1
|
Leng X, Zhang M, Xu Y, Wang J, Ding N, Yu Y, Sun S, Dai W, Xue X, Li N, Yang Y, Shi Z. Non-coding RNAs as therapeutic targets in cancer and its clinical application. J Pharm Anal 2024; 14:100947. [PMID: 39149142 PMCID: PMC11325817 DOI: 10.1016/j.jpha.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 08/17/2024] Open
Abstract
Cancer genomics has led to the discovery of numerous oncogenes and tumor suppressor genes that play critical roles in cancer development and progression. Oncogenes promote cell growth and proliferation, whereas tumor suppressor genes inhibit cell growth and division. The dysregulation of these genes can lead to the development of cancer. Recent studies have focused on non-coding RNAs (ncRNAs), including circular RNA (circRNA), long non-coding RNA (lncRNA), and microRNA (miRNA), as therapeutic targets for cancer. In this article, we discuss the oncogenes and tumor suppressor genes of ncRNAs associated with different types of cancer and their potential as therapeutic targets. Here, we highlight the mechanisms of action of these genes and their clinical applications in cancer treatment. Understanding the molecular mechanisms underlying cancer development and identifying specific therapeutic targets are essential steps towards the development of effective cancer treatments.
Collapse
Affiliation(s)
- Xuejiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengyuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujing Xu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingjing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yancheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weichen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nianguang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhihao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
2
|
Pathania AS, Chava H, Balusu R, Pasupulati AK, Coulter DW, Challagundla KB. The crosstalk between non-coding RNAs and cell-cycle events: A new frontier in cancer therapy. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200785. [PMID: 38595981 PMCID: PMC10973673 DOI: 10.1016/j.omton.2024.200785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The cell cycle comprises sequential events during which a cell duplicates its genome and divides it into two daughter cells. This process is tightly regulated to ensure that the daughter cell receives identical copied chromosomal DNA and that any errors in the DNA during replication are correctly repaired. Cyclins and their enzyme partners, cyclin-dependent kinases (CDKs), are critical regulators of G- to M-phase transitions during the cell cycle. Mitogenic signals induce the formation of the cyclin/CDK complexes, resulting in phosphorylation and activation of the CDKs. Once activated, cyclin/CDK complexes phosphorylate specific substrates that drive the cell cycle forward. The sequential activation and inactivation of cyclin-CDK complexes are tightly controlled by activating and inactivating phosphorylation events induced by cell-cycle proteins. The non-coding RNAs (ncRNAs), which do not code for proteins, regulate cell-cycle proteins at the transcriptional and translational levels, thereby controlling their expression at different cell-cycle phases. Deregulation of ncRNAs can cause abnormal expression patterns of cell-cycle-regulating proteins, resulting in abnormalities in cell-cycle regulation and cancer development. This review explores how ncRNA dysregulation can disrupt cell division balance and discusses potential therapeutic approaches targeting these ncRNAs to control cell-cycle events in cancer treatment.
Collapse
Affiliation(s)
- Anup S. Pathania
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Haritha Chava
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ramesh Balusu
- Department of Hematologic Malignancies and Cellular Therapeutics, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Anil K. Pasupulati
- Department of Biochemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Don W. Coulter
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kishore B. Challagundla
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- The Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
3
|
Saeinasab M, Atlasi Y, M Matin M. Functional role of lncRNAs in gastrointestinal malignancies: the peculiar case of small nucleolar RNA host gene family. FEBS J 2024; 291:1353-1385. [PMID: 36282516 DOI: 10.1111/febs.16668] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/18/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in normal physiology and are often de-regulated in disease states such as cancer. Recently, a class of lncRNAs referred to as the small nucleolar RNA host gene (SNHG) family have emerged as important players in tumourigenesis. Here, we discuss new findings describing the role of SNHGs in gastrointestinal tumours and summarize the three main functions by which these lncRNAs promote carcinogenesis, namely: competing with endogenous RNAs, modulating protein function, and regulating epigenetic marking. Furthermore, we discuss how SNHGs participate in different hallmarks of cancer, and how this class of lncRNAs may serve as potential biomarkers in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Morvarid Saeinasab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
| | - Yaser Atlasi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Iran
| |
Collapse
|
4
|
Alharbi KS. Exploring GAS5's impact on prostate cancer: Recent discoveries and emerging paradigms. Pathol Res Pract 2023; 251:154851. [PMID: 37837861 DOI: 10.1016/j.prp.2023.154851] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
Novel treatment targets must be discovered to improve the results for patients with prostate cancer, which continues to be a significant worldwide health problem. Growth Arrest-Specific 5 (GAS5) is a long non-coding RNA (lncRNA) that has emerged as a promising target. GAS5 is a non-coding RNA that is a tumour suppressor in many different cancers by reducing cell proliferation and increasing apoptosis. GAS5 influences cell cycle control and apoptosis via interactions with important signalling pathways and microRNAs, as has been shown by recent studies. Furthermore, GAS5 has attracted interest for its diagnostic and prognostic potential in prostate cancer. GAS5 expression is a promising biomarker for disease classification and individualized treatment approaches because of its association with clinicopathological characteristics such as tumour stage, Gleason score, and metastatic potential. Preclinical models have revealed encouraging anticancer benefits from experimental techniques employing GAS5 overexpression or synthetic analogues, indicating the possibility of translational treatments. Whether GAS5 can be used as a diagnostic biomarker and therapeutic target might lead to more effective and individualized ways to fight prostate cancer, improving patient outcomes and quality of life. To utilize its potential for therapy and establish it as a useful addition to the clinical arsenal against this pervasive malignancy, more investigation into the complex molecular pathways of GAS5 in prostate cancer is essential. This review highlights the recent advancements and insights into the role of GAS5 in prostate cancer pathogenesis and progression.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia.
| |
Collapse
|
5
|
Zhang X, Xu X, Song J, Xu Y, Qian H, Jin J, Liang ZF. Non-coding RNAs' function in cancer development, diagnosis and therapy. Biomed Pharmacother 2023; 167:115527. [PMID: 37751642 DOI: 10.1016/j.biopha.2023.115527] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
While previous research on cancer biology has focused on genes that code for proteins, in recent years it has been discovered that non-coding RNAs (ncRNAs)play key regulatory roles in cell biological functions. NcRNAs account for more than 95% of human transcripts and are an important entry point for the study of the mechanism of cancer development. An increasing number of studies have demonstrated that ncRNAs can act as tumor suppressor genes or oncogenes to regulate tumor development at the epigenetic level, transcriptional level, as well as post-transcriptional level. Because of the importance of ncRNAs in cancer, most clinical trials have focused on ncRNAs to explore whether ncRNAs can be used as new biomarkers or therapies. In this review, we focus on recent studies of ncRNAs including microRNAs (miRNAs), long ncRNAs (lncRNAs), circle RNAs (circRNAs), PIWI interacting RNAs (piRNAs), and tRNA in different types of cancer and explore the application of these ncRNAs in the development of cancer and the identification of relevant therapeutic targets and tumor biomarkers. Graphical abstract drawn by Fidraw.
Collapse
Affiliation(s)
- XinYi Zhang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu university, Zhenjiang, Jiangsu 212013, China
| | - Xiaoqing Xu
- Nanjing Renpin ENT Hospital, Nanjing 210000, Jiangsu, China
| | - Jiajia Song
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu university, Zhenjiang, Jiangsu 212013, China
| | - Yumeng Xu
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu university, Zhenjiang, Jiangsu 212013, China
| | - Hui Qian
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu university, Zhenjiang, Jiangsu 212013, China
| | - Jianhua Jin
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China.
| | - Zhao Feng Liang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu university, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
6
|
GÜZEL TANOĞLU E, ADIGÜZEL S, TANOĞLU A, AYDIN ZB, HOCAOĞLU G, EBİNÇ S. Long noncoding RNAs in pancreas cancer: from biomarkers to therapeutic targets. Turk J Med Sci 2023; 53:1552-1564. [PMID: 38813489 PMCID: PMC10760575 DOI: 10.55730/1300-0144.5724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 12/12/2023] [Accepted: 09/09/2023] [Indexed: 05/31/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) are noncoding RNA molecules with a heterogeneous structure consisting of 200 or more nucleotides. Because these noncoding RNAs are transcribed by RNA polymerase II, they have properties similar to messenger RNA (mRNA). Contrary to popular belief, the term "ncRNA" originated before the discovery of microRNAs. LncRNA genes are more numerous than protein-coding genes. They are the focus of current molecular research because of their pivotal roles in cancer-related processes such as cell proliferation, differentiation, and migration. The incidence of pancreatic cancer (PC) is increasing around the world and research on the molecular aspects of PC are growing. In this review, it is aimed to provide critical information about lncRNAs in PC, including the biological and oncological behaviors of lncRNAs in PC and their potential application in therapeutic strategies and as diagnostic tumor markers.
Collapse
Affiliation(s)
- Esra GÜZEL TANOĞLU
- Department of Molecular Biology and Genetics, Hamidiye Institute of Health Sciences, University of Health Sciences, İstanbul,
Turkiye
- Experimental Medicine Research and Application Center, University of Health Sciences, İstanbul,
Turkiye
| | - Seyfure ADIGÜZEL
- Department of Molecular Biology and Genetics, Hamidiye Institute of Health Sciences, University of Health Sciences, İstanbul,
Turkiye
- Experimental Medicine Research and Application Center, University of Health Sciences, İstanbul,
Turkiye
| | - Alpaslan TANOĞLU
- Department of Internal Medicine, Division of Gastroenterology, School of Medicine, Bahçeşehir University, İstanbul,
Turkiye
| | - Zehra Betül AYDIN
- Department of Molecular Biology and Genetics, Hamidiye Institute of Health Sciences, University of Health Sciences, İstanbul,
Turkiye
- Experimental Medicine Research and Application Center, University of Health Sciences, İstanbul,
Turkiye
| | - Gülizar HOCAOĞLU
- Department of Molecular Biology and Genetics, Hamidiye Institute of Health Sciences, University of Health Sciences, İstanbul,
Turkiye
- Experimental Medicine Research and Application Center, University of Health Sciences, İstanbul,
Turkiye
| | - Samet EBİNÇ
- Department of Molecular Biology and Genetics, Hamidiye Institute of Health Sciences, University of Health Sciences, İstanbul,
Turkiye
- Experimental Medicine Research and Application Center, University of Health Sciences, İstanbul,
Turkiye
| |
Collapse
|
7
|
Jiang XY, Zhu QC, Zhang XJ, Duan T, Feng J, Sui XB, Sun XN, Mou YP. Roles of lncRNAs in pancreatic ductal adenocarcinoma: Diagnosis, treatment, and the development of drug resistance. Hepatobiliary Pancreat Dis Int 2023; 22:128-139. [PMID: 36543619 DOI: 10.1016/j.hbpd.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 12/07/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers, primarily due to its late diagnosis, high propensity to metastasis, and the development of resistance to chemo-/radiotherapy. Accumulating evidence suggests that long non-coding RNAs (lncRNAs) are intimately involved in the treatment resistance of pancreatic cancer cells via interacting with critical signaling pathways and may serve as potential diagnostic/prognostic markers or therapeutic targets in PDAC. DATA SOURCES We carried out a systematic review on lncRNAs-based research in the context of pancreatic cancer and presented an overview of the updated information regarding the molecular mechanisms underlying lncRNAs-modulated pancreatic cancer progression and drug resistance, together with their potential value in diagnosis, prognosis, and treatment of PDAC. Literature mining was performed in PubMed with the following keywords: long non-coding RNA, pancreatic ductal adenocarcinoma, pancreatic cancer up to January 2022. Publications relevant to the roles of lncRNAs in diagnosis, prognosis, drug resistance, and therapy of PDAC were collected and systematically reviewed. RESULTS LncRNAs, such as HOTAIR, HOTTIP, and PVT1, play essential roles in regulating pancreatic cancer cell proliferation, invasion, migration, and drug resistance, thus may serve as potential diagnostic/prognostic markers or therapeutic targets in PDAC. They participate in tumorigenesis mainly by targeting miRNAs, interacting with signaling molecules, and involving in the epithelial-mesenchymal transition process. CONCLUSIONS The functional lncRNAs play essential roles in pancreatic cancer cell proliferation, invasion, migration, and drug resistance and have potential values in diagnosis, prognostic prediction, and treatment of PDAC.
