1
|
Chang Y, Wang X, Tian X, Cao Z, Zhen X, Zhao W, Luo B, Gao Y. Novel indel variation of LTBP4 gene associates with risk of sudden cardiac death in Chinese populations with coronary artery disease. Leg Med (Tokyo) 2024; 69:102437. [PMID: 38547642 DOI: 10.1016/j.legalmed.2024.102437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/10/2024] [Accepted: 03/22/2024] [Indexed: 07/17/2024]
Abstract
The objective of this study is to investigate whether common genetic variants of the LTBP4 gene are linked to the susceptibility of sudden cardiac death in individuals who have atherosclerotic coronary artery disease (SCD-CAD) in Chinese populations. A total of 208 SCD-CAD cases and 638 controls were included in the analysis, and logistic regression was employed to assess the association between a 4-bp insertion/deletion polymorphism (rs34005443) within LTBP4 and the susceptibility to SCD-CAD among Chinese individuals. Logistic regression analysis demonstrated a notable association between the insertion allele of rs34005443 and an escalated susceptibility to SCD-CAD [odds ratio (OR) = 1.434; 95 % confidence interval:1.14-1.80; P = 1.79 × 10-3]. Genotype-phenotype correlation analysis was performed using Genotype-Tissue expression (GTEx) database and further validated by human myocardium using qPCR. Correlation analysis revealed that LTBP4 expression level was lower in samples with the insertion allele. Furthermore, the dual-luciferase activity assays indicated that rs34005443 may play a regulatory role. Additionally, we predicted 30 transcription factors that are likely to bind to rs34005443 and its highly linked genetic variants via 3DSNP database. Subsequent GO and KEGG analysis indicated that these transcription factors have a significant function in regulating gene expression. Finally, PPI network analysis suggested a tight connection between LTBP4 proteins and TGFβs, highlighting these genes as potential hub genes in the context of SCD-CAD. In summary, our study revealed that rs34005443 might contribute to SCD-CAD susceptibility by regulating LTBP4 expression. These findings revealed that this indel could be a potentially functional marker for molecular diagnosis and risk stratification of SCD-CAD.
Collapse
Affiliation(s)
- Yafei Chang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoshu Wang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Xiaoyi Tian
- School of Public Health, Dalian Medical University, Dalian, China
| | - Zhengjun Cao
- Public Security Bureau of Yancheng, Yancheng, China
| | - Xiaoyuan Zhen
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Wenfeng Zhao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Bin Luo
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Yuzhen Gao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Le VQ, Zhao B, Ramesh S, Toohey C, DeCosta A, Mintseris J, Liu X, Gygi S, Springer TA. A specialized integrin-binding motif enables proTGF-β2 activation by integrin αVβ6 but not αVβ8. Proc Natl Acad Sci U S A 2023; 120:e2304874120. [PMID: 37279271 PMCID: PMC10268255 DOI: 10.1073/pnas.2304874120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/28/2023] [Indexed: 06/08/2023] Open
Abstract
Activation of latent transforming growth factor (TGF)-β2 is incompletely understood. Unlike TGF-β1 and β3, the TGF-β2 prodomain lacks a seven-residue RGDLXX (L/I) integrin-recognition motif and is thought not to be activated by integrins. Here, we report the surprising finding that TGF-β2 contains a related but divergent 13-residue integrin-recognition motif (YTSGDQKTIKSTR) that specializes it for activation by integrin αVβ6 but not αVβ8. Both classes of motifs compete for the same binding site in αVβ6. Multiple changes in the longer motif underlie its specificity. ProTGF-β2 structures define interesting differences from proTGF-β1 and the structural context for activation by αVβ6. Some integrin-independent activation is also seen for proTGF-β2 and even more so for proTGF-β3. Our findings have important implications for therapeutics to αVβ6 in clinical trials for fibrosis, in which inhibition of TGF-β2 activation has not been anticipated.
Collapse
Affiliation(s)
- Viet Q. Le
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| | - Bo Zhao
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| | - Siddanth Ramesh
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA02115
| | - Cameron Toohey
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA02115
| | - Adam DeCosta
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA02115
| | - Julian Mintseris
- Department of Cell Biology, Harvard Medical School,Boston, MA02115
| | - Xinyue Liu
- Department of Cell Biology, Harvard Medical School,Boston, MA02115
| | - Steven Gygi
- Department of Cell Biology, Harvard Medical School,Boston, MA02115
| | - Timothy A. Springer
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
3
|
Knight-Schrijver VR, Davaapil H, Bayraktar S, Ross ADB, Kanemaru K, Cranley J, Dabrowska M, Patel M, Polanski K, He X, Vallier L, Teichmann S, Gambardella L, Sinha S. A single-cell comparison of adult and fetal human epicardium defines the age-associated changes in epicardial activity. NATURE CARDIOVASCULAR RESEARCH 2022; 1:1215-1229. [PMID: 36938497 PMCID: PMC7614330 DOI: 10.1038/s44161-022-00183-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
Re-activating quiescent adult epicardium represents a potential therapeutic approach for human cardiac regeneration. However, the exact molecular differences between inactive adult and active fetal epicardium are not known. In this study, we combined fetal and adult human hearts using single-cell and single-nuclei RNA sequencing and compared epicardial cells from both stages. We found that a migratory fibroblast-like epicardial population only in the fetal heart and fetal epicardium expressed angiogenic gene programs, whereas the adult epicardium was solely mesothelial and immune responsive. Furthermore, we predicted that adult hearts may still receive fetal epicardial paracrine communication, including WNT signaling with endocardium, reinforcing the validity of regenerative strategies that administer or reactivate epicardial cells in situ. Finally, we explained graft efficacy of our human embryonic stem-cell-derived epicardium model by noting its similarity to human fetal epicardium. Overall, our study defines epicardial programs of regenerative angiogenesis absent in adult hearts, contextualizes animal studies and defines epicardial states required for effective human heart regeneration.
Collapse
Affiliation(s)
- Vincent R. Knight-Schrijver
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Hongorzul Davaapil
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Semih Bayraktar
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Alexander D. B. Ross
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | | | - James Cranley
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Monika Dabrowska
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Minal Patel
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - Xiaoling He
- John van Geest Centre for Brain Repair, Cambridge University, Cambridge, UK
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Berlin Institute of Health (BIH), BIH Centre for Regenerative Therapies (BCRT), Charité - Universitätsmedizin, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sarah Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Laure Gambardella
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- These authors jointly supervised this work: Laure Gambardella, Sanjay Sinha
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- These authors jointly supervised this work: Laure Gambardella, Sanjay Sinha
| |
Collapse
|
4
|
Parvan R, Hosseinpour M, Moradi Y, Devaux Y, Cataliotti A, da Silva GJJ. Diagnostic performance of microRNAs in the detection of heart failure with reduced or preserved ejection fraction: a systematic review and meta-analysis. Eur J Heart Fail 2022; 24:2212-2225. [PMID: 36161443 PMCID: PMC10092442 DOI: 10.1002/ejhf.2700] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 01/18/2023] Open
Abstract
AIM Chronic heart failure (CHF) can be classified as heart failure with preserved ejection fraction (HFpEF) or with reduced ejection fraction (HFrEF). Currently, there is an unmet need for a minimally invasive diagnostic tool for different forms of CHF. We aimed to investigate the diagnostic potential of circulating microRNAs (miRNAs) for the detection of different CHF forms via a systematic review and meta-analysis approach. METHODS AND RESULTS Comprehensive search on Medline, Web of Science, Scopus, and EMBASE identified 45 relevant studies which were used for qualitative assessment. Out of these, 29 studies were used for qualitative and quantitative assessment and allowed to identify a miRNA panel able to detect HFrEF and HFpEF with areas under the curve (AUC) of 0.86 and 0.79, respectively. A panel of eight miRNAs (hsa-miR-18b-3p, hsa-miR-21-5p, hsa-miR-22-3p, hsa-miR-92b-3p, hsa-miR-129-5p, hsa-miR-320a-5p, hsa-miR-423-5p, and hsa-miR-675-5p) detected HFrEF cases with a sensitivity of 0.85, specificity of 0.88 and AUC of 0.91. A panel of seven miRNAs (hsa-miR-19b-3p, hsa-miR-30c-5p, hsa-miR-206, hsa-miR-221-3p, hsa-miR-328-5p, hsa-miR-375-3p, and hsa-miR-424-5p) identified HFpEF cases with a sensitivity of 0.82 and a specificity of 0.61. CONCLUSIONS Although conventional biomarkers (N-terminal pro-B-type natriuretic peptide and B-type natriuretic peptide) presented a better performance in detecting CHF patients, the results presented here pointed towards specific miRNA panels with potential additive values to circulating natriuretic peptides in the diagnosis of different classes of CHF. Equally important, miRNAs alone showed a reasonable capacity for 'ruling out' patients with HFrEF or HFpEF. Additional studies with large populations are required to confirm the diagnostic potential of miRNAs for sub-classes of CHF.
Collapse
Affiliation(s)
- Reza Parvan
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Milad Hosseinpour
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yousef Moradi
- Department of Epidemiology and Biostatistics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Alessandro Cataliotti
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Gustavo J J da Silva
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Soveral I, Guirado L, Escobar-Diaz MC, Alcaide MJ, Martínez JM, Rodríguez-Sureda V, Bijnens B, Antolin E, Llurba E, Bartha JL, Gómez O, Crispi F. Cord Blood Cardiovascular Biomarkers in Left-Sided Congenital Heart Disease. J Clin Med 2022; 11:jcm11237119. [PMID: 36498692 PMCID: PMC9737470 DOI: 10.3390/jcm11237119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Fetal echocardiography has limited prognostic ability in the evaluation of left-sided congenital heart defects (left heart defects). Cord blood cardiovascular biomarkers could improve the prognostic evaluation of left heart defects. A multicenter prospective cohort (2013−2019) including fetuses with left heart defects (aortic coarctation, aortic stenosis, hypoplastic left heart, and multilevel obstruction (complex left heart defects) subdivided according to their outcome (favorable vs. poor), and control fetuses were evaluated in the third trimester of pregnancy at three referral centers in Spain. Poor outcome was defined as univentricular palliation, heart transplant, or death. Cord blood concentrations of N-terminal precursor of B-type natriuretic peptide, Troponin I, transforming growth factor β, placental growth factor, and soluble fms-like tyrosine kinase-1 were determined. A total of 45 fetuses with left heart defects (29 favorable and 16 poor outcomes) and 35 normal fetuses were included, with a median follow-up of 3.1 years (interquartile range 1.4−3.9). Left heart defects with favorable outcome showed markedly increased cord blood transforming growth factor β (normal heart median 15.5 ng/mL (6.8−21.4) vs. favorable outcome 51.7 ng/mL (13.8−73.9) vs. poor outcome 25.1 ng/mL (6.9−39.0), p = 0.001) and decreased placental growth factor concentrations (normal heart 17.9 pg/mL (13.8−23.9) vs. favorable outcome 12.8 pg/mL (11.7−13.6) vs. poor outcome 11.0 pg/mL (8.8−15.4), p < 0.001). Poor outcome left heart defects had higher N-terminal precursor of B-type natriuretic peptide (normal heart 508.0 pg/mL (287.5−776.3) vs. favorable outcome 617.0 pg/mL (389.8−1087.8) vs. poor outcome 1450.0 pg/mL (919.0−1645.0), p = 0.001) and drastically reduced soluble fms-like tyrosine kinase-1 concentrations (normal heart 1929.7 pg/mL (1364.3−2715.8) vs. favorable outcome (1848.3 pg/mL (646.9−2313.6) vs. poor outcome 259.0 pg/mL (182.0−606.0), p < 0.001). Results showed that fetuses with left heart defects present a distinct cord blood biomarker profile according to their outcome.
