Our findings expanded the known mutational spectrum of ZP2 associated with thin ZP and natural fertilization failure. Disruption of the integrity of the ZP impaired the TGF-β signaling pathway between oocytes and surrounding granulosa cells, leading to increased apoptosis and decreased developmental potential of oocytes.
Collapse
Affiliation(s)
- Jun Zeng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Sun
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jing Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaozhu Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Wang
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ruping Quan
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Wanjuan Song
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dan Guo
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Shengran Wang
- Center of Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jianlin Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongmei Xiao
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Center of Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hua-Lin Huang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
21
|
Zhang J, Li S, Huang F, Xu R, Wang D, Song T, Liang B, Liu D, Chen J, Shi X, Huang HL. A novel compound heterozygous mutation in TUBB8 causing early embryonic developmental arrest. J Assist Reprod Genet 2023; 40:753-763. [PMID: 36735156 PMCID: PMC10224908 DOI: 10.1007/s10815-023-02734-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Mutations in the β-tubulin isotype, TUBB8, can cause female infertility. Although several mutations of TUBB8 have been reported, the full spectrum for guiding genetics counseling still needs to be further explored. Here, we sought to identify novel variants in TUBB8 and their phenotypic effects on microtubule network structure in vitro. METHODS Whole-exome sequence analysis was performed in two families with infertility to detect pathogenic variants, with validation by Sanger sequencing. All gene variants and protein structures were predicted in silico. Cells were transfected with wild-type and mutants, and immunofluorescence analysis was performed to visualize microtubule network changes. RESULTS We detected a novel compound heterozygous mutation, c.915_916delCC (p.Arg306Serfs*21) and c.82C > T (p.His28Tyr), and a benign heterozygous variant c.1286C > T (p.Thr429Met) in TUBB8 in the two families. Female patients with p.Arg306Serfs*21 and p.His28Tyr were infertile with early embryonic developmental arrest. The female patient with p.Thr429Met gave birth to a healthy baby in the second in vitro fertilization frozen embryo transfer cycle. The p.Arg306Serfs*21 mutation was predicted to cause large structural alteration in the TUBB8 protein and was confirmed to produce a truncated and trace protein by western blot analysis. Immunofluorescence analysis of transfected HeLa cells showed that p.Arg306Serfs*21 significantly disrupted microtubule structure. CONCLUSIONS Our findings expand the known mutational spectrum of TUBB8 associated with early embryonic developmental arrest and female infertility.
Collapse
Affiliation(s)
- Jing Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Suping Li
- Reproductive Medicine Center, Chenzhou No. 1 People's Hospital, Chenzhou, 412000, Hunan, China
| | - Fei Huang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ru Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Dao Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Tian Song
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Boluo Liang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Dan Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jianlin Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Xiaobo Shi
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Hua-Lin Huang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
22
|
Ben-Mahmoud A, Kishikawa S, Gupta V, Leach NT, Shen Y, Moldovan O, Goel H, Hopper B, Ranguin K, Gruchy N, Maas SM, Lacassie Y, Kim SH, Kim WY, Quade BJ, Morton CC, Kim CH, Layman LC, Kim HG. A microdeletion del(12)(p11.21p11.23) with a cryptic unbalanced translocation t(7;12)(q21.13;q23.1) implicates new candidate loci for intellectual disability and Kallmann syndrome. RESEARCH SQUARE 2023:rs.3.rs-2572736. [PMID: 37034680 PMCID: PMC10081357 DOI: 10.21203/rs.3.rs-2572736/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
In an apparently balanced translocation t(7;12)(q22;q24)dn exhibiting both Kallmann syndrome (KS) and intellectual disability (ID), we detected a cryptic heterozygous 4.7 Mb del(12)(p11.21p11.23) unrelated to the translocation breakpoint. This new finding raised the possibility that KS combined with neurological disorder in this patient could be caused by gene(s) within this deletion at 12p11.21-12p11.23 instead of disrupted or dysregulated genes at the genomic breakpoints. Screening of five candidate genes at both breakpoints in 48 KS patients we recruited found no mutation, corroborating our supposition. To substantiate this hypothesis further, we recruited six additional subjects with small CNVs and analyzed eight individuals carrying small CNVs in this region from DECIPHER to dissect 12p11.21-12p11.23. We used multiple complementary approaches including a phenotypic-genotypic comparison of reported cases, a review of knockout animal models recapitulating the human phenotypes, and analyses of reported variants in the interacting genes with corresponding phenotypes. The results identified one potential KS candidate gene ( TSPAN11 ), seven candidate genes for the neurodevelopmental disorder ( TM7SF3 , STK38L , ARNTL2 , ERGIC2 , TMTC1 , DENND5B , and ETFBKMT ), and four candidate genes for KS with ID ( INTS13 , REP15 , PPFIBP1 , and FAR2 ). The high-level expression pattern in the relevant human tissues further suggested the candidacy of these genes. We propose that the dosage alterations of the candidate genes may contribute to sexual and/or cognitive impairment in patients with KS and/or ID. Further identification of point mutations through next generation sequencing will be necessary to confirm their causal roles.
Collapse
Affiliation(s)
| | | | | | | | | | - Oana Moldovan
- Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte
| | | | - Bruce Hopper
- Forster Genetics-Hunter New England Local Health District
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ke H, Tang S, Guo T, Hou D, Jiao X, Li S, Luo W, Xu B, Zhao S, Li G, Zhang X, Xu S, Wang L, Wu Y, Wang J, Zhang F, Qin Y, Jin L, Chen ZJ. Landscape of pathogenic mutations in premature ovarian insufficiency. Nat Med 2023; 29:483-492. [PMID: 36732629 PMCID: PMC9941050 DOI: 10.1038/s41591-022-02194-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/20/2022] [Indexed: 02/04/2023]
Abstract
Premature ovarian insufficiency (POI) is a major cause of female infertility due to early loss of ovarian function. POI is a heterogeneous condition, and its molecular etiology is unclear. To identify genetic variants associated with POI, here we performed whole-exome sequencing in a cohort of 1,030 patients with POI. We detected 195 pathogenic/likely pathogenic variants in 59 known POI-causative genes, accounting for 193 (18.7%) cases. Association analyses comparing the POI cohort with a control cohort of 5,000 individuals without POI identified 20 further POI-associated genes with a significantly higher burden of loss-of-function variants. Functional annotations of these novel 20 genes indicated their involvement in ovarian development and function, including gonadogenesis (LGR4 and PRDM1), meiosis (CPEB1, KASH5, MCMDC2, MEIOSIN, NUP43, RFWD3, SHOC1, SLX4 and STRA8) and folliculogenesis and ovulation (ALOX12, BMP6, H1-8, HMMR, HSD17B1, MST1R, PPM1B, ZAR1 and ZP3). Cumulatively, pathogenic and likely pathogenic variants in known POI-causative and novel POI-associated genes contributed to 242 (23.5%) cases. Further genotype-phenotype correlation analyses indicated that genetic contribution was higher in cases with primary amenorrhea compared to that in cases with secondary amenorrhea. This study expands understanding of the genetic landscape underlying POI and presents insights that have the potential to improve the utility of diagnostic genetic screenings.
