1
|
Tavoulari S, Lacabanne D, Pereira GC, Thangaratnarajah C, King MS, He J, Chowdhury SR, Tilokani L, Palmer SM, Prudent J, Walker JE, Kunji ERS. Distinct roles for the domains of the mitochondrial aspartate/glutamate carrier citrin in organellar localization and substrate transport. Mol Metab 2024; 90:102047. [PMID: 39419476 PMCID: PMC11539162 DOI: 10.1016/j.molmet.2024.102047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVE Citrin, the mitochondrial aspartate/glutamate carrier isoform 2 (AGC2), is structurally and mechanistically the most complex SLC25 family member, because it consists of three domains and forms a homo-dimer. Each protomer has an N-terminal calcium-binding domain with EF-hands, followed by a substrate-transporting carrier domain and a C-terminal domain with an amphipathic helix. The absence or dysfunction of citrin leads to citrin deficiency, a highly prevalent pan-ethnic mitochondrial disease. Here, we aim to understand the role of different citrin domains and how they contribute to pathogenic mechanisms in citrin deficiency. METHODS We have employed structural modeling and functional reconstitution of purified proteins in proteoliposomes to assess the transport activity and calcium regulation of wild-type citrin and pathogenic variants associated with citrin deficiency. We have also developed a double knockout of citrin and aralar (AGC1), the two paralogs of the mitochondrial aspartate/glutamate carrier, in HAP1 cells to perform mitochondrial imaging and to investigate mitochondrial localisation. RESULTS Using 33 pathogenic variants of citrin we clarify determinants of subcellular localization and transport mechanism. We identify crucial elements of the carrier domain that are required for transport, including those involved in substrate binding, network formation and dynamics. We show that the N-terminal domain is not involved in calcium regulation of transport, as previously thought, but when mutated causes a mitochondrial import defect. CONCLUSIONS Our work introduces a new role for the N-terminal domain of citrin and demonstrates that dysfunction of the different domains contributes to distinct pathogenic mechanisms in citrin deficiency.
Collapse
Affiliation(s)
- Sotiria Tavoulari
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom.
| | - Denis Lacabanne
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Gonçalo C Pereira
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Chancievan Thangaratnarajah
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Martin S King
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Jiuya He
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Suvagata R Chowdhury
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Lisa Tilokani
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Shane M Palmer
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - John E Walker
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Edmund R S Kunji
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom.
| |
Collapse
|
2
|
Kido J, Makris G, Santra S, Häberle J. Clinical landscape of citrin deficiency: A global perspective on a multifaceted condition. J Inherit Metab Dis 2024; 47:1144-1156. [PMID: 38503330 PMCID: PMC11586594 DOI: 10.1002/jimd.12722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 03/21/2024]
Abstract
Citrin deficiency is an autosomal recessive disorder caused by a defect of citrin resulting from mutations in SLC25A13. The clinical manifestation is very variable and comprises three types: neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD: OMIM 605814), post-NICCD including failure to thrive and dyslipidemia caused by citrin deficiency, and adult-onset type II citrullinemia (CTLN2: OMIM 603471). Frequently, NICCD can run with a mild clinical course and manifestations may resolve in the post-NICCD. However, a subset of patients may develop CTLN2 when they become more than 18 years old, and this condition is potentially life-threatening. Since a combination of diet with low-carbohydrate and high-fat content supplemented with medium-chain triglycerides is expected to ameliorate most manifestations and to prevent the progression to CTLN2, early detection and intervention are important and may improve long-term outcome in patients. Moreover, infusion of high sugar solution and/or glycerol may be life-threatening in patients with citrin deficiency, particularly CTLN2. The disease is highly prevalent in East Asian countries but is more and more recognized as a global entity. Since newborn screening for citrin deficiency has only been introduced in a few countries, the diagnosis still mainly relies on clinical suspicion followed by genetic testing or selective metabolic screening. This paper aims at describing (1) the different stages of the disease focusing on clinical aspects; (2) the current published clinical situation in East Asia, Europe, and North America; (3) current efforts in increasing awareness by establishing management guidelines and patient registries, hereby illustrating the ongoing development of a global network for this rare disease.
Collapse
Affiliation(s)
- Jun Kido
- University Children's Hospital Zurich and Children's Research CentreZurichSwitzerland
- Department of Pediatrics, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
- Department of PediatricsKumamoto University HospitalKumamotoJapan
| | - Georgios Makris
- University Children's Hospital Zurich and Children's Research CentreZurichSwitzerland
| | - Saikat Santra
- Department of Clinical Inherited Metabolic DisordersBirmingham Children's HospitalBirminghamUK
| | - Johannes Häberle
- University Children's Hospital Zurich and Children's Research CentreZurichSwitzerland
| |
Collapse
|
3
|
Hayasaka K. Pathogenesis and Management of Citrin Deficiency. Intern Med 2024; 63:1977-1986. [PMID: 37952953 PMCID: PMC11309867 DOI: 10.2169/internalmedicine.2595-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/22/2023] [Indexed: 11/14/2023] Open
Abstract
Citrin deficiency (CD) is a hereditary disorder caused by SLC25A13 mutations that manifests as neonatal intrahepatic cholestasis caused by CD (NICCD), failure to thrive and dyslipidemia caused by CD (FTTDCD), and adult-onset type 2 citrullinemia (CTLN2). Citrin, an aspartate-glutamate carrier primarily expressed in the liver, is a component of the malate-aspartate shuttle, which is essential for glycolysis. Citrin-deficient hepatocytes have primary defects in glycolysis and de novo lipogenesis and exhibit secondarily downregulated PPARα, leading to impaired β-oxidation. They are unable to utilize glucose and free fatty acids as energy sources, resulting in energy deficiencies. Medium-chain triglyceride (MCT) supplements are effective for treating CD by providing energy to hepatocytes, increasing lipogenesis, and activating the malate-citrate shuttle. However, patients with CD often exhibit growth impairment and irreversible brain and/or liver damage. To improve the quality of life and prevent irreversible damage, MCT supplementation with a diet containing minimal carbohydrates is recommended promptly after the diagnosis.
Collapse
Affiliation(s)
- Kiyoshi Hayasaka
- Department of Pediatrics, Yamagata University School of Medicine, Japan
| |
Collapse
|
4
|
Baskar D, Lakshmi V, Nalini A, Arunachal G, Bhat MD, Nanjaiah ND, Yadav R, Chowdary R, Raja P, Mounika A, Sharath PS, Vengalil S. Adult Onset Episodic Encephalopathy Due to Citrin Deficiency-A Case Report. Ann Indian Acad Neurol 2023; 26:553-555. [PMID: 37970284 PMCID: PMC10645226 DOI: 10.4103/aian.aian_175_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/18/2023] [Accepted: 04/08/2023] [Indexed: 11/17/2023] Open
Abstract
Hyperammonemia is a rare cause of adult episodic encephalopathy. Citrin deficiency resulting in citrullinemia type 2 (CTLN2) can lead to recurrent delirium in adults. Here we report a case of adult onset episodic encephalopathy due to citrin deficiency. A 40 years old male presented with one-year history of episodic encephalopathy triggered by high protein and fat diet. He also had chronic pancreatitis and subacute intestinal obstruction which is a novel manifestation of CTLN2. Evaluation showed elevated blood liver enzymes, ammonia, and citrulline. MRI brain showed frontal hyperintensities and bulky basal ganglia which have not been reported. Diagnosis was confirmed by next-generation sequencing which showed a novel variant c. 1591G > A in exon15 of SLC25A13. Hyperammonemic syndromes should be considered in differential diagnosis of episodic encephalopathy in adults. This report shows novel features of subacute intestinal obstruction and MRI findings in CTLN2 expanding spectrum of manifestation.
Collapse
Affiliation(s)
- Dipti Baskar
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Vathsala Lakshmi
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Gautham Arunachal
- Department of Human Genetics, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Maya Dhattatraya Bhat
- Department of Neuroradiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | | | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Ravindranadh Chowdary
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Pritam Raja
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Ambati Mounika
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - PS Sharath
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Seena Vengalil
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| |
Collapse
|
5
|
González-Moreno L, Santamaría-Cano A, Paradela A, Martínez-Chantar ML, Martín MÁ, Pérez-Carreras M, García-Picazo A, Vázquez J, Calvo E, González-Aseguinolaza G, Saheki T, del Arco A, Satrústegui J, Contreras L. Exogenous aralar/slc25a12 can replace citrin/slc25a13 as malate aspartate shuttle component in liver. Mol Genet Metab Rep 2023; 35:100967. [PMID: 36967723 PMCID: PMC10031141 DOI: 10.1016/j.ymgmr.2023.100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
The deficiency of CITRIN, the liver mitochondrial aspartate-glutamate carrier (AGC), is the cause of four human clinical phenotypes, neonatal intrahepatic cholestasis caused by CITRIN deficiency (NICCD), silent period, failure to thrive and dyslipidemia caused by CITRIN deficiency (FTTDCD), and citrullinemia type II (CTLN2). Clinical symptoms can be traced back to disruption of the malate-aspartate shuttle due to the lack of citrin. A potential therapy for this condition is the expression of aralar, the AGC present in brain, to replace citrin. To explore this possibility we have first verified that the NADH/NAD+ ratio increases in hepatocytes from citrin(-/-) mice, and then found that exogenous aralar expression reversed the increase in NADH/NAD+ observed in these cells. Liver mitochondria from citrin (-/-) mice expressing liver specific transgenic aralar had a small (~ 4-6 nmoles x mg prot-1 x min-1) but consistent increase in malate aspartate shuttle (MAS) activity over that of citrin(-/-) mice. These results support the functional replacement between AGCs in the liver. To explore the significance of AGC replacement in human therapy we studied the relative levels of citrin and aralar in mouse and human liver through absolute quantification proteomics. We report that mouse liver has relatively high aralar levels (citrin/aralar molar ratio of 7.8), whereas human liver is virtually devoid of aralar (CITRIN/ARALAR ratio of 397). This large difference in endogenous aralar levels partly explains the high residual MAS activity in liver of citrin(-/-) mice and why they fail to recapitulate the human disease, but supports the benefit of increasing aralar expression to improve the redox balance capacity of human liver, as an effective therapy for CITRIN deficiency.
Collapse
Key Words
- (BNGE), Blue native gel electrophoresis
- AGC, aspartate-glutamate carrier
- AQUA, Absolute Quantification methods
- Aspartate-glutamate carrier
- CD, CITRIN Deficiency
- CTNL2, citrullinemia type II
- Citrin deficiency
- DAB, 3,3-diaminobenzidine
- FBS, Fetal Bovine serum
- FTTDCD, failure to thrive and dyslipidemia caused by CITRIN Deficiency
- GOT, aspartate transaminase
- GPD2, mitochondrial glycerol phosphate dehydrogenase
- GPS, glycerol phosphate shuttle
- Hepatocyte
- IM, imaging medium
- LC-MS, liquid chromatography mass spectrometry
- LNP, lipid nanoparticles
- MAS, malate aspartate shuttle
- Malate-aspartate shuttle
- Mitochondria
- NAA, N-Acetyl-aspartate
- NICCD, neonatal intrahepatic cholestasis caused by CITRIN Deficiency
- OXPHOS, oxidative phosphorylation
- PFA, paraformaldehyde
- PRM, parallel reaction monitoring
- SDS, sodium dodecyl sulfate
- TBS, Tris-Buffered saline.
- hCitrin, human citrin
Collapse
Affiliation(s)
- Luis González-Moreno
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Universitario de Biología Molecular, (IUBM), and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Andrea Santamaría-Cano
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Universitario de Biología Molecular, (IUBM), and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alberto Paradela
- Centro Nacional de Biotecnología (CNB), CSIC. C/Darwin 3, 28049 Madrid, Spain
| | - María Luz Martínez-Chantar
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miguel Á. Martín
- Grupo Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
- Servicio de Genética, Hospital Universitario 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | | | - Alberto García-Picazo
- Departamento de Cirugía General Aparato Digestivo, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Enrique Calvo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Gloria González-Aseguinolaza
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- IdiSNA Navarra Institute for Health Research, 31008 Pamplona, Spain
| | | | - Araceli del Arco
- Instituto Universitario de Biología Molecular, (IUBM), and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla la Mancha, Toledo 45071, Spain
- Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina, Toledo 45071, Spain
| | - Jorgina Satrústegui
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Universitario de Biología Molecular, (IUBM), and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Laura Contreras
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Universitario de Biología Molecular, (IUBM), and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
6
|
Wang K, Zou B, Chen F, Zhang J, Huang Z, Shu S. Case report: Three novel variants on SLC25A13 in four infants with neonatal intrahepatic cholestasis caused by citrin deficiency. Front Pediatr 2023; 11:1103877. [PMID: 37063661 PMCID: PMC10090684 DOI: 10.3389/fped.2023.1103877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/09/2023] [Indexed: 04/18/2023] Open
Abstract
Background Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) is a common clinical phenotype of citrin deficiency in infants. Its phenotype is atypical, so genetic testing is quite necessary for the diagnosis. Case presentation We report 4 patients with jaundice and low body weight. Furthermore, the biochemical examination of all showed abnormal liver function and metabolic changes. DNA samples of the patients were extracted and subjected to genetic screening. All candidate pathogenic variants were validated by Sanger sequencing, and CNVs were ascertained by qPCR. The genetic screening revealed 6 variants in 4 patients, and all patients carried compound heterozygous variants of SLC25A13. Importantly, 3 variants were newly discovered: a nonsense mutation in exon17 (c.1803C > G), a frameshift mutation in exon 11(c.1141delG) and a deletion of the whole exon11. Thus, four NICCD patients were clearly caused by variants of SLC25A13. Biochemical indicators of all patients gradually returned to normal after dietary adjustment. Conclusions Our study clarified the genetic etiology of the four infants, expanded the variant spectrum of SLC25A13, and provided a basis for genetic counseling of the family. Early diagnosis and intervention should be given to patients with NICCD.