Collapse
Affiliation(s)
- Iris Soveral
- BCNatal, Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), 08028 Barcelona, Spain
- Obstetrics Department, Hospital General de Hospitalet, 08906 Barcelona, Spain
| | - Laura Guirado
- BCNatal, Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), 08028 Barcelona, Spain
| | - Maria C. Escobar-Diaz
- Pediatric Cardiology Department, Sant Joan de Déu Hospital, Esplugues de Llobregat, 08950 Barcelona, Spain
- Cardiovascular Research Group, Sant Joan de Deu Research Institute, Esplugues de Llobregat, 08028 Barcelona, Spain
| | - María José Alcaide
- Laboratory Medicine Department, Hospital Universitario La Paz, 28046 Madrid, Spain
- Research Institute IdiPAZ, 28029 Madrid, Spain
| | - Josep Maria Martínez
- BCNatal, Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), 08028 Barcelona, Spain
- Facultat de Medicina i Ciencies de la Salut, Universitat de Barcelona, 08007 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), 28029 Madrid, Spain
| | - Víctor Rodríguez-Sureda
- BCNatal, Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), 08028 Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), 28029 Madrid, Spain
| | - Bart Bijnens
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies ICREA, 08010 Barcelona, Spain
| | - Eugenia Antolin
- Research Institute IdiPAZ, 28029 Madrid, Spain
- Obstetrics and Gynecology Department, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Elisa Llurba
- Obstetrics and Gynecology Department, Santa Creu i Sant Pau University Hospital, 08025 Barcelona, Spain
- Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Jose L. Bartha
- Research Institute IdiPAZ, 28029 Madrid, Spain
- Obstetrics and Gynecology Department, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Olga Gómez
- BCNatal, Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), 08028 Barcelona, Spain
- Facultat de Medicina i Ciencies de la Salut, Universitat de Barcelona, 08007 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-932-27-9333
| | - Fàtima Crispi
- BCNatal, Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), 08028 Barcelona, Spain
- Facultat de Medicina i Ciencies de la Salut, Universitat de Barcelona, 08007 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), 28029 Madrid, Spain
| |
Collapse
|
6
|
Transcriptome profiling of blood from common bottlenose dolphins (Tursiops truncatus) in the northern Gulf of Mexico to enhance health assessment capabilities. PLoS One 2022; 17:e0272345. [PMID: 36001538 PMCID: PMC9401185 DOI: 10.1371/journal.pone.0272345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/18/2022] [Indexed: 12/01/2022] Open
Abstract
Following the 2010 Deepwater Horizon disaster and subsequent unusual mortality event, adverse health impacts have been reported in bottlenose dolphins in Barataria Bay, LA including impaired stress response and reproductive, pulmonary, cardiac, and immune function. These conditions were primarily diagnosed through hands-on veterinary examinations and analysis of standard diagnostic panels. In human and veterinary medicine, gene expression profiling has been used to identify molecular mechanisms underlying toxic responses and disease states. Identification of molecular markers of exposure or disease may enable earlier detection of health effects or allow for health evaluation when the use of specialized methodologies is not feasible. To date this powerful tool has not been applied to augment the veterinary data collected concurrently during dolphin health assessments. This study examined transcriptomic profiles of blood from 76 dolphins sampled in health assessments during 2013–2018 in the waters near Barataria Bay, LA and Sarasota Bay, FL. Gene expression was analyzed in conjunction with the substantial suite of health data collected using principal component analysis, differential expression testing, over-representation analysis, and weighted gene co-expression network analysis. Broadly, transcript profiles of Barataria Bay dolphins indicated a shift in immune response, cytoskeletal alterations, and mitochondrial dysfunction, most pronounced in dolphins likely exposed to Deepwater Horizon oiling. While gene expression profiles in Barataria Bay dolphins were altered compared to Sarasota Bay for all years, profiles from 2013 exhibited the greatest alteration in gene expression. Differentially expressed transcripts included genes involved in immunity, inflammation, reproductive failure, and lung or cardiac dysfunction, all of which have been documented in dolphins from Barataria Bay following the Deepwater Horizon oil spill. The genes and pathways identified in this study may, with additional research and validation, prove useful as molecular markers of exposure or disease to assist wildlife veterinarians in evaluating the health of dolphins and other cetaceans.
Collapse
|
7
|
Furdella KJ, Higuchi S, Kim K, Doetschman T, Wagner WR, Vande Geest JP. ACUTE ELUTION OF TGFβ2 AFFECTS THE SMOOTH MUSCLE CELLS IN A COMPLIANCE-MATCHED VASCULAR GRAFT. Tissue Eng Part A 2022; 28:640-650. [PMID: 35521649 DOI: 10.1089/ten.tea.2021.0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transforming growth factor beta 2 (TGFβ2) is a pleiotropic growth factor that plays a vital role in smooth muscle cell (SMC) function. Our prior in vitro work has shown that SMC response can be modulated with TGFβ2 stimulation in a dose dependent manner. In particular, we have shown that increasing concentrations of TGFβ2 shift SMCs from a migratory to a synthetic behavior. In this work, electrospun compliance-matched and hypocompliant TGFβ2-eluting TEVGs were implanted into Sprague Dawley rats for 5 days to observe SMC population and collagen production. TEVGs were fabricated using a combined computational and experimental approach that varied the ratio of gelatin:polycaprolactone to be either compliance-matched or twice as stiff as rat aorta (hypocompliant). TGFβ2 concentrations of 0, 10, 100 ng/mg were added to both graft types (n=3 in each group) and imaged in vivo using ultrasound. Histological markers (SMC, macrophage, collagen, and elastin) were evaluated following explantation at 5 days. In vivo ultrasound showed that compliance-matched TEVGs became stiffer as TGFβ2 increased (100 ng/mg TEVGS compared to rat aorta, p<0.01) while all hypocompliant grafts remained stiffer than control rat aorta. In vivo velocity and diameter were also not significantly different than control vessels. The compliance-matched 10 ng/mg group had an elevated SMC signal (myosin heavy chain) compared to the 0 and 100 ng/mg grafts (p=0.0009 & 0.0006 ). Compliance-matched TEVGs containing 100 ng/mg TGFβ2 had an increase in collagen production (p<0.01), general immune response (p<0.05), and a decrease in SMC population to the 0 and 10 ng/mg groups. All hypocompliant groups were found to be similar, suggesting a lower rate of TGFβ2 release in these TEVGs. Our results suggest that TGFβ2 can modulate in vivo SMC phenotype over an acute implantation period, which is consistent with our prior in vitro work. To the author's knowledge, this is first in vivo rat study that evaluates a TGFβ2-eluting TEVG.
Collapse
Affiliation(s)
- Kenneth John Furdella
- University of Pittsburgh Swanson School of Engineering, 110071, Bioengineering, Pittsburgh, Pennsylvania, United States;
| | - Shinichi Higuchi
- University of Pittsburgh Swanson School of Engineering, 110071, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, United States;
| | - Kang Kim
- University of Pittsburgh Swanson School of Engineering, 110071, Department of Bioengineering, Pittsburgh, Pennsylvania, United States;
| | - Tom Doetschman
- University of Arizona Biochemistry and Molecular and Cellular Biology program, 242717, Tucson, Arizona, United States;
| | - William R Wagner
- University of Pittsburgh, 6614, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, United States;
| | - Jonathan P Vande Geest
- University of Pittsburgh Swanson School of Engineering, 110071, Bioengineering, Pittsburgh, Pennsylvania, United States;
| |
Collapse
|
8
|
Groen J, Palanca A, Aires A, Conesa JJ, Maestro D, Rehbein S, Harkiolaki M, Villar AV, Cortajarena AL, Pereiro E. Correlative 3D cryo X-ray imaging reveals intracellular location and effect of designed antifibrotic protein-nanomaterial hybrids. Chem Sci 2021; 12:15090-15103. [PMID: 34909150 PMCID: PMC8612387 DOI: 10.1039/d1sc04183e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/17/2021] [Indexed: 12/20/2022] Open
Abstract
Revealing the intracellular location of novel therapeutic agents is paramount for the understanding of their effect at the cell ultrastructure level. Here, we apply a novel correlative cryo 3D imaging approach to determine the intracellular fate of a designed protein–nanomaterial hybrid with antifibrotic properties that shows great promise in mitigating myocardial fibrosis. Cryo 3D structured illumination microscopy (cryo-3D-SIM) pinpoints the location and cryo soft X-ray tomography (cryo-SXT) reveals the ultrastructural environment and subcellular localization of this nanomaterial with spatial correlation accuracy down to 70 nm in whole cells. This novel high resolution 3D cryo correlative approach unambiguously locates the nanomaterial after overnight treatment within multivesicular bodies which have been associated with endosomal trafficking events by confocal microscopy. Moreover, this approach allows assessing the cellular response towards the treatment by evaluating the morphological changes induced. This is especially relevant for the future usage of nanoformulations in clinical practices. This correlative super-resolution and X-ray imaging strategy joins high specificity, by the use of fluorescence, with high spatial resolution at 30 nm (half pitch) provided by cryo-SXT in whole cells, without the need of staining or fixation, and can be of particular benefit to locate specific molecules in the native cellular environment in bio-nanomedicine. A novel 3D cryo correlative approach locates designed therapeutic protein–nanomaterial hybrids in whole cells with high specificity and resolution. Detection of treatment-induced morphological changes, crucial for pre-clinical studies, are revealed.![]()
Collapse
Affiliation(s)
- J Groen
- MISTRAL Beamline, Experiments Division, ALBA Synchrotron Light Source Cerdanyola del Valles 08290 Barcelona Spain
| | - A Palanca
- Instituto de Biomedicina y Biotecnologia de Cantabria (IBBTEC), University of Cantabria, CSIC 39011 Santander Spain.,Department of Anatomy and Cell Biology, University of Cantabria 39011 Santander Spain
| | - A Aires
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramón 194 20014 Donostia San Sebastian Spain
| | - J J Conesa
- MISTRAL Beamline, Experiments Division, ALBA Synchrotron Light Source Cerdanyola del Valles 08290 Barcelona Spain .,National Center for Biotechnology CSIC (CNB-CSIC), Department of Macromolecular Structures Cantoblanco 28049 Madrid Spain
| | - D Maestro
- Instituto de Biomedicina y Biotecnologia de Cantabria (IBBTEC), University of Cantabria, CSIC 39011 Santander Spain
| | - S Rehbein
- Helmholtz-Zentrum Berlin für Materialien und Energie, Bessy II D-12489 Berlin Germany
| | - M Harkiolaki
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
| | - A V Villar
- Instituto de Biomedicina y Biotecnologia de Cantabria (IBBTEC), University of Cantabria, CSIC 39011 Santander Spain.,Department of Physiology and Pharmacology, University of Cantabria Avd. Herrera Oria s/n Santander Spain
| | - A L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramón 194 20014 Donostia San Sebastian Spain .,Ikerbasque, Basque Foundation for Science 48009 Bilbao Spain
| | - E Pereiro
- MISTRAL Beamline, Experiments Division, ALBA Synchrotron Light Source Cerdanyola del Valles 08290 Barcelona Spain
| |
Collapse
|
9
|
Yoo S, Geist GE, Pfenniger A, Rottmann M, Arora R. Recent advances in gene therapy for atrial fibrillation. J Cardiovasc Electrophysiol 2021; 32:2854-2864. [PMID: 34053133 PMCID: PMC9281901 DOI: 10.1111/jce.15116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 11/28/2022]
Abstract
Atrial fibrillation (AF) is the most common heart rhythm disorder in adults and a major cause of stroke. Unfortunately, current treatments for AF are suboptimal as they are not targeting the molecular mechanisms underlying AF. In this regard, gene therapy is emerging as a promising approach for mechanism-based treatment of AF. In this review, we summarize recent advances and challenges in gene therapy for this important cardiovascular disease.
Collapse
Affiliation(s)
- Shin Yoo
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Gail Elizabeth Geist
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Anna Pfenniger
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Markus Rottmann
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rishi Arora
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
10
|
Cheng N, Mo Q, Donelson J, Wang L, Breton G, Rodney GG, Wang J, Hirschi KD, Wehrens XHT, Nakata PA. Crucial Role of Mammalian Glutaredoxin 3 in Cardiac Energy Metabolism in Diet-induced Obese Mice Revealed by Transcriptome Analysis. Int J Biol Sci 2021; 17:2871-2883. [PMID: 34345213 PMCID: PMC8326124 DOI: 10.7150/ijbs.60263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/25/2021] [Indexed: 12/25/2022] Open
Abstract
Obesity is often associated with metabolic dysregulation and oxidative stress with the latter serving as a possible unifying link between obesity and cardiovascular complications. Glutaredoxins (Grxs) comprise one of the major antioxidant systems in the heart. Although Grx3 has been shown to act as an endogenous negative regulator of cardiac hypertrophy and heart failure, its metabolic impact on cardiac function in diet-induced obese (DIO) mice remains largely unknown. In the present study, analysis of Grx3 expression indicated that Grx3 protein levels, but not mRNA levels, were significantly increased in the hearts of DIO mice. Cardiac-specific Grx3 deletion (Grx3 CKO) mice were viable and grew indistinguishably from their littermates after being fed a high fat diet (HFD) for one month, starting at 2 months of age. After being fed with a HFD for 8 months (starting at 2 months of age); however, Grx3 CKO DIO mice displayed left ventricular systolic dysfunction with a significant decrease in ejection fraction and fractional shortening that was associated with heart failure. ROS production was significantly increased in Grx3 CKO DIO cardiomyocytes compared to control cells. Gene expression analysis revealed a significant decline in the level of transcripts corresponding to genes associated with processes such as fatty acid uptake, mitochondrial fatty acid transport and oxidation, and citrate cycle in Grx3 CKO DIO mice compared to DIO controls. In contrast, an increase in the level of transcripts corresponding to genes associated with glucose uptake and utilization were found in Grx3 CKO DIO mice compared to DIO controls. Taken together, these findings indicate that Grx3 may play a critical role in redox balance and as a metabolic switch in cardiomyocytes contributing to the development and progression of heart failure.