Collapse
Affiliation(s)
- Xiao-Yin Jiang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China; Department of Gastrointestinal and Pancreatic Surgery, Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310014, China; School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Qi-Cong Zhu
- Department of Gastrointestinal and Pancreatic Surgery, Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Xiao-Jian Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ting Duan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiao Feng
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Xin-Bing Sui
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Xue-Ni Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Yi-Ping Mou
- Department of Gastrointestinal and Pancreatic Surgery, Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.
| |
Collapse
|
8
|
Cui W, Wang Y, Guo J, Zhang Z. Construction of a cuproptosis-associated long non-coding RNA risk prediction model for pancreatic adenocarcinoma based on the TCGA database. Medicine (Baltimore) 2023; 102:e32808. [PMID: 36749249 PMCID: PMC9901963 DOI: 10.1097/md.0000000000032808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cuproptosis is a recently identified controlled process of cell death that functions in tumor development and treatment. Long non-coding RNAs (lncRNAs) are RNA molecules longer than 200 nucleotides that bind to transcription factors and regulate tumor invasion, penetration, metastasis, and prognosis. However, there are limited data on the function of cuproptosis-associated lncRNAs in pancreatic adenocarcinoma. Utilizing data retrieved from the cancer genome atlas database, we devised a risk prediction model of cuproptosis-associated lncRNAs in pancreatic adenocarcinoma, determined their prognostic significance and relationship with tumor immunity, and screened potential therapeutic drugs. Overall, 178 patients were randomized to a training or test group. We then obtained 6 characteristic cuproptosis-associated lncRNAs from the training group, based on which we constructed the risk prediction model, calculated the risk score, and verified the test group results. Subsequently, we performed differential gene analysis, tumor immunoassays, functional enrichment analysis, and potential drug screening. Finally, we found that the prediction model was highly reliable for the prognostic assessment of pancreatic adenocarcinoma patients. Generally, low risk patients had better outcomes than high risk patients. A tumor immunoassay showed that immunotherapy may benefit high risk patients more as there is a greater likelihood that the tumors could escape the immune system in low-risk patients. Through drug screening, we identified ten drugs that may have therapeutic effects on patients with pancreatic adenocarcinoma. In conclusion, this study constructed a risk prediction model of cuproptosis-associated lncRNAs, which can reliably predict the prognosis of pancreatic adenocarcinoma patients, provided a clinical reference for determining treatment approach, and provided some insights into the associations between lncRNAs and cuproptosis. This provides useful insight to aid in the development of therapeutic drugs for pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Wenguang Cui
- Hebei North University, Zhangjiakou, Hebei Province, China
- * Correspondence: Wenguang Cui, Hebei North University, No.11, South Diamond Road, Zhangjiakou, Hebei Province 075000, China (e-mail: )
| | - Yaling Wang
- The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
| | - Jianhong Guo
- Hebei North University, Zhangjiakou, Hebei Province, China
| | - Zepeng Zhang
- Hebei North University, Zhangjiakou, Hebei Province, China
| |
Collapse
|
9
|
LncRNA H19 Promotes Lung Adenocarcinoma Progression via Binding to Mutant p53 R175H. Cancers (Basel) 2022; 14:cancers14184486. [PMID: 36139647 PMCID: PMC9496924 DOI: 10.3390/cancers14184486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary This research explored the association and interaction between lncRNA H19 and mutant p53 (R175H) in lung adenocarcinoma development and progression. H19 over-expression may induce the elevated expression of mtp53 and interact with mtp53, which prolongs the p53 half-life and promotes transcriptional activity, leading to the progression of lung adenocarcinoma. The simultaneous inhibition of H19 and mtp53 may provide a novel strategy. Abstract Background: Accumulating data suggest that long non-coding RNA (lncRNA) H19 and p53are closely related to the prognosis of lung cancer. This study aims to analyze the association and interaction betweenH19 and mutant p53 R175H in lung adenocarcinoma (LAC). Methods: Mutant-type (Mt) p53 R175H was assessed by using RT-PCR in LAC cells and 100 cases of LAC tissue samples for association with H19 expression. Western blot, RNA-pull down, immunoprecipitation-Western blot and animal experiments were used to evaluate the interaction between H19 and mtp53. Results: Mtp53 R175H and H19 were over-expressed in LAC tissues and cells, while H19 over-expression extended the p53 half-life and enhanced transcriptional activity. Combined with anti-p53, ShH19 can significantly inhibit tumor growth in vivo. Conclusions: H19 over-expression may induce the elevated expression of mtp53 and interact with mtp53, leading to LAC progression. In addition, the high expression of mtp53 R175H is associated with poor overall survival inpatients. The simultaneous inhibition of H19 and mtp53 may provide a novel strategy for the effective control of LAC clinically.
Collapse
|
10
|
LncRNA GAS5 Suppresses Colorectal Cancer Progress by Target miR-21/LIFR Axis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3298939. [PMID: 36062165 PMCID: PMC9433273 DOI: 10.1155/2022/3298939] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
GAS5 is abnormally high in colorectal cancer tissues, which is a specific expression of lncRNA in colorectal cancer (CRC). Nevertheless, its biological function in CRC has not been elucidated. The abnormal high expression of GAS5 in CRC is the specific expression of lncRNA in CRC. The purpose of our study is to explore the effect of GAS5 on CRC and its mechanism. The expression of GAS5 in 53 paired normal and colorectal cancer tissues and colorectal cancer cell lines was detected by real-time PCR. The biological effects of GAS5, miR-21, and LIFR were measured by functional assays, including wound healing, transwell assays, and in vivo assays. We ensured the carcinogenesis role of GAS5 in CRC in the xenograft nude model. The dual-luciferase reporter assay system and chromatin immunoprecipitation method were used for target evaluation and Western blot for verification. GAS5 was significantly decreased in tumor tissues and CRC cells, and the low expression of CAS5 in CRC promoted tumor metastasis and decreased the survival of patients. GAS5 knockdown increases the cell viability, inhibits apoptosis, and promotes migration. Xenografted tumors in nude mice studies showed that GAS5 knockdown promoted tumor growth and caused worse lesions in colorectal. Furthermore, GAS5 increases the expression level of target gene LIFR to promote the apoptosis of CRC cells by binding to miR-21. Our study revealed that a novel pathway about lncRNA GAS5 inhibited the proliferation and metastasis of CRC cells by targeting miR-21/LIFR which provides a new strategy to treat CRC.
Collapse
|
11
|
Xie W, Chu M, Song G, Zuo Z, Han Z, Chen C, Li Y, Wang ZW. Emerging roles of long noncoding RNAs in chemoresistance of pancreatic cancer. Semin Cancer Biol 2022; 83:303-318. [PMID: 33207266 DOI: 10.1016/j.semcancer.2020.11.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer is one of the most common causes of cancer death in the world due to the lack of early symptoms, metastasis occurrence and chemoresistance. Therefore, early diagnosis by detection of biomarkers, blockade of metastasis, and overcoming chemoresistance are the effective strategies to improve the survival of pancreatic cancer patients. Accumulating evidence has revealed that long noncoding RNA (lncRNA) and circular RNAs (circRNAs) play essential roles in modulating chemosensitivity in pancreatic cancer. In this review article, we will summarize the role of lncRNAs in drug resistance of pancreatic cancer cells, including HOTTIP, HOTAIR, PVT1, linc-ROR, GAS5, UCA1, DYNC2H1-4, MEG3, TUG1, HOST2, HCP5, SLC7A11-AS1 and CASC2. We also highlight the function of circRNAs, such as circHIPK3 and circ_0000284, in regulation of drug sensitivity of pancreatic cancer cells. Moreover, we describe a number of compounds, including curcumin, genistein, resveratrol, quercetin, and salinomycin, which may modulate the expression of lncRNAs and enhance chemosensitivity in pancreatic cancers. Therefore, targeting specific lncRNAs and cicrRNAs could contribute to reverse chemoresistance of pancreatic cancer cells. We hope this review might stimulate the studies of lncRNAs and cicrRNAs, and develop the new therapeutic strategy via modulating these noncoding RNAs to promote chemosensitivity of pancreatic cancer cells.
Collapse
Affiliation(s)
- Wangkai Xie
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Man Chu
- Center of Scientific Research, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Gendi Song
- Center of Scientific Research, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Ziyi Zuo
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Zheng Han
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Chenbin Chen
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yuyun Li
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China.
| | - Zhi-Wei Wang
- Center of Scientific Research, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
12
|
Long Non-Coding RNAs in Pancreatic Cancer: Biologic Functions, Mechanisms, and Clinical Significance. Cancers (Basel) 2022; 14:cancers14092115. [PMID: 35565245 PMCID: PMC9100048 DOI: 10.3390/cancers14092115] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
Despite tremendous efforts devoted to research in pancreatic cancer (PC), the mechanism underlying the tumorigenesis and progression of PC is still not completely clear. Additionally, ideal biomarkers and satisfactory therapeutic strategies for clinical application in PC are still lacking. Accumulating evidence suggests that long non-coding RNAs (lncRNAs) might participate in the pathogenesis of diverse cancers, including PC. The abnormal expression of lncRNAs in PC is considered a vital factor during tumorigenesis that affects tumor cell proliferation, migration, invasion, apoptosis, angiogenesis, and drug resistance. With this review of relevant articles published in recent years, we aimed to summarize the biogenesis mechanism, classifications, and modes of action of lncRNAs and to review the functions and mechanisms of lncRNAs in PC. Additionally, the clinical significance of lncRNAs in PC was discussed. Finally, we pointed out the questions remaining from recent studies and anticipated that further investigations would address these gaps in knowledge in this field.
Collapse
|
13
|
Wang BQ, Wang JL, Zhang BQ, Li TT, Wang C, Sun GB. Role of long non-coding RNAs in development and progression of pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2022; 30:274-279. [DOI: 10.11569/wcjd.v30.i6.274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a kind of digestive tract malignant tumor that has high malignancy and is difficult to diagnose and treat. Recent studies have proved that long non-coding RNAs (lncRNAs) can mediate tumor genesis, proliferation, migration, and metastasis by regulating epigenetic modification, alternative splicing, transcription, and protein translation. LncRNAs play an important role in the occurrence and development of pancreatic cancer. In this review, we review the role of lncRNAs in pancreatic cancer to provide possible diagnostic and therapeutic targets for the treatment of this malignancy.