Collapse
|
7
|
Bölsterli BK, Boltshauser E, Palmieri L, Spenger J, Brunner-Krainz M, Distelmaier F, Freisinger P, Geis T, Gropman AL, Häberle J, Hentschel J, Jeandidier B, Karall D, Keren B, Klabunde-Cherwon A, Konstantopoulou V, Kottke R, Lasorsa FM, Makowski C, Mignot C, O’Gorman Tuura R, Porcelli V, Santer R, Sen K, Steinbrücker K, Syrbe S, Wagner M, Ziegler A, Zöggeler T, Mayr JA, Prokisch H, Wortmann SB. Ketogenic Diet Treatment of Defects in the Mitochondrial Malate Aspartate Shuttle and Pyruvate Carrier. Nutrients 2022; 14:3605. [PMID: 36079864 PMCID: PMC9460686 DOI: 10.3390/nu14173605] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
The mitochondrial malate aspartate shuttle system (MAS) maintains the cytosolic NAD+/NADH redox balance, thereby sustaining cytosolic redox-dependent pathways, such as glycolysis and serine biosynthesis. Human disease has been associated with defects in four MAS-proteins (encoded by MDH1, MDH2, GOT2, SLC25A12) sharing a neurological/epileptic phenotype, as well as citrin deficiency (SLC25A13) with a complex hepatopathic-neuropsychiatric phenotype. Ketogenic diets (KD) are high-fat/low-carbohydrate diets, which decrease glycolysis thus bypassing the mentioned defects. The same holds for mitochondrial pyruvate carrier (MPC) 1 deficiency, which also presents neurological deficits. We here describe 40 (18 previously unreported) subjects with MAS-/MPC1-defects (32 neurological phenotypes, eight citrin deficiency), describe and discuss their phenotypes and genotypes (presenting 12 novel variants), and the efficacy of KD. Of 13 MAS/MPC1-individuals with a neurological phenotype treated with KD, 11 experienced benefits-mainly a striking effect against seizures. Two individuals with citrin deficiency deceased before the correct diagnosis was established, presumably due to high-carbohydrate treatment. Six citrin-deficient individuals received a carbohydrate-restricted/fat-enriched diet and showed normalisation of laboratory values/hepatopathy as well as age-adequate thriving. We conclude that patients with MAS-/MPC1-defects are amenable to dietary intervention and that early (genetic) diagnosis is key for initiation of proper treatment and can even be lifesaving.
Collapse
Affiliation(s)
- Bigna K. Bölsterli
- Department of Pediatric Neurology, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
| | - Eugen Boltshauser
- Department of Pediatric Neurology (Emeritus), University Children’s Hospital Zurich, 8032 Zurich, Switzerland
| | - Luigi Palmieri
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, 70126 Bari, Italy
| | - Johannes Spenger
- University Children’s Hospital, Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Michaela Brunner-Krainz
- Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Peter Freisinger
- Department of Pediatrics, Klinikum Reutlingen, 72764 Reutlingen, Germany
| | - Tobias Geis
- University Children′s Hospital Regensburg (KUNO), Hospital St. Hedwig of the Order of St. John, University of Regensburg, 93049 Regensburg, Germany
| | - Andrea L. Gropman
- Division of Neurogenetics, Center for Neuroscience and Behavioral Medicine, Children’s National Hospital, Washington, DC 20010, USA
| | - Johannes Häberle
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Division of Metabolism, University Children’s Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
| | - Julia Hentschel
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, 04103 Leipzig, Germany
| | - Bruno Jeandidier
- APHP, Service de Pédiatrie, CHU Jean Verdier, 93140 Bondy, France
| | - Daniela Karall
- Clinic for Pediatrics, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Boris Keren
- Département de Génétique, Unité Fonctionnelle de Génomique du Développement, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Annick Klabunde-Cherwon
- Division of Paediatric Epileptology, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Vassiliki Konstantopoulou
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Raimund Kottke
- Department of Diagnostic Imaging, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
| | - Francesco M. Lasorsa
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, 70126 Bari, Italy
| | - Christine Makowski
- Department of Paediatrics, Children’s Hospital Munich Schwabing, MüK and TUM, 80804 Munich, Germany
| | - Cyril Mignot
- Département de Génétique, Unité Fonctionnelle de Génomique du Développement, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Ruth O’Gorman Tuura
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Center for MR Research, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
| | - Vito Porcelli
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy
| | - René Santer
- Department of Pediatrics, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Kuntal Sen
- Division of Neurogenetics, Center for Neuroscience and Behavioral Medicine, Children’s National Hospital, Washington, DC 20010, USA
| | - Katja Steinbrücker
- Department of Neuropediatrics, Paracelsus Medical University Hospital Salzburg, 5020 Salzburg, Austria
| | - Steffen Syrbe
- Division of Paediatric Epileptology, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Matias Wagner
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, 80337 Munich, Germany
- Institute for Neurogenomics, Computational Health Center, Helmholtz Zentrum München, German Research Center for Health and Environment (GmbH), 85764 Munich, Germany
| | - Andreas Ziegler
- Division of Neuropaediatrics and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Thomas Zöggeler
- Clinic for Pediatrics, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Johannes A. Mayr
- University Children’s Hospital, Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Holger Prokisch
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute for Neurogenomics, Computational Health Center, Helmholtz Zentrum München, German Research Center for Health and Environment (GmbH), 85764 Munich, Germany
| | - Saskia B. Wortmann
- University Children’s Hospital, Paracelsus Medical University (PMU), 5020 Salzburg, Austria
- Radboud Centre for Mitochondrial Medicine (RCMM), Amalia Children’s Hospital, Radboudumc, 6525 Nijmegen, The Netherlands
| |
Collapse
|
8
|
Kido J, Häberle J, Sugawara K, Tanaka T, Nagao M, Sawada T, Wada Y, Numakura C, Murayama K, Watanabe Y, Kojima-Ishii K, Sasai H, Kosugiyama K, Nakamura K. Clinical manifestation and long-term outcome of citrin deficiency: Report from a nationwide study in Japan. J Inherit Metab Dis 2022; 45:431-444. [PMID: 35142380 DOI: 10.1002/jimd.12483] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/08/2022] [Indexed: 11/05/2022]
Abstract
Citrin deficiency is an autosomal recessive disorder caused by mutations in the SLC25A13 gene. The disease can present with age-dependent clinical manifestations: neonatal intrahepatic cholestasis by citrin deficiency (NICCD), failure to thrive, and dyslipidemia by citrin deficiency (FTTDCD), and adult-onset type II citrullinemia (CTLN2). As a nationwide study to investigate the clinical manifestations, medical therapy, and long-term outcome in Japanese patients with citrin deficiency, we collected clinical data of 222 patients diagnosed and/or treated at various different institutions between January 2000 and December 2019. In the entire cohort, 218 patients were alive while 4 patients (1 FTTDCD and 3 CTLN2) had died. All patients <20 years were alive. Patients with citrin deficiency had an increased risk for low weight and length at birth, and CTLN2 patients had an increased risk for growth impairment during adolescence. Liver transplantation has been performed in only 4 patients (1 NICCD, 3 CTLN2) with a good response thereafter. This study reports the diagnosis and clinical course in a large cohort of patients with citrin deficiency and suggests that early intervention including a low carbohydrate diet and MCT supplementation can be associated with improved clinical course and long-term outcome.
Collapse
Affiliation(s)
- Jun Kido
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
| | - Johannes Häberle
- University Children's Hospital Zurich and Children's Research Centre, Zurich, Switzerland
| | - Keishin Sugawara
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Toju Tanaka
- Department of Pediatrics, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Masayoshi Nagao
- Department of Pediatrics, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Takaaki Sawada
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
| | - Yoichi Wada
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Chikahiko Numakura
- Department of Pediatrics, Yamagata University School of Medicine, Yamagata, Japan
| | - Kei Murayama
- Department of Metabolism, Center for Medical Genetics, Chiba Children's Hospital, Chiba, Japan
| | - Yoriko Watanabe
- Research Institute of Medical Mass Spectrometry, Kurume University School of Medicine, Kurume, Japan
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Kanako Kojima-Ishii
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideo Sasai
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | | | - Kimitoshi Nakamura
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
| |
Collapse
|
9
|
Arai-Ichinoi N, Kikuchi A, Wada Y, Sakamoto O, Kure S. Hypoglycemic attacks and growth failure are the most common manifestations of citrin deficiency after 1 year of age. J Inherit Metab Dis 2021; 44:838-846. [PMID: 33861477 DOI: 10.1002/jimd.12390] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/26/2021] [Accepted: 04/14/2021] [Indexed: 12/31/2022]
Abstract
Citrin deficiency develops in different symptomatic periods from the neonatal period to adulthood. Some infantile patients are diagnosed by newborn mass screening or symptoms of neonatal intrahepatic cholestasis caused by citrin deficiency, some patients in childhood may develop hepatopathy or dyslipidemia as failure to thrive and dyslipidemia caused by citrin deficiency, and some adults are diagnosed after developing adult-onset type 2 citrullinemia (CTLN2) with hyperammonemia or encephalopathy. A diagnosis is needed before the development of severe phenotypic CTLN2 but is often difficult to obtain because newborn mass screening cannot detect all patients with citrin deficiency, and undiagnosed patients often appear healthy in childhood. There are only a few reports that have described patients in childhood. To explore the clinical features of undiagnosed patients with citrin deficiency in childhood, we studied 20 patients who were diagnosed after the first year of life. Of these patients, 45% experienced hypoglycemic attacks in childhood. The acetoacetic acid level during hypoglycemic attacks was lower than expected. Growth failure at diagnosis (45%) was also noted. From the patients' history, fat- and protein-rich food preferences (80%), a low birth weight (70%), and prolonged jaundice or infantile hepatopathy (40%) were identified. To diagnose citrin deficiency in childhood, we should ask about food preferences and a history of infantile hepatopathy for all children with severe hypoglycemia or growth failure and consider the genetic test for citrin deficiency if the patient has characteristic food preferences or a history of infantile hepatopathy.
Collapse
Affiliation(s)
| | - Atsuo Kikuchi
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Yoichi Wada
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Osamu Sakamoto
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
10
|
Broeks MH, van Karnebeek CDM, Wanders RJA, Jans JJM, Verhoeven‐Duif NM. Inborn disorders of the malate aspartate shuttle. J Inherit Metab Dis 2021; 44:792-808. [PMID: 33990986 PMCID: PMC8362162 DOI: 10.1002/jimd.12402] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022]
Abstract
Over the last few years, various inborn disorders have been reported in the malate aspartate shuttle (MAS). The MAS consists of four metabolic enzymes and two transporters, one of them having two isoforms that are expressed in different tissues. Together they form a biochemical pathway that shuttles electrons from the cytosol into mitochondria, as the inner mitochondrial membrane is impermeable to the electron carrier NADH. By shuttling NADH across the mitochondrial membrane in the form of a reduced metabolite (malate), the MAS plays an important role in mitochondrial respiration. In addition, the MAS maintains the cytosolic NAD+ /NADH redox balance, by using redox reactions for the transfer of electrons. This explains why the MAS is also important in sustaining cytosolic redox-dependent metabolic pathways, such as glycolysis and serine biosynthesis. The current review provides insights into the clinical and biochemical characteristics of MAS deficiencies. To date, five out of seven potential MAS deficiencies have been reported. Most of them present with a clinical phenotype of infantile epileptic encephalopathy. Although not specific, biochemical characteristics include high lactate, high glycerol 3-phosphate, a disturbed redox balance, TCA abnormalities, high ammonia, and low serine, which may be helpful in reaching a diagnosis in patients with an infantile epileptic encephalopathy. Current implications for treatment include a ketogenic diet, as well as serine and vitamin B6 supplementation.
Collapse
Affiliation(s)
- Melissa H. Broeks
- Department of Genetics, Section Metabolic DiagnosticsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Clara D. M. van Karnebeek
- Departments of PediatricsAmsterdam University Medical CenterAmsterdamThe Netherlands
- Department of Pediatrics, Amalia Children's Hospital, Radboud Center for Mitochondrial DiseasesRadboud University Medical CenterNijmegenThe Netherlands
- On behalf of “United for Metabolic Diseases”The Netherlands
| | - Ronald J. A. Wanders
- Departments of Pediatrics and Laboratory Medicine, Laboratory Genetic Metabolic DiseasesAmsterdam University Medical Center, University of AmsterdamAmsterdamThe Netherlands
| | - Judith J. M. Jans
- Department of Genetics, Section Metabolic DiagnosticsUniversity Medical Center UtrechtUtrechtThe Netherlands
- On behalf of “United for Metabolic Diseases”The Netherlands
| | - Nanda M. Verhoeven‐Duif
- Department of Genetics, Section Metabolic DiagnosticsUniversity Medical Center UtrechtUtrechtThe Netherlands
- On behalf of “United for Metabolic Diseases”The Netherlands
| |
Collapse
|
11
|
Pasquadibisceglie A, Polticelli F. Computational studies of the mitochondrial carrier family SLC25. Present status and future perspectives. BIO-ALGORITHMS AND MED-SYSTEMS 2021. [DOI: 10.1515/bams-2021-0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
The members of the mitochondrial carrier family, also known as solute carrier family 25 (SLC25), are transmembrane proteins involved in the translocation of a plethora of small molecules between the mitochondrial intermembrane space and the matrix. These transporters are characterized by three homologous domains structure and a transport mechanism that involves the transition between different conformations. Mutations in regions critical for these transporters’ function often cause several diseases, given the crucial role of these proteins in the mitochondrial homeostasis. Experimental studies can be problematic in the case of membrane proteins, in particular concerning the characterization of the structure–function relationships. For this reason, computational methods are often applied in order to develop new hypotheses or to support/explain experimental evidence. Here the computational analyses carried out on the SLC25 members are reviewed, describing the main techniques used and the outcome in terms of improved knowledge of the transport mechanism. Potential future applications on this protein family of more recent and advanced in silico methods are also suggested.
Collapse
Affiliation(s)
| | - Fabio Polticelli
- Department of Sciences , Roma Tre University , Rome , Italy
- National Institute of Nuclear Physics, Roma Tre Section , Rome , Italy
| |
Collapse
|
12
|
Koda K, Akaogi M, Sekiya H, Otsuka Y, Yoneda Y, Kikuchi A, Kure S, Kageyama Y. [A case of adult-onset type II citrullinemia triggered by entering a nursing home with a good response to medium-chain triglyceride oil therapy]. Rinsho Shinkeigaku 2021; 61:200-203. [PMID: 33627582 DOI: 10.5692/clinicalneurol.cn-001514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A 49-year-old woman with intellectual disability and a food preference for fried chicken entered a nursing home. After nursing home diet, she developed episodic attacks of hyperammonemic encephalopathy. Her characteristic food preference and the negative results for brain and liver imaging studies suggested urea cycle disorder. A high plasma citrulline level on amino acid analysis and a genetic test for citrine gene confirmed a citrine deficiency (adult-onset type II citrullinemia). Although a low-carbohydrate diet was insufficient, a combination therapy of a low-carbohydrate diet and a medium-chain triglyceride (MCT) oil was effective. MCT oil may be a promising treatment option.