Collapse
Affiliation(s)
- Ninghui Cheng
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Qianxing Mo
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jimmonique Donelson
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Lingfei Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ghislain Breton
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - George G Rodney
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Cardiovascular Research Institute, and Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kendal D Hirschi
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xander H T Wehrens
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Cardiovascular Research Institute, and Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul A Nakata
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
11
|
Mayyas FA, Aljohmani AI, Alzoubi KH. The Impact of Spironolactone on Markers of Myocardial Oxidative Status, Inflammation and Remodeling in Hyperthyroid Rats. Curr Mol Pharmacol 2021; 13:206-215. [PMID: 31729306 DOI: 10.2174/1874467212666191113150553] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/23/2019] [Accepted: 11/01/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Hyperthyroidism promotes the development and progression of cardiovascular diseases (CVD). Aldosterone, a key mediator of myocardial inflammation, oxidative stress and fibrosis, may be activated in hyperthyroidism. OBJECTIVE To assess the impact of hyperthyroidism on aldosterone levels and myocardial oxidative status, inflammatory and fibrotic markers in hyperthyroid rats, and to test if the use of spironolactone (an aldosterone antagonist) attenuates these changes. METHODS Adult Wistar rats were randomly distributed into 4 groups; controls, spironolactone treated rats (Spir, 50mg/kg/day), hyperthyroid rats (Hyper, daily intraperitoneal levothyroxine 0.3mg/kg/day), and spironolactone treated hyperthyroid rats (Hyper+Spir) for 4 weeks. Blood pressure (Bp), and levels of serum and myocardial aldosterone, oxidants/antioxidants, inflammatory and fibrotic markers were measured. RESULTS Levothyroxine increased serum thyroid hormones and increased Bp, heart rate and heart to bodyweight ratio. Relative to control, serum aldosterone levels were increased in Hyper and Hyper+ Spir groups. In parallel, cardiac lipid peroxides and serum endothelin-1 were increased whereas cardiac superoxide dismutase, catalase, glutathione, and matrix metalloproteinase -2 were reduced in the Hyper group. Spironolactone decreased serum thyroid hormones and improved cardiac lipid peroxides and metalloproteinase -2 levels. The use of spironolactone decreased serum nitrite levels and increased cardiac SOD and glutathione. Cardiac levels of aldosterone, endothelin-1, transforming growth factor-beta and nitrite were similar among all groups. CONCLUSION Hyperthyroid status was associated with an increase in aldosterone and oxidant/ inflammatory biomarkers. The use of spironolactone enhanced antioxidant defenses. Aldosterone antagonists may serve as potential drugs to attenuate the development of cardiac disease in hyperthyroidism.
Collapse
Affiliation(s)
- Fadia A Mayyas
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmad I Aljohmani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
12
|
Xintarakou A, Tzeis S, Psarras S, Asvestas D, Vardas P. Atrial fibrosis as a dominant factor for the development of atrial fibrillation: facts and gaps. Europace 2021; 22:342-351. [PMID: 31998939 DOI: 10.1093/europace/euaa009] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/03/2020] [Indexed: 01/08/2023] Open
Abstract
Atrial fibrillation (AF), the most commonly diagnosed arrhythmia, affects a notable percentage of the population and constitutes a major risk factor for thromboembolic events and other heart-related conditions. Fibrosis plays an important role in the onset and perpetuation of AF through structural and electrical remodelling processes. Multiple molecular pathways are involved in atrial substrate modification and the subsequent maintenance of AF. In this review, we aim to recapitulate underlying molecular pathways leading to atrial fibrosis and to indicate existing gaps in the complex interplay of atrial fibrosis and AF.
Collapse
Affiliation(s)
| | - Stylianos Tzeis
- Cardiology Department, Mitera General Hospital, Hygeia Group, Athens, Greece
| | - Stelios Psarras
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Greece
| | - Dimitrios Asvestas
- Cardiology Department, Mitera General Hospital, Hygeia Group, Athens, Greece
| | - Panos Vardas
- Heart Sector, Hygeia Hospitals Group, 5, Erithrou Stavrou, Marousi, Athens 15123, Greece
| |
Collapse
|
13
|
Early Aberrant Angiogenesis Due to Elastic Fiber Fragmentation in Aortic Valve Disease. J Cardiovasc Dev Dis 2021; 8:jcdd8070075. [PMID: 34202041 PMCID: PMC8303641 DOI: 10.3390/jcdd8070075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 12/22/2022] Open
Abstract
Elastic fiber fragmentation (EFF) is a hallmark of aortic valve disease (AVD), and neovascularization has been identified as a late finding related to inflammation. We sought to characterize the relationship between early EFF and aberrant angiogenesis. To examine disease progression, regional anatomy and pathology of aortic valve tissue were assessed using histochemistry, immunohistochemistry, and electron microscopy from early-onset (<40 yo) and late-onset (≥40 yo) non-syndromic AVD specimens. To assess the effects of EFF on early AVD processes, valve tissue from Williams and Marfan syndrome patients was also analyzed. Bicuspid aortic valve was more common in early-onset AVD, and cardiovascular comorbidities were more common in late-onset AVD. Early-onset AVD specimens demonstrated angiogenesis without inflammation or atherosclerosis. A distinct pattern of elastic fiber components surrounded early-onset AVD neovessels, including increased emilin-1 and decreased fibulin-5. Different types of EFF were present in Williams syndrome (WS) and Marfan syndrome (MFS) aortic valves; WS but not MFS aortic valves demonstrated angiogenesis. Aberrant angiogenesis occurs in early-onset AVD in the absence of inflammation, implicating EFF. Elucidation of underlying mechanisms may inform the development of new pharmacologic treatments.
Collapse
|
14
|
Martin CJ, Datta A, Littlefield C, Kalra A, Chapron C, Wawersik S, Dagbay KB, Brueckner CT, Nikiforov A, Danehy FT, Streich FC, Boston C, Simpson A, Jackson JW, Lin S, Danek N, Faucette RR, Raman P, Capili AD, Buckler A, Carven GJ, Schürpf T. Selective inhibition of TGFβ1 activation overcomes primary resistance to checkpoint blockade therapy by altering tumor immune landscape. Sci Transl Med 2021; 12:12/536/eaay8456. [PMID: 32213632 DOI: 10.1126/scitranslmed.aay8456] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/17/2019] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
Despite breakthroughs achieved with cancer checkpoint blockade therapy (CBT), many patients do not respond to anti-programmed cell death-1 (PD-1) due to primary or acquired resistance. Human tumor profiling and preclinical studies in tumor models have recently uncovered transforming growth factor-β (TGFβ) signaling activity as a potential point of intervention to overcome primary resistance to CBT. However, the development of therapies targeting TGFβ signaling has been hindered by dose-limiting cardiotoxicities, possibly due to nonselective inhibition of multiple TGFβ isoforms. Analysis of mRNA expression data from The Cancer Genome Atlas revealed that TGFΒ1 is the most prevalent TGFβ isoform expressed in many types of human tumors, suggesting that TGFβ1 may be a key contributor to primary CBT resistance. To test whether selective TGFβ1 inhibition is sufficient to overcome CBT resistance, we generated a high-affinity, fully human antibody, SRK-181, that selectively binds to latent TGFβ1 and inhibits its activation. Coadministration of SRK-181-mIgG1 and an anti-PD-1 antibody in mice harboring syngeneic tumors refractory to anti-PD-1 treatment induced profound antitumor responses and survival benefit. Specific targeting of TGFβ1 was also effective in tumors expressing more than one TGFβ isoform. Combined SRK-181-mIgG1 and anti-PD-1 treatment resulted in increased intratumoral CD8+ T cells and decreased immunosuppressive myeloid cells. No cardiac valvulopathy was observed in a 4-week rat toxicology study with SRK-181, suggesting that selectively blocking TGFβ1 activation may avoid dose-limiting toxicities previously observed with pan-TGFβ inhibitors. These results establish a rationale for exploring selective TGFβ1 inhibition to overcome primary resistance to CBT.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Susan Lin
- Scholar Rock, Inc., Cambridge, MA 02139, USA
| | | | | | - Pichai Raman
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
15
|
Lane BA, Chakrabarti M, Ferruzzi J, Azhar M, Eberth JF. Mechanics of ascending aortas from TGFβ-1, -2, -3 haploinsufficient mice and elastase-induced aortopathy. J Biomech 2021; 125:110543. [PMID: 34174532 DOI: 10.1016/j.jbiomech.2021.110543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/23/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
Transforming growth factor-beta (TGFβ-1, -2, -3) ligands act through a common receptor complex yet each is expressed in a unique and overlapping fashion throughout development. TGFβ plays a role in extra-cellular matrix composition with mutations to genes encoding TGFβ and TGFβ signaling molecules contributing to diverse and deadly thoracic aortopathies common in Loeys-Dietz syndrome (LDS). In this investigation, we studied the TGFβ ligand-specific mechanical phenotype of ascending thoracic aortas (ATA) taken from 4-to-6 months-old Tgfb1+/-, Tgfb2+/-, and Tgfb3+/- mice, their wild-type (WT) controls, and an elastase infusion model representative of severe elastolysis. Heterozygous mice were studied at an age without dilation to elucidate potential pre-aortopathic mechanical cues. Our findings indicate that ATAs from Tgfb2+/- mice demonstrated significant wall thickening, a corresponding decrease in biaxial stress, decreased biaxial stiffness, and a decrease in stored energy. These results were unlike the pathological elastase model where decreases in biaxial stretch were found along with increases in diameter, biaxial stress, and biaxial stiffness. ATAs from Tgfb1+/- and Tgfb3+/-, on the other hand, had few mechanical differences when compared to wild-type controls. Although aortopathy generally occurs later in development, our findings reveal that in 4-to-6 month-old animals, only Tgfb2+/- mice demonstrate a significant phenotype that fails to model ubiquitous elastolysis.
Collapse
Affiliation(s)
- Brooks A Lane
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208 USA
| | - Mrinmay Chakrabarti
- Cell Biology and Anatomy Department, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Jacopo Ferruzzi
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Mohamad Azhar
- Cell Biology and Anatomy Department, University of South Carolina School of Medicine, Columbia, SC 29208, USA; William Jennings Bryan Dorn VA Medical Center, Columbia, SC 29209, USA
| | - John F Eberth
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208 USA; Cell Biology and Anatomy Department, University of South Carolina School of Medicine, Columbia, SC 29208, USA.
| |
Collapse
|
16
|
Algeciras L, Palanca A, Maestro D, RuizdelRio J, Villar AV. Epigenetic alterations of TGFβ and its main canonical signaling mediators in the context of cardiac fibrosis. J Mol Cell Cardiol 2021; 159:38-47. [PMID: 34119506 DOI: 10.1016/j.yjmcc.2021.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022]
Abstract
Cardiac fibrosis is a pathological process that presents a continuous overproduction of extracellular matrix (ECM) components in the myocardium, which negatively influences the progression of many cardiac diseases. Transforming growth factor β (TGFβ) is the main ligand that triggers the production of pro-fibrotic ECM proteins. In the cardiac fibrotic process, TGFβ and its canonical signaling mediators are tightly regulated at different levels as well as epigenetically. Cardiac fibroblasts are one of the most important TGFβ target cells activated after cardiac injury. TGFβ-driven fibroblast activation is subject to epigenetic modulation and contributes to the progression of cardiac fibrosis, mainly through the expression of pro-fibrotic molecules implicated in the disease. In this review, we describe epigenetic regulation related to canonical TGFβ signaling in cardiac fibroblasts.
Collapse
Affiliation(s)
- Luis Algeciras
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain; Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Ana Palanca
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain; Departamento de Anatomía y Biología Celular, Universidad de Cantabria, Santander, Spain; Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - David Maestro
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain; Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Jorge RuizdelRio
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain; Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Ana V Villar
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain; Departamento de Fisiología y Farmacología, Universidad de Cantabria, Santander, Spain; Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain.
| |
Collapse
|
17
|
Ben-Haim Y, Asimaki A, Behr ER. Brugada syndrome and arrhythmogenic cardiomyopathy: overlapping disorders of the connexome? Europace 2021; 23:653-664. [PMID: 33200179 DOI: 10.1093/europace/euaa277] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/19/2020] [Indexed: 12/19/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) and Brugada syndrome (BrS) are inherited diseases characterized by an increased risk for arrhythmias and sudden cardiac death. Possible overlap between the two was suggested soon after the description of BrS. Since then, various studies focusing on different aspects have been published pointing to similar findings in the two diseases. More recent findings on the structure of the cardiac cell-cell junctions may unite the pathophysiology of both diseases and give further evidence to the theory that they may in part be variants of the same disease spectrum. In this review, we aim to summarize the studies indicating the pathophysiological, genetic, structural, and electrophysiological overlap between ACM and BrS.