Collapse
Affiliation(s)
- Bai-Qing Wang
- Department of Gastroenterology, The Fifth Central Hospital of Tianjin, Tianjin 300450, China
| | - Jue-Lei Wang
- Department of Gastroenterology, The Fifth Central Hospital of Tianjin, Tianjin 300450, China
| | - Bao-Qin Zhang
- Department of Gastroenterology, The Fifth Central Hospital of Tianjin, Tianjin 300450, China
| | - Tian-Tian Li
- Department of Gastroenterology, The Fifth Central Hospital of Tianjin, Tianjin 300450, China
| | - Chao Wang
- Department of Gastroenterology, The Fifth Central Hospital of Tianjin, Tianjin 300450, China
| | - Guang-Bin Sun
- Department of Gastroenterology, The Fifth Central Hospital of Tianjin, Tianjin 300450, China
| |
Collapse
|
14
|
Wang JP, Li C, Ding WC, Peng G, Xiao GL, Chen R, Cheng Q. Research Progress on the Inflammatory Effects of Long Non-coding RNA in Traumatic Brain Injury. Front Mol Neurosci 2022; 15:835012. [PMID: 35359568 PMCID: PMC8961287 DOI: 10.3389/fnmol.2022.835012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/08/2022] [Indexed: 11/29/2022] Open
Abstract
Globally, traumatic brain injury (TBI) is an acute clinical event and an important cause of death and long-term disability. However, the underlying mechanism of the pathophysiological has not been fully elucidated and the lack of effective treatment a huge burden to individuals, families, and society. Several studies have shown that long non-coding RNAs (lncRNAs) might play a crucial role in TBI; they are abundant in the central nervous system (CNS) and participate in a variety of pathophysiological processes, including oxidative stress, inflammation, apoptosis, blood-brain barrier protection, angiogenesis, and neurogenesis. Some lncRNAs modulate multiple therapeutic targets after TBI, including inflammation, thus, these lncRNAs have tremendous therapeutic potential for TBI, as they are promising biomarkers for TBI diagnosis, treatment, and prognosis prediction. This review discusses the differential expression of different lncRNAs in brain tissue during TBI, which is likely related to the physiological and pathological processes involved in TBI. These findings may provide new targets for further scientific research on the molecular mechanisms of TBI and potential therapeutic interventions.
Collapse
Affiliation(s)
- Jian-peng Wang
- Department of Neurosurgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Chong Li
- Department of Neurosurgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Wen-cong Ding
- Department of Neurosurgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Gang Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ge-lei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Rui Chen
- Department of Neurosurgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Rui Chen,
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Quan Cheng,
| |
Collapse
|
15
|
Dehghanian F, Azhir Z, Khalilian S, Grüning B. Non-coding RNAs underlying the pathophysiological links between type 2 diabetes and pancreatic cancer: A systematic review. J Diabetes Investig 2022; 13:405-428. [PMID: 34859606 PMCID: PMC8902405 DOI: 10.1111/jdi.13727] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/11/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022] Open
Abstract
Type 2 diabetes is known as a risk factor for pancreatic cancer (PC). Various genetic and environmental factors cause both these global chronic diseases. The mechanisms that define their relationships are complex and poorly understood. Recent studies have implicated that metabolic abnormalities, including hyperglycemia and hyperinsulinemia, could lead to cell damage responses, cell transformation, and increased cancer risk. Hence, these kinds of abnormalities following molecular events could be essential to develop our understanding of this complicated link. Among different molecular events, focusing on shared signaling pathways including metabolic (PI3K/Akt/mTOR) and mitogenic (MAPK) pathways in addition to regulatory mechanisms of gene expression such as those involved in non-coding RNAs (miRNAs, circRNAs, and lncRNAs) could be considered as powerful tools to describe this association. A better understanding of the molecular mechanisms involved in the development of type 2 diabetes and pancreatic cancer would help us to find a new research area for developing therapeutic and preventive strategies. For this purpose, in this review, we focused on the shared molecular events resulting in type 2 diabetes and pancreatic cancer. First, a comprehensive literature review was performed to determine similar molecular pathways and non-coding RNAs; then, the final results were discussed in more detail.
Collapse
Affiliation(s)
- Fariba Dehghanian
- Department of Cell and Molecular Biology and MicrobiologyFaculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Zahra Azhir
- Department of Cell and Molecular Biology and MicrobiologyFaculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Sheyda Khalilian
- Department of Cell and Molecular Biology and MicrobiologyFaculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Björn Grüning
- Department of Computer ScienceBioinformatics GroupUniversity of FreiburgFreiburgGermany
| |
Collapse
|
16
|
Yousuf M, Shamsi A, Anjum F, Shafie A, Islam A, Haque QMR, Elasbali AM, Yadav DK, Hassan MI. Effect of pH on the structure and function of cyclin-dependent kinase 6. PLoS One 2022; 17:e0263693. [PMID: 35148332 PMCID: PMC8836317 DOI: 10.1371/journal.pone.0263693] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/25/2022] [Indexed: 12/15/2022] Open
Abstract
Cyclin-dependent kinase 6 (CDK6) is an important protein kinase that regulates cell growth, development, cell metabolism, inflammation, and apoptosis. Its overexpression is associated with reprogramming glucose metabolism through alternative pathways and apoptosis, which ultimately plays a significant role in cancer development. In the present study, we have investigated the structural and conformational changes in CDK6 at varying pH employing a multi-spectroscopic approach. Circular dichroism (CD) spectroscopy revealed at extremely acidic conditions (pH 2.0–4.0), the secondary structure of CDK6 got significantly disrupted, leading to aggregates formation. These aggregates were further characterized by employing Thioflavin T (ThT) fluorescence. No significant secondary structural changes were observed over the alkaline pH range (pH 7.0–11.0). Further, fluorescence and UV spectroscopy revealed that the tertiary structure of CDK6 was disrupted under extremely acidic conditions, with slight alteration occurring in mild acidic conditions. The tertiary structure remains intact over the entire alkaline range. Additionally, enzyme assay provided an insight into the functional aspect of CDK at varying pH; CDK6 activity was optimal in the pH range of 7.0–8.0. This study will provide a platform that provides newer insights into the pH-dependent dynamics and functional behavior of CDK6 in different CDK6 directed diseased conditions, viz. different types of cancers where changes in pH contribute to cancer development.
Collapse
Affiliation(s)
- Mohd Yousuf
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | | | - Abdelbaset Mohamed Elasbali
- Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Sakaka, Saudi Arabia
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Incheon City, South Korea
- * E-mail: (DKY); (MIH)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- * E-mail: (DKY); (MIH)
| |
Collapse
|
17
|
Xiang X, Chen L, He J, Ma G, Li Y. LncRNA GAS5 rs145204276 Polymorphism Reduces Renal Cell Carcinoma Susceptibility in Southern Chinese Population. J Inflamm Res 2022; 15:1147-1158. [PMID: 35210817 PMCID: PMC8863339 DOI: 10.2147/jir.s348628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/04/2022] [Indexed: 12/30/2022] Open
Abstract
Objective Methods Results Conclusions
Collapse
Affiliation(s)
- Xiaoyao Xiang
- Department of Urology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Linfa Chen
- Department of NeUrology, Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, 516000, People’s Republic of China
| | - Jiawen He
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Guoda Ma
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Maternal and Children’s Health Research Institute, Shunde Maternal and Children’s Hospital, Guangdong Medical University, Shunde, 528300, People’s Republic of China
- Correspondence: Guoda Ma, Maternal and Children’s Health Research Institute, Shunde Maternal and Children’s Hospital, Guangdong Medical University, Shunde, 528300, People’s Republic of China, Email
| | - You Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- You Li, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China, Email
| |
Collapse
|
18
|
Growth arrest-specific 5 lncRNA as a valuable biomarker of chemoresistance in osteosarcoma. Anticancer Drugs 2022; 33:278-285. [PMID: 35045526 DOI: 10.1097/cad.0000000000001263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Osteosarcoma is the most common primary malignant bone tumour in children and teenagers, and it is characterised by drug resistance and high metastatic potential. Increasing studies have highlighted the critical roles of long noncoding RNAs (lncRNAs) as oncogenes or tumour suppressors as well as new biomarkers and therapeutic targets in osteosarcoma. The growth arrestspecific 5 (GAS5) lncRNA can function as a tumour suppressor in several cancers. The present study aimed to validate GAS5 and other chemoresistanceassociated lncRNAs as biomarkers in a cohort of primary osteosarcoma samples, to obtain predictive information on resistance or sensitivity to treatment. The GAS5 and a panel of lncRNAs related to chemoresistance [SNGH1, FOXD2-AS1, deleted in lymphocytic leukemia (DLEU2) and LINC00963] were evaluated in a cohort of osteosarcoma patients enrolled at the Careggi University Hospital. Total RNA was extracted from formalin-fixed paraffin-embedded (FFPE) tissue sections and the expression levels of the lncRNAs were quantified by qPCR. A bioinformatic analysis on deposited RNA-seq data was performed to validate the qPCR results. Clustering analysis shows that GAS5 could be linked to the expression of isoforms 02 and 04 of the lncRNA DLEU2, whereas the DLEU2 isoform 08 is linked to the lncRNA LINC00963. We found that GAS5 is significantly increased in patients with a good prognosis and is expressed differently between chemosensitive and chemoresistant osteosarcoma patients. However, the results obtained are not concordant with the in-silico analysis performed on the TARGET osteosarcoma dataset. In the future, we would enlarge the case series, including different disease settings.
Collapse
|
19
|
Ghahramani Almanghadim H, Ghorbian S, Khademi NS, Soleymani Sadrabadi M, Jarrahi E, Nourollahzadeh Z, Dastani M, Shirvaliloo M, Sheervalilou R, Sargazi S. New Insights into the Importance of Long Non-Coding RNAs in Lung Cancer: Future Clinical Approaches. DNA Cell Biol 2021; 40:1476-1494. [PMID: 34931869 DOI: 10.1089/dna.2021.0563] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In mammals, a large part of the gene expression products come from the non-coding ribonucleotide sequences of the protein. These short and long sequences are within the range of tens to hundreds of nucleotides, encompassing more than 200 RNA molecules, and their function is known as the molecular structure of long non-coding RNA (lncRNA). LncRNA molecules are unique nucleotides that have a substantial role in epigenetic regulation, transcription, and post-transcriptional modifications in different ways. According to the results of recent studies, lncRNAs have been shown to assume various roles, including tumor suppression or oncogenic functions in common types of cancer such as lung and breast cancer. These non-coding RNAs (ncRNAs) play a pivotal role in activating transcription factors, managing the ribonucleoproteins, the framework for collecting co-proteins, intermittent processing regulations, chromatin status alterations, and maintaining the control within the cell. Cutting-edge technologies have been introduced to disclose several types of lncRNAs within the nucleus and the cytoplasm, which have accomplished important achievements that are applicable in medicine. Due to these efforts, various data centers have been created to facilitate and modify scientific information related to these molecules, including detection, classification, biological evolution, gene status, spatial structure, status, and location of these small molecules. In the present study, we attempt to present the impacts of these ncRNAs on lung cancer with an emphasis on their mechanisms and functions.
Collapse
Affiliation(s)
| | - Saeed Ghorbian
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Nazanin Sadat Khademi
- Department of Genetics, Faculty of Biological Science, Shahid Beheshti University, Tehran, Iran
| | | | - Esmaeil Jarrahi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Nourollahzadeh
- Department of Biological Science, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Masomeh Dastani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
20
|
Morgan R, da Silveira WA, Kelly RC, Overton I, Allott EH, Hardiman G. Long non-coding RNAs and their potential impact on diagnosis, prognosis, and therapy in prostate cancer: racial, ethnic, and geographical considerations. Expert Rev Mol Diagn 2021; 21:1257-1271. [PMID: 34666586 DOI: 10.1080/14737159.2021.1996227] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Advances in high-throughput sequencing have greatly advanced our understanding of long non-coding RNAs (lncRNAs) in a relatively short period of time. This has expanded our knowledge of cancer, particularly how lncRNAs drive many important cancer phenotypes via their regulation of gene expression. AREAS COVERED Men of African descent are disproportionately affected by PC in terms of incidence, morbidity, and mortality. LncRNAs could serve as biomarkers to differentiate low-risk from high-risk diseases. Additionally, they may represent therapeutic targets for advanced and castrate-resistant cancer. We review current research surrounding lncRNAs and their association with PC. We discuss how lncRNAs can provide new insights and diagnostic biomarkers for African American men. Finally, we review advances in computational approaches that predict the regulatory effects of lncRNAs in cancer. EXPERT OPINION PC diagnostic biomarkers that offer high specificity and sensitivity are urgently needed. PC specific lncRNAs are compelling as diagnostic biomarkers owing to their high tissue and tumor specificity and presence in bodily fluids. Recent studies indicate that PCA3 clinical utility might be restricted to men of European descent. Further work is required to develop lncRNA biomarkers tailored for men of African descent.