Collapse
Affiliation(s)
- Kazuma Koda
- Department of Neurology, Hyogo Prefectural Amagasaki General Medical Center
| | - Mariko Akaogi
- Department of Neurology, Hyogo Prefectural Amagasaki General Medical Center
| | - Hiroaki Sekiya
- Department of Neurology, Hyogo Prefectural Amagasaki General Medical Center.,Division of Neurology Kobe University Graduate School of Medicine
| | - Yoshihisa Otsuka
- Department of Neurology, Hyogo Prefectural Amagasaki General Medical Center
| | - Yukihiro Yoneda
- Department of Neurology, Hyogo Prefectural Amagasaki General Medical Center
| | - Atsuo Kikuchi
- Department of Pediatrics, Tohoku University Graduate School of Medicine
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University Graduate School of Medicine
| | - Yasufumi Kageyama
- Department of Neurology, Hyogo Prefectural Amagasaki General Medical Center
| |
Collapse
|
13
|
Neonatal Intrahepatic Cholestasis caused by Citrin Deficiency: In vivo and in vitro studies of the aberrant transcription arising from two novel splice-site variants in SLC25A13. Eur J Med Genet 2021; 64:104145. [PMID: 33497767 DOI: 10.1016/j.ejmg.2021.104145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/09/2021] [Accepted: 01/20/2021] [Indexed: 11/22/2022]
Abstract
Neonatal Intrahepatic Cholestasis caused by Citrin Deficiency (NICCD) is an autosomal recessive disease resulting from biallelic SLC25A13 mutations, and its diagnosis relies on genetic analysis. This study aimed to characterize the pathogenicity of 2 novel splice-site variants of SLC25A13 gene. Two patients (C0476 and C0556) suspected to have NICCD, their family members and 9 healthy volunteers were recruited as the research subjects. The SLC25A13 genotypes NG_012247.2(NM_014251.3): c.[852_855del]; [69+5G > A] in patient C0476 and c.[1453-1G > A]; [1751-5_1751-4ins (2684)] in patient C0556 were identified by means of polymerase chain reaction, long and accurate polymerase chain reaction, as well as Sanger sequencing. The 2 splice-site variants were absent in control databases and predicted to be pathogenic by computational analysis. The alternative splice variants in monocyte-derived macrophages from patient C0476 demonstrated exon 2 skipping [r.16_69del; p.(Val6_Lys23del)] in vivo, while minigene analysis revealed both exon 2-skipping and retained products from c.69+5G > A in vitro. In the patient C0556, an aberrant transcript [r.1453del; p.(Gly485Valfs*22)] resulting from c.1453-1G > A was detected on minigene splicing study. Thus, c.69+5G > A and c.1453-1G > A were both proved to be pathogenic. The 2 novel splice-site variants expanded the SLC25A13 mutation spectrum and provided reliable molecular markers for the definite diagnosis and genetic counseling of NICCD in the affected families.
Collapse
|
14
|
Hayasaka K. Metabolic basis and treatment of citrin deficiency. J Inherit Metab Dis 2021; 44:110-117. [PMID: 32740958 DOI: 10.1002/jimd.12294] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022]
Abstract
Citrin deficiency is a hereditary disorder caused by SLC25A13 mutations and manifests as neonatal intrahepatic cholestasis (NICCD), failure to thrive and dyslipidemia (FTTDCD), and adult-onset type II citrullinemia (CTLN2). Citrin is a component of the malate-aspartate nicotinamide adenine dinucleotide hydrogen (NADH) shuttle, an essential shuttle for hepatic glycolysis. Hepatic glycolysis and the coupled lipogenesis are impaired in citrin deficiency. Hepatic lipogenesis plays a significant role in fat supply during growth spurt periods: the fetal period, infancy, and puberty. Growth impairment in these periods is characteristic of citrin deficiency. Hepatocytes with citrin deficiency cannot use glucose and fatty acids as energy sources due to defects in the NADH shuttle and downregulation of peroxisome proliferator-activated receptor α (PPARα), respectively. An energy deficit in hepatocytes is considered a fundamental pathogenesis of citrin deficiency. Medium-chain triglyceride (MCT) supplementation with a lactose-restricted formula and MCT supplementation under a low-carbohydrate diet are recommended for NICCD and CTLN2, respectively. MCT supplementation therapy can provide energy to hepatocytes, promote lipogenesis, correct the cytosolic NAD+ /NADH ratio via the malate-citrate shuttle and improve ammonia detoxification, and it is a reasonable therapy for citrin deficiency. It is very important to administer MCT at a dose equivalent to the liver's energy requirements in divided doses with meals. MCT supplementation therapy is certainly promising for promoting growth spurts during infancy and adolescence and for preventing CTLN2 onset. Intravenous administration of solutions containing fructose is contraindicated, and persistent hyperglycemia should be avoided due to glucose intoxication for patients receiving hyperalimentation or with complicating diabetes.
Collapse
Affiliation(s)
- Kiyoshi Hayasaka
- Department of Pediatrics, Yamagata University School of Medicine, Yamagata, Japan
- Department of Pediatrics, Miyukikai Hospital, Kaminoyama, Japan
| |
Collapse
|
15
|
Makris G, Lauber M, Rüfenacht V, Gemperle C, Diez-Fernandez C, Caldovic L, Froese DS, Häberle J. Clinical and structural insights into potential dominant negative triggers of proximal urea cycle disorders. Biochimie 2020; 183:89-99. [PMID: 33309754 DOI: 10.1016/j.biochi.2020.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022]
Abstract
Despite biochemical and genetic testing being the golden standards for identification of proximal urea cycle disorders (UCDs), genotype-phenotype correlations are often unclear. Co-occurring partial defects affecting more than one gene have not been demonstrated so far in proximal UCDs. Here, we analyzed the mutational spectrum of 557 suspected proximal UCD individuals. We probed oligomerizing forms of NAGS, CPS1 and OTC, and evaluated the surface exposure of residues mutated in heterozygously affected individuals. BN-PAGE and gel-filtration chromatography were employed to discover protein-protein interactions within recombinant enzymes. From a total of 281 confirmed patients, only 15 were identified as "heterozygous-only" candidates (i.e. single defective allele). Within these cases, the only missense variants to potentially qualify as dominant negative triggers were CPS1 p.Gly401Arg and NAGS p.Thr181Ala and p.Tyr512Cys, as assessed by residue oligomerization capacity and surface exposure. However, all three candidates seem to participate in critical intramolecular functions, thus, unlikely to facilitate protein-protein interactions. This interpretation is further supported by BN-PAGE and gel-filtration analyses revealing no multiprotein proximal urea cycle complex formation. Collectively, genetic analysis, structural considerations and in vitro experiments point against a prominent role of dominant negative effects in human proximal UCDs.
Collapse
Affiliation(s)
- Georgios Makris
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Matthias Lauber
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Véronique Rüfenacht
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Corinne Gemperle
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Carmen Diez-Fernandez
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; Nextech Invest, Bahnhofstrasse 18, 8001, Zurich, Switzerland
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
| | - D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
16
|
AGC2 (Citrin) Deficiency-From Recognition of the Disease till Construction of Therapeutic Procedures. Biomolecules 2020; 10:biom10081100. [PMID: 32722104 PMCID: PMC7465890 DOI: 10.3390/biom10081100] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 12/16/2022] Open
Abstract
Can you imagine a disease in which intake of an excess amount of sugars or carbohydrates causes hyperammonemia? It is hard to imagine the intake causing hyperammonemia. AGC2 or citrin deficiency shows their symptoms following sugar/carbohydrates intake excess and this disease is now known as a pan-ethnic disease. AGC2 (aspartate glutamate carrier 2) or citrin is a mitochondrial transporter which transports aspartate (Asp) from mitochondria to cytosol in exchange with glutamate (Glu) and H+. Asp is originally supplied from mitochondria to cytosol where it is necessary for synthesis of proteins, nucleotides, and urea. In cytosol, Asp can be synthesized from oxaloacetate and Glu by cytosolic Asp aminotransferase, but oxaloacetate formation is limited by the amount of NAD+. This means an increase in NADH causes suppression of Asp formation in the cytosol. Metabolism of carbohydrates and other substances which produce cytosolic NADH such as alcohol and glycerol suppress oxaloacetate formation. It is forced under citrin deficiency since citrin is a member of malate/Asp shuttle. In this review, we will describe history of identification of the SLC25A13 gene as the causative gene for adult-onset type II citrullinemia (CTLN2), a type of citrin deficiency, pathophysiology of citrin deficiency together with animal models and possible treatments for citrin deficiency newly developing.
Collapse
|
17
|
Arora S, Srivastava MVP, Singh MB, Goyal V, Häberle J, Gupta N, Prabhakar A, Aggarwal B, Agarwal A, Vishnu VY. Adult onset type II citrullinemia--a great masquerader. QJM 2020; 113:49-51. [PMID: 31532496 DOI: 10.1093/qjmed/hcz238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Indexed: 12/30/2022] Open
Affiliation(s)
- S Arora
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - M V Padma Srivastava
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - M B Singh
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - V Goyal
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - J Häberle
- Head Metabolic Laboratory, Division of Metabolism, University Children's Hospital Zurich, Eleonore Foundation, Steinwiesstrasse 75, CH-8032 Zürich, Switzerland
| | - N Gupta
- Department of Paediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - A Prabhakar
- Department of Neuroradiology, All India Institute of Medical Sciences, New Delhi, India
| | - B Aggarwal
- Department of Paediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - A Agarwal
- Department of Paediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - V Y Vishnu
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
18
|
Wang T, Ma J, Zhang Q, Gao A, Wang Q, Li H, Xiang J, Wang B. Expanded Newborn Screening for Inborn Errors of Metabolism by Tandem Mass Spectrometry in Suzhou, China: Disease Spectrum, Prevalence, Genetic Characteristics in a Chinese Population. Front Genet 2019; 10:1052. [PMID: 31737040 PMCID: PMC6828960 DOI: 10.3389/fgene.2019.01052] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 10/01/2019] [Indexed: 12/30/2022] Open
Abstract
Expanded newborn screening for inborn errors of metabolism (IEMs) by tandem mass spectrometry (MS/MS) could simultaneously analyze more than 40 metabolites and identify about 50 kinds of IEMs. Next generation sequencing (NGS) targeting hundreds of IMEs-associated genes as a follow-up test in expanded newborn screening has been used for genetic analysis of patients. The spectrum, prevalence, and genetic characteristic of IEMs vary dramatically in different populations. To determine the spectrum, prevalence, and gene mutations of IEMs in newborns in Suzhou, China, 401,660 newborns were screened by MS/MS and 138 patients were referred to genetic analysis by NGS. The spectrum of 22 IEMs were observed in Suzhou population of newborns, and the overall incidence (excluding short chain acyl-CoA dehydrogenase deficiency (SCADD) and 3-Methylcrotonyl-CoA carboxylase deficiency (3-MCCD)) was 1/3,163. The prevalence of each IEM ranged from 1/401,660 to 1/19,128, while phenylketonuria (PKU) (1/19,128) and Mild hyperphenylalaninemia (M-HPA) (1/19,128) were the most common IEMs, followed by primary carnitine uptake defect (PCUD) (1/26,777), SCADD (1/28,690), hypermethioninemia (H-MET) (1/30,893), 3-MCCD (1/33,412) and methylmalonic acidemia (MMA) (1/40,166). Moreover, 89 reported mutations and 51 novel mutations in 25 IMEs-associated genes were detected in 138 patients with one of 22 IEMs. Some hotspot mutations were observed for ten IEMs, including PAH gene c.728G > A, c.611A > G, and c.721C > T for Phenylketonuria, PAH gene c.158G > A, c.1238G > C, c.728G > A, and c.1315+6T > A for M-HPA, SLC22A5 gene c.1400C > G, c.51C > G, and c.760C > T for PCUD, ACADS gene c.1031A > G, c.164C > T, and c.1130C > T for SCAD deficiency, MAT1A gene c.791G > A for H-MET, MCCC1 gene c.639+2T > A and c.863A > G for 3-MCCD, MMUT gene c.1663G > A for MMA, SLC25A13 gene c.IVS16ins3Kb and c.852_855delTATG for cittrullinemia II, PTS gene c.259C > T and c.166G > A for Tetrahydrobiopterin deficiency, and ACAD8 gene c.1000C > T and c.286C > A for Isobutyryl coa dehydrogenase deficiency. All these hotspot mutations were reported to be pathogenic or likely pathogenic, except a novel mutation of ACAD8 gene c.286C > A. These mutational hotspots could be potential candidates for gene screening and these novel mutations expanded the mutational spectrum of IEMs. Therefore, our findings could be of value for genetic counseling and genetic diagnosis of IEMs.