Collapse
Affiliation(s)
- Hanni Ke
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
| | - Shuyan Tang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Ting Guo
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
| | - Dong Hou
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
| | - Xue Jiao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
| | - Shan Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
| | - Wei Luo
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
| | - Bingying Xu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
| | - Shidou Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
| | - Guangyu Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
| | - Xiaoxi Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shuhua Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Lingbo Wang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yanhua Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China.,Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China. .,State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China. .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.
| | - Yingying Qin
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China. .,Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China. .,Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, China.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China. .,Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China. .,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China. .,Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
24
|
Gupta SK. Zona pellucida glycoproteins: Relevance in fertility and development of contraceptive vaccines. Am J Reprod Immunol 2023; 89:e13535. [PMID: 35249246 DOI: 10.1111/aji.13535] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
Mammalian zona pellucida (ZP) is composed of three to four glycoproteins, which plays an important role during fertilization. Mutations in the genes encoding zona proteins are reported in women with empty follicle syndrome, degenerated oocytes and those with an abnormal or no ZP further emphasizing their relevance during fertility. Immunization with either native or recombinant ZP glycoproteins/proteins leads to curtailment of fertility in various animal species. Observed infertility is frequently associated with ovarian pathology characterized by follicular atresia and degenerative changes in ZP, which may be due to oophoritogenic T cell epitope(s) within ZP glycoproteins. To avoid ovarian dystrophy, B cell epitopes of ZP glycoproteins have been mapped by using bio-effective monoclonal antibodies. Immunization with the immunogens encompassing the mapped B cell epitopes by and large led to amelioration of follicular atresia. However, their use for human application will require more rigorous research to establish their safety and reversibility of the contraceptive effect. Nonetheless, to minimize human-animal conflicts, ZP-based contraceptive vaccines have been used successfully in the population management of free-ranging animal species such as feral horses, white-tailed deer and elephants. To control zoonotic diseases, attempts are also underway to control the population of other animal species including stray dogs, which acts as one of the major vectors for the rabies virus.
Collapse
Affiliation(s)
- Satish K Gupta
- Basic Medical Sciences Division, Indian Council of Medical Research, New Delhi, India
| |
Collapse
|
25
|
Bedenk J, Režen T, Jančar N, Geršak K, Virant Klun I. Effect of In Vitro Maturation of Human Oocytes Obtained After Controlled Ovarian Hormonal Stimulation on the Expression of Development- and Zona Pellucida-Related Genes and Their Interactions. Reprod Sci 2023; 30:667-677. [PMID: 35915350 DOI: 10.1007/s43032-022-01047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022]
Abstract
In an in vitro fertilization program, approximately 10-15% of oocytes obtained after controlled ovarian stimulation are immature, with germinal vesicles (GVs). These oocytes are usually discarded in clinical practice; however, an in vitro maturation (IVM) procedure can be applied to mature them. There are scarce data in the literature on the effect of IVM on the expression of important development- and zona pellucida (ZP)-related genes in human oocytes; therefore, we wanted to determine this. One hundred nine human oocytes were collected from patients enrolled in an intracytoplasmic sperm injection program. The expression of the BMP4, GDF9, ZP1, ZP2, ZP3, and ZP4 genes was analyzed using RT-qPCR in oocytes matured in vitro with different reproductive hormones in the IVM medium (AMH, FSH + hCG, FSH + hCG + AMH), in in vivo matured oocytes and in immature oocytes with GVs. No statistically significant differences in the expression of selected genes in oocytes were observed among groups with different reproductive hormones in IVM medium. However, several interesting significant correlations were found between BMP4 and GDF9, and ZP1 and ZP4; between GDF9 and ZP1, and ZP2 and ZP4; and between ZP1 and ZP3 and ZP4 in the in vitro matured oocytes, while no such correlations were present in other groups of oocytes. The type of reproductive hormone in the maturation medium does not affect the expression of the analyzed genes in oocytes during the maturation process. However, the in vitro maturation procedure itself generated correlations among analyzed genes that were otherwise not present in in vivo matured and immature oocytes.
Collapse
Affiliation(s)
- Jure Bedenk
- Clinical Research Centre, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia.
| | - Tadeja Režen
- Institute of Biochemistry and Molecular Genetics, Centre for Functional Genomics and Bio-Chips, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Nina Jančar
- Department of Gynaecology and Obstetrics, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia
| | - Ksenija Geršak
- Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Irma Virant Klun
- Clinical Research Centre, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia
| |
Collapse
|
26
|
Novel variants in ZP1, ZP2 and ZP3 associated with empty follicle syndrome and abnormal zona pellucida. Reprod Biomed Online 2023; 46:847-855. [PMID: 36931917 DOI: 10.1016/j.rbmo.2023.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/31/2022] [Accepted: 01/08/2023] [Indexed: 01/18/2023]
Abstract
RESEARCH QUESTION Which genetic variants might explain the causes of empty follicle syndrome (EFS) and abnormal zona pellucida (ZP) and affect the success of treatment with assisted reproductive technologies (ART)? DESIGN Whole-exome sequencing was performed in probands with EFS and abnormal ZP. Sanger sequencing was used for variant validation. Using HEK-293T cells, the effects of ZP1 and ZP2 variants on protein expression were explored by western blotting, and the effect of the ZP1 variant on protein location was investigated via immunofluorescence. The protein structure was also analysed to investigate the pathogenicity of variants. RESULTS A homozygous nonsense variant in ZP1 (c.874C>T, p.Gln292*) was detected in a patient with EFS. A novel homozygous frameshift variant in ZP2 (c.836_837delAG, p.Glu279Valfs*6) and a novel heterozygous missense variant in ZP3 (c.1159G>A, p.Val387Met) were identified in two patients with ZP morphological abnormalities, respectively. Western blotting and immunofluorescence analysis showed that the ZP1 variant results in a premature stop codon, leading to the truncated ZP1 protein. The ZP2 variant, which is situated in the N-terminus, triggers the degradation of a premature termination protein. Additionally, the patient with the ZP3 variant achieved clinical pregnancy following intracytoplasmic sperm injection treatment. CONCLUSIONS These findings expand the mutational spectrum of ZP1, ZP2 and ZP3, and provide new evidence for genetic diagnosis of female infertility. The targeted genetic diagnosis of ZP genes is recommended to choose appropriate fertilization methods and improve success rates of treatment with ART.
Collapse
|
27
|
Pujalte M, Camo M, Celton N, Attencourt C, Lefranc E, Jedraszak G, Scheffler F. A ZP1 gene mutation in a patient with empty follicle syndrome: A case report and literature review. Eur J Obstet Gynecol Reprod Biol 2023; 280:193-197. [PMID: 36529558 DOI: 10.1016/j.ejogrb.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Genuine empty follicle syndrome (gEFS) is a rare cause of female infertility; it is defined as the presence of cumulus-oocyte complexes (COCs) in follicular fluid but the absence of oocytes after denudation in an in vitro fertilization (IVF) programme. Mutations in one of the four genes encoding zona pellucida (ZP) proteins have been implicated in gEFS. The objectives of the present study were to explore the molecular basis of idiopathic infertility in a 35-year-old woman with gEFS (observed after four ovarian retrievals), compare her phenotype and genotype with those of other patients described in the literature, and discuss therapeutic approaches that could be adopted by reproductive health centres in this situation. Sequencing of the ZP genes revealed a new homozygous missense variant in ZP1: c.1097G > A;p.(Arg366Gln). The variant is located in the ZP-N domain, which is essential for ZP protein polymerization. An immunohistochemical assessment of an ovarian biopsy confirmed the absence of ZP1 protein. The novel variant appears to prevent ZP assembly, which would explain the absence of normal oocytes after denudation in our patient (and despite the retrieval of COCs). ZP gene sequencing should be considered for patients with a phenotype suggestive of gEFS. An etiological genetic diagnosis enables appropriate genetic counselling and a switch to an IVF programme (with a suitable denudation technique) or an oocyte donation programme.