Collapse
Affiliation(s)
- Yael Ben-Haim
- Institute of Molecular and Clinical Sciences, St. George's University of London, Cranmer Terrace, London SW17 0RE, UK
- Cardiology Clinical Academic Group, St. George's University Hospitals NHS Foundation Trust, London, UK
| | - Angeliki Asimaki
- Institute of Molecular and Clinical Sciences, St. George's University of London, Cranmer Terrace, London SW17 0RE, UK
- Cardiology Clinical Academic Group, St. George's University Hospitals NHS Foundation Trust, London, UK
| | - Elijah R Behr
- Institute of Molecular and Clinical Sciences, St. George's University of London, Cranmer Terrace, London SW17 0RE, UK
- Cardiology Clinical Academic Group, St. George's University Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
18
|
Welsh BT, Faucette R, Bilic S, Martin CJ, Schürpf T, Chen D, Nicholls S, Lansita J, Kalra A. Nonclinical Development of SRK-181: An Anti-Latent TGFβ1 Monoclonal Antibody for the Treatment of Locally Advanced or Metastatic Solid Tumors. Int J Toxicol 2021; 40:226-241. [PMID: 33739172 PMCID: PMC8135237 DOI: 10.1177/1091581821998945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Checkpoint inhibitors offer a promising immunotherapy strategy for cancer treatment; however, due to primary or acquired resistance, many patients do not achieve lasting clinical responses. Recently, the transforming growth factor-β (TGFβ) signaling pathway has been identified as a potential target to overcome primary resistance, although the nonselective inhibition of multiple TGFβ isoforms has led to dose-limiting cardiotoxicities. SRK-181 is a high-affinity, fully human antibody that selectively binds to latent TGFβ1 and inhibits its activation. To support SRK-181 clinical development, we present here a comprehensive preclinical assessment of its pharmacology, pharmacokinetics, and safety across multiple species. In vitro studies showed that SRK-181 has no effect on human platelet function and does not induce cytokine release in human peripheral blood. Four-week toxicology studies with SRK-181 showed that weekly intravenous administration achieved sustained serum exposure and was well tolerated in rats and monkeys, with no treatment-related adverse findings. The no-observed-adverse-effect levels levels were 200 mg/kg in rats and 300 mg/kg in monkeys, the highest doses tested, and provide a nonclinical safety factor of up to 813-fold (based on Cmax) above the phase 1 starting dose of 80 mg every 3 weeks. In summary, the nonclinical pharmacology, pharmacokinetic, and toxicology data demonstrate that SRK-181 is a selective inhibitor of latent TGFβ1 that does not produce the nonclinical toxicities associated with nonselective TGFβ inhibition. These data support the initiation and safe conduct of a phase 1 trial with SRK-181 in patients with advanced cancer.
Collapse
Affiliation(s)
- Brian T Welsh
- 436132ToxStrategies, Research Blvd Building, Austin, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bhattacharya A, Al-Sammarraie N, Gebere MG, Johnson J, Eberth JF, Azhar M. Myocardial TGFβ2 Is Required for Atrioventricular Cushion Remodeling and Myocardial Development. J Cardiovasc Dev Dis 2021; 8:jcdd8030026. [PMID: 33801433 PMCID: PMC7999251 DOI: 10.3390/jcdd8030026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 12/05/2022] Open
Abstract
Among the three transforming growth factor beta (TGFβ) ligands, TGFβ2 is essential for heart development and is produced by multiple cell types, including myocardium. Heterozygous mutations in TGFB2 in patients of connective tissue disorders result in congenital heart defects and adult valve malformations, including mitral valve prolapse (MVP) with or without regurgitation. Tgfb2 germline knockout fetuses exhibit multiple cardiac defects but the role of myocardial-TGFβ2 in heart development is yet to be elucidated. Here, myocardial Tgfb2 conditional knockout (CKO) embryos were generated by crossing Tgfb2flox mice with Tgfb2+/−; cTntCre mice. Tgfb2flox/− embryos were normal, viable. Cell fate mapping was done using dual-fluorescent mT/mG+/− mice. Cre-mediated Tgfb2 deletion was assessed by genomic PCR. RNAscope in situ hybridization was used to detect the loss of myocardial Tgfb2 expression. Histological, morphometric, immunohistochemical, and in situ hybridization analyses of CKOs and littermate controls at different stages of heart development (E12.5–E18.5) were used to determine the role of myocardium-derived TGFβ2 in atrioventricular (AV) cushion remodeling and myocardial development. CKOs exhibit a thin ventricular myocardium, AV cushion remodeling defects and developed incomplete AV septation defects. The loss of myocardial Tgfb2 resulted in impaired cushion maturation and dysregulated cell death. Phosphorylated SMAD2, a surrogate for TGFβ signaling, was “paradoxically” increased in both AV cushion mesenchyme and ventricular myocardium in the CKOs. Our results indicate that TGFβ2 produced by cardiomyocytes acting as cells autonomously on myocardium and via paracrine signaling on AV cushions are required for heart development.
Collapse
Affiliation(s)
- Aniket Bhattacharya
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (A.B.); (N.A.-S.); (M.G.G.); (J.J.); (J.F.E.)
| | - Nadia Al-Sammarraie
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (A.B.); (N.A.-S.); (M.G.G.); (J.J.); (J.F.E.)
| | - Mengistu G. Gebere
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (A.B.); (N.A.-S.); (M.G.G.); (J.J.); (J.F.E.)
| | - John Johnson
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (A.B.); (N.A.-S.); (M.G.G.); (J.J.); (J.F.E.)
| | - John F. Eberth
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (A.B.); (N.A.-S.); (M.G.G.); (J.J.); (J.F.E.)
| | - Mohamad Azhar
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (A.B.); (N.A.-S.); (M.G.G.); (J.J.); (J.F.E.)
- William Jennings Bryan Dorn VA Medical Center, Dorn Research Institute, Columbia, SC 29209, USA
- Correspondence: ; Tel.: +1-803-216-3831
| |
Collapse
|
20
|
Bakker W, Dingenouts CKE, Lodder K, Wiesmeijer KC, de Jong A, Kurakula K, Mager HJJ, Smits AM, de Vries MR, Quax PHA, Goumans MJTH. BMP Receptor Inhibition Enhances Tissue Repair in Endoglin Heterozygous Mice. Int J Mol Sci 2021; 22:2010. [PMID: 33670533 PMCID: PMC7922601 DOI: 10.3390/ijms22042010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia type 1 (HHT1) is a severe vascular disorder caused by mutations in the TGFβ/BMP co-receptor endoglin. Endoglin haploinsufficiency results in vascular malformations and impaired neoangiogenesis. Furthermore, HHT1 patients display an impaired immune response. To date it is not fully understood how endoglin haploinsufficient immune cells contribute to HHT1 pathology. Therefore, we investigated the immune response during tissue repair in Eng+/- mice, a model for HHT1. Eng+/- mice exhibited prolonged infiltration of macrophages after experimentally induced myocardial infarction. Moreover, there was an increased number of inflammatory M1-like macrophages (Ly6Chigh/CD206-) at the expense of reparative M2-like macrophages (Ly6Clow/CD206+). Interestingly, HHT1 patients also showed an increased number of inflammatory macrophages. In vitro analysis revealed that TGFβ-induced differentiation of Eng+/- monocytes into M2-like macrophages was blunted. Inhibiting BMP signaling by treating monocytes with LDN-193189 normalized their differentiation. Finally, LDN treatment improved heart function after MI and enhanced vascularization in both wild type and Eng+/- mice. The beneficial effect of LDN was also observed in the hind limb ischemia model. While blood flow recovery was hampered in vehicle-treated animals, LDN treatment improved tissue perfusion recovery in Eng+/- mice. In conclusion, BMPR kinase inhibition restored HHT1 macrophage imbalance in vitro and improved tissue repair after ischemic injury in Eng+/- mice.
Collapse
Affiliation(s)
- Wineke Bakker
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands; (W.B.); (C.K.E.D.); (K.L.); (K.C.W.); (K.K.); (A.M.S.)
| | - Calinda K. E. Dingenouts
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands; (W.B.); (C.K.E.D.); (K.L.); (K.C.W.); (K.K.); (A.M.S.)
| | - Kirsten Lodder
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands; (W.B.); (C.K.E.D.); (K.L.); (K.C.W.); (K.K.); (A.M.S.)
| | - Karien C. Wiesmeijer
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands; (W.B.); (C.K.E.D.); (K.L.); (K.C.W.); (K.K.); (A.M.S.)
| | - Alwin de Jong
- Department of Surgery, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands; (A.d.J.); (M.R.d.V.); (P.H.A.Q.)
| | - Kondababu Kurakula
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands; (W.B.); (C.K.E.D.); (K.L.); (K.C.W.); (K.K.); (A.M.S.)
| | | | - Anke M. Smits
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands; (W.B.); (C.K.E.D.); (K.L.); (K.C.W.); (K.K.); (A.M.S.)
| | - Margreet R. de Vries
- Department of Surgery, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands; (A.d.J.); (M.R.d.V.); (P.H.A.Q.)
| | - Paul H. A. Quax
- Department of Surgery, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands; (A.d.J.); (M.R.d.V.); (P.H.A.Q.)
| | - Marie José T. H. Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands; (W.B.); (C.K.E.D.); (K.L.); (K.C.W.); (K.K.); (A.M.S.)
| |
Collapse
|
21
|
Transcriptome analysis of arterial and venous circulating miRNAs during hypertension. Sci Rep 2021; 11:3469. [PMID: 33568719 PMCID: PMC7875986 DOI: 10.1038/s41598-021-82979-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 01/04/2021] [Indexed: 11/18/2022] Open
Abstract
Most current circulating miRNA biomarkers are derived from peripheral venous blood, whereas miRNA deregulation in arterial blood in disease conditions has been largely ignored. To explore whether peripheral venous blood miRNAs could represent a bona fide specific miRNA deregulation pattern, we selected hypertension, a disease that is particularly associated with vessels, as the model. Circulating miRNA profiles of arterial and venous blood from spontaneously hypertensive (SHR) rats and their corresponding controls (i.e., WKY rats) were investigated by next-generation miRNA sequencing. Little miRNAs were observed between arterial and venous circulating miRNAs in WKY rats. Interestingly, this number was enhanced in SHR hypertensive rats. Bioinformatical analysis of disease association, enriched target genes and the regulatory transcription factors of these differentially expressed miRNAs implied a potential functional link with cardiovascular disease-related functions. Comparisons between arterial and venous miRNAs in hypertension-versus-control conditions also revealed prominent disease association of circulating miRNAs and their target genes in arteries but not in veins. Moreover, a young non-hypertensive animal model in SHR background (i.e. JSHR) was used as a second control for SHR. Additional transcriptomic analysis and droplet digital PCR validation of arterial and venous deregulated miRNAs among SHR and its two controls (WKY, JSHR) revealed a noticeable consensus of artery-deregulated miRNAs in hypertension and two novel arterial circulating signatures (miR-455-3p and miR-140-3p) of hypertension. These results suggest the necessity of re-evaluating the efficacy of certain venous miRNAs identified in previous studies as potential biomarkers in cardiovascular diseases or a wider disease spectrum.
Collapse
|
22
|
van den Hoff MJB, Wessels A. Muscularization of the Mesenchymal Outlet Septum during Cardiac Development. J Cardiovasc Dev Dis 2020; 7:jcdd7040051. [PMID: 33158304 PMCID: PMC7711588 DOI: 10.3390/jcdd7040051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
After the formation of the linear heart tube, it becomes divided into right and left components by the process of septation. Relatively late during this process, within the developing outflow tract, the initially mesenchymal outlet septum becomes muscularized as the result of myocardialization. Myocardialization is defined as the process in which existing cardiomyocytes migrate into flanking mesenchyme. Studies using genetically modified mice, as well as experimental approaches using in vitro models, demonstrate that Wnt and TGFβ signaling play an essential role in the regulation of myocardialization. They also show the significance of the interaction between cardiomyocytes, endocardial derived cells, neural crest cells, and the extracellular matrix. Interestingly, Wnt-mediated non-canonical planar cell polarity signaling was found to be a crucial regulator of myocardialization in the outlet septum and Wnt-mediated canonical β-catenin signaling is an essential regulator of the expansion of mesenchymal cells populating the outflow tract cushions.
