1
|
Wang Z, Hakozaki H, McMahon G, Medina-Carbonero M, Schöneberg J. LiveLattice: Real-time visualization of tilted light-sheet microscopy data using a memory-efficient transformation algorithm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596280. [PMID: 38854017 PMCID: PMC11160600 DOI: 10.1101/2024.05.28.596280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Light-sheet fluorescence microscopy (LSFM), a prominent fluorescence microscopy technique, offers enhanced temporal resolution for imaging biological samples in four dimensions (4D; x, y, z, time). Some of the most recent implementations, including inverted selective plane illumination microscopy (iSPIM) and lattice light-sheet microscopy (LLSM), rely on a tilting of the sample plane with respect to the light sheet of 30-45 degrees to ease sample preparation. Data from such tilted-sample-plane LSFMs require subsequent deskewing and rotation for proper visualization and analysis. Such transformations currently demand substantial memory allocation. This poses computational challenges, especially with large datasets. The consequence is long processing times compared to data acquisition times, which currently limits the ability for live-viewing the data as it is being captured by the microscope. To enable the fast preprocessing of large light-sheet microscopy datasets without significant hardware demand, we have developed WH-Transform, a novel GPU-accelerated memory-efficient algorithm that integrates deskewing and rotation into a single transformation, significantly reducing memory requirements and reducing the preprocessing run time by at least 10-fold for large image stacks. Benchmarked against conventional methods and existing software, our approach demonstrates linear scalability. Processing large 3D stacks of up to 15 GB is now possible within one minute using a single GPU with 24 GB of memory. Applied to 4D LLSM datasets of human hepatocytes, human lung organoid tissue, and human brain organoid tissue, our method outperforms alternatives, providing rapid, accurate preprocessing within seconds. Importantly, such processing speeds now allow visualization of the raw microscope data stream in real time, significantly improving the usability of LLSM in biology. In summary, this advancement holds transformative potential for light-sheet microscopy, enabling real-time, on-the-fly data processing, visualization, and analysis on standard workstations, thereby revolutionizing biological imaging applications for LLSM, SPIM and similar light microscopes.
Collapse
Affiliation(s)
- Zichen Wang
- Department of Pharmacology, University of California, San Diego, San Diego, CA, 92093
- Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, CA, 92093
| | - Hiroyuki Hakozaki
- Department of Pharmacology, University of California, San Diego, San Diego, CA, 92093
- Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, CA, 92093
| | - Gillian McMahon
- Department of Pharmacology, University of California, San Diego, San Diego, CA, 92093
- Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, CA, 92093
| | - Marta Medina-Carbonero
- Department of Pharmacology, University of California, San Diego, San Diego, CA, 92093
- Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, CA, 92093
| | - Johannes Schöneberg
- Department of Pharmacology, University of California, San Diego, San Diego, CA, 92093
- Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, CA, 92093
| |
Collapse
|
2
|
He C, Yuan Y, Gong C, Wang X, Lyu G. Applications of Tissue Clearing in Central and Peripheral Nerves. Neuroscience 2024; 546:104-117. [PMID: 38570062 DOI: 10.1016/j.neuroscience.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
The techniques of tissue clearing have been proposed and applied in anatomical and biomedical research since the 19th century. As we all know, the original study of the nervous system relied on serial ultrathin sections and stereoscopic techniques. The 3D visualization of the nervous system was established by software splicing and reconstruction. With the development of science and technology, microscope equipment had constantly been upgraded. Despite the great progress that has been made in this field, the workload is too complex, and it needs high technical requirements. Abundant mistakes due to manual sections were inescapable and structural integrity remained questionable. According to the classification of tissue transparency methods, we introduced the latest application of transparency methods in central and peripheral nerve research from optical imaging, molecular markers and data analysis. This review summarizes the application of transparent technology in neural pathways. We hope to provide some inspiration for the continuous optimization of tissue clearing methods.