Collapse
Affiliation(s)
- Mathilde Pujalte
- Department of Constitutional Genetics, Amiens University Hospital, Amiens, France
| | - Maïté Camo
- Reproductive Medicine and Biology Department, CECOS of Picardy, Amiens University Hospital, Amiens, France
| | - Noémie Celton
- Department of Constitutional Genetics, Amiens University Hospital, Amiens, France
| | - Christophe Attencourt
- Department of Anatomy and Pathological Cytology, Amiens University Hospital, Amiens, France
| | - Elodie Lefranc
- Reproductive Medicine and Biology Department, CECOS of Picardy, Amiens University Hospital, Amiens, France
| | - Guillaume Jedraszak
- Department of Constitutional Genetics, Amiens University Hospital, Amiens, France; EMATIM UR4666, CURS, Jules Verne University of Picardy, Amiens, France
| | - Florence Scheffler
- Reproductive Medicine and Biology Department, CECOS of Picardy, Amiens University Hospital, Amiens, France; Peritox UMR_I 01, CURS, Jules Verne University of Picardy, Amiens, France.
| |
Collapse
|
28
|
Translational Bioinformatics for Human Reproductive Biology Research: Examples, Opportunities and Challenges for a Future Reproductive Medicine. Int J Mol Sci 2022; 24:ijms24010004. [PMID: 36613446 PMCID: PMC9819745 DOI: 10.3390/ijms24010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Since 1978, with the first IVF (in vitro fertilization) baby birth in Manchester (England), more than eight million IVF babies have been born throughout the world, and many new techniques and discoveries have emerged in reproductive medicine. To summarize the modern technology and progress in reproductive medicine, all scientific papers related to reproductive medicine, especially papers related to reproductive translational medicine, were fully searched, manually curated and reviewed. Results indicated whether male reproductive medicine or female reproductive medicine all have made significant progress, and their markers have experienced the progress from karyotype analysis to single-cell omics. However, due to the lack of comprehensive databases, especially databases collecting risk exposures, disease markers and models, prevention drugs and effective treatment methods, the application of the latest precision medicine technologies and methods in reproductive medicine is limited.
Collapse
|
29
|
Zhou J, Wang M, Yang Q, Li D, Li Z, Hu J, Jin L, Zhu L. Can successful pregnancy be achieved and predicted from patients with identified ZP mutations? A literature review. Reprod Biol Endocrinol 2022; 20:166. [PMID: 36476320 PMCID: PMC9730648 DOI: 10.1186/s12958-022-01046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In mammals, normal fertilization depends on the structural and functional integrity of the zona pellucida (ZP), which is an extracellular matrix surrounding oocytes. Mutations in ZP may affect oogenesis, fertilization and early embryonic development, which may cause female infertility. METHODS A PubMed literature search using the keywords 'zona pellucida', 'mutation' and 'variant' limited to humans was performed, with the last research on June 30, 2022. The mutation types, clinical phenotypes and pregnancy outcomes were summarized and analyzed. The naive Bayes classifier was used to predict clinical pregnancy outcomes for patients with ZP mutations. RESULTS A total of 29 publications were included in the final analysis. Sixty-nine mutations of the ZP genes were reported in 87 patients with different clinical phenotypes, including empty follicle syndrome (EFS), ZP-free oocytes (ZFO), ZP-thin oocytes (ZTO), degenerated and immature oocytes. The phenotypes of patients were influenced by the types and location of the mutations. The most common effects of ZP mutations are protein truncation and dysfunction. Three patients with ZP1 mutations, two with ZP2 mutations, and three with ZP4 mutations had successful pregnancies through Intracytoplasmic sperm injection (ICSI) from ZFO or ZTO. A prediction model of pregnancy outcome in patients with ZP mutation was constructed to assess the chance of pregnancy with the area under the curve (AUC) of 0.898. The normalized confusion matrix showed the true positive rate was 1.00 and the true negative rate was 0.38. CONCLUSION Phenotypes in patients with ZP mutations might be associated with mutation sites or the degree of protein dysfunction. Successful pregnancy outcomes could be achieved in some patients with identified ZP mutations. Clinical pregnancy prediction model based on ZP mutations and clinical characteristics will be helpful to precisely evaluate pregnancy chance and provide references and guidance for the clinical treatment of relevant patients.
Collapse
Affiliation(s)
- Juepu Zhou
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| | - Meng Wang
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| | - Qiyu Yang
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| | - Dan Li
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| | - Zhou Li
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| | - Juan Hu
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| | - Lei Jin
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| | - Lixia Zhu
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| |
Collapse
|
30
|
Li W, Li Q, Xu X, Wang C, Hu K, Xu J. Novel mutations in TUBB8 and ZP3 cause human oocyte maturation arrest and female infertility. Eur J Obstet Gynecol Reprod Biol 2022; 279:132-139. [DOI: 10.1016/j.ejogrb.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 09/25/2022] [Accepted: 10/23/2022] [Indexed: 11/26/2022]
|
31
|
Arsalan M, Haider A, Cho SW, Kim YH, Park KR. Human Blastocyst Components Detection Using Multiscale Aggregation Semantic Segmentation Network for Embryonic Analysis. Biomedicines 2022; 10:biomedicines10071717. [PMID: 35885022 PMCID: PMC9313331 DOI: 10.3390/biomedicines10071717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Infertility is one of the most important health concerns worldwide. It is characterized by not being successful of pregnancy after some periods of periodic unprotected sexual intercourse. In vitro fertilization (IVF) is an assisted reproduction technique that efficiently addresses infertility. IVF replaces the actual mode of reproduction through a manual procedure wherein embryos are cultivated in a controlled laboratory environment until they reach the blastocyst stage. The standard IVF procedure includes the transfer of one or two blastocysts from several blastocysts that are grown in a controlled environment. The morphometric properties of blastocysts with their compartments such as trophectoderm (TE), zona pellucida (ZP), inner cell mass (ICM), and blastocoel (BL), are analyzed through manual microscopic analysis to predict viability. Deep learning has been extensively used for medical diagnosis and analysis and can be a powerful tool to automate the morphological analysis of human blastocysts. However, the existing approaches are inaccurate and require extensive preprocessing and expensive architectures. Thus, to cope with the automatic detection of blastocyst components, this study proposed a novel multiscale aggregation semantic segmentation network (MASS-Net) that combined four different scales via depth-wise concatenation. The extensive use of depthwise separable convolutions resulted in a decrease in the number of trainable parameters. Further, the innovative multiscale design provided rich spatial information of different resolutions, thereby achieving good segmentation performance without a very deep architecture. MASS-Net utilized 2.06 million trainable parameters and accurately detects TE, ZP, ICM, and BL without using preprocessing stages. Moreover, it can provide a separate binary mask for each blastocyst component simultaneously, and these masks provide the structure of each component for embryonic analysis. Further, the proposed MASS-Net was evaluated using publicly available human blastocyst (microscopic) imaging data. The experimental results revealed that it can effectively detect TE, ZP, ICM, and BL with mean Jaccard indices of 79.08, 84.69, 85.88%, and 89.28%, respectively, for embryological analysis, which was higher than those of the state-of-the-art methods.