Collapse
Affiliation(s)
- Maurice J. B. van den Hoff
- Department of Medical Biology, AmsterdamUMC, Location AMC, 1105AZ Amsterdam, The Netherlands
- Correspondence: ; Tel.: +1-3120-5665-405
| | - Andy Wessels
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
23
|
Felemban SG, Vyas FS, Durose L, Hargreaves AJ, Dickenson JM. Phenyl Saligenin Phosphate Disrupts Cell Morphology and the Actin Cytoskeleton in Differentiating H9c2 Cardiomyoblasts and Human-Induced Pluripotent Stem-Cell-Derived Cardiomyocyte Progenitor Cells. Chem Res Toxicol 2020; 33:2310-2323. [PMID: 32786544 DOI: 10.1021/acs.chemrestox.0c00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously shown that phenyl saligenin phosphate (PSP), an organophosphorus compound which is classed as a weak inhibitor of acetylcholinesterase, triggered cytotoxicity in mitotic and differentiated H9c2 cardiomyoblasts. The aim of this study was to assess whether sublethal concentrations of PSP could disrupt the morphology of differentiating rat H9c2 cardiomyoblasts and human-induced pluripotent stem-cell-derived cardiomyocyte progenitor cells (hiPSC-CMs) and to assess the underlying cytoskeletal changes. PSP-induced changes in protein expression were monitored via Western blotting, immunocytochemistry, and proteomic analysis. PSP-mediated cytotoxicity was determined by measuring MTT reduction, LDH release, and caspase-3 activity. Sublethal exposure to PSP (3 μM) induced morphological changes in differentiating H9c2 cells (7, 9, and 13 days), reflected by reduced numbers of spindle-shaped cells. Moreover, this treatment (7 days) attenuated the expression of the cytoskeletal proteins cardiac troponin I, tropomyosin-1, and α-actin. Further proteomic analysis identified nine proteins (e.g., heat shock protein 90-β and calumenin) which were down-regulated by PSP exposure in H9c2 cells. To assess the cytotoxic effects of organophosphorus compounds in a human cell model, we determined their effects on human-induced pluripotent stem-cell-derived cardiomyocyte progenitor cells. Chlorpyrifos and diazinon-induced cytotoxicity (48 h) was evident only at concentrations >100 μM. By contrast, PSP exhibited cytotoxicity in hiPSC-CMs at a concentration of 25 μM following 48 h exposure. Finally, sublethal exposure to PSP (3 μM; 7 days) induced morphological changes and decreased the expression of cardiac troponin I, tropomyosin-1, and α-actin in hiPSC-CMs. In summary, our data suggest cardiomyocyte morphology is disrupted in both cell models by sublethal concentrations of PSP via modulation of cytoskeletal protein expression.
Collapse
Affiliation(s)
- Shatha G Felemban
- School of Science and Technology Nottingham Trent University Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Falguni S Vyas
- School of Science and Technology Nottingham Trent University Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Lyndsey Durose
- School of Science and Technology Nottingham Trent University Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Alan J Hargreaves
- School of Science and Technology Nottingham Trent University Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - John M Dickenson
- School of Science and Technology Nottingham Trent University Clifton Lane, Nottingham NG11 8NS, United Kingdom
| |
Collapse
|
24
|
Germline Mutation Enrichment in Pathways Controlling Endothelial Cell Homeostasis in Patients with Brain Arteriovenous Malformation: Implication for Molecular Diagnosis. Int J Mol Sci 2020; 21:ijms21124321. [PMID: 32560555 PMCID: PMC7352422 DOI: 10.3390/ijms21124321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022] Open
Abstract
Brain arteriovenous malformation (bAVM) is a congenital defect affecting brain microvasculature, characterized by a direct shunt from arterioles to venules. Germline mutations in several genes related to transforming growth factor beta (TGF-β)/BMP signaling are linked to both sporadic and hereditary phenotypes. However, the low incidence of inherited cases makes the genetic bases of the disease unclear. To increase this knowledge, we performed a whole exome sequencing on five patients, on DNA purified by peripheral blood. Variants were filtered based on frequency and functional class. Those selected were validated by Sanger sequencing. Genes carrying selected variants were prioritized to relate these genes with those already known to be linked to bAVM development. Most of the prioritized genes showed a correlation with the TGF-βNotch signaling and vessel morphogenesis. However, two novel pathways related to cilia morphogenesis and ion homeostasis were enriched in mutated genes. These results suggest novel insights on sporadic bAVM onset and confirm its genetic heterogeneity. The high frequency of germline variants in genes related to TGF-β signaling allows us to hypothesize bAVM as a complex trait resulting from the co-existence of low-penetrance loci. Deeper knowledge on bAVM genetics can improve personalized diagnosis and can be helpful with genotype–phenotype correlations.
Collapse
|
25
|
Transforming Growth Factor Beta3 is Required for Cardiovascular Development. J Cardiovasc Dev Dis 2020; 7:jcdd7020019. [PMID: 32456345 PMCID: PMC7344558 DOI: 10.3390/jcdd7020019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor beta3 (TGFB3) gene mutations in patients of arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD1) and Loeys-Dietz syndrome-5 (LDS5)/Rienhoff syndrome are associated with cardiomyopathy, cardiac arrhythmia, cardiac fibrosis, cleft palate, aortic aneurysms, and valvular heart disease. Although the developing heart of embryos express Tgfb3, its overarching role remains unclear in cardiovascular development and disease. We used histological, immunohistochemical, and molecular analyses of Tgfb3-/- fetuses and compared them to wildtype littermate controls. The cardiovascular phenotypes were diverse with approximately two thirds of the Tgfb3-/- fetuses having one or more cardiovascular malformations, including abnormal ventricular myocardium (particularly of the right ventricle), outflow tract septal and alignment defects, abnormal aortic and pulmonary trunk walls, and thickening of semilunar and/or atrioventricular valves. Ventricular septal defects (VSD) including the perimembranous VSDs were observed in Tgfb3-/- fetuses with myocardial defects often accompanied by the muscular type VSD. In vitro studies using TGFβ3-deficient fibroblasts in 3-D collagen lattice formation assays indicated that TGFβ3 was required for collagen matrix reorganization. Biochemical studies indicated the 'paradoxically' increased activation of canonical (SMAD-dependent) and noncanonical (MAP kinase-dependent) pathways. TGFβ3 is required for cardiovascular development to maintain a balance of canonical and noncanonical TGFβ signaling pathways.
Collapse
|
26
|
Zhang M, Liu X, Wu J, Yu Y, Wang Y, Gu Y. Impact of Bilateral Sympathetic Stellate Ganglionectomy on TGF-β1 Signaling Pathway in Rats With Chronic Volume Overload. Front Physiol 2020; 11:375. [PMID: 32477156 PMCID: PMC7240126 DOI: 10.3389/fphys.2020.00375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
Background: We previously reported that bilateral sympathetic stellate ganglionectomy attenuated cardiac remodeling and fibrosis in rats with chronic volume overload. Transforming growth factor beta 1 (TGF-β1) is a polypeptide member of the transforming growth factor beta superfamily of cytokines and actively involved in many pathological processes of cardiovascular diseases. The present study explored the impact of bilateral sympathetic stellate ganglionectomy on the TGF-β1 pathway in this model. Methods and Results: Male Sprague–Dawley rats were randomly divided into sham (S) group, abdominal aorta-cava fistula (AV) group, and bilateral sympathetic stellate ganglionectomy after abdominal aorta-cava fistula (AD) group. Twelve weeks after the abdominal aorta-cava fistula surgery, the myocardial expressions of norepinephrine (NE) and hydroxyproline were significantly higher, while acetylcholine was downregulated in the AV group compared to the S group; the above changes were partly reversed in the AD group. The myocardial expression of TGF-β1 and activity of Smad2/3 phosphorylation were also upregulated in the AV group compared to the S group, which could be reversed by bilateral sympathetic stellate ganglionectomy. In vitro, the TGF-β1 expression in cultured myocardial fibroblasts and the proliferation of myocardial fibroblasts were significantly increased post-stimulation with NE in a dose-dependent manner, and these effects could be blunted by co-treatment with a TGF-β1 inhibitor. Conclusion: Our study results indicate that stellate ganglionectomy decreases cardiac norepinephrine release, which leads to decreased TGF-β1 release and reduced fibrosis in rats with chronic volume overload.
Collapse
Affiliation(s)
- Mingjing Zhang
- Department of Cardiology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaogang Liu
- Department of Cardiology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Wu
- Department of Cardiology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yijun Yu
- Department of Cardiology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuting Wang
- Department of Cardiology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Gu
- Department of Cardiology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Khurana S, Waidha K, Guleria R, Sharda S, Bose S. In-silico investigations of selective miRNA-gene targets and their validation studies in obstructive sleep apnea (OSA) patient cohorts. Comput Biol Chem 2020; 87:107264. [PMID: 32447199 DOI: 10.1016/j.compbiolchem.2020.107264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/28/2020] [Accepted: 04/09/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Obstructive sleep apnoea (OSA) is a prevalent form of sleep disordered breathing which results in sleep fragmentation and deprivation. Obesity and cardiovascular disorders are the major risk factors associated with OSA. Molecular analysis of the factors associated with OSA could demarcate the clinical analysis pattern in a population. OBJECTIVE This study pertains to in-silico analyses of miRNA and their gene targets with validation for their potential role in OSA as putative biomarker candidates. METHODS miRDB, TargetScan and miRanda databases were used to identify targets of miR-27 and let-7 that have documented role in OSA and co-related obesity and cardiovascular disorders. Quantitative PCR was used to analyze expression pattern of miR-27 and let-7 in obese and non-obese OSA patient cohorts with respective controls. In-silico analysis was done using PatchDoc to obtain atomic contact energy (ACE) scores that indicated the docked gene targets to the predicted miRNA structures. The docked structures were analysed using Maestro Suite 11 for the hydrogen and aromatic interactions. RESULTS Downregulation of miR-27 and let-7 in OSA compared to controls was observed. In-silico data analysis was performed for gene targets (TGFBR1, TGFBR2, SMAD2, SMAD4, CRY2 and CNR1) of the selected miRNAs (miR-27 and let-7). Among all, CNR1 and CRY2 were found to be better targets for miR-27 and let-7 respectively as per ACE scores, ROC scores and expression fold change in OSA. CONCLUSION Our study gives insights to the expression profiling of miR-27 and let-7 and explore a set of potential target genes (CNR1 and CRY2) of these two miRNAs for a promising clinical relevance in OSA.
Collapse
Affiliation(s)
- Sartaj Khurana
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India; Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India
| | - Kamran Waidha
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Randeep Guleria
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Shivani Sharda
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India.
| | - Sudeep Bose
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India; Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India.
| |
Collapse
|
28
|
Adesanya TMA, Russell M, Park KH, Zhou X, Sermersheim MA, Gumpper K, Koenig SN, Tan T, Whitson BA, Janssen PML, Lincoln J, Zhu H, Ma J. MG 53 Protein Protects Aortic Valve Interstitial Cells From Membrane Injury and Fibrocalcific Remodeling. J Am Heart Assoc 2020; 8:e009960. [PMID: 30741589 PMCID: PMC6405656 DOI: 10.1161/jaha.118.009960] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background The aortic valve of the heart experiences constant mechanical stress under physiological conditions. Maladaptive valve injury responses contribute to the development of valvular heart disease. Here, we test the hypothesis that MG 53 (mitsugumin 53), an essential cell membrane repair protein, can protect valvular cells from injury and fibrocalcific remodeling processes associated with valvular heart disease. Methods and Results We found that MG 53 is expressed in pig and human patient aortic valves and observed aortic valve disease in aged Mg53-/- mice. Aortic valves of Mg53-/- mice showed compromised cell membrane integrity. In vitro studies demonstrated that recombinant human MG 53 protein protects primary valve interstitial cells from mechanical injury and that, in addition to mediating membrane repair, recombinant human MG 53 can enter valve interstitial cells and suppress transforming growth factor-β-dependent activation of fibrocalcific signaling. Conclusions Together, our data characterize valve interstitial cell membrane repair as a novel mechanism of protection against valvular remodeling and assess potential in vivo roles of MG 53 in preventing valvular heart disease.