Collapse
Affiliation(s)
- Ting Wang
- Newborn Screening Laboratory, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jun Ma
- Newborn Screening Laboratory, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qin Zhang
- Genetic Clinic, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Ang Gao
- Genetic Clinic, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qi Wang
- Newborn Screening Laboratory, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Hong Li
- Infertility Clinic, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jingjing Xiang
- Genetic Laboratory, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Benjing Wang
- Newborn Screening Laboratory, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
19
|
Cao J, An D, Galduroz M, Zhuo J, Liang S, Eybye M, Frassetto A, Kuroda E, Funahashi A, Santana J, Mihai C, Benenato KE, Kumarasinghe ES, Sabnis S, Salerno T, Coughlan K, Miracco EJ, Levy B, Besin G, Schultz J, Lukacs C, Guey L, Finn P, Furukawa T, Giangrande PH, Saheki T, Martini PGV. mRNA Therapy Improves Metabolic and Behavioral Abnormalities in a Murine Model of Citrin Deficiency. Mol Ther 2019; 27:1242-1251. [PMID: 31056400 DOI: 10.1016/j.ymthe.2019.04.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 04/14/2019] [Accepted: 04/19/2019] [Indexed: 02/08/2023] Open
Abstract
Citrin deficiency is an autosomal recessive disorder caused by loss-of-function mutations in SLC25A13, encoding the liver-specific mitochondrial aspartate/glutamate transporter. It has a broad spectrum of clinical phenotypes, including life-threatening neurological complications. Conventional protein replacement therapy is not an option for these patients because of drug delivery hurdles, and current gene therapy approaches (e.g., AAV) have been hampered by immunogenicity and genotoxicity. Although dietary approaches have shown some benefits in managing citrin deficiency, the only curative treatment option for these patients is liver transplantation, which is high-risk and associated with long-term complications because of chronic immunosuppression. To develop a new class of therapy for citrin deficiency, codon-optimized mRNA encoding human citrin (hCitrin) was encapsulated in lipid nanoparticles (LNPs). We demonstrate the efficacy of hCitrin-mRNA-LNP therapy in cultured human cells and in a murine model of citrin deficiency that resembles the human condition. Of note, intravenous (i.v.) administration of the hCitrin-mRNA resulted in a significant reduction in (1) hepatic citrulline and blood ammonia levels following oral sucrose challenge and (2) sucrose aversion, hallmarks of hCitrin deficiency. In conclusion, mRNA-LNP therapy could have a significant therapeutic effect on the treatment of citrin deficiency and other mitochondrial enzymopathies with limited treatment options.
Collapse
Affiliation(s)
| | - Ding An
- Moderna, Inc., Cambridge, MA, USA
| | | | | | | | | | | | - Eishi Kuroda
- Department of Molecular Oncology, Kagoshima University, Kagoshima, Japan
| | - Aki Funahashi
- Department of Molecular Oncology, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | - Lin Guey
- Moderna, Inc., Cambridge, MA, USA
| | | | - Tatsuhiko Furukawa
- Department of Molecular Oncology, Kagoshima University, Kagoshima, Japan
| | | | - Takeyori Saheki
- Department of Molecular Oncology, Kagoshima University, Kagoshima, Japan
| | | |
Collapse
|
20
|
Ogunbona OB, Claypool SM. Emerging Roles in the Biogenesis of Cytochrome c Oxidase for Members of the Mitochondrial Carrier Family. Front Cell Dev Biol 2019; 7:3. [PMID: 30766870 PMCID: PMC6365663 DOI: 10.3389/fcell.2019.00003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022] Open
Abstract
The mitochondrial carrier family (MCF) is a group of transport proteins that are mostly localized to the inner mitochondrial membrane where they facilitate the movement of various solutes across the membrane. Although these carriers represent potential targets for therapeutic application and are repeatedly associated with human disease, research on the MCF has not progressed commensurate to their physiologic and pathophysiologic importance. Many of the 53 MCF members in humans are orphans and lack known transport substrates. Even for the relatively well-studied members of this family, such as the ADP/ATP carrier and the uncoupling protein, there exist fundamental gaps in our understanding of their biological roles including a clear rationale for the existence of multiple isoforms. Here, we briefly review this important family of mitochondrial carriers, provide a few salient examples of their diverse metabolic roles and disease associations, and then focus on an emerging link between several distinct MCF members, including the ADP/ATP carrier, and cytochrome c oxidase biogenesis. As the ADP/ATP carrier is regarded as the paradigm of the entire MCF, its newly established role in regulating translation of the mitochondrial genome highlights that we still have a lot to learn about these metabolite transporters.
Collapse
Affiliation(s)
- Oluwaseun B. Ogunbona
- Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Department of Pathology & Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Steven M. Claypool
- Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
21
|
Hayasaka K, Numakura C. Adult-onset type II citrullinemia: Current insights and therapy. APPLICATION OF CLINICAL GENETICS 2018; 11:163-170. [PMID: 30588060 PMCID: PMC6296197 DOI: 10.2147/tacg.s162084] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Citrin deficiency is a recessively inherited metabolic disorder with age-dependent clinical manifestations. It causes neonatal intrahepatic cholestasis (NICCD) and adult-onset type II citrullinemia (CTLN2). Patients with NICCD present with intrahepatic cholestasis in the neonatal period and usually respond to the treatment with medium-chain triglyceride (MCT) supplement and lactose-restricted formula. In adulthood, CTLN2 develops in <10 % of the patients showing hyperammonemic encephalopathy. Patients with CTLN2 required liver transplantation for the most promising prognosis; however, they were successfully treated with MCT supplement with a low carbohydrate formula. Citrin deficiency is caused by mutations in SLC25A13 on chromosome 7q21.3, with a high frequency in East Asia, including Japan. Citrin is aspartate/glutamate transporter in mitochondria, a component of malate-aspartate nicotinamide adenine dinucleotide hydrogen shuttle, and is essential for the hepatic glycolysis. Although the precise pathophysiology of citrin deficiency remains unclear, recent reports for the effective MCT supplement therapy and downregulation of peroxisome proliferator-activated receptor α suggest that citrin deficiency impairs hepatic de novo lipogenesis coupled with glycolysis leading to the energy deficit of hepatocytes. Herein, we review the current therapeutic and pathological understanding of CTLN2.
Collapse
Affiliation(s)
- Kiyoshi Hayasaka
- Department of Pediatrics, Yamagata University School of Medicine, Yamagata, Japan, .,Department of Pediatrics, Miyukikai Hospital, Kaminoyama, Japan,
| | - Chikahiko Numakura
- Department of Pediatrics, Yamagata University School of Medicine, Yamagata, Japan,
| |
Collapse
|
22
|
Alkan HF, Walter KE, Luengo A, Madreiter-Sokolowski CT, Stryeck S, Lau AN, Al-Zoughbi W, Lewis CA, Thomas CJ, Hoefler G, Graier WF, Madl T, Vander Heiden MG, Bogner-Strauss JG. Cytosolic Aspartate Availability Determines Cell Survival When Glutamine Is Limiting. Cell Metab 2018; 28:706-720.e6. [PMID: 30122555 PMCID: PMC6390946 DOI: 10.1016/j.cmet.2018.07.021] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 05/29/2018] [Accepted: 07/29/2018] [Indexed: 12/23/2022]
Abstract
Mitochondrial function is important for aspartate biosynthesis in proliferating cells. Here, we show that mitochondrial aspartate export via the aspartate-glutamate carrier 1 (AGC1) supports cell proliferation and cellular redox homeostasis. Insufficient cytosolic aspartate delivery leads to cell death when TCA cycle carbon is reduced following glutamine withdrawal and/or glutaminase inhibition. Moreover, loss of AGC1 reduces allograft tumor growth that is further compromised by treatment with the glutaminase inhibitor CB-839. Together, these findings argue that mitochondrial aspartate export sustains cell survival in low-glutamine environments and AGC1 inhibition can synergize with glutaminase inhibition to limit tumor growth.
Collapse
Affiliation(s)
- H Furkan Alkan
- Institute of Biochemistry, Graz University of Technology, Humboldtstrasse 46/III, 8010 Graz, Austria; The Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Katharina E Walter
- Institute of Biochemistry, Graz University of Technology, Humboldtstrasse 46/III, 8010 Graz, Austria
| | - Alba Luengo
- The Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Corina T Madreiter-Sokolowski
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/6, A-8010 Graz, Austria
| | - Sarah Stryeck
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/6, A-8010 Graz, Austria
| | - Allison N Lau
- The Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wael Al-Zoughbi
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, A-8010 Graz, Austria
| | - Caroline A Lewis
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA; Lymphoid Malignancies Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, A-8010 Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Wolfgang F Graier
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/6, A-8010 Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/6, A-8010 Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Matthew G Vander Heiden
- The Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| | - Juliane G Bogner-Strauss
- Institute of Biochemistry, Graz University of Technology, Humboldtstrasse 46/III, 8010 Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
23
|
Hayasaka K, Numakura C, Yamakawa M, Mitsui T, Watanabe H, Haga H, Yazaki M, Ohira H, Ochiai Y, Tahara T, Nakahara T, Yamashiki N, Nakayama T, Kon T, Mitsubuchi H, Yoshida H. Medium-chain triglycerides supplement therapy with a low-carbohydrate formula can supply energy and enhance ammonia detoxification in the hepatocytes of patients with adult-onset type II citrullinemia. J Inherit Metab Dis 2018; 41:777-784. [PMID: 29651749 DOI: 10.1007/s10545-018-0176-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 10/17/2022]
Abstract
Citrin, encoded by SLC25A13, constitutes the malate-aspartate shuttle, the main NADH-shuttle in the liver. Citrin deficiency causes neonatal intrahepatic cholestasis (NICCD) and adult-onset type II citrullinemia (CTLN2). Citrin deficiency is predicted to impair hepatic glycolysis and de novo lipogenesis, resulting in hepatic energy deficit. Secondary decrease in hepatic argininosuccinate synthetase (ASS1) expression has been considered a cause of hyperammonemia in CTLN2. We previously reported that medium-chain triglyceride (MCT) supplement therapy with a low-carbohydrate formula was effective in CTLN2 to prevent a relapse of hyperammonemic encephalopathy. We present the therapy for six CTLN2 patients. All the patients' general condition steadily improved and five patients with hyperammonemic encephalopathy recovered from unconsciousness in a few days. Before the treatment, plasma glutamine levels did not increase over the normal range and rather decreased to lower than the normal range in some patients. The treatment promptly decreased the blood ammonia level, which was accompanied by a decrease in plasma citrulline levels and an increase in plasma glutamine levels. These findings indicated that hyperammonemia was not only caused by the impairment of ureagenesis at ASS1 step, but was also associated with an impairment of glutamine synthetase (GS) ammonia-detoxification system in the hepatocytes. There was no decrease in the GS expressing hepatocytes. MCT supplement with a low-carbohydrate formula can supply the energy and/or substrates for ASS1 and GS, and enhance ammonia detoxification in hepatocytes. Histological improvement in the hepatic steatosis and ASS1-expression was also observed in a patient after long-term treatment.
Collapse
Affiliation(s)
- Kiyoshi Hayasaka
- Department of Pediatrics, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata, 990-9585, Japan.
- Department of Pediatrics, Miyukikai Hospital, Kaminoyama, Japan.
| | - Chikahiko Numakura
- Department of Pediatrics, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata, 990-9585, Japan
| | - Mitsunori Yamakawa
- Department of Pathological Diagnostics, Yamagata University School of Medicine, Yamagata, Japan
| | - Tetsuo Mitsui
- Department of Pediatrics, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata, 990-9585, Japan
| | - Hisayoshi Watanabe
- Department of Gastroenterology, Yamagata University School of Medicine, Yamagata, Japan
| | - Hiroaki Haga
- Department of Gastroenterology, Yamagata University School of Medicine, Yamagata, Japan
| | - Masahide Yazaki
- Department of Biological Sciences for Intractable Neurological Disorders, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yasuo Ochiai
- Department of Gastroenterology, Saiseikai Utsunomiya Hospital, Tochigi, Japan
| | - Toshiyuki Tahara
- Department of Gastroenterology, Saiseikai Utsunomiya Hospital, Tochigi, Japan
| | - Tamio Nakahara
- Department of Gastroenterology, Hikone Municipal Hospital, Hikone, Shiga, Japan
| | | | - Takahiro Nakayama
- Division of Internal Medicine, Nihonkai General Hospital, Sakata, Japan
| | - Takashi Kon
- Department of Gastroenterology, Yonezawa Municipal Hospital, Yonezawa, Japan
| | - Hiroshi Mitsubuchi
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Yoshida
- Department of Pediatrics, Tsuruoka Municipal Shonai Hospital, Tsuruoka, Japan
| |
Collapse
|
24
|
Hirayama S, Nagasaka H, Honda A, Komatsu H, Kodama T, Inui A, Morioka I, Kaji S, Ueno T, Ihara K, Yagi M, Kizaki Z, Bessho K, Kondou H, Yorifuji T, Tsukahara H, Iijima K, Miida T. Cholesterol Metabolism Is Enhanced in the Liver and Brain of Children With Citrin Deficiency. J Clin Endocrinol Metab 2018; 103:2488-2497. [PMID: 29659898 DOI: 10.1210/jc.2017-02664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/02/2018] [Indexed: 02/07/2023]
Abstract
CONTEXT Citrin-deficient infants present neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD), which resolves at 12 months. Thereafter, they have normal liver function associated with hypercholesterolemia, and a preference for lipid-rich carbohydrate-restricted diets. However, some develop adult-onset type II citrullinemia, which is associated with metabolic abnormalities. OBJECTIVES To identify the causes of hypercholesterolemia in citrin-deficient children post-NICCD. DESIGN AND SETTING We determined the concentrations of sterol markers of cholesterol synthesis, absorption, and catabolism by liquid chromatography-electrospray ionization-tandem mass spectrometry and evaluated serum lipoprotein profiles. SUBJECTS Twenty citrin-deficient children aged 5 to 13 years and 37 age-matched healthy children. INTERVENTION None. MAIN OUTCOME MEASURES Relationship between serum lipoproteins and sterol markers of cholesterol metabolism. RESULTS The citrin-deficient group had a significantly higher high-density lipoprotein cholesterol (HDL-C) concentration than did the control group (78 ± 11 mg/dL vs 62 ± 14 mg/dL, P < 0.001), whereas the two groups had similar low-density lipoprotein cholesterol and triglyceride concentrations. The concentrations of markers of cholesterol synthesis (lathosterol and 7-dehydrocholesterol) and bile acids synthesis (7α-hydroxycholesterol and 27-hydroxycholesterol) were 1.5- to 2.8-fold and 1.5- to 3.9-fold, respectively, higher in the citrin-deficient group than in the control group. The concentration of 24S-hydroxycholesterol, a marker of cholesterol catabolism in the brain, was 2.5-fold higher in the citrin-deficient group. In both groups, the HDL-C concentration was significantly positively correlated with that of 27-hydroxycholesterol, the first product of the alternative bile acid synthesis pathway. CONCLUSIONS HDL-C and sterol marker concentrations are elevated in citrin-deficient children post-NICCD. Moreover, cholesterol synthesis and elimination are markedly enhanced in the liver and brain of citrin-deficient children.