Collapse
Affiliation(s)
- Rebecca Morgan
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Queen's University Belfast, Belfast, UK.,Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, UK
| | - Willian Abraham da Silveira
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Queen's University Belfast, Belfast, UK.,Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, UK
| | - Ryan Christopher Kelly
- Faculty of Medicine, Health and Life Sciences, Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Ian Overton
- Faculty of Medicine, Health and Life Sciences, Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Emma H Allott
- Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, UK.,Faculty of Medicine, Health and Life Sciences, Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.,Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Gary Hardiman
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Queen's University Belfast, Belfast, UK.,Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, UK.,Department of Medicine, Medical University of South Carolina (MUSC), Charleston, South Carolina
| |
Collapse
|
21
|
Song G, Dong H, Ma D, Wang H, Ren X, Qu Y, Wu H, Zhu J, Song W, Meng Y, Wang L, Liu T, Shen X, Zhao Y, Zhu C. Tetrahedral Framework Nucleic Acid Delivered RNA Therapeutics Significantly Attenuate Pancreatic Cancer Progression via Inhibition of CTR1-Dependent Copper Absorption. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46334-46342. [PMID: 34549583 DOI: 10.1021/acsami.1c13091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Copper is vital for various life processes, whereas severely toxic at excess level. Intracellular copper homeostasis is strictly controlled by a set of transporters and chaperones encoded by the copper homeostasis genes. Increasing evidence has shown that copper is usually overloaded in multiple malignancies, including pancreatic cancer, which has an extremely poor prognosis. Recently, silencing the SLC31A1 gene, which encodes a major transmembrane copper transporter (CTR1), has been demonstrated to be an effective means for reducing the malignant degree of pancreatic cancer by downregulating the cellular copper levels. Herein, we utilized tetrahedral framework nucleic acids (tFNAs) as vehicles to overcome the biological barriers for delivering small molecular RNAs and efficiently transferred two kinds of CTR1 mRNA-targeted RNA therapeutics, siCTR1 or miR-124, into PANC-1 cells. Both therapeutic tFNAs, termed t-siCTR1 and t-miR-124, prevented copper intake more effective than the free RNA therapeutics via efficiently suppressing the expression of CTR1, thereby significantly attenuating the progression of PANC-1 cells. In this study, therapeutic tFNAs are constructed to target metal ion transporters for the first time, which may provide an effective strategy for future treatment of other metal metabolism disorders.
Collapse
Affiliation(s)
- Guangqi Song
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Haisi Dong
- Clinical Medical College, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Danhui Ma
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Heming Wang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Xinran Ren
- Clinical Medical College, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
- School of Pharmaceutical Science, Jilin University, Changchun 130021, China
| | - Yishen Qu
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Hao Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Jimin Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Wu Song
- Clinical Medical College, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Ying Meng
- Clinical Medical College, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Li Wang
- Clinical Medical College, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Taotao Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Xizhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Yicheng Zhao
- Clinical Medical College, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Changfeng Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| |
Collapse
|
22
|
Zhao S, Liu P, Ruan Z, Li J, Zeng S, Zhong M, Tang L. Association between long non-coding RNA (lncRNA) GAS5 polymorphism rs145204276 and cancer risk. J Int Med Res 2021; 49:3000605211039798. [PMID: 34521242 PMCID: PMC8447101 DOI: 10.1177/03000605211039798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE The long non-coding RNA (lncRNA) growth arrest‑specific transcript 5 (GAS5) plays an important role in various tumors, and an increasing number of studies have explored the association of the GAS5 rs145204276 polymorphism with cancer risk with inconclusive results. METHODS PubMed, Medline, EMBASE, Cochrane databases, and Web of Science were searched, and nine studies involving 6107 cases and 7909 controls were deemed eligible. Odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were calculated to evaluate the relationship between rs145204276 and cancer risk in six genetic models. RESULTS The pooled results suggest that the variant allele del was not associated with overall cancer risk. However, the subgroup analysis showed that allele del was significantly associated with a 22% decreased risk of gastrointestinal cancer (OR = 0.78, 95% CI: 0.72-0.85). Both sensitivity analyses and trial sequential analyses (TSA) demonstrated that the subgroup results were reliable and robust. Moreover, False-Positive Report Probability (FPRP) analysis indicated that the results had true significant correlations. CONCLUSION These findings provide evidence that the GAS5 rs145204276 polymorphism is associated with the susceptibility to gastrointestinal cancer. Further studies with different ethnicities and larger sample sizes are warranted to confirm these results.
Collapse
Affiliation(s)
- Shushan Zhao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ping Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhe Ruan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianhuang Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meizuo Zhong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lanhua Tang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
23
|
SnoRNA in Cancer Progression, Metastasis and Immunotherapy Response. BIOLOGY 2021; 10:biology10080809. [PMID: 34440039 PMCID: PMC8389557 DOI: 10.3390/biology10080809] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
Simple Summary A much larger number of small nucleolar RNA (snoRNA) have been found encoded within our genomes than we ever expected to see. The activities of the snoRNAs were thought restricted to the nucleolus, where they were first discovered. Now, however, their significant number suggests that their functions are more diverse. Studies in cancers have shown snoRNA levels to associate with different stages of disease progression, including with metastasis. In addition, relationships between snoRNA levels and response to immunotherapies, have been reported. Emerging technologies now allow snoRNA to be targeted directly in cancers, and the therapeutic value of this is being explored. Abstract Small nucleolar RNA (snoRNA) were one of our earliest recognised classes of non-coding RNA, but were largely ignored by cancer investigators due to an assumption that their activities were confined to the nucleolus. However, as full genome sequences have become available, many new snoRNA genes have been identified, and multiple studies have shown their functions to be diverse. The consensus now is that many snoRNA are dysregulated in cancers, are differentially expressed between cancer types, stages and metastases, and they can actively modify disease progression. In addition, the regulation of the snoRNA class is dominated by the cancer-supporting mTOR signalling pathway, and they may have particular significance to immune cell function and anti-tumour immune responses. Given the recent advent of therapeutics that can target RNA molecules, snoRNA have robust potential as drug targets, either solely or in the context of immunotherapies.
Collapse
|
24
|
Non-Coding RNAs in Pancreatic Cancer Diagnostics and Therapy: Focus on lncRNAs, circRNAs, and piRNAs. Cancers (Basel) 2021; 13:cancers13164161. [PMID: 34439315 PMCID: PMC8392713 DOI: 10.3390/cancers13164161] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Pancreatic cancer is the seventh leading cause of cancer related death worldwide. In the United States, pancreatic cancer remains the fourth leading cause of cancer related death. The lack of early diagnosis and effective therapy contributes to the high mortality of pancreatic cancer. Therefore, there is an urgent need to find novel and effective biomarkers for the diagnosis and treatment of pancreatic cancer. Long noncoding RNA, circular RNAs and piwi-interacting RNA are non-coding RNAs and could become new biomarkers for the diagnosis, prognosis, and treatment of pancreatic cancer. We summarize the new findings on the roles of these non-coding RNAs in pancreatic cancer diagnosis, prognosis and targeted therapy. Abstract Pancreatic cancer is an aggressive malignance with high mortality. The lack of early diagnosis and effective therapy contributes to the high mortality of this deadly disease. For a long time being, the alterations in coding RNAs have been considered as major targets for diagnosis and treatment of pancreatic cancer. However, with the advances in high-throughput next generation of sequencing more alterations in non-coding RNAs (ncRNAs) have been discovered in different cancers. Further mechanistic studies have demonstrated that ncRNAs such as long noncoding RNAs (lncRNA), circular RNAs (circRNA) and piwi-interacting RNA (piRNA) play vital roles in the regulation of tumorigenesis, tumor progression and prognosis. In recent years, increasing studies have focused on the roles of ncRNAs in the development and progression of pancreatic cancer. Novel findings have demonstrated that lncRNA, circRNA, and piRNA are critically involved in the regulation of gene expression and cellular signal transduction in pancreatic cancer. In this review, we summarize the current knowledge of roles of lncRNA, circRNA, and piRNA in the diagnosis and prognosis of pancreatic cancer, and molecular mechanisms underlying the regulation of these ncRNAs and related signaling in pancreatic cancer therapy. The information provided here will help to find new strategies for better treatment of pancreatic cancer.
Collapse
|
25
|
Mortoglou M, Tabin ZK, Arisan ED, Kocher HM, Uysal-Onganer P. Non-coding RNAs in pancreatic ductal adenocarcinoma: New approaches for better diagnosis and therapy. Transl Oncol 2021; 14:101090. [PMID: 33831655 PMCID: PMC8042452 DOI: 10.1016/j.tranon.2021.101090] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/14/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies with a 5-year survival rate less than 8%, which has remained unchanged over the last 50 years. Early detection is particularly difficult due to the lack of disease-specific symptoms and a reliable biomarker. Multimodality treatment including chemotherapy, radiotherapy (used sparingly) and surgery has become the standard of care for patients with PDAC. Carbohydrate antigen 19-9 (CA 19-9) is the most common diagnostic biomarker; however, it is not specific enough especially for asymptomatic patients. Non-coding RNAs are often deregulated in human malignancies and shown to be involved in cancer-related mechanisms such as cell growth, differentiation, and cell death. Several micro, long non-coding and circular RNAs have been reported to date which are involved in PDAC. Aim of this review is to discuss the roles and functions of non-coding RNAs in diagnosis and treatments of PDAC.
Collapse
Affiliation(s)
- Maria Mortoglou
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - Zoey Kathleen Tabin
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - E Damla Arisan
- Institution of Biotechnology, Gebze Technical University, Gebze, Turkey.
| | - Hemant M Kocher
- Centre for Tumour Biology, Barts Cancer Institute-a CRUK Centre of Excellence, Queen Mary University London, London EC1M 6BQ, UK.
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| |
Collapse
|
26
|
Ahadi A. Functional roles of lncRNAs in the pathogenesis and progression of cancer. Genes Dis 2021; 8:424-437. [PMID: 34179307 PMCID: PMC8209321 DOI: 10.1016/j.gendis.2020.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/02/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) act as regulators of gene expression and pivotal transcriptional regulators in cancer cells via diverse mechanisms. lncRNAs involves a variety of pathological and biological activities, such as apoptosis, cell proliferation, metastasis, and invasion. By using microarray and RNA sequencing, it was identified that dysregulation of lncRNAs affects the tumorigenesis process. Taken together, these lncRNAs are putative biomarker and therapeutic target in human malignancies. In this review, I discuss the latest finding regarding the dysregulation of some important lncRNAs and their diverse mechanisms of these lncRNAs in the pathogenesis and progression of certain cancers; also, I summarize the possible roles of lncRNAs in clinical application for diagnosis and prognosis of cancer.