Collapse
|
32
|
Liu Q, Chen X, Qiao J. Advances in studying human gametogenesis and embryonic development in China. Biol Reprod 2022; 107:12-26. [PMID: 35788258 DOI: 10.1093/biolre/ioac134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/21/2022] [Accepted: 06/20/2022] [Indexed: 11/12/2022] Open
Abstract
Reproductive medicine in China has developed rapidly since 1988 due to the support from the government and scientific exploration. However, the success rate of assisted reproduction technology (ART) is around 30-40% and many unknown "black boxes" in gametogenesis and embryo development are still present. With the development of single-cell and low-input sequencing technologies, the network of transcriptome and epigenetic regulation (DNA methylation, chromatin accessibility, and histone modifications) during the development of human primordial germ cells (PGCs), gametes and embryos has been investigated in depth. Furthermore, pre-implantation genetic testing (PGT) has also rapidly developed. In this review, we summarize and analyze China's outstanding progress in these fields.
Collapse
Affiliation(s)
- Qiang Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xi Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
33
|
Hou M, Zhu L, Jiang J, Liu Z, Li Z, Jia W, Hu J, Zhou X, Zhang D, Luo Y, Peng X, Xi Q, Jin L, Zhang X. Novel Heterozygous Mutations in ZP2 Cause Abnormal Zona Pellucida and Female Infertility. Reprod Sci 2022; 29:3047-3054. [PMID: 35595959 DOI: 10.1007/s43032-022-00958-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 04/23/2022] [Indexed: 11/24/2022]
Abstract
Zona pellucida (ZP) which is an extracellular matrix consisting of ZP1, ZP2, ZP3, and ZP4 plays a vital role in oocyte maturity, early embryonic development, and fertilization process. Any alterations of structure or function may lead to the abnormal formation of ZP and female infertility. Two novel heterozygous mutations c.1859G > A (p.Cys620Tyr) and c.1421 T > C (p.Leu474Pro) in ZP2 gene were recognized in three patients from two unrelated families with abnormal ZP and female infertility in this study. The expression constructs carrying wild-type ZP2 gene, c.1859G > A (p.Cys620Tyr) mutant ZP2 gene, and c.1421 T > C (p.Leu474Pro) mutant ZP2 gene were transfected into CHO cells respectively. There was a remarkable decrease in the expression of p.Cys620Tyr mutant protein with western blot. In addition, secretion of p.Leu474Pro mutant protein in the culture medium reduced markedly compared with that of wild-type ZP2 protein. Furthermore, co-immunoprecipitation showed that the p.Leu474Pro mutation affected the interaction between ZP2 and ZP3. Prediction of three-dimensional (3D) structure of the proteins showed that p.Cys620Tyr mutation altered the disulfide bond of ZP2 protein and may affect its function. These findings extend the ranges of mutations of ZP2 gene. Meanwhile, it will be helpful to the precise diagnosis of abnormal ZP.
Collapse
Affiliation(s)
- Meiqi Hou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Lixia Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinghang Jiang
- Reproductive Medicine Center, Jingmen No. 2 People's Hospital, Jingmen, Hubei, China
| | - Zhenxing Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zhou Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weimin Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Juan Hu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaopei Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Dazhi Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yalin Luo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xuejie Peng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Qingsong Xi
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xianqin Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
34
|
Novel mutations in ZP2 and ZP3 cause female infertility in three patients. J Assist Reprod Genet 2022; 39:1205-1215. [PMID: 35366744 PMCID: PMC9107549 DOI: 10.1007/s10815-022-02466-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 03/15/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE The aim of this study was to identify the disease-causing mutations found in three infertile female patients who were diagnosed with abnormal zona pellucida (ZP) and empty follicle syndrome (EFS). METHODS We performed whole-exome sequencing and Sanger sequencing to identify and verify the disease-causing mutations. Additionally, we performed Western blotting and mini-gene splicing assay to assess the effects of the mutations. RESULTS We identified two novel compound heterozygous mutations in the ZP2 gene, a patient with an abnormal ZP carrying a novel compound heterozygous mutation (c.1695-2A>G and c.1831G>T, p.V611F) and a patient with EFS carrying a novel compound heterozygous mutation (c.1695-2A>G and c.1924 C>T, p.R642*). Furthermore, we identified a patient with typical abnormal ZP carrying a novel heterozygous mutation (c.400G>T, p.A134S) in the ZP3 gene. The splice site mutation (c.1695-2A>G) can cause abnormal pre-mRNA splicing that inserts an extra sequence of 61 bp in the mRNA of ZP2, and the missense mutation (c.1831G>T) can cause a decrease of ZP2 protein in HEK293 cells. CONCLUSION We identified three novel mutations in the ZP2 gene and the ZP3 gene in three Chinese female patients with infertility. Our study expands the spectrum of ZP gene mutations and phenotypes and thus is beneficial in the genetic diagnosis of infertility in females.
Collapse
|
35
|
Ovarian Transcriptomic Analysis of Ninghai Indigenous Chickens at Different Egg-Laying Periods. Genes (Basel) 2022; 13:genes13040595. [PMID: 35456401 PMCID: PMC9027236 DOI: 10.3390/genes13040595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
Egg production is an essential indicator of poultry fertility. The ovary is a crucial organ involved in egg production; however, little is known about the key genes and signaling pathways involved in the whole egg-laying cycle of hens. In order to explore the mechanism of egg production at different stages of the egg-laying process, ovarian tissues from four chickens were randomly selected for transcriptome analysis at each of the three ages (145 d, 204 d, and 300 d in the early, peak, and late stages of egg laying). A total of 12 gene libraries were constructed, and a total of 8433 differential genes were identified from NH145d vs. NH204d, NH145d vs. NH300d and NH300d vs. NH204d (Ninghai 145-day-old, Ninghai 204-day-old, and Ninghai 300-day-old), with 1176, 1653 and 1868 up-regulated genes, and 621, 1955 and 1160 down-regulated genes, respectively. In each of the two comparison groups, 73, 1004, and 1030 differentially expressed genes were found to be co-expressed. We analyzed the differentially expressed genes and predicted nine genes involved in egg production regulation, including LRP8, BMP6, ZP4, COL4A1, VCAN, INHBA, LOX, PTX3, and IHH, as well as several essential egg production pathways, such as regulation adhesion molecules (CAMs), calcium signaling pathways, neuroactive ligand–receptor interaction, and cytokine–cytokine receptor interaction. Transcriptional analysis of the chicken ovary during different phases of egg-lay will provide a useful molecular basis for study of the development of the egg-laying ovary.