Collapse
Affiliation(s)
- T M Ayodele Adesanya
- 1 Department of Surgery The Ohio State University Wexner Medical Center Columbus OH
| | - Melanie Russell
- 1 Department of Surgery The Ohio State University Wexner Medical Center Columbus OH
| | - Ki Ho Park
- 1 Department of Surgery The Ohio State University Wexner Medical Center Columbus OH
| | - Xinyu Zhou
- 1 Department of Surgery The Ohio State University Wexner Medical Center Columbus OH
| | | | - Kristyn Gumpper
- 1 Department of Surgery The Ohio State University Wexner Medical Center Columbus OH
| | - Sara N Koenig
- 2 Department of Physiology and Cell Biology The Ohio State University Wexner Medical Center Columbus OH
| | - Tao Tan
- 1 Department of Surgery The Ohio State University Wexner Medical Center Columbus OH
| | - Bryan A Whitson
- 1 Department of Surgery The Ohio State University Wexner Medical Center Columbus OH
| | - Paul M L Janssen
- 2 Department of Physiology and Cell Biology The Ohio State University Wexner Medical Center Columbus OH
| | - Joy Lincoln
- 3 Center for Cardiovascular Research The Research Institute at Nationwide Children's Hospital Columbus OH
| | - Hua Zhu
- 1 Department of Surgery The Ohio State University Wexner Medical Center Columbus OH
| | - Jianjie Ma
- 1 Department of Surgery The Ohio State University Wexner Medical Center Columbus OH
| |
Collapse
|
29
|
Azharuddin M, Adil M, Ghosh P, Kapur P, Sharma M. Periostin as a novel biomarker of cardiovascular disease: A systematic evidence landscape of preclinical and clinical studies. J Evid Based Med 2019; 12:325-336. [PMID: 31769219 DOI: 10.1111/jebm.12368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/17/2019] [Accepted: 11/03/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Periostin is a matricellular protein, expressed in various normal adult and fetal tissues. Recently, elevated periostin levels have been reported in heart failure, coronary artery disease, and stroke. However, there is lack of clinical studies to clarify the prognostic significance of systemic periostin levels in cardiovascular diseases (CVDs). The aim of the study was to perform a systematic review of published evidence on periostin and CVDs, and to clarify the diagnostic and prognostic significance of systemic periostin levels in CVDs. METHODS A systematic search on PubMed was performed to identify relevant articles from inception to December 2018. The eligible studies evaluating the periostin expression and periostin levels in animal and human studies. RESULTS A total of 24 relevant studies, including both animal and human data, were included. Periostin is significantly observed in myocardium tissue of failing hearts compared with control, and is also expressed in atherosclerotic plaques. Systemic periostin levels were significantly correlated with cardiac function and severity of CVD in several studies. A clinical study also observed positive correlation between periostin and N-terminal pro b-type natriuretic peptide (NT-proBNP), highly sensitive troponin (hsTnT), and ST2 cardiac biomarker. Studies reported limited adjustment for potential confounders. CONCLUSIONS The evidence of current review support potential role of periostin in the pathophysiology of CVD. However, scarcity of data regarding the clinical use of periostin levels in the current management of CVDs further creates room for the future investigation. Therefore, further studies warrant to clarify its potential role, if any, as a novel cardiac biomarker.
Collapse
Affiliation(s)
- Md Azharuddin
- Division of Pharmacology, Department of Pharmaceutical Medicine, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Adil
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Pinaki Ghosh
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth, Pune, India
| | - Prem Kapur
- Department of Medicine, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, India
| | - Manju Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
30
|
Sakaguchi T, Takefuji M, Wettschureck N, Hamaguchi T, Amano M, Kato K, Tsuda T, Eguchi S, Ishihama S, Mori Y, Yura Y, Yoshida T, Unno K, Okumura T, Ishii H, Shimizu Y, Bando YK, Ohashi K, Ouchi N, Enomoto A, Offermanns S, Kaibuchi K, Murohara T. Protein Kinase N Promotes Stress-Induced Cardiac Dysfunction Through Phosphorylation of Myocardin-Related Transcription Factor A and Disruption of Its Interaction With Actin. Circulation 2019; 140:1737-1752. [PMID: 31564129 DOI: 10.1161/circulationaha.119.041019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Heart failure is a complex syndrome that results from structural or functional impairment of ventricular filling or blood ejection. Protein phosphorylation is a major and essential intracellular mechanism that mediates various cellular processes in cardiomyocytes in response to extracellular and intracellular signals. The RHOA-associated protein kinase (ROCK/Rho-kinase), an effector regulated by the small GTPase RHOA, causes pathological phosphorylation of proteins, resulting in cardiovascular diseases. RHOA also activates protein kinase N (PKN); however, the role of PKN in cardiovascular diseases remains unclear. METHODS To explore the role of PKNs in heart failure, we generated tamoxifen-inducible, cardiomyocyte-specific PKN1- and PKN2-knockout mice by intercrossing the αMHC-CreERT2 line with Pkn1flox/flox and Pkn2flox/flox mice and applied a mouse model of transverse aortic constriction- and angiotensin II-induced heart failure. To identify a novel substrate of PKNs, we incubated GST-tagged myocardin-related transcription factor A (MRTFA) with recombinant GST-PKN-catalytic domain or GST-ROCK-catalytic domain in the presence of radiolabeled ATP and detected radioactive GST-MRTFA as phosphorylated MRTFA. RESULTS We demonstrated that RHOA activates 2 members of the PKN family of proteins, PKN1 and PKN2, in cardiomyocytes of mice with cardiac dysfunction. Cardiomyocyte-specific deletion of the genes encoding Pkn1 and Pkn2 (cmc-PKN1/2 DKO) did not affect basal heart function but protected mice from pressure overload- and angiotensin II-induced cardiac dysfunction. Furthermore, we identified MRTFA as a novel substrate of PKN1 and PKN2 and found that MRTFA phosphorylation by PKN was considerably more effective than that by ROCK in vitro. We confirmed that endogenous MRTFA phosphorylation in the heart was induced by pressure overload- and angiotensin II-induced cardiac dysfunction in wild-type mice, whereas cmc-PKN1/2 DKO mice suppressed transverse aortic constriction- and angiotensin II-induced phosphorylation of MRTFA. Although RHOA-mediated actin polymerization accelerated MRTFA-induced gene transcription, PKN1 and PKN2 inhibited the interaction of MRTFA with globular actin by phosphorylating MRTFA, causing increased serum response factor-mediated expression of cardiac hypertrophy- and fibrosis-associated genes. CONCLUSIONS Our results indicate that PKN1 and PKN2 activation causes cardiac dysfunction and is involved in the transition to heart failure, thus providing unique targets for therapeutic intervention for heart failure.
Collapse
Affiliation(s)
- Teruhiro Sakaguchi
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Mikito Takefuji
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (N.W., S.O.)
| | - Tomonari Hamaguchi
- Cell Pharmacology (T.H., M.A., Y.Y., K. Kaibuchi), Nagoya University School of Medicine, Japan
| | - Mutsuki Amano
- Cell Pharmacology (T.H., M.A., Y.Y., K. Kaibuchi), Nagoya University School of Medicine, Japan
| | - Katsuhiro Kato
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Takuma Tsuda
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Shunsuke Eguchi
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Sohta Ishihama
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Yu Mori
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Yoshimitsu Yura
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan.,Cell Pharmacology (T.H., M.A., Y.Y., K. Kaibuchi), Nagoya University School of Medicine, Japan
| | - Tatsuya Yoshida
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Kazumasa Unno
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Takahiro Okumura
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Hideki Ishii
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Yuuki Shimizu
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Yasuko K Bando
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Koji Ohashi
- Molecular Medicine and Cardiology (K.O., N.O.), Nagoya University School of Medicine, Japan
| | - Noriyuki Ouchi
- Molecular Medicine and Cardiology (K.O., N.O.), Nagoya University School of Medicine, Japan
| | - Atsushi Enomoto
- Pathology (A.E.), Nagoya University School of Medicine, Japan
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (N.W., S.O.)
| | - Kozo Kaibuchi
- Cell Pharmacology (T.H., M.A., Y.Y., K. Kaibuchi), Nagoya University School of Medicine, Japan
| | - Toyoaki Murohara
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| |
Collapse
|
31
|
Chopra S, Al-Sammarraie N, Lai Y, Azhar M. Increased canonical WNT/β-catenin signalling and myxomatous valve disease. Cardiovasc Res 2019; 113:6-9. [PMID: 28069697 DOI: 10.1093/cvr/cvw236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Sunita Chopra
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, 6439 Garners Ferry Rd., Columbia, SC 29209, USA
| | - Nadia Al-Sammarraie
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, 6439 Garners Ferry Rd., Columbia, SC 29209, USA
| | - Yimu Lai
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, 6439 Garners Ferry Rd., Columbia, SC 29209, USA
| | - Mohamad Azhar
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, 6439 Garners Ferry Rd., Columbia, SC 29209, USA
| |
Collapse
|
32
|
Ardila DC, Tamimi E, Doetschman T, Wagner WR, Vande Geest JP. Modulating smooth muscle cell response by the release of TGFβ2 from tubular scaffolds for vascular tissue engineering. J Control Release 2019. [PMID: 30797003 DOI: 10.1016/j.jconrel.2019.02.0241016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Tissue engineering has gained considerable attention in the development of small diameter tissue engineered vascular grafts (TEVGs) for treating coronary heart disease. A properly designed acellular and biodegradable TEVG must encourage the infiltration and growth of vascular smooth muscle cells (SMCs). Our group has previously shown that increasing levels of TGFβ2 can differentially modulate SMC migration and proliferation. In this study, tubular electrospun scaffolds loaded with TGFβ2 were fabricated using various ratios of gelatin/polycaprolactone (PCL), resulting in scaffolds with porous nano-woven architecture suitable for tissue ingrowth. Scaffold morphology, degradation rate, TGβ2 release kinetics, and bioactivity were assessed. TGFβ2 was successfully integrated into the electrospun biomaterial that resulted in a differential release profile depending on the gelatin/PCL ratio over the course of 42 days. Higher TGFβ2 elution was obtained in scaffolds with higher gelatin content, which may be related to the biodegradation of gelatin in culture media. The biological activity of the released TGFβ2 was evaluated by its ability to affect SMC proliferation as a function of its concentration. SMCs seeded on TGFβ2-loaded scaffolds also showed higher densities and infiltration after 5 days in culture as compared to scaffolds without TGFβ2. Our results demonstrate that the ratio of synthetic and natural polymers in electrospun blends can be used to tune the release of TGFβ2. This method can be used to intelligently modulate the SMC response in gelatin/PCL scaffolds making the TGFβ2-loaded conduits attractive for cardiovascular tissue engineering applications.
Collapse
Affiliation(s)
- D C Ardila
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - E Tamimi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - T Doetschman
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85721, USA; BIO5 Institute, The University of Arizona, Tucson, AZ 85724, USA
| | - W R Wagner
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - J P Vande Geest
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
33
|
Ardila DC, Tamimi E, Doetschman T, Wagner WR, Vande Geest JP. Modulating smooth muscle cell response by the release of TGFβ2 from tubular scaffolds for vascular tissue engineering. J Control Release 2019; 299:44-52. [PMID: 30797003 PMCID: PMC6430660 DOI: 10.1016/j.jconrel.2019.02.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/25/2019] [Accepted: 02/19/2019] [Indexed: 01/01/2023]
Abstract
Tissue engineering has gained considerable attention in the development of small diameter tissue engineered vascular grafts (TEVGs) for treating coronary heart disease. A properly designed acellular and biodegradable TEVG must encourage the infiltration and growth of vascular smooth muscle cells (SMCs). Our group has previously shown that increasing levels of TGFβ2 can differentially modulate SMC migration and proliferation. In this study, tubular electrospun scaffolds loaded with TGFβ2 were fabricated using various ratios of gelatin/polycaprolactone (PCL), resulting in scaffolds with porous nano-woven architecture suitable for tissue ingrowth. Scaffold morphology, degradation rate, TGβ2 release kinetics, and bioactivity were assessed. TGFβ2 was successfully integrated into the electrospun biomaterial that resulted in a differential release profile depending on the gelatin/PCL ratio over the course of 42 days. Higher TGFβ2 elution was obtained in scaffolds with higher gelatin content, which may be related to the biodegradation of gelatin in culture media. The biological activity of the released TGFβ2 was evaluated by its ability to affect SMC proliferation as a function of its concentration. SMCs seeded on TGFβ2-loaded scaffolds also showed higher densities and infiltration after 5 days in culture as compared to scaffolds without TGFβ2. Our results demonstrate that the ratio of synthetic and natural polymers in electrospun blends can be used to tune the release of TGFβ2. This method can be used to intelligently modulate the SMC response in gelatin/PCL scaffolds making the TGFβ2-loaded conduits attractive for cardiovascular tissue engineering applications.