Collapse
Affiliation(s)
- Satoshi Hirayama
- Department of Clinical Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Hironori Nagasaka
- Department of Pediatrics, Takarazuka City Hospital, Takarazuka, Japan
| | - Akira Honda
- Joint Research Center and Division of Gastroenterology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Haruki Komatsu
- Department of Pediatrics, Toho University Sakura Medical Center, Sakura, Japan
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ayano Inui
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Shunsaku Kaji
- Department of Pediatrics, Tsuyama-Chuo Hospital, Okayama, Japan
| | - Tsuyoshi Ueno
- Department of Clinical Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Kenji Ihara
- Department of Pediatrics, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
- Department of Pediatrics, Oita University, Faculty of Medicine, Yufu, Japan
| | - Mariko Yagi
- Department of Pediatrics, Nikoniko House Medical & Welfare Center, Kobe, Japan
| | - Zenro Kizaki
- Department of Pediatrics, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Kazuhiko Bessho
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroki Kondou
- Department of Pediatrics, Kindai University Nara Hospital, Nara, Japan
| | - Tohru Yorifuji
- Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Hirokazu Tsukahara
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Miyazaki T, Nagasaka H, Komatsu H, Inui A, Morioka I, Tsukahara H, Kaji S, Hirayama S, Miida T, Kondou H, Ihara K, Yagi M, Kizaki Z, Bessho K, Kodama T, Iijima K, Yorifuji T, Matsuzaki Y, Honda A. Serum Amino Acid Profiling in Citrin-Deficient Children Exhibiting Normal Liver Function During the Apparently Healthy Period. JIMD Rep 2018; 43:53-61. [PMID: 29654547 DOI: 10.1007/8904_2018_99] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 02/23/2018] [Accepted: 02/27/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Citrin (mitochondrial aspartate-glutamate transporter) deficiency causes the failures in both carbohydrate-energy metabolism and the urea cycle, and the alterations in the serum levels of several amino acids in the stages of newborn (NICCD) and adult (CTLN2). However, the clinical manifestations are resolved between the NICCD and CTLN2, but the reasons are still unclear. This study evaluated the serum amino acid profile in citrin-deficient children during the healthy stage. METHODS Using HPLC-MS/MS analysis, serum amino acids were evaluated among 20 citrin-deficient children aged 5-13 years exhibiting normal liver function and 35 age-matched healthy controls. RESULTS The alterations in serum amino acids characterized in the NICCD and CTLN2 stages were not observed in the citrin-deficient children. Amino acids involved in the urea cycle, including arginine, ornithine, citrulline, and aspartate, were comparable in the citrin-deficient children to the respective control levels, but serum urea was twofold higher, suggestive of a functional urea cycle. The blood sugar level was normal, but glucogenic amino acids and glutamine were significantly decreased in the citrin-deficient children compared to those in the controls. In addition, significant increases of ketogenic amino acids, branched-chain amino acids (BCAAs), a valine intermediate 3-hydroxyisobutyrate, and β-alanine were also found in the citrin-deficient children. CONCLUSION The profile of serum amino acids in the citrin-deficient children during the healthy stage showed different characteristics from the NICCD and CTLN2 stages, suggesting that the failures in both urea cycle function and energy metabolism might be compensated by amino acid metabolism. SYNOPSIS In the citrin-deficient children during the healthy stage, the characteristics of serum amino acids, including decrease of glucogenic amino acids, and increase of ketogenic amino acids, BCAAs, valine intermediate, and β-alanine, were found by comparison to the age-matched healthy control children, and it suggested that the characteristic alteration of serum amino acids may be resulted from compensation for energy metabolism and ammonia detoxification.
Collapse
Affiliation(s)
- Teruo Miyazaki
- Division of Gastroenterology, Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki, Japan.
| | - Hironori Nagasaka
- Department of Pediatrics, Takarazuka City Hospital, Takarazuka, Hyogo, Japan
| | - Haruki Komatsu
- Department of Pediatrics, Toho University Sakura Medical Center, Chiba, Japan
| | - Ayano Inui
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Kanagawa, Japan
| | - Ichiro Morioka
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hirokazu Tsukahara
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shunsaku Kaji
- Department of Pediatrics, Tsuyama-Chuo Hospital, Tsuyama, Okayama, Japan
| | - Satoshi Hirayama
- Department of Clinical Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroki Kondou
- Department of Pediatrics, Kindai University Nara Hospital, Nara, Japan
| | - Kenji Ihara
- Department of Pediatrics, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
- Department of Pediatrics, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Mariko Yagi
- Department of Pediatrics, Nikoniko House Medical and Welfare Center, Kobe, Hyogo, Japan
| | - Zenro Kizaki
- Department of Pediatrics, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Kazuhiko Bessho
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tohru Yorifuji
- Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Yasushi Matsuzaki
- Division of Gastroenterology, Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki, Japan
| | - Akira Honda
- Division of Gastroenterology, Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki, Japan
| |
Collapse
|
26
|
Early Detection and Diagnosis of Neonatal Intrahepatic Cholestasis Caused by Citrin Deficiency Missed by Newborn Screening Using Tandem Mass Spectrometry. Int J Neonatal Screen 2018; 4:5. [PMID: 33072931 PMCID: PMC7548893 DOI: 10.3390/ijns4010005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/12/2018] [Indexed: 01/31/2023] Open
Abstract
Citrullinemia is the earliest identifiable biochemical abnormality in neonates with intrahepatic cholestasis due to a citrin deficiency (NICCD) and it has been included in newborn screening panels using tandem mass spectrometry. However, only one neonate was positive among 600,000 infants born in Sapporo city and Hokkaido, Japan between 2006 and 2017. We investigated 12 neonates with NICCD who were initially considered normal in newborn mass screening (NBS) by tandem mass spectrometry, but were later diagnosed with NICCD by DNA tests. Using their initial NBS data, we examined citrulline concentrations and ratios of citrulline to total amino acids. Although their citrulline values exceeded the mean of the normal neonates and 80% of them surpassed +3 SD (standard deviation), all were below the cutoff of 40 nmol/mL. The ratios of citrulline to total amino acids significantly elevated in patients with NICCD compared to the control. By evaluating two indicators simultaneously, we could select about 80% of patients with missed NICCD. Introducing an estimated index comprising citrulline values and citrulline to total amino acid ratios could assure NICCD detection by NBS.
Collapse
|
27
|
Lu CT, Yang J, Huang SM, Feng L, Li ZJ. Analysis of islet beta cell functions and their correlations with liver dysfunction in patients with neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD). Medicine (Baltimore) 2017; 96:e8638. [PMID: 29137101 PMCID: PMC5690794 DOI: 10.1097/md.0000000000008638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) primarily manifests in neonates or infants with hepatomegaly, liver dysfunction, and hypoglycemia. This study investigated the functions of islet beta cells and their correlations with liver dysfunction in NICCD patients.We retrospectively analyzed clinical data on liver function and islet beta cell functions for 36 patients diagnosed with NICCD and 50 subjects as the control group. The NICCD group had significantly higher total bilirubin (TBIL), direct bilirubin (DBIL), alanine aminotransferase (ALT), aspartate amino transferase (AST), gamma-glutamyl transpeptidase (GGT), alkaline phosphatase (ALP) and alpha-fetoprotein (AFP) levels and albumin/globulin ratio (A/G) (P < .05), and lower ALB and GLB levels than the control group (P < .05). The differences in fasting blood glucose (FBG), fasting insulin, C-peptide (C-P), the homeostasis model of assessment for the insulin resistance index (HOMA-IR), fasting beta cell function (FBCI), and the HOMA beta cell function index (HBCI) between the NICCD and control groups were not significant (P > .05). A linear correlation was found between FBG and fasting insulin (P < .001) and between FBG and C-P in the NICCD patients (P = .001). Fasting insulin (P = .023), HOMA-IR (P = .023), FBCI (P = .049), and HBCI (P = .048) were positively correlated with increases in the ALT level. There was no difference in islet beta cell functions between the NICCD and control groups. The liver dysfunction may be correlated with islet beta cell functions in NICCD patients.
Collapse
Affiliation(s)
- Chun-Ting Lu
- The First Affiliated Hospital of Jinan University
| | | | | | - Lie Feng
- Department of Endocrinology and Metabolism
| | - Ze-Jian Li
- Medical Centre of Stomatology, The First Affiliated Hospital of Jinan University, Guangdong, China
| |
Collapse
|
28
|
Zhang ZH, Lin WX, Zheng QQ, Guo L, Song YZ. Molecular diagnosis of citrin deficiency in an infant with intrahepatic cholestasis: identification of a 21.7kb gross deletion that completely silences the transcriptional and translational expression of the affected SLC25A13 allele. Oncotarget 2017; 8:87182-87193. [PMID: 29152073 PMCID: PMC5675625 DOI: 10.18632/oncotarget.19901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 07/18/2017] [Indexed: 12/26/2022] Open
Abstract
Neonatal Intrahepatic Cholestasis caused by Citrin Deficiency (NICCD) arises from biallelic SLC25A13 mutations, and SLC25A13 analysis provides reliable evidences for NICCD definite diagnosis. However, novel large insertions/deletions in this gene could not be detected just by conventional DNA analysis. This study aimed to explore definite diagnostic evidences for an infant highly-suspected to have NICCD. Prevalent mutation screening and Sanger sequencing of SLC25A13 gene just revealed a paternally-inherited mutation c.851_854del4. Nevertheless, neither citrin protein nor SLC25A13 transcripts of maternal origin could be detected on Western blotting and cDNA cloning analysis, respectively. On this basis, the hidden maternal mutation was precisely positioned using SNP analysis and semi-quantitative PCR, and finally identified as a novel large deletion c.-3251_c.15+18443del21709bp, which involved the SLC25A13 promoter region and the entire exon 1 where locates the translation initiation codon. Hence, NICCD was definitely diagnosed in the infant. To the best of our knowledge, the novel gross deletion, which silenced the transcriptional and translational expression of the affected SLC25A13 allele, is the hitherto largest deletion in SLC25A13 mutation spectrum. The Western blotting approach using mitochondrial protein extracted from expanded peripheral blood lymphocytes, of particular note, might be a new minimally-invasive and more-feasible molecular tool for NICCD diagnosis.
Collapse
Affiliation(s)
- Zhan-Hui Zhang
- Clinical Medicine Research Institute, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Wei-Xia Lin
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Qi-Qi Zheng
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Li Guo
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Yuan-Zong Song
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| |
Collapse
|
29
|
Lin WX, Zheng QQ, Guo L, Cheng Y, Song YZ. [Clinical feature and molecular diagnostic analysis of the first non-caucasian child with infantile liver failure syndrome type 1]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:913-920. [PMID: 28774368 PMCID: PMC7390053 DOI: 10.7499/j.issn.1008-8830.2017.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
Infantile liver failure syndrome type 1 (ILFS1) is a Mendelian disease due to biallelic mutations in the cytoplasmic leucyl-tRNA synthetase gene (LARS). This study aimed to report the clinical and molecular features of the first non-caucasian ILFS1 patient, providing reliable evidences for the definite diagnosis of ILFS1. The 2 years and 9 months old male patient was referred to the hospital with hepatosplenomegaly over 1 year. At age 17 months, he was found to have hepatosplenomegaly and anemia. Since then, he had been managed in different hospitals. The laboratory tests showed liver dysfunction, hypoproteinemia, coagulopathy and anemia, along with histologically-confirmed cirrhosis and fatty liver; however, the etiology remained undetermined. The subsequent SLC25A13 mutation analysis by means of prevalent mutation screening and Sanger sequencing only revealed a paternally-inherited mutation c.1658G>A, and no aberrant SLC25A13 transcripts could be detected from the maternal allele on cDNA cloning analysis, ruling out the possibility of citrin deficiency. Further target exome high-throughout sequencing of genes relevant to genetic liver diseases detected a paternal c.2133_2135del (p.L712del) and a maternal c.1183G>A (p.D395N) mutation in LARS gene. This finding was then confirmed by Sanger sequencing, and ILFS1 was thus definitely diagnosed. The child has been followed up till age 4 years, and his condition became stabilized.
Collapse
Affiliation(s)
- Wei-Xia Lin
- Department of Pediatrics, First Affiliated Hospital, Jinan University, Guangzhou 510630, China.
| | | | | | | | | |
Collapse
|
30
|
Lu CT, Shi QP, Li ZJ, Li J, Feng L. Blood glucose and insulin and correlation of SLC25A13 mutations with biochemical changes in NICCD patients. Exp Biol Med (Maywood) 2017; 242:1271-1278. [PMID: 28516797 DOI: 10.1177/1535370217710918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) is a hereditary metabolic disease arising from biallelic mutations of SLC25A13. This study aimed to explore the characteristics of fasting blood glucose (FBG), fasting insulin (FINS) and C-peptide (C-P) levels in NICCD infants, analyze their SLC25A13 genetic mutations and further discuss the correlation between SLC25A13 genetic mutations and biochemical changes. Seventy-two cases of infants with cholestasis disease were gathered. Among them, 36 cases with NICCD diagnosis were case group. Meanwhile, 36 cases with unknown etiology but excluded NICCD were control group. FBG, FINS, C-P, ALT, AST, GGT, ALP, TG, HDL-C, LDL-C and Non-HDL-C were collected from all subjects, and DNA was extracted from venous blood for SLC25A13 mutations detection. The incidence of hypoglycemia was 3% in NICCD group. There were no significant statistical difference of FBG, FINS and C-P between NICCD and INC groups ( P > 0.05). ALT, LDL-C and Non-HDL-C levels in NICCD group were lower than the INC group, while SLC25A13 mutations were associated with the level of GGT ( P < 0.05). Ten different SLC25A13 genetic mutations were detected, among which, 851del4, IVS16ins3kb, IVS6+5 G > A and 1638ins23 mutations made up 82% of all mutations. The incidence of hypoglycemia may be higher in small gestational age infants with NICCD. Low LDL-C may be one of the characteristics of dyslipidemia in NICCD infants. There was a correlation between SLC25A13 gene mutations distribution and the GGT level, but the meaning of this finding remains to be further in-depth study. Impact statement This study aims to compare FBG, FINS, C-P, other biochemical and clinical manifestations between NICCD and non-NICCD infants, and discuss differential diagnosis of NICCD and INC beyond the genetic analysis. And investigate the correlation between SLC25A13 genetic mutations and biochemical changes. This work presented that incidence of hypoglycemia may be higher in small gestational age infants with NICCD. Low LDL-C may be one of the characteristics of dyslipidemia in NICCD infants. There was a correlation between SLC25A13 gene mutations distribution and the GGT level.