Collapse
Affiliation(s)
- Alireza Ahadi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 198396-3113, Iran
| |
Collapse
|
27
|
Melendez-Zajgla J, Maldonado V. The Role of lncRNAs in the Stem Phenotype of Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2021; 22:6374. [PMID: 34203589 PMCID: PMC8232220 DOI: 10.3390/ijms22126374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is one of the deadliest tumors. This neoplasia is characterized by an important cellular and phenotypic heterogeneity. In particular, it has been shown that at least two subtypes can be found: basal-like, which presents stem-like properties, and classical. Cancer stem cells have been isolated and characterized from these tumors, showing their dependance on general and tissue-specific stem transcription factors and signaling pathways. Nevertheless, little is known about their tissue microenvironment and cell non-autonomous regulators, such as long-non-coding RNAs. (lncRNAs). In this review, we summarize the current knowledge about the positive and negative effects of lncRNAs in the stemness phenotype of pancreatic ductal adenocarcinoma cancer (PDAC).
Collapse
Affiliation(s)
- Jorge Melendez-Zajgla
- Functional Genomics Laboratory, Instituto Nacional de Medicina Genomica, Periferico Sur 4809, Tlalpan, Mexico City 14610, Mexico;
| | - Vilma Maldonado
- Epigenomics Laboratory, Instituto Nacional de Medicina Genomica, Periferico Sur 4809, Tlalpan, Mexico City 14610, Mexico
| |
Collapse
|
28
|
Ramya Devi KT, Karthik D, Mahendran T, Jaganathan MK, Hemdev SP. Long noncoding RNAs: role and contribution in pancreatic cancer. Transcription 2021; 12:12-27. [PMID: 34036896 DOI: 10.1080/21541264.2021.1922071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Noncoding RNAs are proclaimed to be expressed in various cancer types and one such type is found to be pancreatic ductal adenocarcinoma (PDAC). The long noncoding RNAs (LncRNAs) affect the migration, invasion, and growth of tumor cells by playing important roles in the process of epigenesis, post-transcription, and transcriptional regulation along with the maintenance of apoptosis and cell cycle. It is quite subtle whether the alterations in lncRNAs would impact PDAC progression and development. This review throws a spotlight on the lncRNAs associated with tumor functions: MALAT-1, HOTAIR, HOXA13, H19, LINC01559, LINC00460, SNHG14, SNHG16, DLX6-AS1, MSC-AS1, ABHD11-AS1, DUXAP8, DANCR, XIST, DLEU2, etc. are upregulated lncRNAs whereas GAS5, HMlincRNA717, MIAT, LINC01111, lncRNA KCNK15-AS1, etc. are downregulated lncRNAs inhibiting the invasion and progression of PDAC. These data provided helps in the assessment of lncRNAs in the development, metastasis, and occurrence of PDAC and also play a vital role in the evolution of biomarkers and therapeutic agents for the treatment of PDAC.
Collapse
Affiliation(s)
- K T Ramya Devi
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Dharshene Karthik
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tamil Nadu, India.,Department of Industrial Biotechnology, Sri Venkateswara College of Engineering, Chennai, India
| | - TharunSelvam Mahendran
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - M K Jaganathan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Sanjana Prakash Hemdev
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
29
|
Nie HX, Zhang L, He T, Wang L, Wan BS, Wang XQ, Han F. lncRNA-XLOC_012370 Promotes the Development of Pancreatic Cancer and Inactivates the NF-κB Pathway Through miR-140-5p. Front Oncol 2021; 10:620550. [PMID: 33708618 PMCID: PMC7940521 DOI: 10.3389/fonc.2020.620550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/17/2020] [Indexed: 12/26/2022] Open
Abstract
Pancreatic cancer is a high incidence, high degree of malignancy, and high mortality in the digestive system tumor. The incidence of pancreatic cancer in China has increased nearly six folds in the past 20 years, ranking fifth in the mortality rate of malignant tumors, so it is particularly important to actively explore clinical indicators with better diagnostic significance for pancreatic cancer. LncRNA performs an essential regulatory function in the occurrence, development, and metastasis of many kinds of tumors, playing both a carcinogenic role and a tumor suppressor gene. Here, we demonstrated the function and mechanism of LncRNA-XLOC_012370 in the development of pancreatic cancer. In our research, the abnormal upregulation of XLOC_012370 was observed in pancreatic cancer patients’ tumor tissues. XLOC_012370 was related to tumor stage, lymph node metastasis, and overall survival. Silencing of XLOC_012370 prevented the proliferation, migration, and invasion via the NF-κB signal pathway. Further, miR-140-5p was identified as the target and downstream of XLOC_012370 and involved in pancreatic cancer progression. In vivo, knockdown of XLOC_012370 inhibited tumor growth via the NF-κB signal pathway. In conclusion, lncRNA-XLOC_012370 is closely related to some malignant clinicopathological features and prognosis of pancreatic cancer. Thus the miR-140-5p/NF-κB signal pathway might represent a promising treatment strategy to combat pancreatic cancer.
Collapse
Affiliation(s)
- Han-Xiao Nie
- Department of Hepatopancreatobiliary Surgery, Henan Tumor Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Ling Zhang
- Department of Hepatopancreatobiliary Surgery, Henan Tumor Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Tao He
- Department of Hepatopancreatobiliary Surgery, Henan Tumor Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Li Wang
- Department of Hepatopancreatobiliary Surgery, Henan Tumor Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Bai-Shun Wan
- Department of Hepatopancreatobiliary Surgery, Henan Tumor Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xiao-Qian Wang
- Department of Hepatopancreatobiliary Surgery, Henan Tumor Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Feng Han
- Department of Hepatopancreatobiliary Surgery, Henan Tumor Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
30
|
Turanli B, Yildirim E, Gulfidan G, Arga KY, Sinha R. Current State of "Omics" Biomarkers in Pancreatic Cancer. J Pers Med 2021; 11:127. [PMID: 33672926 PMCID: PMC7918884 DOI: 10.3390/jpm11020127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most fatal malignancies and the seventh leading cause of cancer-related deaths related to late diagnosis, poor survival rates, and high incidence of metastasis. Unfortunately, pancreatic cancer is predicted to become the third leading cause of cancer deaths in the future. Therefore, diagnosis at the early stages of pancreatic cancer for initial diagnosis or postoperative recurrence is a great challenge, as well as predicting prognosis precisely in the context of biomarker discovery. From the personalized medicine perspective, the lack of molecular biomarkers for patient selection confines tailored therapy options, including selecting drugs and their doses or even diet. Currently, there is no standardized pancreatic cancer screening strategy using molecular biomarkers, but CA19-9 is the most well known marker for the detection of pancreatic cancer. In contrast, recent innovations in high-throughput techniques have enabled the discovery of specific biomarkers of cancers using genomics, transcriptomics, proteomics, metabolomics, glycomics, and metagenomics. Panels combining CA19-9 with other novel biomarkers from different "omics" levels might represent an ideal strategy for the early detection of pancreatic cancer. The systems biology approach may shed a light on biomarker identification of pancreatic cancer by integrating multi-omics approaches. In this review, we provide background information on the current state of pancreatic cancer biomarkers from multi-omics stages. Furthermore, we conclude this review on how multi-omics data may reveal new biomarkers to be used for personalized medicine in the future.
Collapse
Affiliation(s)
- Beste Turanli
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (B.T.); (E.Y.); (G.G.)
| | - Esra Yildirim
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (B.T.); (E.Y.); (G.G.)
| | - Gizem Gulfidan
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (B.T.); (E.Y.); (G.G.)
| | - Kazim Yalcin Arga
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (B.T.); (E.Y.); (G.G.)
- Turkish Institute of Public Health and Chronic Diseases, 34718 Istanbul, Turkey
| | - Raghu Sinha
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
31
|
Luo Y, Guo J, Xu P, Gui R. Long Non-coding RNA GAS5 Maintains Insulin Secretion by Regulating Multiple miRNAs in INS-1 832/13 Cells. Front Mol Biosci 2020; 7:559267. [PMID: 33195407 PMCID: PMC7542228 DOI: 10.3389/fmolb.2020.559267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/28/2020] [Indexed: 12/25/2022] Open
Abstract
Type-2 diabetes mellitus (T2DM) is a complex disease characterized by reduced pancreatic islets β-cell mass and impaired insulin release from these cells. Non-coding RNAs, including microRNAs (miRNA) and long non-coding RNAs (lncRNAs), play a role in the progression of T2DM. Decreased serum lncRNA GAS5 levels were reported to be associated with T2DM. However, the role of GAS5 in regulating islet cell functions remain unknown. In this study, we found that the serum levels of GAS5 were significantly lower in patients with T2DM compared with healthy control subjects, and the low serum GAS5 levels were associated with high levels of HbAlc and fasting glucose in patients with T2DM. In addition, we found that serum GAS5 levels were negatively correlated with the serum levels of miR-29a-3p, miR-96-3p, and miR-208a-3p in patients with T2DM. Consequently, using INS-1 832/13 rat β-cell line, we found that overexpression of GAS5 by lentivirus infection increased glucose-stimulated insulin secretion and insulin content compared with negative control, whereas knockdown of GAS5 expression reduced both them. Moreover, GAS5 interacted with miR-29a-3p, miR-96-3p, and miR-208a-3p in INS-1 832/13 cells, as judged by pull-down assay and dual luciferase reporter assay. GAS5 overexpression caused the decrease in expression of miR-29a-3p, miR-96-3p, and miR-208a-3p in INS-1 832/13 cells and conversely caused the increase in expression of insulin receptor, insulin receptor substrate, and phosphoinositide-3-kinase regulatory subunit 1. Thus, these results reveal a novel mechanism whereby GAS5 is involved in maintaining insulin secretion and may represent a novel therapeutic target for T2DM.
Collapse
Affiliation(s)
- Yanwei Luo
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jie Guo
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, China
| | - Pingsheng Xu
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
32
|
Zhu H, Shan Y, Ge K, Lu J, Kong W, Jia C. LncRNA CYTOR promotes pancreatic cancer cell proliferation and migration by sponging miR-205-5p. Pancreatology 2020; 20:1139-1148. [PMID: 32732173 DOI: 10.1016/j.pan.2020.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS Studies have found that LncRNA CYTOR is an important regulator of cancer. However, the function of lncRNA CYTOR in pancreatic cancer (PC) is unclear. This study amid to explore the regulation of lncRNA CYTOR in PC. METHODS The expression of CYTOR and miR-205-5p in PC was detected by RT-qPCR. CCK-8 assay, colony formation assay and scratch test were conducted to detect the effects of CYTOR and miR-205-5p on proliferation and migration of PC cells. Target gene prediction and screening and luciferase reporter assays were used to verify downstream target genes of CYTOR and miR-205-5p. The expression of Cyclin-dependent protein kinase 6 (CDK6) was detected by Western blotting. The tumor growth in mice was detected by in vivo experiments in nude mice. RESULTS The expression of LncRNA CYTOR was significantly elevated in PC. Knockdown of CYTOR significantly inhibited cell proliferation and migration of PC cells. In vivo animal studies showed that CYTOR promoted tumor growth. MiR-205-5p was a direct target of CYTOR, and the expression levels of miR-205-5p were significantly reduced in PC cell lines. Furthermore, co-transfection of shCYTOR with miR-205-5p inhibitor partially abolished the effect of shCYTOR on cell proliferation and migration. In addition, CYTOR was negatively correlated with the expression of miR-205-5p. CDK6 was a direct target of miR-205-5p, and miR-205-5p mimic and sh CYTOR significantly reduced the expression levels of CDK6. CONCLUSION CYTOR can promote PC progression by modulating the miR-205-5p/CDK6 axis, which may be a potential therapeutic target for PC.