Collapse
Affiliation(s)
- D C Ardila
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - E Tamimi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - T Doetschman
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85721, USA; BIO5 Institute, The University of Arizona, Tucson, AZ 85724, USA
| | - W R Wagner
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - J P Vande Geest
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
34
|
Butrous G. Schistosome infection and its effect on pulmonary circulation. Glob Cardiol Sci Pract 2019; 2019:5. [PMID: 31024947 PMCID: PMC6472693 DOI: 10.21542/gcsp.2019.5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
Abstract
Schistosomiasis is the most common parasitic disease associated with pulmonary hypertension. It induces remodelling via complex inflammatory processes, which eventually produce the clinical manifestation of pulmonary hypertension. The pulmonary hypertension shows clinical signs and symptoms that are not distinguishable from other forms of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Ghazwan Butrous
- Professor of Cardiopulmonary Sciences, Medway School of Pharmacy, University of Kent, UK and University of Greenwich, Central Ave, Gillingham, Chatham ME4 4BF, Kent, UK
| |
Collapse
|
35
|
Cannavicci A, Zhang Q, Dai SC, Faughnan ME, Kutryk MJB. Decreased levels of miR-28-5p and miR-361-3p and increased levels of insulin-like growth factor 1 mRNA in mononuclear cells from patients with hereditary hemorrhagic telangiectasia 1. Can J Physiol Pharmacol 2018; 97:562-569. [PMID: 30512964 DOI: 10.1139/cjpp-2018-0508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a rare vascular disorder inherited in an autosomal dominant manner. Patients with HHT can develop vascular dysplasias called telangiectasias and arteriovenous malformations (AVMs). Our objective was to profile and characterize micro-RNAs (miRNAs), short noncoding RNAs that regulate gene expression posttranscriptionally, in HHT patient-derived peripheral blood mononuclear cells (PBMCs). PBMCs, comprised mostly of lymphocytes and monocytes, have been reported to be dysfunctional in HHT. A total of 40 clinically confirmed HHT patients and 22 controls were enrolled in this study. PBMCs were isolated from 16 mL of peripheral blood and purified for total RNA. MiRNA expression profiling was conducted with a human miRNA array analysis. Select dysregulated miRNAs and miRNA targets were validated with reverse transcription-quantitative polymerase chain reaction. Of the 377 miRNAs screened, 41 dysregulated miRNAs were identified. Both miR-28-5p and miR-361-3p, known to target insulin-like growth factor 1 (IGF1), a potent angiogenic growth factor, were found to be significantly downregulated in HHT patients. Consequently, IGF1 mRNA levels were found to be significantly elevated. Our research successfully identified miRNA dysregulation and elevated IGF1 mRNA levels in PBMCs from HHT patients. This novel discovery represents a potential pathogenic mechanism that could be targeted to alleviate clinical manifestations of HHT.
Collapse
Affiliation(s)
- Anthony Cannavicci
- a Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.,b Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Qiuwang Zhang
- b Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Si-Cheng Dai
- b Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Marie E Faughnan
- c Division of Respirology, Keenan Research Center for Biomedical Sciences, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Michael J B Kutryk
- a Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.,b Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
36
|
Asymmetry in Mechanosensitive Gene Expression during Aortic Arch Morphogenesis. Sci Rep 2018; 8:16948. [PMID: 30446764 PMCID: PMC6240117 DOI: 10.1038/s41598-018-35127-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/30/2018] [Indexed: 11/09/2022] Open
Abstract
Embryonic aortic arches (AA) are initially bilaterally paired, transitional vessels and failures in remodeling based on hemodynamic and growth-related adaptations cause a spectrum of congenital heart disease (CHD) anatomies. Identifying regulatory mechanisms and cross-talk between the genetic elements of these vessels are critical to understand the ethiology of CHD and refine predictive computational models. This study aims to screen expression profiles of fundamental biological pathways in AA at early stages of chick embryo morphogenesis and correlate them with our current understanding of growth and mechanical loading. Reverse transcription-quantitative PCR (RT-qPCR) was followed by correlation and novel peak expression analyses to compare the behaviour and activation period of the genes. Available protein networks were also integrated to investigate the interactions between molecules and highlight major hierarchies. Only wall shear stress (WSS) and growth-correlated expression patterns were investigated. Effect of WSS was seen directly on angiogenesis as well on structural and apoptosis-related genes. Our time-resolved network suggested that WSS-correlated genes coordinate the activity of critical growth factors. Moreover, differential gene expression of left and right AA might be an indicator of subsequent asymmetric morphogenesis. These findings may further our understanding of the complex processes of cardiac morphogenesis and errors resulting in CHD.
Collapse
|
37
|
The Cellular Senescence-Inhibited Gene Is Essential for PPM1A Myristoylation To Modulate Transforming Growth Factor β Signaling. Mol Cell Biol 2018; 38:MCB.00414-18. [PMID: 30201805 DOI: 10.1128/mcb.00414-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/05/2018] [Indexed: 12/16/2022] Open
Abstract
The cellular senescence-inhibited gene (CSIG) is implicated in important biological processes, including cellular senescence and apoptosis. Our work showed that CSIG is involved in the myristoylation of the serine/threonine protein phosphatase PPM1A. Previous research has shown that myristoylation is necessary for PPM1A to dephosphorylate Smad2 and Smad3. However, the control and the biological significance of the myristoylation remain poorly understood. In this study, we found that CSIG knockdown disturbs PPM1A myristoylation and reduces the dephosphorylation by PPM1A of its substrate Smad2. By regulating PPM1A myristoylation, CSIG is involved in modulating the signaling of transforming growth factor β (TGF-β). Further study of the mechanism indicated that CSIG facilitates the interaction between N-myristoyltransferase 1 (NMT1) and PPM1A. Taking the data together, we found that CSIG is a regulator of PPM1A myristoylation and TGF-β signaling. By promoting the myristoylation of PPM1A, CSIG enhanced the phosphatase activity of PPM1A and further inhibited TGF-β signaling. This work not only extends the biological significance of CSIG but also provides new ideas and a reference for the study of the regulatory mechanism of myristoylation.
Collapse
|
38
|
Poelmann RE, Gittenberger-de Groot AC. Hemodynamics in Cardiac Development. J Cardiovasc Dev Dis 2018; 5:jcdd5040054. [PMID: 30404214 PMCID: PMC6306789 DOI: 10.3390/jcdd5040054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/03/2018] [Accepted: 11/04/2018] [Indexed: 12/14/2022] Open
Abstract
The beating heart is subject to intrinsic mechanical factors, exerted by contraction of the myocardium (stretch and strain) and fluid forces of the enclosed blood (wall shear stress). The earliest contractions of the heart occur already in the 10-somite stage in the tubular as yet unsegmented heart. With development, the looping heart becomes asymmetric providing varying diameters and curvatures resulting in unequal flow profiles. These flow profiles exert various wall shear stresses and as a consequence different expression patterns of shear responsive genes. In this paper we investigate the morphological alterations of the heart after changing the blood flow by ligation of the right vitelline vein in a model chicken embryo and analyze the extended expression in the endocardial cushions of the shear responsive gene Tgfbeta receptor III. A major phenomenon is the diminished endocardial-mesenchymal transition resulting in hypoplastic (even absence of) atrioventricular and outflow tract endocardial cushions, which might be lethal in early phases. The surviving embryos exhibit several cardiac malformations including ventricular septal defects and malformed semilunar valves related to abnormal development of the aortopulmonary septal complex and the enclosed neural crest cells. We discuss the results in the light of the interactions between several shear stress responsive signaling pathways including an extended review of the involved Vegf, Notch, Pdgf, Klf2, eNos, Endothelin and Tgfβ/Bmp/Smad networks.
Collapse
Affiliation(s)
- Robert E Poelmann
- Department of Animal Sciences and Health, Institute of Biology, Sylvius Laboratory, University of Leiden, Sylviusweg 72, 2333BE Leiden, The Netherlands.
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 20, 2300RC Leiden, The Netherlands.
| | | |
Collapse
|
39
|
Wu D, Huang D, Li LL, Ni P, Li XX, Wang B, Han YN, Shao XQ, Zhao D, Chu WF, Li BY. TGF-β1-PML SUMOylation-peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) form a positive feedback loop to regulate cardiac fibrosis. J Cell Physiol 2018; 234:6263-6273. [PMID: 30246389 DOI: 10.1002/jcp.27357] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/17/2018] [Indexed: 11/11/2022]
Abstract
Transforming growth factor-β (TGF-β) signaling pathway is involved in fibrosis in most, if not all forms of cardiac diseases. Here, we evaluate a positive feedback signaling the loop of TGF-β1/promyelocytic leukemia (PML) SUMOylation/Pin1 promoting the cardiac fibrosis. To test this hypothesis, the mice underwent transverse aortic constriction (3 weeks) were developed and the morphological evidence showed obvious interstitial fibrosis with TGF-β1, Pin1 upregulation, and increase in PML SUMOylation. In neonatal mouse cardiac fibroblasts (NMCFs), we found that exogenous TGF-β1 induced the upregulation of TGF-β1 itself in a time- and dose-dependent manner, and also triggered the PML SUMOylation and the formation of PML nuclear bodies (PML-NBs), and consequently recruited Pin1 into nuclear to colocalize with PML. Pharmacological inhibition of TGF-β signal or Pin1 with LY364947 (3 μM) or Juglone (3 μM), the TGF-β1-induced PML SUMOylation was reduced significantly with downregulation of the messenger RNA and protein for TGF-β1 and Pin1. To verify the cellular function of PML by means of gain- or loss-of-function, the positive feedback signaling loop was enhanced or declined, meanwhile, TGF-β-Smad signaling pathway was activated or weakened, respectively. In summary, we uncovered a novel reciprocal loop of TGF-β1/PML SUMOylation/Pin1 leading to myocardial fibrosis.
Collapse
Affiliation(s)
- Di Wu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Di Huang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Liang-Liang Li
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ping Ni
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiu-Xian Li
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Bing Wang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yan-Na Han
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiao-Qi Shao
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Dan Zhao
- Departments of Clinical Pharmacy and Cardiology, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, The 2nd Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Wen-Feng Chu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Bai-Yan Li
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
40
|
Chang CN, Kioussi C. Location, Location, Location: Signals in Muscle Specification. J Dev Biol 2018; 6:E11. [PMID: 29783715 PMCID: PMC6027348 DOI: 10.3390/jdb6020011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/15/2022] Open
Abstract
Muscles control body movement and locomotion, posture and body position and soft tissue support. Mesoderm derived cells gives rise to 700 unique muscles in humans as a result of well-orchestrated signaling and transcriptional networks in specific time and space. Although the anatomical structure of skeletal muscles is similar, their functions and locations are specialized. This is the result of specific signaling as the embryo grows and cells migrate to form different structures and organs. As cells progress to their next state, they suppress current sequence specific transcription factors (SSTF) and construct new networks to establish new myogenic features. In this review, we provide an overview of signaling pathways and gene regulatory networks during formation of the craniofacial, cardiac, vascular, trunk, and limb skeletal muscles.
Collapse
Affiliation(s)
- Chih-Ning Chang
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA.
- Molecular Cell Biology Graduate Program, Oregon State University, Corvallis, OR 97331, USA.
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA.
- Molecular Cell Biology Graduate Program, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
41
|
Atrial overexpression of microRNA-27b attenuates angiotensin II-induced atrial fibrosis and fibrillation by targeting ALK5. Hum Cell 2018; 31:251-260. [PMID: 29671258 DOI: 10.1007/s13577-018-0208-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022]
Abstract
Atrial fibrosis influences atrial fibrillation (AF) development by transforming growth factor beta 1 (TGF-β1)/Smad pathway. Although microRNAs are implicated in the pathogenesis of various diseases, information regarding the functional role of microRNAs in atrial dysfunction is limited. In the present study, we found that microRNA-27b (miR-27b) was the dominant member of miR-27 family expressed in left atrium. Moreover, the expression of miR-27b was significantly reduced after angiotensin II (AngII) infusion. Masson's trichrome staining revealed that delivery of miR-27b adeno-associated virus to left atrium led to a decrease in atrial fibrosis induced by AngII. The increased expression of collagen I, collagen III, plasminogen activator inhibitor type 1 and alpha smooth muscle actin was also inhibited after miR-27b upregulation. In isolated perfused hearts, miR-27b restoration markedly attenuated AngII-induced increase in interatrial conduction time, AF incidence and AF duration. Furthermore, our data evidence that miR-27b is a novel miRNA that targets ALK5, a receptor of TGF-β1, through binding to the 3' untranslated region of ALK5 mRNA. Ectopic miR-27b suppressed luciferase activity and expression of ALK5, whereas inhibition of miR-27b increased ALK5 luciferase activity and expression. Additionally, miR-27b inhibited AngII-induced Smad-2/3 phosphorylation without altering Smad-1 activity. Taken together, our study demonstrates that miR-27b ameliorates atrial fibrosis and AF through inactivation of Smad-2/3 pathway by targeting ALK5, suggesting miR-27b may play an anti-fibrotic role in left atrium and function as a novel therapeutic target for the treatment of cardiac dysfunction.