Collapse
|
36
|
Huo M, Zhang Y, Shi S, Shi H, Liu Y, Zhang L, Wang Y, Niu W. Gene Spectrum and Clinical Traits of Nine Patients With Oocyte Maturation Arrest. Front Genet 2022; 13:772143. [PMID: 35140748 PMCID: PMC8819080 DOI: 10.3389/fgene.2022.772143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Oocyte maturation arrest is a disease that produces immature oocytes and cannot be mature after culturing in vitro, which leads to female primary infertility. We aimed to summarize nine representative patients in our center to retrospectively analyze the genetic variants and clinical characteristics of oocyte maturation arrest. Methods: This study examined and analyzed nine families with oocyte maturation arrest. Whole-exome sequencing (WES) of the probands was performed to detect the pathogenic variants. Sanger sequencing verified the WES findings in patients and available parents. ExAC database was used to search the variant frequency. The variants were assessed by pathogenicity and conservational property prediction analysis and according to the American College of Medical Genetics and Genomics (ACMG). Phenotypes of oocytes were evaluated by a light microscopy, and the phenotype-genotype correlation was also evaluated. Results: Nine pathogenic variants in five genes were detected in nine patients, of which three were novel variants, including PATL2 [c.1374A > G (p. Ile458Met)] and [1289-1291del TCC (p. Leu430del)] and ZP2 [c.1543C > T (p. Pro515Ser)]. Nine variants were predicted to be pathogenic, resulting in different types of oocyte maturation arrest and clinical phenotypes. Conclusion: Three novel pathogenic variants were identified, enabling the expansion of the gene variant spectrum. The related pathogenic mutations of the PATL2, TUBB8, and ZP1∼3 genes were highly suggestive of being causative of oocyte maturation arrest.
Collapse
Affiliation(s)
- Mingzhu Huo
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yile Zhang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Senlin Shi
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hao Shi
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yidong Liu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lingyun Zhang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanchi Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenbin Niu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Wenbin Niu,
| |
Collapse
|
37
|
Shen Y, Guo J, Zhang X, Wang X, Zhu S, Chen D, Xiong W, Lu G, Liu X, Dai C, Gong F, Wang Y, Lin G, Wang Z, Xu W. OUP accepted manuscript. Hum Reprod 2022; 37:859-872. [PMID: 35211729 DOI: 10.1093/humrep/deac026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 01/11/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ying Shen
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jing Guo
- Clinical Research Center for Reproduction and Genetics, Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Xueguang Zhang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiang Wang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shaomi Zhu
- The Reproductive & Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Daijuan Chen
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wei Xiong
- The Joint Laboratory for Reproductive Medicine of SCU-CUHK, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Guangxiu Lu
- Clinical Research Center for Reproduction and Genetics, Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Central South University, Changsha, China
| | - Xiaojun Liu
- Medriv Academy of Genetics and Reproduction, Peking, China
| | - Can Dai
- Clinical Research Center for Reproduction and Genetics, Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Fei Gong
- Clinical Research Center for Reproduction and Genetics, Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yan Wang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics, Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- Labortatory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem and Reproductive Engineering, Central South University, Changsha, China
| | - Zhenbo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenming Xu
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- The Joint Laboratory for Reproductive Medicine of SCU-CUHK, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Pulawska K, Ponikwicka-Tyszko D, Lebiedzinska W, Guo P, Bernaczyk P, Pilaszewicz-Puza A, Li X, Chrusciel M, Lupu O, Leskinen S, Makela JA, Toppari J, Wolczynski S, Coelingh Bennink HJT, Huhtaniemi I, Rahman NA. Novel expression of zona pellucida 3 protein in normal testis; potential functional implications. Mol Cell Endocrinol 2022; 539:111502. [PMID: 34736966 DOI: 10.1016/j.mce.2021.111502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022]
Abstract
The expression of the zona pellucida glycoprotein 3 (ZP3), originally thought to be specific for oocytes, was recently extended to ovarian, prostate, colorectal and lung cancers. Earlier successful ZP3 immunization of a transgenic mouse model carrying a ZP3 positive ovarian tumor emphasized the suitability of ZP3 for cancer immunotherapy. This study was carried out to determine whether any other normal tissues besides the ovary in healthy human and mouse tissues may express ZP3, considered important to exclude off-target effects of ZP3 cancer immunotherapy. Strong ZP3 expression was found in normal human and mouse testis. ZP3 protein and mRNA transcripts were localized in spermatogonia, spermatocytes and round and elongated spermatids of both human and mouse testis, as well as in a mouse spermatogonial cell line, but absent in testicular Sertoli, Leydig, spermatogonial stem and progenitor cells. All other normal human and mouse tissues were ZP3 negative. This surprising testicular ZP3 expression has implications for the development of ZP3 cancer immunotherapies, and it also alludes to the potential of using ZP3 as a target for the development of a male immunocontraceptive.
Collapse
Affiliation(s)
- Kamila Pulawska
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Donata Ponikwicka-Tyszko
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Weronika Lebiedzinska
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | - Peilan Guo
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Piotr Bernaczyk
- Department of Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | | | - Xiangdong Li
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland; State Key Laboratory of the Agro-Biotechnology, China Agricultural University, Beijing, China
| | | | - Oana Lupu
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | - Sini Leskinen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Jorma Toppari
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Slawomir Wolczynski
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | | | - Ilpo Huhtaniemi
- Institute of Biomedicine, University of Turku, Turku, Finland; Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Nafis A Rahman
- Institute of Biomedicine, University of Turku, Turku, Finland; Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
39
|
Rajput N, Gahlay GK. Identification and in silico Characterization of Deleterious Single Nucleotide Variations in Human ZP2 Gene. Front Cell Dev Biol 2021; 9:763166. [PMID: 34869353 PMCID: PMC8635754 DOI: 10.3389/fcell.2021.763166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
ZP2, an important component of the zona matrix, surrounds mammalian oocytes and facilitates fertilization. Recently, some studies have documented the association of mutations in genes encoding the zona matrix with the infertile status of human females. Single nucleotide polymorphisms are the most common type of genetic variations observed in a population and as per the dbSNP database, around 5,152 SNPs are reported to exist in the human ZP2 (hZP2) gene. Although a wide range of computational tools are publicly available, yet no computational studies have been done to date to identify and analyze structural and functional effects of deleterious SNPs on hZP2. In this study, we conducted a comprehensive in silico analysis of all the SNPs found in hZP2. Six different computational tools including SIFT and PolyPhen-2 predicted 18 common nsSNPs as deleterious of which 12 were predicted to most likely affect the structure/functional properties. These were either present in the N-term region crucial for sperm-zona interaction or in the zona domain. 31 additional SNPs in both coding and non-coding regions were also identified. Interestingly, some of these SNPs have been found to be present in infertile females in some recent studies.