Collapse
Affiliation(s)
- Chun-Ting Lu
- 1 Science and Education Office, Jinan University, First Affiliated Hospital, Guangzhou 510630, China.,2 Department of Endocrinology and Metabolism, Jinan University, First Affiliated Hospital, Guangzhou 510630, China
| | - Qi-Ping Shi
- 2 Department of Endocrinology and Metabolism, Jinan University, First Affiliated Hospital, Guangzhou 510630, China
| | - Ze-Jian Li
- 3 Medical Centre of Stomatology, Jinan University, First Affiliated Hospital, Guangzhou 510630, China
| | - Jiong Li
- 4 Department of Anatomy, Medical School, Jinan University, Guangzhou 510630, China
| | - Lie Feng
- 2 Department of Endocrinology and Metabolism, Jinan University, First Affiliated Hospital, Guangzhou 510630, China
| |
Collapse
|
31
|
Nagasaka H, Komatsu H, Inui A, Nakacho M, Morioka I, Tsukahara H, Kaji S, Hirayama S, Miida T, Kondou H, Ihara K, Yagi M, Kizaki Z, Bessho K, Kodama T, Iijima K, Saheki T, Yorifuji T, Honda A. Circulating tricarboxylic acid cycle metabolite levels in citrin-deficient children with metabolic adaptation, with and without sodium pyruvate treatment. Mol Genet Metab 2017; 120:207-212. [PMID: 28041819 DOI: 10.1016/j.ymgme.2016.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 12/27/2022]
Abstract
Citrin deficiency causes adult-onset type II citrullinemia (CTLN-2), which later manifests as severe liver steatosis and life-threatening encephalopathy. Long-standing energy deficit of the liver and brain may predispose ones to CTLN-2. Here, we compared the energy-driving tricarboxylic acid (TCA) cycle and fatty acid β-oxidation cycle between 22 citrin-deficient children (age, 3-13years) with normal liver functions and 37 healthy controls (age, 5-13years). TCA cycle analysis showed that basal plasma citrate and α-ketoglutarate levels were significantly higher in the affected than the control group (p<0.01). Conversely, basal plasma fumarate and malate levels were significantly lower than those for the control (p<0.001). The plasma level of 3-OH-butyrate derived from fatty acid β-oxidation was significantly higher in the affected group (p<0.01). Ten patients underwent sodium pyruvate therapy. However, this therapy did not correct or attenuate such deviations in both cycles. Sodium pyruvate therapy significantly increased fasting insulin secretion (p<0.01); the fasting sugar level remained unchanged. Our results suggest that citrin-deficient children show considerable deviations of TCA cycle metabolite profiles that are resistant to sodium pyruvate treatment. Thus, long-standing and considerable TCA cycle dysfunction might be a pivotal metabolic background of CTLN-2 development.
Collapse
Affiliation(s)
- Hironori Nagasaka
- Department of Pediatrics, Takarazuka City Hospital, 4-5-1, Kohama, Takarazuka 665-0827, Japan.
| | - Haruki Komatsu
- Department of Pediatrics, Toho University Sakura Medical Center, 564-1, Shimoshizu, Sakura 285-8741, Japan
| | - Ayano Inui
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohamashi Tobu Hospital, 3-6-1 Shimosueyoshi, Tsurumi-ku, Yokohama 230-0012, Japan
| | - Mariko Nakacho
- Department of Pediatrics, Takarazuka City Hospital, 4-5-1, Kohama, Takarazuka 665-0827, Japan
| | - Ichiro Morioka
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-ku, Kobe 650-0017, Japan
| | - Hirokazu Tsukahara
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-Cho, Kita-ku, Okayama 700-8558, Japan
| | - Shunsaku Kaji
- Department of Pediatrics, Tsuyama-Chuo Hospital, 1756 Kawasaki, Tsuyama City, Okayama 708-0841, Japan
| | - Satoshi Hirayama
- Department of Clinical Laboratory Medicine, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hiroki Kondou
- Department of Pediatrics, Kindai University Nara Hospital, 1248-1, Otoda-cho, Ikoma, Nara 630-0293, Japan
| | - Kenji Ihara
- Department of Pediatrics, Kyushu University Graduate School of Medical Science, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Pediatrics, Oita University, Faculty of Medicine, 1-1. Idaigaoka, Hasama-machi, Yufu -city 879-5593, Japan
| | - Mariko Yagi
- Department of Pediatrics, Nikoniko House Medical & Welfare Center, 14-1, Azanakaichiriyama, Shimotanigami, Yamada-cho, Kita-ku, Kobe 651-1102, Japan
| | - Zenro Kizaki
- Department of Pediatrics, Kyoto Cross-Red Hospital, 15-749 Honmachi, Higashiyama-ku, Kyoto 230-0012, Japan
| | - Kazuhiko Bessho
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-ku, Kobe 650-0017, Japan
| | - Takeyori Saheki
- Department of Molecular Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima 890-8544, Japan
| | - Tohru Yorifuji
- Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, 2-13-22 Miyakojima-hondori, Miyakojima, Osaka 534-0021, Japan
| | - Akira Honda
- Joint Research Center and Division of Gastroenterology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami, Ibaraki 300-0395, Japan
| |
Collapse
|
32
|
Lin WX, Zeng HS, Zhang ZH, Mao M, Zheng QQ, Zhao ST, Cheng Y, Chen FP, Wen WR, Song YZ. Molecular diagnosis of pediatric patients with citrin deficiency in China: SLC25A13 mutation spectrum and the geographic distribution. Sci Rep 2016; 6:29732. [PMID: 27405544 PMCID: PMC4942605 DOI: 10.1038/srep29732] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/21/2016] [Indexed: 12/21/2022] Open
Abstract
Citrin deficiency (CD) is a Mendelian disease due to biallelic mutations of SLC25A13 gene. Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) is the major pediatric CD phenotype, and its definite diagnosis relies on SLC25A13 genetic analysis. China is a vast country with a huge population, but the SLC25A13 genotypic features of CD patients in our country remains far from being well clarified. Via sophisticated molecular analysis, this study diagnosed 154 new CD patients in mainland China and identified 9 novel deleterious SLC25A13 mutations, i.e. c.103A > G, [c.329 - 154_c.468 + 2352del2646; c.468 + 2392_c.468 + 2393ins23], c.493C > T, c.755 - 1G > C, c.845_c.848 + 1delG, c.933_c.933 + 1insGCAG, c.1381G > T, c.1452 + 1G > A and c.1706_1707delTA. Among the 274 CD patients diagnosed by our group thus far, 41 SLC25A13 mutations/variations were detected. The 7 mutations c.775C > T, c.851_854del4, c.1078C > T, IVS11 + 1G > A, c.1364G > T, c.1399C > T and IVS16ins3kb demonstrated significantly different geographic distribution. Among the total 53 identified genotypes, only c.851_854del4/c.851_854del4 and c.851_854del4/c.1399C > T presented different geographic distribution. The northern population had a higher level of SLC25A13 allelic heterogeneity than those in the south. These findings enriched the SLC25A13 mutation spectrum and brought new insights into the geographic distribution of the variations and genotypes, providing reliable evidences for NICCD definite diagnosis and for the determination of relevant molecular targets in different Chinese areas.
Collapse
Affiliation(s)
- Wei-Xia Lin
- Department of Pediatrics, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Han-Shi Zeng
- Department of Pediatrics, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Zhan-Hui Zhang
- Clinical Medicine Research Institute, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Man Mao
- Department of Laboratory Science, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Qi-Qi Zheng
- Department of Pediatrics, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Shu-Tao Zhao
- Department of Pediatrics, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Ying Cheng
- Department of Pediatrics, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Feng-Ping Chen
- Department of Laboratory Science, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Wang-Rong Wen
- Department of Laboratory Science, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Yuan-Zong Song
- Department of Pediatrics, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| |
Collapse
|
33
|
Komatsu M, Kimura T, Yazaki M, Tanaka N, Yang Y, Nakajima T, Horiuchi A, Fang ZZ, Joshita S, Matsumoto A, Umemura T, Tanaka E, Gonzalez FJ, Ikeda SI, Aoyama T. Steatogenesis in adult-onset type II citrullinemia is associated with down-regulation of PPARα. Biochim Biophys Acta Mol Basis Dis 2014; 1852:473-81. [PMID: 25533124 DOI: 10.1016/j.bbadis.2014.12.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 12/13/2022]
Abstract
SLC25A13 (citrin or aspartate-glutamate carrier 2) is located in the mitochondrial membrane in the liver and its genetic deficiency causes adult-onset type II citrullinemia (CTLN2). CTLN2 is one of the urea cycle disorders characterized by sudden-onset hyperammonemia due to reduced argininosuccinate synthase activity. This disorder is frequently accompanied with hepatosteatosis in the absence of obesity and ethanol consumption. However, the precise mechanism of steatogenesis remains unclear. The expression of genes associated with fatty acid (FA) and triglyceride (TG) metabolism was examined using liver samples obtained from 16 CTLN2 patients and compared with 7 healthy individuals. Although expression of hepatic genes associated with lipogenesis and TG hydrolysis was not changed, the mRNAs encoding enzymes/proteins involved in FA oxidation (carnitine palmitoyl-CoA transferase 1α, medium- and very-long-chain acyl-CoA dehydrogenases, and acyl-CoA oxidase 1), very-low-density lipoprotein secretion (microsomal TG transfer protein), and FA transport (CD36 and FA-binding protein 1), were markedly suppressed in CTLN2 patients. Serum concentrations of ketone bodies were also decreased in these patients, suggesting reduced mitochondrial β-oxidation activity. Consistent with these findings, the expression of peroxisome proliferator-activated receptor α (PPARα), a master regulator of hepatic lipid metabolism, was significantly down-regulated. Hepatic PPARα expression was inversely correlated with severity of steatosis and circulating ammonia and citrulline levels. Additionally, phosphorylation of c-Jun-N-terminal kinase was enhanced in CTLN2 livers, which was likely associated with lower hepatic PPARα. Collectively, down-regulation of PPARα is associated with steatogenesis in CTLN2 patients. These findings provide a novel link between urea cycle disorder, lipid metabolism, and PPARα.
Collapse
Affiliation(s)
- Michiharu Komatsu
- Department of Medicine (Gastroenterology), Shinshu University School of Medicine, Japan
| | - Takefumi Kimura
- Department of Medicine (Gastroenterology), Shinshu University School of Medicine, Japan; Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Japan
| | - Masahide Yazaki
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Japan; Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Shinshu University, Japan
| | - Naoki Tanaka
- Department of Medicine (Gastroenterology), Shinshu University School of Medicine, Japan; Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Japan.
| | - Yang Yang
- Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Japan
| | - Takero Nakajima
- Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Japan
| | - Akira Horiuchi
- Digestive Disease Center, Showa Inan General Hospital, Japan
| | - Zhong-Ze Fang
- Department of Toxicology, School of Public Health, Tianjin Medical University, China
| | - Satoru Joshita
- Department of Medicine (Gastroenterology), Shinshu University School of Medicine, Japan
| | - Akihiro Matsumoto
- Department of Medicine (Gastroenterology), Shinshu University School of Medicine, Japan
| | - Takeji Umemura
- Department of Medicine (Gastroenterology), Shinshu University School of Medicine, Japan
| | - Eiji Tanaka
- Department of Medicine (Gastroenterology), Shinshu University School of Medicine, Japan
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| | - Shu-Ichi Ikeda
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Japan
| | - Toshifumi Aoyama
- Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Japan
| |
Collapse
|
34
|
Yamasaki M, Shimada T, Hamaoka S, Shibata M, Naito Y. [A case of adult-onset type II citrullinemia (CTLN2) triggered by an overseas travel]. Rinsho Shinkeigaku 2014; 54:747-50. [PMID: 25283831 DOI: 10.5692/clinicalneurol.54.747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A 43-year-old male presented with abnormal behavior and consciousness disturbance on the day after traveling abroad and was admitted to our hospital. Laboratory tests showed hyperammonemia and hypercitrullinemia. The electro-encephalogram showed frontal dominant bilateral slow δ burst. He had a peculiar taste for nuts. But he didn't take nuts during the overseas travel for 3 days. The family history revealed that his younger brother died of a status epilepticus of unknown cause at the age of 29. These findings were compatible with hepatic encephalopathy due to adult-onset type II citrullinemia (CTLN2). Gene analysis provided a definite diagnosis of CTLN2. Diet and drug therapy have improved his condition. He is due to have liver transplantation which is the only established radical treatment for CTLN2 if his condition becomes worse. The present case shows that cessation of the habitual intake of nuts only for 3 days could lead to onset of CTLN2.
Collapse
|
35
|
Zhou Y, Danbolt NC. Glutamate as a neurotransmitter in the healthy brain. J Neural Transm (Vienna) 2014; 121:799-817. [PMID: 24578174 PMCID: PMC4133642 DOI: 10.1007/s00702-014-1180-8] [Citation(s) in RCA: 580] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/11/2014] [Indexed: 12/13/2022]
Abstract
Glutamate is the most abundant free amino acid in the brain and is at the crossroad between multiple metabolic pathways. Considering this, it was a surprise to discover that glutamate has excitatory effects on nerve cells, and that it can excite cells to their death in a process now referred to as "excitotoxicity". This effect is due to glutamate receptors present on the surface of brain cells. Powerful uptake systems (glutamate transporters) prevent excessive activation of these receptors by continuously removing glutamate from the extracellular fluid in the brain. Further, the blood-brain barrier shields the brain from glutamate in the blood. The highest concentrations of glutamate are found in synaptic vesicles in nerve terminals from where it can be released by exocytosis. In fact, glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. It took, however, a long time to realize that. The present review provides a brief historical description, gives a short overview of glutamate as a transmitter in the healthy brain, and comments on the so-called glutamate-glutamine cycle. The glutamate transporters responsible for the glutamate removal are described in some detail.