Collapse
|
42
|
Bai B, Man AWC, Yang K, Guo Y, Xu C, Tse HF, Han W, Bloksgaard M, De Mey JGR, Vanhoutte PM, Xu A, Wang Y. Endothelial SIRT1 prevents adverse arterial remodeling by facilitating HERC2-mediated degradation of acetylated LKB1. Oncotarget 2018; 7:39065-39081. [PMID: 27259994 PMCID: PMC5129914 DOI: 10.18632/oncotarget.9687] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/23/2016] [Indexed: 11/25/2022] Open
Abstract
Aims-SIRT1 exerts potent activity against cellular senescence and vascular ageing. By decreasing LKB1 protein levels, it promotes the survival and regeneration of endothelial cells. The present study aims to investigate the molecular mechanisms underlying SIRT1-mediated LKB1 degradation for the prevention of vascular ageing. Methods and Results-Co-immunoprecipitation assay demonstrated that SIRT1, via its amino-terminus, binds to the DOC domain of HERC2 [HECT and RLD domain containing E3 ubiquitin protein ligase 2], which then ubiquitinates LKB1 in the nuclear compartment of endothelial cells. Site-directed mutagenesis revealed that acetylation at lysine (K) 64 of LKB1 triggers the formation of SIRT1/HERC2/LKB1 protein complex and subsequent proteasomal degradation. In vitro cellular studies suggested that accumulation of acetylated LKB1 in the nucleus leads to endothelial activation, in turn stimulating the proliferation of vascular smooth muscle cells and the production of extracellular matrix proteins. Chromatin immunoprecipitation quantitative PCR confirmed that acetylated LKB1 interacts with and activates TGFβ1 promoter, which is inhibited by SIRT1. Knocking down either SIRT1 or HERC2 results in an increased association of LKB1 with the positive regulatory elements of TGFβ1 promoter. In mice without endothelial nitric oxide synthase, selective overexpression of human SIRT1 in endothelium prevents hypertension and age-related adverse arterial remodeling. Lentiviral-mediated knockdown of HERC2 abolishes the beneficial effects of endothelial SIRT1 on both arterial remodeling and arterial blood pressure control. Conclusion-By downregulating acetylated LKB1 protein via HERC2, SIRT1 fine-tunes the crosstalk between endothelial and vascular smooth muscle cells to prevent adverse arterial remodeling and maintain vascular homeostasis.
Collapse
Affiliation(s)
- Bo Bai
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.,Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Andy W C Man
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Kangmin Yang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Yumeng Guo
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Cheng Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Hung-Fat Tse
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Weiping Han
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Maria Bloksgaard
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jo G R De Mey
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Paul M Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
43
|
Wu XP, Wang HJ, Wang YL, Shen HR, Tan YZ. Serelaxin inhibits differentiation and fibrotic behaviors of cardiac fibroblasts by suppressing ALK-5/Smad2/3 signaling pathway. Exp Cell Res 2017; 362:17-27. [PMID: 28987540 DOI: 10.1016/j.yexcr.2017.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/23/2017] [Accepted: 10/03/2017] [Indexed: 02/09/2023]
Abstract
Serelaxin, a recombinant form of human relaxin-2, is currently regarded as a novel drug for treatment of acute heart failure. However, whether therapeutic effects of serelaxin are achieved by inhibiting cardiac fibrosis remains unclear. In this study, we investigate effects of serelaxin on inhibiting cardiac fibrosis. Cardiac fibroblasts (CFs) were isolated from the hearts of adult rats. Effects of serelaxin on differentiation of CFs towards myofibroblasts (MFs) and their fibrotic behaviors after induction with TGF-β1 were examined. Synthesis and degradation of collagens, secretion of IL-10, and expression of ALK-5 and p-Smad2/3 of TGF-β1-induced cells were assessed after treatment with serelaxin. Serelaxin inhibited differentiation of TGF-β1-induced CFs towards MFs, and reduced proliferation and migration of the induced cells. Moreover, serelaxin down-regulated expression of collagen I/III and TIMP-2, and up-regulated expression of MMP-2 and MMP-9 in the cells. After treatment with serelaxin, activity of MMP-2 and MMP-9 and secretion of IL-10 increased, expression of ALK-5 and the level of Smad2/3 phosphorylation was reduced significantly. These results suggest that serelaxin can inhibit differentiation of TGF-β1-induced CFs towards MFs, reduce production of collagens by suppressing ALK-5/Smad2/3 signaling pathway, and enhance extracellular matrix degradation by increasing MMP-2/TIMP-2 ratio and IL-10 secretion. Serelaxin may be a potential therapeutic drug for inhibiting cardiac fibrosis.
Collapse
Affiliation(s)
- Xue-Ping Wu
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 277# 138 Yixueyuan Road, Shanghai 200032, China
| | - Hai-Jie Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 277# 138 Yixueyuan Road, Shanghai 200032, China
| | - Yong-Li Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 277# 138 Yixueyuan Road, Shanghai 200032, China
| | - Hao-Ran Shen
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 277# 138 Yixueyuan Road, Shanghai 200032, China
| | - Yu-Zhen Tan
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 277# 138 Yixueyuan Road, Shanghai 200032, China.
| |
Collapse
|
44
|
Moncayo-Arlandi J, Brugada R. Unmasking the molecular link between arrhythmogenic cardiomyopathy and Brugada syndrome. Nat Rev Cardiol 2017; 14:744-756. [DOI: 10.1038/nrcardio.2017.103] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Zeng L, Dang TA, Schunkert H. Genetics links between transforming growth factor β pathway and coronary disease. Atherosclerosis 2016; 253:237-246. [DOI: 10.1016/j.atherosclerosis.2016.08.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/27/2016] [Accepted: 08/23/2016] [Indexed: 01/05/2023]
|
46
|
Bai H, Gao Y, Hoyle DL, Cheng T, Wang ZZ. Suppression of Transforming Growth Factor-β Signaling Delays Cellular Senescence and Preserves the Function of Endothelial Cells Derived from Human Pluripotent Stem Cells. Stem Cells Transl Med 2016; 6:589-600. [PMID: 28191769 PMCID: PMC5442820 DOI: 10.5966/sctm.2016-0089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/09/2016] [Indexed: 12/15/2022] Open
Abstract
Transplantation of vascular cells derived from human pluripotent stem cells (hPSCs) offers an attractive noninvasive method for repairing the ischemic tissues and for preventing the progression of vascular diseases. Here, we found that in a serum‐free condition, the proliferation rate of hPSC‐derived endothelial cells is quickly decreased, accompanied with an increased cellular senescence, resulting in impaired gene expression of endothelial nitric oxide synthase (eNOS) and impaired vessel forming capability in vitro and in vivo. To overcome the limited expansion of hPSC‐derived endothelial cells, we screened small molecules for specific signaling pathways and found that inhibition of transforming growth factor‐β (TGF‐β) signaling significantly retarded cellular senescence and increased a proliferative index of hPSC‐derived endothelial cells. Inhibition of TGF‐β signaling extended the life span of hPSC‐derived endothelial and improved endothelial functions, including vascular network formation on Matrigel, acetylated low‐density lipoprotein uptake, and eNOS expression. Exogenous transforming growth factor‐β1 increased the gene expression of cyclin‐dependent kinase inhibitors, p15Ink4b, p16Ink4a, and p21CIP1, in endothelial cells. Conversely, inhibition of TGF‐β reduced the gene expression of p15Ink4b, p16Ink4a, and p21CIP1. Our findings demonstrate that the senescence of newly generated endothelial cells from hPSCs is mediated by TGF‐β signaling, and manipulation of TGF‐β signaling offers a potential target to prevent vascular aging. Stem Cells Translational Medicine2017;6:589–600
Collapse
Affiliation(s)
- Hao Bai
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yongxing Gao
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dixie L. Hoyle
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Blood Cell Therapy and Technology, Tianjin, People's Republic of China
| | - Zack Z. Wang
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Blood Cell Therapy and Technology, Tianjin, People's Republic of China
| |
Collapse
|
47
|
Aparecida-Silva R, Borges LF, Kessler K, Dias RR, Moreira LFP, Kalil J, Gutierrez PS. Transforming growth factor-β1 SMAD effectors and medial cell number in ascending aorta diseases. Cardiovasc Pathol 2016; 25:240-246. [DOI: 10.1016/j.carpath.2016.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/19/2016] [Accepted: 02/21/2016] [Indexed: 10/22/2022] Open
|
48
|
Clark CR, Robinson JY, Sanchez NS, Townsend TA, Arrieta JA, Merryman WD, Trykall DZ, Olivey HE, Hong CC, Barnett JV. Common pathways regulate Type III TGFβ receptor-dependent cell invasion in epicardial and endocardial cells. Cell Signal 2016; 28:688-98. [PMID: 26970186 DOI: 10.1016/j.cellsig.2016.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/23/2016] [Accepted: 03/08/2016] [Indexed: 11/29/2022]
Abstract
Epithelial-Mesenchymal Transformation (EMT) and the subsequent invasion of epicardial and endocardial cells during cardiac development is critical to the development of the coronary vessels and heart valves. The transformed cells give rise to cardiac fibroblasts and vascular smooth muscle cells or valvular interstitial cells, respectively. The Type III Transforming Growth Factor β (TGFβR3) receptor regulates EMT and cell invasion in both cell types, but the signaling mechanisms downstream of TGFβR3 are not well understood. Here we use epicardial and endocardial cells in in vitro cell invasion assays to identify common mechanisms downstream of TGFβR3 that regulate cell invasion. Inhibition of NF-κB activity blocked cell invasion in epicardial and endocardial cells. NF-κB signaling was found to be dysregulated in Tgfbr3(-/-) epicardial cells which also show impaired cell invasion in response to ligand. TGFβR3-dependent cell invasion is also dependent upon Activin Receptor-Like Kinase (ALK) 2, ALK3, and ALK5 activity. A TGFβR3 mutant that contains a threonine to alanine substitution at residue 841 (TGFβR3-T841A) induces ligand-independent cell invasion in both epicardial and endocardial cells in vitro. These findings reveal a role for NF-κB signaling in the regulation of epicardial and endocardial cell invasion and identify a mutation in TGFβR3 which stimulates ligand-independent signaling.
Collapse
Affiliation(s)
- Cynthia R Clark
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States.
| | - Jamille Y Robinson
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States.
| | - Nora S Sanchez
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States.
| | - Todd A Townsend
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States.
| | - Julian A Arrieta
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States.
| | - W David Merryman
- Dept. of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212.
| | - David Z Trykall
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States.
| | - Harold E Olivey
- Dept. of Biology, Indiana University-Northwest, Gary, IN 46408, United States.
| | - Charles C Hong
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, United States; Research Medicine, Veterans Affairs TVHS, Nashville, TN 37212, United States.
| | - Joey V Barnett
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States; Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, United States.
| |
Collapse
|
49
|
Abstract
Cardiovascular malformations (CVMs) are the most common birth defect, occurring in 1% to 5% of all live births. Genetic, epigenetic, and environmental factors all influence the development of CVMs, and an improved understanding of the causation of CVMs is a prerequisite for prevention. Cardiac development is a complex, multistep process of morphogenesis that is under genetic regulation. Although the genetic contribution to CVMs is well recognized, the genetic causes of human CVMs are still identified infrequently. This article discusses the key genetic concepts characterizing human CVMs, their developmental basis, and the critical developmental and genetic concepts underlying their pathogenesis.
Collapse
Affiliation(s)
- Mohamad Azhar
- Department of Cell Biology & Anatomy, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29208, USA.
| | - Stephanie M. Ware
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN,Corresponding authors: Mohamad Azhar, PhD, Indiana University School of Medicine, 1044 W. Walnut Street, Indianapolis, IN 46202, Phone: 317-278-8661, , Stephanie M. Ware, MD, PhD, Indiana University School of Medicine, 1044 W. Walnut Street, Indianapolis, IN 46202, Phone: 317-274-8938, Fax: 317-274-8679,
| |
Collapse
|
50
|
Allison P, Espiritu D, Camenisch TD. BMP2 rescues deficient cell migration in Tgfbr3(-/-) epicardial cells and requires Src kinase. Cell Adh Migr 2015; 10:259-68. [PMID: 26645362 PMCID: PMC4951173 DOI: 10.1080/19336918.2015.1119362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
During embryogenesis, the epicardium undergoes proliferation, migration, and differentiation into several cardiac cell types which contribute to the coronary vessels. The type III transforming growth factor-β receptor (TGFβR3) is required for epicardial cell invasion and development of coronary vasculature in vivo. Bone Morphogenic Protein-2 (BMP2) is a driver of epicardial cell migration. Utilizing a primary epicardial cell line derived from Tgfbr3(+/+) and Tgfbr3(-/-) mouse embryos, we show that Tgfbr3(-/-) epicardial cells are deficient in BMP2 mRNA expression. Tgfbr3(-/-) epicardial cells are deficient in 2-dimensional migration relative to Tgfbr3(+/+) cells; BMP2 induces cellular migration to Tgfbr3(+/+) levels without affecting proliferation. We further demonstrate that Src kinase activity is required for BMP2 driven Tgfbr3(-/-) migration. BMP2 also requires Src for filamentous actin polymerization in Tgfbr3(-/-) epicardial cells. Taken together, our data identifies a novel pathway in epicardial cell migration required for development of the coronary vessels.
Collapse
Affiliation(s)
- Patrick Allison
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA,CONTACT Patrick Allison Michigan State University, College of Veterinary Medicine, 784 Wilson Rd, RmG358, East Lansing, MI 48824, USA
| | - Daniella Espiritu
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Todd D. Camenisch
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA,Southwest Environmental Health Sciences Center, University of Arizona, Tucson, AZ, USA,Steele Children's Research Center, University of Arizona, Tucson, AZ, USA,Sarver Heart Center, University of Arizona, Tucson, AZ, USA,Bio5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|