Collapse
Affiliation(s)
- Neha Rajput
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, INDIA
| | - Gagandeep Kaur Gahlay
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, INDIA
| |
Collapse
|
40
|
Zhang Z, Guo Q, Jia L, Zhou C, He S, Fang C, Zhang M, Sun P, Zeng Z, Wang M, Wang D, Liang X. A novel gene mutation in ZP3 loop region identified in patients with empty follicle syndrome. Hum Mutat 2021; 43:180-188. [PMID: 34816529 DOI: 10.1002/humu.24297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/23/2021] [Accepted: 11/19/2021] [Indexed: 11/06/2022]
Abstract
The zona pellucida (ZP) is an extracellular matrix surrounding mammalian oocytes. It is composed of three to four glycoproteins, ZP1-ZP4. ZP3 is essential for sperm binding and zona matrix formation. Here, we identified a novel heterozygous mutation (NM_001110354.2:c.502_504delGAG) of ZP3, occurring in a pair of sisters with empty follicle syndrome (EFS). A mouse model with the same mutation was established using the CRISPR/Cas9 gene-editing system. As in the above family, F0 -, F1 -, and F2 -generation female mice with the mutation were all infertile. Further analysis using the Chinese hamster ovary cells (CHO-K1) also showed that this mutation weakens the strength of binding between ZP3 and ZP2, which hinders the assembly of ZP and results in unstable ZP formation. Immunohistochemical analysis using ovarian serial sections in both humans and mice demonstrated that the ZP of preantral follicles was thinner than normal control, or even absent. Our study presents a new gene mutation that leads to EFS, providing new evidence and support for the genetic diagnosis of infertile individuals with similar phenotypes. Our results also show that the loop of ZP3 is not only a linker between two amphiphilic helices but may play a critical role in specifying the correct heterodimerization partner.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Department of Gynaecology and Obstetrics, Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qi Guo
- Department of Gynaecology and Obstetrics, Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lei Jia
- Department of Gynaecology and Obstetrics, Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuanchuan Zhou
- Department of Gynaecology and Obstetrics, Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shujing He
- Department of Gynaecology and Obstetrics, Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cong Fang
- Department of Gynaecology and Obstetrics, Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minfang Zhang
- Department of Gynaecology and Obstetrics, Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng Sun
- Department of Gynaecology and Obstetrics, Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhi Zeng
- Department of Gynaecology and Obstetrics, Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meng Wang
- Department of Gynaecology and Obstetrics, Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dandan Wang
- Department of Gynaecology and Obstetrics, Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Liang
- Department of Gynaecology and Obstetrics, Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
41
|
Jin J, Tong X, Zhang YL, Yang W, Ma Y, Ren P, Zhou F, Zhang S. Novel WEE2 compound heterozygous mutations identified in patients with fertilization failure or poor fertilization. J Assist Reprod Genet 2021; 38:2861-2869. [PMID: 34476630 PMCID: PMC8608989 DOI: 10.1007/s10815-021-02285-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/20/2021] [Indexed: 12/04/2022] Open
Abstract
PURPOSE To study associations between novel WEE2 mutations and patients with fertilization failure or poor fertilization. METHODS Thirty-one Chinese patients who underwent treatment with assisted reproductive technology and suffered from repeated (at least two times) total fertilization failure (TFF) or a low fertilization rate were enrolled. Genomic DNA was extracted from patients for whole-exome sequencing. Suspicious mutations were validated by Sanger sequencing. WEE2 protein levels in oocytes from affected patients were examined by immunofluorescence. Disruptive effects of mutations on WEE2 protein stability, subcellular localization, and kinase function were analyzed through western blotting, immunofluorescence, and flow cytometry in HeLa cells. RESULTS Three of thirty-one (9.6%) enrolled patients had six compound heterozygous mutations of the WEE2 gene, and three of them were reported here for the first time (c.115_116insT, c.756_758delTGA, and c.C1459T). Oocytes from affected patients showed decreased WEE2 immunofluorescence signals. In vitro experiments showed that the mutant WEE2 gene caused reduced WEE2 protein levels or cellular compartment translocation in HeLa cells, leading to decreased levels of the phosphorylated Cdc2 protein. Compared with the wild-type WEE2 protein, the mutant WEE2 proteins were also found to have different effects on the cell cycle. CONCLUSION Three novel compound heterozygous WEE2 variants were found in patients with pronucleus formation failure. This study provides new evidence that WEE2 mutations result in loss of function, which could result in fertilization failure.
Collapse
Affiliation(s)
- Jiamin Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Xiaomei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Yin-Li Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Weijie Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Yerong Ma
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Peipei Ren
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Feng Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China.
| |
Collapse
|
42
|
Maddirevula S, Coskun S, Al-Qahtani M, Aboyousef O, Alhassan S, Aldeery M, Alkuraya FS. ASTL is mutated in female infertility. Hum Genet 2021; 141:49-54. [PMID: 34704130 DOI: 10.1007/s00439-021-02388-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/14/2021] [Indexed: 11/25/2022]
Abstract
Female infertility is a relatively common phenotype with a growing number of single gene causes although these account for only a minority of cases. Here, we report a consanguineous family in which adult females who are homozygous for a truncating variant in ASTL display markedly reduced fertility in a pattern strikingly similar to Astl-/- female mice. ASTL encodes ovastacin, which is known to trigger zona pellucida hardening (ZPH) as part of the cortical reaction upon fertilization. ZPH is required for normal early embryonic development and its absence can be caused by pathogenic variants in other zona pellucida proteins that result in a similar infertility phenotype in humans and mouse. This is the first report of ASTL-related infertility in humans and suggests that the inclusion of ASTL in female infertility gene panels is warranted.
Collapse
Affiliation(s)
- Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Serdar Coskun
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center and College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mashael Al-Qahtani
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Omar Aboyousef
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Saad Alhassan
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Meshael Aldeery
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia.
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia.
| |
Collapse
|
43
|
Siristatidis C, Tzanakaki D, Simopoulou M, Vaitsopoulou C, Tsioulou P, Stavros S, Papapanou M, Drakakis P, Bakas P, Vlahos N. Empty Zona Pellucida Only Case: A Critical Review of the Literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179409. [PMID: 34501995 PMCID: PMC8430770 DOI: 10.3390/ijerph18179409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/21/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022]
Abstract
The presence of empty zona pellucida (EZP) in oocytes following oocyte retrieval (OR) during an in vitro fertilization (IVF) cycle presents a major clinical and laboratory challenge in assisted reproduction. It has been attributed to several factors such as the ovarian stimulation protocol employed, the damaging of the follicles during oocyte retrieval (OR) mainly through the high aspiration pressure, during the denudation technique, and the degeneration of oolemma within the zona pellucida (ZP) through apoptosis. The role of ZP is pivotal from the early stages of follicular development up to the preimplantation embryo development and embryo hatching. Polymorphisms or alterations on the genes that encode ZP proteins may contribute to EZP. We present a critical review of the published literature hitherto on EZP and available options when encountered with the phenomenon of EZP. Concerning the former, we found that there is rare data on this phenomenon that merits documentation. The latter includes technical, genetic, and pathophysiological perspectives, along with specific treatment options. In conclusion, we identify the lack of a definitive management proposal for couples presenting with this phenomenon, we underline the need for an algorithm, and indicate the questions raised that point towards our goal for a strategy when addressing a previous finding of EZP.
Collapse
Affiliation(s)
- Charalampos Siristatidis
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (D.T.); (M.S.); (C.V.); (P.T.); (P.B.); (N.V.)
- Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
- Correspondence: or ; Tel.: +0030-6932294994
| | - Despoina Tzanakaki
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (D.T.); (M.S.); (C.V.); (P.T.); (P.B.); (N.V.)
| | - Mara Simopoulou
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (D.T.); (M.S.); (C.V.); (P.T.); (P.B.); (N.V.)
| | - Christina Vaitsopoulou
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (D.T.); (M.S.); (C.V.); (P.T.); (P.B.); (N.V.)
| | - Petroula Tsioulou
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (D.T.); (M.S.); (C.V.); (P.T.); (P.B.); (N.V.)
| | - Sofoklis Stavros
- Molecular Biology of Reproduction Unit and Recurrent Abortions Unit, Assisted Reproduction Unit, First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (S.S.); (P.D.)
| | - Michail Papapanou
- Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Peter Drakakis
- Molecular Biology of Reproduction Unit and Recurrent Abortions Unit, Assisted Reproduction Unit, First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (S.S.); (P.D.)
| | - Panagiotis Bakas
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (D.T.); (M.S.); (C.V.); (P.T.); (P.B.); (N.V.)
- Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Nikolaos Vlahos
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (D.T.); (M.S.); (C.V.); (P.T.); (P.B.); (N.V.)
- Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| |
Collapse
|
44
|
Zona Pellucida Genes and Proteins: Essential Players in Mammalian Oogenesis and Fertility. Genes (Basel) 2021; 12:genes12081266. [PMID: 34440440 PMCID: PMC8391237 DOI: 10.3390/genes12081266] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022] Open
Abstract
All mammalian oocytes and eggs are surrounded by a relatively thick extracellular matrix (ECM), the zona pellucida (ZP), that plays vital roles during oogenesis, fertilization, and preimplantation development. Unlike ECM surrounding somatic cells, the ZP is composed of only a few glycosylated proteins, ZP1–4, that are unique to oocytes and eggs. ZP1–4 have a large region of polypeptide, the ZP domain (ZPD), consisting of two subdomains, ZP-N and ZP-C, separated by a short linker region, that plays an essential role in polymerization of nascent ZP proteins into crosslinked fibrils. Both subdomains adopt immunoglobulin (Ig)-like folds for their 3-dimensional structure. Mouse and human ZP genes are encoded by single-copy genes located on different chromosomes and are highly expressed in the ovary by growing oocytes during late stages of oogenesis. Genes encoding ZP proteins are conserved among mammals, and their expression is regulated by cis-acting sequences located close to the transcription start-site and by the same/similar trans-acting factors. Nascent ZP proteins are synthesized, packaged into vesicles, secreted into the extracellular space, and assembled into long, crosslinked fibrils that have a structural repeat, a ZP2-ZP3 dimer, and constitute the ZP matrix. Fibrils are oriented differently with respect to the oolemma in the inner and outer layers of the ZP. Sequence elements in the ZPD and the carboxy-terminal propeptide of ZP1–4 regulate secretion and assembly of nascent ZP proteins. The presence of both ZP2 and ZP3 is required to assemble ZP fibrils and ZP1 and ZP4 are used to crosslink the fibrils. Inactivation of mouse ZP genes by gene targeting has a detrimental effect on ZP formation around growing oocytes and female fertility. Gene sequence variations in human ZP genes due to point, missense, or frameshift mutations also have a detrimental effect on ZP formation and female fertility. The latter mutations provide additional support for the role of ZPD subdomains and other regions of ZP polypeptide in polymerization of human ZP proteins into fibrils and matrix.
Collapse
|
45
|
Sang Q, Zhou Z, Mu J, Wang L. Genetic factors as potential molecular markers of human oocyte and embryo quality. J Assist Reprod Genet 2021; 38:993-1002. [PMID: 33895934 PMCID: PMC8190202 DOI: 10.1007/s10815-021-02196-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/15/2021] [Indexed: 11/24/2022] Open
Abstract
Successful human reproduction requires gamete maturation, fertilization, and early embryonic development. Human oocyte maturation includes nuclear and cytoplasmic maturation, and abnormalities in the process will lead to infertility and recurrent failure of IVF/ICSI attempts. In addition, the quality of oocytes/embryos in the clinic can only be determined by morphological markers, and there is currently a lack of molecular markers for determining oocyte quality. As the number of patients undergoing IVF/ICSI has increased, many patients have been identified with recurrent IVF/ICSI failure. However, the genetic basis behind this phenotype remains largely unknown. In recent years, a few mutant genes have been identified by us and others, which provide potential molecular markers for determining the quality of oocytes/embryos. In this review, we outline the genetic determinants of abnormalities in the processes of oocyte maturation, fertilization, and early embryonic development. Currently, 16 genes (PATL2, TUBB8, TRIP13, ZP1, ZP2, ZP3, PANX1, TLE6, WEE2, CDC20, BTG4, PADI6, NLRP2, NLRP5, KHDC3L, and REC114) have been reported to be the causes of oocyte maturation arrest, fertilization failure, embryonic arrest, and preimplantation embryonic lethality. These abnormalities mainly have Mendelian inheritance patterns, including both dominant inheritance and recessive inheritance, although in some cases de novo mutations have also appeared. In this review, we will introduce the effects of each gene in the specific processes of human early reproduction and will summarize all known variants in these genes and their corresponding phenotypes. Variants in some genes have specific effects on certain steps in the early human reproductive processes, while other variants result in a spectrum of phenotypes. These variants and genetic markers will lay the foundation for individualized genetic counseling and potential treatments for patients and will be the target for precision treatments in reproductive medicine.
Collapse
Affiliation(s)
- Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| | - Zhou Zhou
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Jian Mu
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
46
|
New Insights into the Mammalian Egg Zona Pellucida. Int J Mol Sci 2021; 22:ijms22063276. [PMID: 33806989 PMCID: PMC8005149 DOI: 10.3390/ijms22063276] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/19/2021] [Indexed: 12/23/2022] Open
Abstract
Mammalian oocytes are surrounded by an extracellular coat called the zona pellucida (ZP), which, from an evolutionary point of view, is the most ancient of the coats that envelope vertebrate oocytes and conceptuses. This matrix separates the oocyte from cumulus cells and is responsible for species-specific recognition between gametes, preventing polyspermy and protecting the preimplantation embryo. The ZP is a dynamic structure that shows different properties before and after fertilization. Until very recently, mammalian ZP was believed to be composed of only three glycoproteins, ZP1, ZP2 and ZP3, as first described in mouse. However, studies have revealed that this composition is not necessarily applicable to other mammals. Such differences can be explained by an analysis of the molecular evolution of the ZP gene family, during which ZP genes have suffered pseudogenization and duplication events that have resulted in differing models of ZP protein composition. The many discoveries made in recent years related to ZP composition and evolution suggest that a compilation would be useful. Moreover, this review analyses ZP biosynthesis, the role of each ZP protein in different mammalian species and how these proteins may interact among themselves and with other proteins present in the oviductal lumen.
Collapse
|
47
|
Zeng MH, Wang Y, Huang HL, Quan RP, Yang JT, Guo D, Sun Y, Lv C, Li TY, Wang L, Tan HJ, Long PP, Deng HW, Xiao HM. Zp4 is completely dispensable for fertility in female rats†. Biol Reprod 2021; 104:1282-1291. [PMID: 33709118 DOI: 10.1093/biolre/ioab047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 11/13/2020] [Accepted: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
Zona pellucida (ZP), which is composed of at most four extracellular glycoproteins (ZP1, ZP2, ZP3, and ZP4) in mammals, shelters the oocytes and is vital in female fertility. Several studies have identified the indispensable roles of ZP1-3 in maintaining normal female fertility. However, the understanding of ZP4 is still very poor because only one study on ZP4-associated infertility performed in rabbits has been reported up to date. Here we investigated the function of mammalian Zp4 by creating a knockout (KO) rat strain (Zp4-/- rat) using CRISPR-Cas9-mediated DNA-editing method. The influence of Zp4 KO on ZP morphology and some pivotal processes of reproduction, including oogenesis, ovulation, fertilization, and pup production, were studied using periodic acid-Schiff's staining, superovulation, in vitro fertilization, and natural mating. The ZP morphology in Zp4-/- rats was normal, and none of these pivotal processes was affected. This study renewed the knowledge of mammalian Zp4 by suggesting that Zp4 was completely dispensable for female fertility.