Collapse
Affiliation(s)
- Hanzhang Zhu
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, The Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, Zhejiang Province, 310006, China
| | - Yuqing Shan
- Department of Gastrointestinal Surgery, Hangzhou First People's Hospital, The Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, Zhejiang Province, 310006, China
| | - Ke Ge
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, The Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, Zhejiang Province, 310006, China
| | - Jun Lu
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, The Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, Zhejiang Province, 310006, China
| | - Wencheng Kong
- Department of Gastrointestinal Surgery, Hangzhou First People's Hospital, The Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, Zhejiang Province, 310006, China
| | - Changku Jia
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, The Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, Zhejiang Province, 310006, China.
| |
Collapse
|
33
|
Pandya G, Kirtonia A, Sethi G, Pandey AK, Garg M. The implication of long non-coding RNAs in the diagnosis, pathogenesis and drug resistance of pancreatic ductal adenocarcinoma and their possible therapeutic potential. Biochim Biophys Acta Rev Cancer 2020; 1874:188423. [PMID: 32871244 DOI: 10.1016/j.bbcan.2020.188423] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/25/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the lethal malignancies with the lowest median and overall survival rate among all human malignancies. The major problems with the PDAC are the late diagnosis, metastasis, and acquired resistance to chemotherapeutic agents in the clinic. Over the last decade, the long non-coding RNAs (lncRNAs) have been discovered and occupies a significantly large proportion of the human genome. Recent studies have proved that lncRNAs can play a crucial role in the majority of key cellular processes involved in the maintenance of cellular homeostasis by regulating various molecular mechanisms. The deregulation of lncRNAs has been associated with various chronic diseases including human malignancies. Several lncRNAs have tumor-specific expression making them an ideal and excellent target for designing the novel therapeutic strategies against human malignancies. We have discussed how lncRNA expression can be used for the diagnosis and prognosis of PDAC. The current review discusses the potential role and molecular mechanism of lncRNA in regulating the prominent hallmarks of cancer including abnormal growth, survival, metastasis, and drug-resistance in PDAC. Importantly, we also highlight the possible application of various therapeutic strategies including small interfering RNA, CRISPR-Cas9, antisense oligonucleotides, locked nucleic acid Gapmers, small molecules, aptamers, lncRNA promoter to target the lncRNA as a novel and viable options for treatment of PDAC.
Collapse
Affiliation(s)
- Gouri Pandya
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh 201313, India
| | - Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh 201313, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh 201313, India.
| |
Collapse
|
34
|
Qin Y, Sun W, Wang Z, Dong W, He L, Zhang T, Zhang H. Long Non-Coding Small Nucleolar RNA Host Genes (SNHGs) in Endocrine-Related Cancers. Onco Targets Ther 2020; 13:7699-7717. [PMID: 32848414 PMCID: PMC7417930 DOI: 10.2147/ott.s267140] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging regulators of a diverse range of biological processes through various mechanisms. Genome-wide association studies of tumor samples have identified several lncRNAs, which act as either oncogenes or tumor suppressors in various types of cancers. Small nucleolar RNAs (snoRNAs) are predominantly found in the nucleolus and function as guide RNAs for the processing of transcription. As the host genes of snoRNAs, lncRNA small nucleolar RNA host genes (SNHGs) have been shown to be abnormally expressed in multiple cancers and can participate in cell proliferation, tumor progression, metastasis, and chemoresistance. Here, we review the biological functions and emerging mechanisms of SNHGs involved in the development and progression of endocrine-related cancers including thyroid cancer, breast cancer, pancreatic cancer, ovarian cancer and prostate cancer.
Collapse
Affiliation(s)
- Yuan Qin
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, People's Republic of China
| | - Wei Sun
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, People's Republic of China
| | - Zhihong Wang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, People's Republic of China
| | - Wenwu Dong
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, People's Republic of China
| | - Liang He
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, People's Republic of China
| | - Ting Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, People's Republic of China
| | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, People's Republic of China
| |
Collapse
|
35
|
Yang X, Xie Z, Lei X, Gan R. Long non-coding RNA GAS5 in human cancer. Oncol Lett 2020; 20:2587-2594. [PMID: 32782576 PMCID: PMC7400976 DOI: 10.3892/ol.2020.11809] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/11/2020] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) constitute a group of >200-nucleotide ncRNA molecules. lncRNAs regulate several cell functions, such as proliferation, apoptosis, invasion and metastasis. Meanwhile, lncRNAs are abnormally expressed in human malignancies, where they suppress or promote tumor growth. The present study focused on growth arrest-specific transcript 5 (GAS5), a well-known lncRNA that acts as a tumor suppressor but is suppressed in multiple types of cancer, including mammary carcinoma, prostate cancer, colorectal cancer, gastric cancer, melanoma, esophageal squamous cell carcinoma, lung cancer, ovarian cancer, cervical cancer, gliomas, osteosarcoma, pancreatic cancer, bladder cancer, kidney cancer, papillary thyroid carcinoma, neuroblastoma, endometrial cancer and liver cancer. Notably, GAS5 is overexpressed in liver cancer, potentially functioning as an oncogene. In the present study, the diagnostic and therapeutic roles of GAS5 in different tumors were reviewed, with a summary of the potential clinical application of the lncRNA, which may help identify novel study directions for GAS5.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China.,Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhizhong Xie
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China.,Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoyong Lei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China.,Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Runliang Gan
- Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
36
|
Yu MC, Wu TH, Lee CW, Lee YS, Lian JH, Tsai CL, Hsieh SY, Tsai CN. Percentage genome change and chromosome 7q amplification predict sorafenib response in advanced hepatocellular carcinoma. Biomed J 2020; 44:S73-S83. [PMID: 35747997 PMCID: PMC9038951 DOI: 10.1016/j.bj.2020.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 12/24/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) may arise from genomic instability and has dismal outcome. Sorafenib is the first-line treatment for advanced stage HCC, but its therapeutic efficacy is less than 50%. Biomarkers for predicting the therapeutic efficacy of sorafenib administration to patients with advanced HCC are required. Here, we evaluated the role of chromosomal copy number aberrations (CNAs) in patients with advanced HCC who were treated with sorafenib along with their drug response. Methods The response to sorafenib treatment of twenty-three HCC patients who developed advanced recurrence after partial hepatectomy was analyzed using the modified Response Evaluation Criteria in Solid Tumors (mRECIST). Formalin fixed paraffin embedded (FFPE) tissue specimens obtained after tumor resection were analyzed using the Affymetrix OncoScan® FFPE assay. Results From the 23 patients analyzed in this study, 7 (30.4%) had complete/partial response to sorafenib (CR/PR), 7 (30.4%) had stable disease (SD), and 9 (39.1%) had progressive disease (PD). The mean genome-wide percentage of genome change acquisition via the OncoScan platform was 19.8% for patients with CR/PR/SD and 50.02% in the PD group (p = 0.055). Percentage of genome change above 33% was associated with adverse outcomes for sorafenib treatment in the time-to-progression analysis (p = 0.007) and overall survival (p = 0.096). Among these CNAs, amplification of chromosome 7q, containing the multidrug resistance gene ATP Binding Cassette Subfamily B Member 1 (ACBC1), significantly associated with poor overall survival (p = 0.004) and time-to-progression (p < 0.001). Conclusions Higher percentage genome change and amplification of chromosome 7q in advanced HCC is associated with sorafenib resistance.
Collapse
|
37
|
Knockdown of long non-coding RNA HOTAIR reverses cisplatin resistance of ovarian cancer cells through inhibiting miR-138-5p-regulated EZH2 and SIRT1. Biol Res 2020; 53:18. [PMID: 32349783 PMCID: PMC7191713 DOI: 10.1186/s40659-020-00286-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 04/17/2020] [Indexed: 02/08/2023] Open
Abstract
Background Cisplatin resistance (DDP-resistance) remains one of the major causes of poor prognosis in females with ovarian cancer. Long non-coding RNAs (lncRNAs) have been shown to participate in the regulation of cellular processes, including chemoresistance. The aim of this study was to explore the role of HOX transcript antisense RNA (HOTAIR) in DDP-resistant ovarian cancer cells. Methods DDP-resistant ovarian cancer cell lines (SKOV3/DDP and A2780/DDP) were established. Real-time PCR, western blot, dual-luciferase reporter assay, and flow cytometry were then used to evaluate the effect of HOTAIR/miR-138-5p axis on chemoresistance of DDP-resistant ovarian cancer cells to DDP. Results We found that HOTAIR was upregulated in DDP-resistant cells, while miR-138-5p was downregulated. Knockdown of HOTAIR increased the expression of miR-138-5p in DDP-resistant cells and miR-138-5p is directly bound to HOTAIR. Upregulation of miR-138-5p induced by HOTAIR siRNA or by its mimics enhanced the chemosensitivity of DDP-resistant cells and decreased the expression of EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit) and SIRT1 (sirtuin 1). Furthermore, the HOTAIR silencing-induced chemosensitivity of DDP-resistant cells was weakened by miR-138-5p inhibitor. Conclusions These data demonstrate that HOTAIR acts as a sponge of miR-138-5p to prevent its binding to EZH2 and SIRT1, thereby promoting DDP-resistance of ovarian cancer cells. Our work will shed light on the development of therapeutic strategies for ovarian cancer treatment.
Collapse
|
38
|
Jing Z, Gao L, Wang H, Chen J, Nie B, Hong Q. Long non-coding RNA GAS5 regulates human B lymphocytic leukaemia tumourigenesis and metastasis by sponging miR-222. Cancer Biomark 2020; 26:385-392. [PMID: 31594210 DOI: 10.3233/cbm-190246] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Accumulating evidence has shown that lncRNA GAS5 is a novel tumour-promoting RNA that contributes to tumour progression by sponging miRNAs. However, the detailed role of lncRNA GAS5 in B lymphocytic leukaemia is still unclear. A qRT-PCR assay was used to examine the levels of lncRNA GAS5 and miR-222 in leukomonocytes of patients with B lymphocytic leukaemia and in healthy donors. Raji cells were transfected with GAS5 overexpression or shRNA-GAS5 plasmids for 48h, and cell proliferation was assessed by the CCK-8 assay, while apoptosis and cell cycle progression were assessed using flow cytometry. The Transwell assay was applied to detect the invasion of Raji cells with GAS5 overexpression or knockdown. The dual luciferase reporter assay and regression curve were conducted to evaluate the binding interaction between lncRNA GAS5 and miR-222. The results showed that the expression of lncRNA GAS5 was decreased in B lymphocytic leukaemia patients compared with the healthy group, and the levels of lncRNA GAS5 in B lymphocytic leukaemia cell lines were significantly higher than those in the normal B cell line, whereas the levels of miR-222 were increased in B lymphocytic leukaemia patients compared with the healthy group. Moreover, cell culture experiments indicated that lncRNA GAS5 overexpression decreased B lymphocytic leukaemia cell proliferation, promoted B lymphocytic leukaemia cell apoptosis, arrested B lymphocytic leukaemia cells in the G1 phase of the cell cycle, and inhibited B lymphocytic leukaemia cell invasion. Finally, the luciferase reporter assay showed a direct target interaction between lncRNA GAS5 and miR-222. The regression analysis showed a negative correlation between the levels of lncRNA GAS5 and miR-222. Thus, our data suggested that lncRNA GAS5 could effectively sponge miR-222 to modulate human B lymphocytic leukaemia cell tumourigenesis and metastasis. This work advances our understanding of the clinical significance of lncRNA GAS5 from the perspective of lncRNA-miRNA regulation.