Collapse
Affiliation(s)
- Y. Zhou
- The Neurotransporter Group, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Blindern, P.O. Box 1105, 0317 Oslo, Norway
| | - N. C. Danbolt
- The Neurotransporter Group, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Blindern, P.O. Box 1105, 0317 Oslo, Norway
| |
Collapse
|
36
|
Scorza M, Elce A, Zarrilli F, Liguori R, Amato F, Castaldo G. Genetic diseases that predispose to early liver cirrhosis. Int J Hepatol 2014; 2014:713754. [PMID: 25132997 PMCID: PMC4123515 DOI: 10.1155/2014/713754] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/30/2014] [Indexed: 12/11/2022] Open
Abstract
Inherited liver diseases are a group of metabolic and genetic defects that typically cause early chronic liver involvement. Most are due to a defect of an enzyme/transport protein that alters a metabolic pathway and exerts a pathogenic role mainly in the liver. The prevalence is variable, but most are rare pathologies. We review the pathophysiology of such diseases and the diagnostic contribution of laboratory tests, focusing on the role of molecular genetics. In fact, thanks to recent advances in genetics, molecular analysis permits early and specific diagnosis for most disorders and helps to reduce the invasive approach of liver biopsy.
Collapse
Affiliation(s)
- Manuela Scorza
- CEINGE—Biotecnologie Avanzate Scarl, Via Gaetano Salvatore 486, 80145 Napoli, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Ausilia Elce
- CEINGE—Biotecnologie Avanzate Scarl, Via Gaetano Salvatore 486, 80145 Napoli, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy
- Università Telematica Pegaso, Piazza Trieste e Trento 48, 80132 Napoli, Italy
| | - Federica Zarrilli
- CEINGE—Biotecnologie Avanzate Scarl, Via Gaetano Salvatore 486, 80145 Napoli, Italy
- Dipartimento di Bioscienze e Territorio, Università del Molise, Contrada Fonte Lappone, Pesche, 86090 Isernia, Italy
| | - Renato Liguori
- CEINGE—Biotecnologie Avanzate Scarl, Via Gaetano Salvatore 486, 80145 Napoli, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Felice Amato
- CEINGE—Biotecnologie Avanzate Scarl, Via Gaetano Salvatore 486, 80145 Napoli, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Giuseppe Castaldo
- CEINGE—Biotecnologie Avanzate Scarl, Via Gaetano Salvatore 486, 80145 Napoli, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy
| |
Collapse
|
37
|
Molecular genetics of citrullinemia types I and II. Clin Chim Acta 2014; 431:1-8. [DOI: 10.1016/j.cca.2014.01.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/16/2014] [Accepted: 01/18/2014] [Indexed: 12/16/2022]
|
38
|
Hayasaka K, Numakura C, Toyota K, Kakizaki S, Watanabe H, Haga H, Takahashi H, Takahashi Y, Kaneko M, Yamakawa M, Nunoi H, Kato T, Ueno Y, Mori M. Medium-chain triglyceride supplementation under a low-carbohydrate formula is a promising therapy for adult-onset type II citrullinemia. Mol Genet Metab Rep 2014; 1:42-50. [PMID: 27896073 PMCID: PMC5121258 DOI: 10.1016/j.ymgmr.2013.12.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 12/13/2013] [Indexed: 12/01/2022] Open
Abstract
Background Citrin, encoded by SLC25A13, is a component of the malate-aspartate shuttle, which is the main NADH-transporting system in the liver. Citrin deficiency causes neonatal intrahepatic cholestasis (NICCD), which usually resolves within the first year of life. However, small numbers of adults with citrin deficiency develop hyperammonemic encephalopathy, adult-onset type II citrullinemia (CTLN2), which leads to death due to cerebral edema. Liver transplantation is the only definitive therapy for patients with CTLN2. We previously reported that a lactose (galactose)-restricted and medium-chain triglyceride (MCT)-supplemented formula is notably effective for patients with NICCD. Citrin deficiency may impair the glycolysis in hepatocytes because of an increase in the cytosolic NADH/NAD+ ratio, leading to an energy shortage. MCT administration can provide energy to hepatocytes and was expected to have a good effect on CTLN2. Methods An MCT supplementation therapy under a low-carbohydrate formula was administered to five patients with CTLN2. Four of the patients had episodes of hyperammonemic encephalopathy, and one patient had postprandial hyperammonemia with no symptoms. Results One of the patients displaying hyperammonemic encephalopathy completely recovered with all normal laboratory findings. Others notably improved in terms of clinical and or laboratory findings with no hyperammonemic symptoms; however, the patients displayed persistent mild citrullinemia and occasionally had postprandial mild hyperammonemia most likely due to an irreversible change in the liver. Conclusions An MCT supplement can provide energy to hepatocytes and promote hepatic lipogenesis, leading to a reduction in the cytosolic NADH/NAD+ ratio. MCT supplementation under a low-carbohydrate formula could be a promising therapy for CTLN2 and should also be used to prevent CTLN2 to avoid irreversible liver damage.
Collapse
Key Words
- ALP, serum alkali phosphatase
- ALT, alanine aminotransferase
- ASS1, argininosuccinate synthetase 1
- AST, aspartate aminotransferase
- Adult-onset type II citrullinemia (CTLN2)
- BMI, body mass index
- CTLN2, adult-onset type II citrullinemia
- ChE, cholinesterase
- Citrin deficiency
- LDH, lactate dehydrogenase
- MCFA, medium-chain free fatty acids
- MCT, medium-chain triglycerides
- Malate-aspartate shuttle
- Medium-chain triglycerides (MCT)
- NICCD, neonatal intrahepatic cholestasis
- Neonatal intrahepatic cholestasis (NICCD)
- PPAR, peroxisome proliferator-activated receptor
- PSTI, pancreatic secretory trypsin inhibitor
- SLC25A13
- TIBC, total iron-binding capacity
- UIBC, unsaturated iron-binding capacity
- γ-GTP, gamma-glutamyl transpeptidase
Collapse
Affiliation(s)
- Kiyoshi Hayasaka
- Dept. of Pediatrics, Yamagata University School of Medicine, Yamagata, Japan
| | - Chikahiko Numakura
- Dept. of Pediatrics, Yamagata University School of Medicine, Yamagata, Japan
| | - Kentaro Toyota
- Dept. of Pediatrics, Yamagata University School of Medicine, Yamagata, Japan
| | - Satoru Kakizaki
- Dept. of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hisayoshi Watanabe
- Dept. of Gastroenterology, Yamagata University School of Medicine, Yamagata, Japan
| | - Hiroaki Haga
- Dept. of Gastroenterology, Yamagata University School of Medicine, Yamagata, Japan
| | - Hiroshi Takahashi
- Dept. of Internal Medicine, Prefectural Ninohe Hospital, Iwate, Japan
| | - Yoshimi Takahashi
- Dept. of Neurology, Hematology, Metabolism, Endocrinology, and Diabetology, Yamagata University School of Medicine, Yamagata, Japan
| | - Mieko Kaneko
- Dept. of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Mitsunori Yamakawa
- Dept. of Pathological Diagnostics, Yamagata University School of Medicine, Yamagata, Japan
| | - Hiroyuki Nunoi
- Division of Pediatrics, Dept. of Reproductive and Developmental Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takeo Kato
- Dept. of Neurology, Hematology, Metabolism, Endocrinology, and Diabetology, Yamagata University School of Medicine, Yamagata, Japan
| | - Yoshiyuki Ueno
- Dept. of Gastroenterology, Yamagata University School of Medicine, Yamagata, Japan
| | - Masatomo Mori
- Dept. of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
39
|
Liu G, Wei X, Chen R, Zhou H, Li X, Sun Y, Xie S, Zhu Q, Qu N, Yang G, Chu Y, Wu H, Lan Z, Wang J, Yang Y, Yi X. A novel mutation of the SLC25A13 gene in a Chinese patient with citrin deficiency detected by target next-generation sequencing. Gene 2014; 533:547-53. [DOI: 10.1016/j.gene.2013.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 10/06/2013] [Accepted: 10/11/2013] [Indexed: 01/29/2023]
|
40
|
Wongkittichote P, Sukasem C, Kikuchi A, Aekplakorn W, Jensen LT, Kure S, Wattanasirichaigoon D. Screening of SLC25A13 mutation in the Thai population. World J Gastroenterol 2013; 19:7735-7742. [PMID: 24282362 PMCID: PMC3837273 DOI: 10.3748/wjg.v19.i43.7735] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/29/2013] [Accepted: 09/17/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the prevalence of SLC25A13 mutations in the Thai population.
METHODS: A total of 1537 subjects representing the Thai population were screened for a novel pathologic allele p.Met1? (c.2T > C) and six previously known common SLC25A13 mutations: [I] (c.851_854delGTAT), [II] (g.IVS11 + 1G > A), [III] (c.1638_1660dup), [IV] (p.S225X), [V] (IVS13 + 1G > A), and [XIX] (g.IVS16ins3kb) using a newly developed TaqMan and established HybProbe assay, respectively. Sanger sequencing was employed for specimens showing an aberrant peak to confirm the targeted mutation as well as the unknown aberrant peaks detected. Frequencies of the mutations identified were compared in each region. Carrier frequency and disease prevalence of citrin deficiency caused by SCL25A13 mutations were estimated.
RESULTS: p.Met1? was identified in the heterozygous state in 85 individuals, giving a carrier frequency of 1/18, which suggests possible selective advantage of this variant. The question of p.Met1? homozygote lethality remains unanswered which may serve as an explanation as to why this homozygote has yet to be identified in patients/controls even with high allele frequency. The p.Met1? mutation has rarely been studied in populations other than Thai and Chinese; therefore, may have been overlooked. Development of the TaqMan assay in the present study would allow a simple, rapid, and cost-effective method for mass screening. Heterozygous mutations: [XIX] and [I] were identified in 17 individuals, giving a carrier rate of 1/90 and a calculated homozygote rate of 1/33000. Two novel variants, g.IVS11 + 17C > G and c.1311C > T, of unknown clinical significance were identified at low frequency.
CONCLUSION: This study highlighted the current underestimation of citrin deficiency and suggests the possible selective advantage of the p.Met1? allele.
Collapse
|
41
|
SLC25A13 gene analysis in citrin deficiency: sixteen novel mutations in East Asian patients, and the mutation distribution in a large pediatric cohort in China. PLoS One 2013; 8:e74544. [PMID: 24069319 PMCID: PMC3777997 DOI: 10.1371/journal.pone.0074544] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/02/2013] [Indexed: 12/19/2022] Open
Abstract
Background The human SLC25A13 gene encodes citrin, the liver-type mitochondrial aspartate/glutamate carrier isoform 2 (AGC2), and SLC25A13 mutations cause citrin deficiency (CD), a disease entity that encompasses different age-dependant clinical phenotypes such as Adult-onset Citrullinemia Type II (CTLN2) and Neonatal Intrahepatic Cholestasis caused by Citrin Deficiency (NICCD). The analyses of SLC25A13 gene and its protein/mRNA products remain reliable tools for the definitive diagnoses of CD patients, and so far, the SLC25A13 mutation spectrum in Chinese CD patients has not been well-characterized yet. Methods and Results By means of direct DNA sequencing, cDNA cloning and SNP analyses, 16 novel pathogenic mutations, including 9 missense, 4 nonsense, 1 splice-site, 1 deletion and 1 large transposal insertion IVS4ins6kb (GenBank accession number KF425758), were identified in CTLN2 or NICCD patients from China, Japan and Malaysia, respectively, making the SLC25A13 variations worldwide reach the total number of 81. A large NICCD cohort of 116 Chinese cases was also established, and the 4 high-frequency mutations contributed a much larger proportion of the mutated alleles in the patients from south China than in those from the north (χ2 = 14.93, P<0.01), with the latitude of 30°N as the geographic dividing line in mainland China. Conclusions This paper further enriched the SLC25A13 variation spectrum worldwide, and formed a substantial contribution to the in-depth understanding of the genotypic feature of Chinese CD patients.
Collapse
|
42
|
Chen R, Wang XH, Fu HY, Zhang SR, Abudouxikuer K, Saheki T, Wang JS. Different regional distribution of SLC25A13 mutations in Chinese patients with neonatal intrahepatic cholestasis. World J Gastroenterol 2013; 19:4545-4551. [PMID: 23901231 PMCID: PMC3725380 DOI: 10.3748/wjg.v19.i28.4545] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 04/24/2013] [Accepted: 06/04/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the differences in the mutation spectra of the SLC25A13 gene mutations from specific regions of China.
METHODS: Genetic analyses of SLC25A13 mutations were performed in 535 patients with neonatal intrahepatic cholestasis from our center over eight years. Unrelated infants with at least one mutant allele were enrolled to calculate the proportion of SLC25A13 mutations in different regions of China. The boundary between northern and southern China was drawn at the historical border of the Yangtze River.
RESULTS: A total of 63 unrelated patients (about 11% of cases with intrahepatic cholestasis) from 16 provinces or municipalities in China had mutations in the SLC25A13 gene, of these 16 (25%) were homozygotes, 28 (44%) were compound heterozygotes and 19 (30%) were heterozygotes. In addition to four well described common mutations (c.851_854del, c.1638_1660dup23, c.615+5G>A and c.1750+72_1751-4dup17insNM_138459.3:2667 also known as IVS16ins3kb), 13 other mutation types were identified, including three novel mutations: c.985_986insT, c.287T>C and c.1349A>G. According to the geographical division criteria, 60 mutant alleles were identified in patients from the southern areas of China, 43 alleles were identified in patients from the border, and 4 alleles were identified in patients from the northern areas of China. The proportion of four common mutations was higher in south region (56/60, 93%) than that in the border region (34/43, 79%, χ2 = 4.621, P = 0.032) and the northern region (2/4, 50%, χ2 = 8.288, P = 0.041).
CONCLUSION: The SLC25A13 mutation spectra among the three regions of China were different, providing a basis for the improvement of diagnostic strategies and interpretation of genetic diagnosis.
Collapse
|
43
|
Wu QP, Wang LL, Chen XQ, Tang Q, Shan QW, Huang L, Lian SJ, Yun X, Gao GP, Chen Y. Screening of SLC25A13 gene mutations in infants with idiopathic intrahepatic cholestasis in Guangxi. Shijie Huaren Xiaohua Zazhi 2013; 21:1120-1125. [DOI: 10.11569/wcjd.v21.i12.1120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To screen SLC25A13 gene mutations in idiopathic infantile hepatitis cholestasis in Guangxi, China.