Collapse
Affiliation(s)
- Ming-Hua Zeng
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Center of Reproductive Health,School of Basic Medical Science, Central South University, Changsha, China
| | - Yan Wang
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Center of Reproductive Health,School of Basic Medical Science, Central South University, Changsha, China
| | - Hua-Lin Huang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ru-Ping Quan
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Center of Reproductive Health,School of Basic Medical Science, Central South University, Changsha, China
| | - Jun-Ting Yang
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Center of Reproductive Health,School of Basic Medical Science, Central South University, Changsha, China
| | - Dan Guo
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Center of Reproductive Health,School of Basic Medical Science, Central South University, Changsha, China
| | - Ying Sun
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Center of Reproductive Health,School of Basic Medical Science, Central South University, Changsha, China
| | - Chao Lv
- Changsha Reproductive Medicine Hospital, Changsha, China
| | - Tian-Ying Li
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Center of Reproductive Health,School of Basic Medical Science, Central South University, Changsha, China
| | - Le Wang
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Center of Reproductive Health,School of Basic Medical Science, Central South University, Changsha, China
| | - Hang-Jin Tan
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Center of Reproductive Health,School of Basic Medical Science, Central South University, Changsha, China
| | - Pan-Pan Long
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Center of Reproductive Health,School of Basic Medical Science, Central South University, Changsha, China
| | - Hong-Wen Deng
- Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA.,Center of System Biology and Data Information, School of Basic Medical Science, Central South University, Changsha, China
| | - Hong-Mei Xiao
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Center of Reproductive Health,School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
48
|
Wang J, Yang X, Sun X, Ma L, Yin Y, He G, Zhang Y, Zhou J, Cai L, Liu J, Ma X. A novel homozygous nonsense mutation in zona pellucida 1 (ZP1) causes human female empty follicle syndrome. J Assist Reprod Genet 2021; 38:1459-1468. [PMID: 33665726 DOI: 10.1007/s10815-021-02136-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/25/2021] [Indexed: 12/26/2022] Open
Abstract
PURPOSE To identify a pathogenic gene mutation in a female infertility proband characterized by empty follicle syndrome (EFS) and explore the genetic cause of EFS. METHODS Whole exome sequencing (WES) was performed to identify the candidate pathogenic mutation. Sanger sequencing was used to validate the mutation in family members. The pathogenicity of the identified variant and its possible effects on the protein were evaluated with in silico tools. Immunofluorescence staining was used to study the possible mechanism of the mutation on affected oocyte. RESULTS We identified a family with a novel homozygous nonsense mutation in zona pellucida 1 (ZP1) (c.199G > T [p.Glu67Ter]). Based on bioinformatics analysis, the mutation was predicted to be pathogenic. This variant generates a premature stop codon in exon 2 at the 199th nucleotide, and was inferred to result in a truncated ZP1 protein of 67 amino acids at the ZP-N1 domain. An in vitro study showed that the oocyte of the EFS proband was degenerated and the zona pellucida was absent. Additionally, the mutant ZP1 proteins were localized in the cytoplasm of the degenerated oocyte but not at the surface. CONCLUSIONS The novel mutation in ZP1 is a genetic cause of female infertility characterized by EFS. Our finding expands the genetic spectrum for EFS and will help justify the EFS diagnosis in patients.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaoyu Yang
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xueping Sun
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Long Ma
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yaoxue Yin
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Guoxiang He
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yuan Zhang
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jie Zhou
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lingbo Cai
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiang Ma
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
49
|
A novel homozygous variant in ZP2 causes abnormal zona pellucida formation and female infertility. J Assist Reprod Genet 2021; 38:1239-1245. [PMID: 33604805 DOI: 10.1007/s10815-021-02107-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/08/2021] [Indexed: 02/02/2023] Open
Abstract
PURPOSE We aimed to identify pathogenic variants in two infertile sisters in a family with a thin zona pellucida (ZP) phenotype. METHODS Whole-exome sequencing was performed in the two affected sisters, and Sanger sequencing was used to confirm the identified variants. The effects of the identified variant were further investigated in mouse oocytes and Chinese hamster ovary (CHO) cells. RESULTS We identified a novel homozygous frameshift variant in ZP2 (c.1235_1236del, p.Q412Rfs*17) in the two affected individuals. Immunoblotting demonstrated that the variant produced a truncated ZP2 protein that was expressed at low levels in CHO cells. Immunofluorescence in mouse oocytes confirmed the decreased protein level of mutant ZP2, although the subcellular localization was not affected. In addition, immunoprecipitation showed that the pathogenic variant reduced the interaction between ZP2 and ZP3. CONCLUSION This study identified a novel pathogenic variant in ZP2 that produces a truncated ZP2 protein. The variant might disrupt the assembly of ZP2-ZP3 dimers, thus resulting in a thin ZP and female infertility.
Collapse
|
50
|
Gupta SK. Human Zona Pellucida Glycoproteins: Binding Characteristics With Human Spermatozoa and Induction of Acrosome Reaction. Front Cell Dev Biol 2021; 9:619868. [PMID: 33681199 PMCID: PMC7928326 DOI: 10.3389/fcell.2021.619868] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/21/2021] [Indexed: 01/11/2023] Open
Abstract
Human zona pellucida (ZP) matrix is composed of four glycoproteins designated as ZP glycoprotein -1 (ZP1), -2 (ZP2), -3 (ZP3), and -4 (ZP4). Mutations in the genes encoding human ZP glycoproteins are one of the causative factors leading to abnormal ZP matrix and infertility in women. Relevance of the human ZP glycoproteins in 'sperm-oocyte' binding has been delineated by using either transgenic animal models expressing human zona proteins or purified native/recombinant human zona proteins. Studies based on the purified native/recombinant human zona proteins revealed that ZP1, ZP3, and ZP4 primarily bind to the capacitated acrosome-intact human spermatozoa whereas ZP2 binds to acrosome-reacted spermatozoa. On the contrary, human spermatozoa binds to the eggs obtained from transgenic mouse lines expressing human ZP2 but not to those expressing human ZP1, ZP3, and ZP4 suggesting that ZP2 has an important role in human 'sperm-oocyte' binding. Further studies using transgenic mouse lines showed that the N-terminus of human ZP2 mediate the taxon-specific human sperm-oocyte binding. Both glycans and protein-protein interactions have a role in human gamete interaction. Further studies have revealed that the purified native/recombinant human ZP1, ZP3, and ZP4 are competent to induce acrosome reaction. Human sperm binds to the mouse transgenic eggs expressing human ZP1-4 instead of mouse ZP1-3 proteins, penetrated the ZP matrix and accumulated in the perivitelline space, which were acrosome-reacted suggesting that human ZP2 in transgenic mouse model also induce acrosome reaction. In humans N-linked glycosylation of zona proteins have been shown to play an important role in induction of the acrosome reaction. Hence in humans, based on studies using transgenic mouse model as well as purified native/recombinant zona proteins, it is likely that more than one zona protein is involved in the 'sperm-oocyte' binding and induction of the acrosome reaction.
Collapse
Affiliation(s)
- Satish Kumar Gupta
- Reproductive Cell Biology Lab, National Institute of Immunology, New Delhi, India
| |
Collapse
|