Collapse
Affiliation(s)
- Zhenhai Jing
- Department of Oncology, Hiser Medical Center of Qingdao (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Lei Gao
- Department of Oncology, Hiser Medical Center of Qingdao (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Hongzhou Wang
- Department of Oncology, Hiser Medical Center of Qingdao (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Jing Chen
- Department of Oncology, Hiser Medical Center of Qingdao (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Ben Nie
- Department of Oncology, Hiser Medical Center of Qingdao (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Qing Hong
- Department of Hematology, Hiser Medical Center of Qingdao (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| |
Collapse
|
39
|
Gong R, Jiang Y. Non-coding RNAs in Pancreatic Ductal Adenocarcinoma. Front Oncol 2020; 10:309. [PMID: 32257946 PMCID: PMC7089935 DOI: 10.3389/fonc.2020.00309] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are reported to be expressed in human cancers, including pancreatic ductal adenocarcinoma (PDAC). These ncRNAs affect the growth, migration and invasion of tumor cells by regulating cell cycle and apoptosis, as well as playing important roles in epigenetic processes, transcription and post-transcriptional regulation. It is still unclear whether alterations in ncRNAs influence PDAC development and progression. Because of this, analysis based on existing data on ncRNAs, which are crucial for modulating pancreatic tumorigenesis, will be important for future research on PDAC. Here, we summarize ncRNAs with tumor-promoting functions: HOTAIR, HOTTIP, MALAT1, lncRNA H19, lncRNA PVT1, circ-RNA ciRS-7, circ-0030235, circ-RNA_100782, circ-LDLRAD3, circ-0007534, circRHOT1, circZMYM2, circ-IARS, circ-RNA PDE8A, miR-21, miR-155, miR-221/222, miR-196b, miR-10a. While others including GAS5, MEG3, and lncRNA ENST00000480739, has_circ_0001649, miR-34a, miR-100, miR-217, miR-143 inhibit the proliferation and invasion of PDAC. Hence, we summarize the functions of ncRNAs in the occurrence, development and metastasis of PDAC, with the goal to provide guidance in the clinical diagnosis and treatment of PDAC.
Collapse
Affiliation(s)
- Ruining Gong
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yueping Jiang
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
40
|
Weng SL, Ng SC, Lee YC, Hsiao YH, Hsu CF, Yang SF, Wang PH. The relationships of genetic polymorphisms of the long noncoding RNA growth arrest-specific transcript 5 with uterine cervical cancer. Int J Med Sci 2020; 17:1187-1195. [PMID: 32547314 PMCID: PMC7294910 DOI: 10.7150/ijms.44583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/02/2020] [Indexed: 12/17/2022] Open
Abstract
The purposes of the investigation were to examine the implications of long noncoding RNA growth arrest-specific transcript 5 (GAS5) in progression and clinicopathological factors of uterine cervical cancer, and patient survival in Taiwan. Genotypic distributions of two GAS5 genetic variants rs145204276 and rs55829688 were detected in 208 patients including 111 patients with invasive cancer, 97 with precancerous lesions as well as 307 control women using real-time polymerase chain reaction. It explored that patients with cervical precancerous lesion had lower rate of AGGCA deletion (Del) in both alleles (Del/Del) of GAS5 rs145204276 as compared with control women. Patients with invasive cancer did not exhibit higher rate of Del/Del. Meanwhile, there were no different genotypic distributions in rs55829688 among patients with cervical invasive cancer and those with precancerous lesions as well as control women. Moreover, cervical cancer patients with Ins (insertion, AGGCA)/Del and Del/Del (-/-) in GAS5 rs55829688 tended to have poorer hazard ratio (HR) of 5 years survival. In addition, lymph node metastasis status exerted the most significantly predictive of 5 years survival rate. Conclusively, GAS5 polymorphism rs145204276 is probably applicable to predict 5 years survival HR of cervical cancer patients. However, the mechanism elucidating the methylation status and transcription function of rs145204276 in uterine cervical cancer needs to be delineated for its unique implication in uterine cervical cancer.
Collapse
Affiliation(s)
- Shun-Long Weng
- Department of Obstetrics and Gynaecology, Hsinchu Mackay Memorial Hospital, Hsinchu City, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.,Mackay Junior College of Medicine, Nursing and Management College, Taipei, Taiwan
| | - Soo-Cheen Ng
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yueh-Chun Lee
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Hsuan Hsiao
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan
| | - Chun-Fang Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Po-Hui Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
41
|
Takahashi K, Ota Y, Kogure T, Suzuki Y, Iwamoto H, Yamakita K, Kitano Y, Fujii S, Haneda M, Patel T, Ota T. Circulating extracellular vesicle-encapsulated HULC is a potential biomarker for human pancreatic cancer. Cancer Sci 2019; 111:98-111. [PMID: 31715081 PMCID: PMC6942436 DOI: 10.1111/cas.14232] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/13/2022] Open
Abstract
The role of long noncoding RNAs (lncRNAs) in the epithelial‐mesenchymal transition (EMT) in pancreatic ductal adenocarcinoma (PDAC) is unclear. Some lncRNAs can be transferred by extracellular vesicles (EVs) and have potential as biomarkers. Here, we identify an lncRNA that could serve as a biomarker for PDAC and show the functional roles of the lncRNA. Expression profiling of lncRNAs revealed that highly upregulated in liver cancer (HULC) was highly expressed, and induced, by transforming growth factor‐β in PDAC cells and their EVs. Knockdown of HULC decreased PDAC cell invasion and migration by inhibiting the EMT. Thus, HULC could be transferred by EVs, and promote EMT, invasion, and migration in recipient PDAC cells. To assess the roles of HULC, PDAC cell xenografts in nude mice were established. Knockdown of HULC in PDAC cells implanted in mice inhibited tumor growth. Moreover, microRNA‐133b suppressed PDAC cell invasion and migration by inhibiting the EMT through targeting HULC. Furthermore, serum samples were obtained from 20 PDAC and 22 intraductal papillary mucinous neoplasm (IPMN) patients, as well as 21 healthy individuals. Analysis of serum EV HULC expression by digital PCR showed that HULC expression was significantly increased in PDAC patients compared to healthy individuals or IPMN patients. Additionally, HULC showed good predictive performance for discriminating PDAC, suggesting that the analysis of EV‐encapsulated HULC would contribute to the diagnosis for human PDAC. Extracellular vesicle‐transported HULC promotes cell invasion and migration by inducing the EMT, and microRNA‐133b suppresses the EMT by targeting HULC. Extracellular vesicle‐encapsulated HULC could be a potential circulating biomarker for human PDAC.
Collapse
Affiliation(s)
- Kenji Takahashi
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yu Ota
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Takayuki Kogure
- Division of Gastroenterology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yuko Suzuki
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Hidetaka Iwamoto
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Keisuke Yamakita
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yohei Kitano
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Satoshi Fujii
- Department of Laboratory Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Masakazu Haneda
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Tushar Patel
- Departments of Internal Medicine, Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Tsuguhito Ota
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
42
|
Sharma NS, Gnamlin P, Durden B, Gupta VK, Kesh K, Garrido VT, Dudeja V, Saluja A, Banerjee S. Long non-coding RNA GAS5 acts as proliferation "brakes" in CD133+ cells responsible for tumor recurrence. Oncogenesis 2019; 8:68. [PMID: 31740660 PMCID: PMC6861230 DOI: 10.1038/s41389-019-0177-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
Presence of quiescent, therapy evasive population often described as cancer stem cells (CSC) or tumor initiating cells (TIC) is often attributed to extreme metastasis and tumor recurrence. This population is typically enriched in a tumor as a result of microenvironment or chemotherapy induced stress. The TIC population adapts to this stress by turning on cell cycle arrest programs that is a “fail-safe” mechanism to prevent expansion of malignant cells to prevent further injury. Upon removal of the “stress” conditions, these cells restart their cell cycle and regain their proliferative nature thereby resulting in tumor relapse. Growth Arrest Specific 5 (GAS5) is a long-non-coding RNA that plays a vital role in this process. In pancreatic cancer, CD133+ population is a typical representation of the TIC population that is responsible for tumor relapse. In this study, we show for the first time that emergence of CD133+ population coincides with upregulation of GAS5, that reprograms the cell cycle to slow proliferation by inhibiting GR mediated cell cycle control. The CD133+ population further routed metabolites like glucose to shunt pathways like pentose phosphate pathway, that were predominantly biosynthetic in spite of being quiescent in nature but did not use it immediately for nucleic acid synthesis. Upon inhibiting GAS5, these cells were released from their growth arrest and restarted the nucleic acid synthesis and proliferation. Our study thus showed that GAS5 acts as a molecular switch for regulating quiescence and growth arrest in CD133+ population, that is responsible for aggressive biology of pancreatic tumors.
Collapse
Affiliation(s)
- Nikita S Sharma
- Department of Surgery, Miller school of Medicine, University of Miami, Miami, FL, USA
| | - Prisca Gnamlin
- Department of Surgery, Miller school of Medicine, University of Miami, Miami, FL, USA
| | - Brittany Durden
- Department of Surgery, Miller school of Medicine, University of Miami, Miami, FL, USA
| | - Vineet K Gupta
- Department of Surgery, Miller school of Medicine, University of Miami, Miami, FL, USA
| | - Kousik Kesh
- Department of Surgery, Miller school of Medicine, University of Miami, Miami, FL, USA
| | - Vanessa T Garrido
- Department of Surgery, Miller school of Medicine, University of Miami, Miami, FL, USA
| | - Vikas Dudeja
- Department of Surgery, Miller school of Medicine, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Ashok Saluja
- Department of Surgery, Miller school of Medicine, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Sulagna Banerjee
- Department of Surgery, Miller school of Medicine, University of Miami, Miami, FL, USA. .,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA.
| |
Collapse
|
43
|
Yu Y, Hann SS. Novel Tumor Suppressor lncRNA Growth Arrest-Specific 5 (GAS5) In Human Cancer. Onco Targets Ther 2019; 12:8421-8436. [PMID: 31632088 PMCID: PMC6794681 DOI: 10.2147/ott.s221305] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play crucial regulatory roles in fundamental biological processes, and deregulations of lncRNAs have been linked to numerous human diseases, especially cancers. Of particular interest in this regard is lncRNA GAS5, which is mainly identified as a tumor suppressor in several cancers. GAS5 was significantly low expressed in multiple cancers and was associated with clinic-pathological characteristics and patient survival, indicating a novel potential diagnostic and prognostic biomarker, and a therapeutic target for cancer. Functionally, GAS5 is involved in cell proliferation, metastasis, invasion, apoptosis, epithelial-mesenchymal transition (EMT), and drug resistance, among others, via multiple molecular mechanisms, such as binding to DNA sequences, forming RNA-DNA triplex complex, triggering or suppressing the expression of genes, binding proteins to form chromatin-modifying complex, which activates or represses gene expression, and acting as miRNA sponge to suppress miRNA expression, leading to regulation of miRNA target genes. This review provides an overview of the current state of knowledge and role of GAS5 in clinical relevance, biological functions and molecular mechanisms underlying the dysregulation of expression and function of GAS5 in cancer. Finally, the potential prospective role as diagnostic and prognostic biomarker and therapeutic target in cancer is discussed.