METHODS: Sixty-three patients with idiopathic infantile cholestasis, who were hospitalized in the Department of Pediatrics of the First Affiliated Hospital of Guangxi Medical University from September 2010 to June 2012, and 50 infants without intrahepatic cholestasis were included in this study. Genomic DNA was prepared from peripheral blood of all subjects for further analysis. For the case group, Citrin deficiency was screened using the tandem mass spectrometry (MS-MS, using blood samples) and gas chromatography mass spectrometry (GC-MS, using urine samples). Direct gene sequencing was performed in patients who were suspected to have Citrin deficiency. Twelve common SLC25A13 gene hot-spot mutations were screened by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) in the remaining patients and controls.
RESULTS: MS-MS and GC-MS analyses suggested that five patients were suspected to have Citrin deficiency, but the 12 common SLC25A13 gene hot-spot mutations were not detected in these patients in a further DNA sequencing analysis. The 12 common SLC25A13 gene hot-spot mutations were also not detected by PCR-SSCP in the remaining patients and controls.
CONCLUSION: The 12 common SLC25A13 gene hot-spot mutations were not found in patients who were suspected to have Citrin deficiency and the other patients and controls. Other rare SLC25A13 gene mutations should be screened in more patients.
Collapse
|
44
|
Yazaki M, Kinoshita M, Ogawa S, Fujimi S, Matsushima A, Hineno A, Tazawa KI, Fukushima K, Kimura R, Yanagida M, Matsunaga H, Saheki T, Ikeda SI. A 73-year-old patient with adult-onset type II citrullinemia successfully treated by sodium pyruvate and arginine. Clin Neurol Neurosurg 2013; 115:1542-5. [PMID: 23369404 DOI: 10.1016/j.clineuro.2012.12.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 12/17/2012] [Accepted: 12/22/2012] [Indexed: 11/16/2022]
Affiliation(s)
- Masahide Yazaki
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto 390-8621, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wang JS, Wang XH, Zheng YJ, Fu HY, Chen R, Lu Y, Fang LJ, Saheki T, Kobayashi K. Biochemical characteristics of neonatal cholestasis induced by citrin deficiency. World J Gastroenterol 2012; 18:5601-7. [PMID: 23112554 PMCID: PMC3482648 DOI: 10.3748/wjg.v18.i39.5601] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/27/2012] [Accepted: 07/09/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore differences in biochemical indices between neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) and that with other etiologies.
METHODS: Patients under 6 mo of age who were referred for investigation of conjugated hyperbilirubinaemia from June 2003 to December 2010 were eligible for this study. After excluding diseases affecting the extrahepatic biliary system, all patients were screened for the two most common SLC25A13 mutations; the coding exons of the entire SLC25A13 gene was sequenced and Western blotting of citrin protein performed in selected cases. Patients in whom homozygous or compound heterozygous SLC25A13 mutation and/or absence of normal citrin protein was detected were defined as having NICCD. Cases in which no specific etiological factor could be ascertained after a comprehensive conjugated hyperbilirubinaemia work-up were defined as idiopathic neonatal cholestasis (INC). Thirty-two NICCD patients, 250 INC patients, and 39 infants with cholangiography-confirmed biliary atresia (BA) were enrolled. Laboratory values at their first visit were abstracted from medical files and compared.
RESULTS: Compared with BA and INC patients, the NICCD patients had significantly higher levels of total bile acid (TBA) [all measures are expressed as median (inter-quartile range): 178.0 (111.2-236.4) μmol/L in NICCD vs 112.0 (84.9-153.9) μmol/L in BA and 103.0 (70.9-135.3) μmol/L in INC, P = 0.0001]. The NICCD patients had significantly lower direct bilirubin [D-Bil 59.6 (43.1-90.9) μmol/L in NICCD vs 134.0 (115.9-151.2) μmol/L in BA and 87.3 (63.0-123.6) μmol/L in INC, P = 0.0001]; alanine aminotransferase [ALT 34.0 (23.0-55.0) U/L in NICCD vs 108.0 (62.0-199.0) U/L in BA and 84.5 (46.0-166.0) U/L in INC, P = 0.0001]; aspartate aminotransferase [AST 74.0 (53.5-150.0) U/L in NICCD vs 153.0 (115.0-239.0) U/L in BA and 130.5 (81.0-223.0) U/L in INC, P = 0.0006]; albumin [34.9 (30.7-38.2) g/L in NICCD vs 38.4 (36.3-42.2) g/L in BA and 39.9 (37.0-42.3) g/L in INC, P = 0.0001]; glucose [3.2 (2.0-4.4) mmol/L in NICCD vs 4.1 (3.4-5.1) mmol/L in BA and 4.0 (3.4-4.6) mmol/L in INC, P = 0.0014] and total cholesterol [TCH 3.33 (2.97-4.00) mmol/L in NICCD vs 4.57 (3.81-5.26) mmol/L in BA and 4.00 (3.24-4.74) mmol/L in INC, P = 0.0155] levels. The D-Bil to total bilirubin (T-Bil) ratio was significantly lower in NICCD patients [all measures are expressed as median (inter-quartile range): 0.54 (0.40-0.74)] than that in BA patients [0.77 (0.72-0.81), P = 0.001] and that in INC patients [0.74 (0.59-0.80), P = 0.0045]. A much higher AST/ALT ratio was found in NICCD patients [2.46 (1.95-3.63)] compared to BA patients [1.38 (0.94-1.97), P = 0.0001] and INC patients [1.48 (1.10-2.26), P = 0.0001]. NICCD patients had significantly higher TBA/D-Bil ratio [3.36 (1.98-4.43) vs 0.85 (0.72-1.09) in BA patients and 1.04 (0.92-1.14) in INC patients, P = 0.0001], and TBA/TCH ratio [60.7 (32.4-70.9) vs 24.7 (19.8-30.2) in BA patients and 24.2 (21.4-26.9) in INC patients, P = 0.0001] compared to the BA and INC groups.
CONCLUSION: NICCD has significantly different biochemical indices from BA or INC. TBA excretion in NICCD appeared to be more severely disturbed than that of bilirubin and cholesterol.
Collapse
|
46
|
Kikuchi A, Arai-Ichinoi N, Sakamoto O, Matsubara Y, Saheki T, Kobayashi K, Ohura T, Kure S. Simple and rapid genetic testing for citrin deficiency by screening 11 prevalent mutations in SLC25A13. Mol Genet Metab 2012; 105:553-8. [PMID: 22277121 DOI: 10.1016/j.ymgme.2011.12.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 12/29/2011] [Accepted: 12/30/2011] [Indexed: 12/29/2022]
Abstract
Citrin deficiency is an autosomal recessive disorder caused by mutations in the SLC25A13 gene and has two disease outcomes: adult-onset type II citrullinemia and neonatal intrahepatic cholestasis caused by citrin deficiency. The clinical appearance of these diseases is variable, ranging from almost no symptoms to coma, brain edema, and severe liver failure. Genetic testing for SLC25A13 mutations is essential for the diagnosis of citrin deficiency because chemical diagnoses are prohibitively difficult. Eleven SLC25A13 mutations account for 95% of the mutant alleles in Japanese patients with citrin deficiency. Therefore, a simple test for these mutations is desirable. We established a 1-hour, closed-tube assay for the 11 SLC25A13 mutations using real-time PCR. Each mutation site was amplified by PCR followed by a melting-curve analysis with adjacent hybridization probes (HybProbe, Roche). The 11 prevalent mutations were detected in seven PCR reactions. Six reactions were used to detect a single mutation each, and one reaction was used to detect five mutations that are clustered in a 21-bp region in exon 17. To test the reliability, we used this method to genotype blind DNA samples from 50 patients with citrin deficiency. Our results were in complete agreement those obtained using previously established methods. Furthermore, the mutations could be detected without difficulty using dried blood samples collected on filter paper. Therefore, this assay could be used for newborn screening and for facilitating the genetic diagnosis of citrin deficiency, especially in East Asian populations.
Collapse
Affiliation(s)
- Atsuo Kikuchi
- Department of Pediatrics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Nakamura M, Yazaki M, Kobayashi Y, Fukushima K, Ikeda SI, Kobayashi K, Saheki T, Nakaya Y. The characteristics of food intake in patients with type II citrullinemia. J Nutr Sci Vitaminol (Tokyo) 2012; 57:239-45. [PMID: 21908947 DOI: 10.3177/jnsv.57.239] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Some patients with citrin deficiency caused by SLC25A13 gene mutations develop adult-onset type II citrullinemia (CTLN2) with hepatic encephalopathy. A recent nutritional survey of 18 citrin-deficient subjects (age 1-33 y) confirmed a marked decrease in carbohydrate intake compared to an age-matched general Japanese population. However, a quantitative understanding of food intake in CTLN2 patients remains unclear, although qualitative dietary information has been reported. In order to elucidate the characteristics of daily nutrition of CTLN2 patients, the food intake of 5 male patients (age 39-52 y) was investigated in detail by the Food Frequency Questionnaire. In the present survey, the mean energy ratio of protein : fat : carbohydrate (PFC ratio) of the 5 patients was 19±3% : 44±5% : 37±4%, which was almost identical to previously reported data in younger citrin-deficient subjects (19±2% : 44±5% : 37±7%). Cereal intake was especially low in all CTLN2 patients at 309±33 g/d (56% of control), compared to that in an age-matched general Japanese population (553±197 g/d). Additionally, CTLN2 patients preferred high fat and protein foods. Commonly, fat intake declines with age in the general Japanese population, but this tendency was not observed in the 5 CTLN2 patients. The present results suggest that intakes of low-carbohydrate, high-protein and high-fat food was characteristic the 5 CTLN2 patients surveyed, as has been previously reported in younger citrin-deficient subjects, and that the PFC ratio may not be influenced by age or CTLN2-onset.
Collapse
Affiliation(s)
- Mio Nakamura
- Division of Nutrition, Shinshu University Hospital, Matsumoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Takahashi Y, Koyama S, Tanaka H, Arawaka S, Wada M, Kawanami T, Haga H, Watanabe H, Toyota K, Numakura C, Hayasaka K, Kato T. An elderly Japanese patient with adult-onset type II citrullinemia with a novel D493G mutation in the SLC25A13 gene. Intern Med 2012; 51:2131-4. [PMID: 22892490 DOI: 10.2169/internalmedicine.51.7644] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the SLC25A13 gene lead to neonatal intrahepatic cholestasis caused by citrin deficiency and/or adult-onset type II citrullinemia (CTLN2). A 62-year-old man presented with recurrent episodes of neuropsychiatric manifestations. On admission, he had disorientation and flapping tremor. Laboratory data showed hyperferritinemia in addition to postprandial hyperammonemia and citrullinemia. A liver biopsy specimen revealed moderate hemosiderin deposits and hepatocytes with macrovesicular fat droplets. Genetic analysis of the SLC25A13 gene identified the previously reported p.S225X mutation and a novel p.D493G mutation. Hyperferritinemia might also be a characteristic finding of CTLN2-related fatty changes of the liver.
Collapse
Affiliation(s)
- Yoshimi Takahashi
- Department of Neurology, Hematology, Metabolism, Endocrinology, and Diabetology, Faculty of Medicine, Yamagata University, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Liver transplantation in an adult with citrullinaemia type 2. J Transplant 2011; 2011:176370. [PMID: 21647347 PMCID: PMC3103874 DOI: 10.1155/2011/176370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 03/18/2011] [Indexed: 11/17/2022] Open
Abstract
Citrullinaemia is a urea cycle defect that results from a deficiency of the enzyme arginosuccinate synthetase. Type 1 disease is diagnosed in childhood, whereas Type 2 disease is adult onset. We report the outcome of a patient with citrullinemia Type 2 who received a liver transplant at our center and the implications of this diagnosis in liver transplantation.
Collapse
|
50
|
Fu HY, Zhang SR, Wang XH, Saheki T, Kobayashi K, Wang JS. The mutation spectrum of the SLC25A13 gene in Chinese infants with intrahepatic cholestasis and aminoacidemia. J Gastroenterol 2011; 46:510-8. [PMID: 20927635 DOI: 10.1007/s00535-010-0329-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 09/10/2010] [Indexed: 02/04/2023]
Abstract
BACKGROUND SLC25A13 gene mutations cause citrin deficiency, which leads to neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD). Information on the mutation spectrum of SLC25A13 in the Chinese population is limited. The aim of this study was to explore the mutation spectrum of the SLC25A13 gene in Chinese infants with intrahepatic cholestasis and various forms of aminoacidemia. METHODS Sequence analyses were performed on 39 infants with intrahepatic cholestasis and various forms of aminoacidemia. Novel mutations were subjected to homology and structural analyses. Western blots were performed when liver specimens available. RESULTS Genetic testing revealed the presence of SLC25A13 gene mutations (9 heterozygotes, 6 homozygotes and 13 compound heterozygotes) in 28 infants. Subsequent Western blot analysis revealed 22 cases of citrin deficiency, accounting for 56.4% of the 39 patients. Twelve types of mutations, including nine known mutations and three novel mutations, were found. Of the 49 mutated alleles, known ones include 851del4 (26 alleles, 53.1%), 1638ins23 (6 alleles, 12.2%), IVSl6ins3kb (3 alleles, 6.1%), IVS6+5G>A (2 alleles, 4.1%), E601K (2 alleles, 4.1%) and IVS11+1G>A, R184X, R360X and R585H (1 allele each, 2.0%). The three novel mutations were a splice site change (IVS6+1G>A), a deletion mutation (1092_1095delT) and a missense mutation (L85P), each in one allele. CONCLUSIONS The mutation spectrum of the SLC25A13 gene in a Chinese population of infants with intrahepatic cholestasis with various forms of aminoacidemia was found to be different from that of other population groups in East Asia. The SLC25A13 gene mutation is the most important cause of infantile intrahepatic cholestasis with various forms of aminoacidemia.
Collapse
Affiliation(s)
- Hai-Yan Fu
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, 399 Wanyuan Road, Minhang District, Shanghai 201102, People's Republic of China
| | | | | | | | | | | |
Collapse
|