Collapse
Affiliation(s)
- Yaya Yu
- Laboratory of Tumor Biology, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, People's Republic of China
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, People's Republic of China
| |
Collapse
|
44
|
Li J, Li L, Yuan H, Huang XW, Xiang T, Dai S. Up-regulated lncRNA GAS5 promotes chemosensitivity and apoptosis of triple-negative breast cancer cells. Cell Cycle 2019; 18:1965-1975. [PMID: 31282278 DOI: 10.1080/15384101.2019.1635870] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Up to accomplishment of this study, the role of long non-coding RNAs (lncRNAs) in breast cancer has been investigated in several researches. Nevertheless, its association with the chemosensitivity of cancer was little known. Therefore, this study is focused on lncRNA GAS5 and its influence in the chemosensitivity of triple-negative breast cancer (TNBC). Expression of GAS5 in TNBC tissues and cells was detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and its methylation was evaluated using methylation-specific polymerase chain reaction (MSP). Moreover, in order to define the contributory role of GAS5 in TNBC, GAS5 expression, proliferation, and apoptosis of TNBC cells were detected by a series of experiment. Finally, the effects of GAS5 in vivo were investigated by measuring tumor formation in nude mice. GAS5 was poorly expressed in TNBC tissues and cells, which could regulate the progression of TNBC. The methylation of CpG island in the promoter region of GAS5 in MDA-MB-231 and MDA-MB-468 cells was decreased, while GAS5 expression in cells was increased. Overexpressed GAS5 reduced the inhibitory concentration (IC50) value and the cell proliferation of TNBC, and promoted their apoptosis, so as to delay the progression of TNBC. Our study provides evidence that up-regulated GAS5 suppressed the progression of TNBC and promoted chemosensitivity and apoptosis of TNBC cells. Thus, GAS5 may be a potential candidate for the treatment of TNBC.
Collapse
Affiliation(s)
- Juntao Li
- a Departmnet of Breast and Thyroid Surgery, People's Hospital of Ganzhou City , Ganzhou , Jiangxi Province , PR. China
| | - Lin Li
- b Departmnet of Pharmacy Intravenous Admixture Services, People's Hospital of Ganzhou City , Ganzhou , Jiangxi Province , PR. China
| | - Huozhong Yuan
- a Departmnet of Breast and Thyroid Surgery, People's Hospital of Ganzhou City , Ganzhou , Jiangxi Province , PR. China
| | - Xing-Wei Huang
- a Departmnet of Breast and Thyroid Surgery, People's Hospital of Ganzhou City , Ganzhou , Jiangxi Province , PR. China
| | - Tianxin Xiang
- c Department of Infectious Diseases, The First Affiliated Hospital of Nanchang Universicty , Nanchang , Jiangxi Province , PR. China
| | - Sujuan Dai
- d Departmnet of Pathology, People's Hospital of Ganzhou City , Ganzhou , Jiangxi Province , PR. China
| |
Collapse
|
45
|
Dong S, Zhang X, Liu D. Overexpression of long noncoding RNA GAS5 suppresses tumorigenesis and development of gastric cancer by sponging miR-106a-5p through the Akt/mTOR pathway. Biol Open 2019; 8:bio.041343. [PMID: 31182630 PMCID: PMC6602335 DOI: 10.1242/bio.041343] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have emerged as important regulators of human cancers. LncRNA GAS5 (GAS5) is identified as a tumor suppressor involved in several cancers. However, the roles of GAS5 and the mechanisms responsible for its functions in gastric cancer (GC) have not been well documented. Herein, the decreased GAS5 and increased miRNA-106a-5p levels were observed in GC and cell lines. GAS5 level was significantly inversely correlated with miRNA-106a-5p level in GC tissues. Moreover, dual-luciferase reporter and qRT-PCR assays showed that GAS5 bound to miRNA-106a-5p and negatively regulated its expression in GC cells. Functional experiments showed that GAS5 overexpression suppressed GC cell proliferation, migration and invasion capabilities, and promoted apoptosis, while miRNA-106a-5p overexpression inverted the functional effects induced by GAS5 overexpression. In vivo, GAS5 overexpression inhibited tumor growth by negatively regulating miRNA-106a-5p expression. Mechanistic investigations revealed that GAS5 overexpression inactivated the Akt/mTOR pathway by suppressing miRNA-106a-5p expression in vitro and in vivo. Taken together, our findings conclude the GAS5 overexpression suppresses tumorigenesis and development of gastric cancer by sponging miR-106a-5p through the Akt/mTOR pathway. Summary: GAS5, a tumor suppressor, was confirmed to suppress tumorigenesis and development of gastric cancer by sponging miR-106a-5p through the Akt/mTOR pathway, which provides a novel regulatory axis of GC progression.
Collapse
Affiliation(s)
- Shuaijun Dong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, People's Republic of China
| | - Xiefu Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Dechun Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, People's Republic of China
| |
Collapse
|
46
|
Wang X, Guo S, Zhao R, Liu Y, Yang G. STAT3-Activated Long Non-Coding RNA Lung Cancer Associated Transcript 1 Drives Cell Proliferation, Migration, and Invasion in Hepatoblastoma Through Regulation of the miR-301b/STAT3 Axis. Hum Gene Ther 2019; 30:702-713. [PMID: 30479162 DOI: 10.1089/hum.2018.146] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatoblastoma (HB) usually occurs in infants and toddlers. Although long non-coding RNAs (lncRNAs) in various human cancers have been widely studied, the role of lncRNAs in HB remains unclear. This study aimed to investigate the biological role of the lncRNA lung cancer associated transcript 1 (LUCAT1) in HB. Analysis of data from The Cancer Genome Atlas indicated that upregulation of lncRNA LUCAT1 was closely associated with poor overall survival of HB patients. Quantitative reverse transcription polymerase chain reaction analysis showed that LUCAT1 was highly expressed in both HB tissues and cell lines. Loss-of function assays to identify the biological function of LUCAT1 in HB showed that LUCAT1 knockdown inhibited cell proliferation, migration, and invasion but reversed epithelial-mesenchymal transition. Luciferase assays indicated that STAT3 was a transcription activator of LUCAT1 and that LUCAT1 could increase STAT3 expression by competitively binding to miR-301b. In conclusion, it was found that LUCAT1 was activated by STAT3 and promoted cell proliferation, migration, and invasion in HB through modulation of the miR-301b/STAT3 axis.
Collapse
Affiliation(s)
- Xianqiang Wang
- 1 Department of Pediatric Surgery, PLA General Hospital, Beijing, P.R. China
| | - Sen Guo
- 2 Department of General Surgery, Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Rui Zhao
- 2 Department of General Surgery, Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Yanfeng Liu
- 2 Department of General Surgery, Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Guangyun Yang
- 3 Department of Hepatobiliary Surgery, PLA General Hospital, Beijing, P.R. China
| |
Collapse
|
47
|
Abstract
Over the past decade, the amount of research and the number of publications on associations between circulating small and long non-coding RNAs (ncRNAs) and cancer have grown exponentially. Particular focus has been placed on the development of diagnostic and prognostic biomarkers to enable efficient patient management - from early detection of cancer to monitoring for disease recurrence or progression after treatment. Owing to their high abundance and stability, circulating ncRNAs have potential utility as non-invasive, blood-based biomarkers that can provide information on tumour biology and the effects of treatments, such as targeted therapies and immunotherapies. Increasing evidence highlights the roles of ncRNAs in cell-to-cell communication, with a number of ncRNAs having the capacity to regulate gene expression outside of the cell of origin through extracellular vesicle-mediated transfer to recipient cells, with implications for cancer progression and therapy resistance. Moreover, 'foreign' microRNAs (miRNAs) encoded by non-human genomes (so-called xeno-miRNAs), such as viral miRNAs, have been shown to be present in human body fluids and can be used as biomarkers. Herein, we review the latest developments in the use of circulating ncRNAs as diagnostic and prognostic biomarkers and discuss their roles in cell-to-cell communication in the context of cancer. We provide a compendium of miRNAs and long ncRNAs that have been reported in the literature to be present in human body fluids and that have the potential to be used as diagnostic and prognostic cancer biomarkers.
Collapse
|
48
|
Expression Pattern of Long Non-coding RNA Growth Arrest-specific 5 in the Remission Induction Therapy in Childhood Acute Lymphoblastic Leukemia. J Med Biochem 2019; 38:292-298. [PMID: 31156339 PMCID: PMC6534956 DOI: 10.2478/jomb-2018-0038] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 10/13/2018] [Indexed: 02/05/2023] Open
Abstract
Background Long non-coding RNA growth arrest-specific 5 (GAS5) is deregulated in many cancers because of its role in cell growth arrest and apoptosis. Additionally, GAS5 interacts with glucocorticoid receptor, making it a potential pharmacotranscription marker of glucocorticoid (GC) therapy. In this study, we aimed at analysing GAS5 expression in the remission induction therapy phase of childhood acute lymphoblastic leukemia (ALL), in which GCs are mandatorily used, and to correlate it with therapy response. Methods GAS5 expression was measured in peripheral blood mononuclear cells taken from 29 childhood ALL patients at diagnosis, on day 15 and day 33 of remission induction therapy using RT-qPCR methodology. Results Our results have shown interindividual differences in GAS5 expression at all time points. For each ALL patient, GAS5 expression was higher on day 15 in comparison to its level at diagnosis (p<0.0005). On day 33, the level of GAS5 expression decreased in comparison with day 15 (p<0.0005), but it was still significantly higher than at diagnosis for the majority of patients (p=0.001). Patients whose number of blasts on day 8 was below 100 per μL of peripheral blood had a higher GAS5 expression at diagnosis (p=0.016), and lower ratio day 15/diagnosis (p=0.009). Conclusions Our results suggest that the expression level of GAS5 could be a potential marker of therapy response in remission induction therapy of childhood ALL.
Collapse
|
49
|
Ji J, Dai X, Yeung SCJ, He X. The role of long non-coding RNA GAS5 in cancers. Cancer Manag Res 2019; 11:2729-2737. [PMID: 31114330 PMCID: PMC6497482 DOI: 10.2147/cmar.s189052] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/15/2019] [Indexed: 12/31/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have shown potential as a biomarker in the diagnosis and prognosis in multiple cancers. LncRNAs are dysregulated in various cancers, playing either oncogenic or tumor suppressive roles. Emerging evidences have proved that the growth arrest-specific 5 (GAS5) lncRNA can function as a tumor suppressor in several cancers. LncRNA GAS5 is downregulated in many types of cancer, regulating cellular processes such as cell proliferation, apoptosis and invasion. The low level of GAS5 expression often elevates capacity of proliferation and predicts poorer prognosis in some cancers. This review aims to summarize the recent published literature on the biogenesis, regulation mechanism and function of GAS5 in different types of cancers and explore its potential for cancer diagnosis, prognosis and treatment.
Collapse
Affiliation(s)
- Jiali Ji
- Department of Medical Oncology, The 2nd Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaolan Dai
- Department of Pharmacy, School of Medicine, Shantou University, Shantou, Guangdong, People’s Republic of China
| | - Sai-Ching Jim Yeung
- Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuexin He
- Department of Medical Oncology, The 2nd Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
50
|
Abstract
While only a small part of the human genome encodes for proteins, biological functions for the so-called junk genome are increasingly being recognized through high-throughput technologies and mechanistic experimental studies. Indeed, novel mechanisms of gene regulation are being discovered that require coordinated interaction between DNA, RNA, and proteins. Therefore, interdisciplinary efforts are still needed to decipher these complex transcriptional networks. In this review, we discuss how non-coding RNAs (ncRNAs) are epigenetically regulated in cancer and metastases and consequently how ncRNAs participate in the sculpting of the epigenetic profile of a cancer cell, thus modulating the expression of other RNA molecules. In the latter case, ncRNAs not only affect the DNA methylation status of certain genomic loci but also interact with histone-modifying complexes, changing the structure of the chromatin itself. We present several examples of epigenetic changes causing aberrant expression of ncRNAs in the context of tumor progression. Interestingly, there are also important epigenetic changes and transcriptional regulatory effects derived from their aberrant expression. As ncRNAs can also be used as biomarkers for diagnosis and prognosis or explored as potential targets, we present insights into the use of ncRNAs for targeted cancer therapy.
Collapse
|