Collapse
Affiliation(s)
- Cheng He
- Department of Anatomy, Medical School of Nantong University, Nantong, China
| | - Ye Yuan
- Department of Anatomy, Medical School of Nantong University, Nantong, China
| | - Chuanhui Gong
- Department of Anatomy, Medical School of Nantong University, Nantong, China
| | - Xueying Wang
- Medical School of Nantong University, Nantong, China
| | - Guangming Lyu
- Department of Anatomy, Medical School of Nantong University, Nantong, China; Department of Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School of Nantong University, Nantong, China.
| |
Collapse
|
3
|
Trettner KJ, Hsieh J, Xiao W, Lee JSH, Armani AM. Nondestructive, quantitative viability analysis of 3D tissue cultures using machine learning image segmentation. APL Bioeng 2024; 8:016121. [PMID: 38566822 PMCID: PMC10985731 DOI: 10.1063/5.0189222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Ascertaining the collective viability of cells in different cell culture conditions has typically relied on averaging colorimetric indicators and is often reported out in simple binary readouts. Recent research has combined viability assessment techniques with image-based deep-learning models to automate the characterization of cellular properties. However, further development of viability measurements to assess the continuity of possible cellular states and responses to perturbation across cell culture conditions is needed. In this work, we demonstrate an image processing algorithm for quantifying features associated with cellular viability in 3D cultures without the need for assay-based indicators. We show that our algorithm performs similarly to a pair of human experts in whole-well images over a range of days and culture matrix compositions. To demonstrate potential utility, we perform a longitudinal study investigating the impact of a known therapeutic on pancreatic cancer spheroids. Using images taken with a high content imaging system, the algorithm successfully tracks viability at the individual spheroid and whole-well level. The method we propose reduces analysis time by 97% in comparison with the experts. Because the method is independent of the microscope or imaging system used, this approach lays the foundation for accelerating progress in and for improving the robustness and reproducibility of 3D culture analysis across biological and clinical research.
Collapse
Affiliation(s)
| | - Jeremy Hsieh
- Pasadena Polytechnic High School, Pasadena, California 91106, USA
| | - Weikun Xiao
- Ellison Institute of Technology, Los Angeles, California 90064, USA
| | | | | |
Collapse
|
4
|
Xiao CL, Liu LL, Tang W, Liu WY, Wu LY, Zhao K. Reduction of the trans-cortical vessel was associated with bone loss, another underlying mechanism of osteoporosis. Microvasc Res 2024; 152:104650. [PMID: 38123064 DOI: 10.1016/j.mvr.2023.104650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
RATIONALE Numerous studies have established a robust association between bone morrow microvascular diseases and osteoporosis. This study sought to investigate the relationship between alterations in trans-cortical vessel (TCVs) and the onset of osteoporosis in various mouse models. METHODS Aged mice, ovariectomized mice, and db/db mice, were utilized as osteoporosis models. TCVs in the tibia were detected using tissue clearing and light sheet fluorescence microscopy imaging. Femurs bone mass were analyzed using micro-CT scanning. Correlations between the number of TCVs and bone mass were analyzed using Pearson correlation analysis. RESULTS All osteoporosis mouse models showed a significant reduction in the number of TCVs compared to the control group. Correlation analysis revealed a positive association between the number of TCVs and bone mass. TCVs were also expressed high levels of CD31 and EMCN proteins as type H vessels. CONCLUSIONS This study underscores a consistent correlation between the number of TCVs and bone mass. Moreover, TCVs may serve as a potential biomarker for bone mass evaluation.
Collapse
Affiliation(s)
- Chun-Lin Xiao
- Department of Orthopaedics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, PR China
| | - Lu-Lin Liu
- Department of Orthopaedics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, PR China
| | - Wen Tang
- Department of Orthopaedics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, PR China
| | - Wu-Yang Liu
- Department of Orthopaedics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, PR China
| | - Long-Yan Wu
- Ganzhou People's Hospital, Ganzhou, PR China.
| | - Kai Zhao
- Department of Orthopaedics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, PR China; Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
5
|
Haydo A, Wehle A, Herold-Mende C, Kögel D, Pampaloni F, Linder B. Combining organotypic tissue culture with light-sheet microscopy (OTCxLSFM) to study glioma invasion. EMBO Rep 2023; 24:e56964. [PMID: 37938214 DOI: 10.15252/embr.202356964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 11/09/2023] Open
Abstract
Glioblastoma is a very aggressive tumor and represents the most common primary brain malignancy. Key characteristics include its high resistance against conventional treatments, such as radio- and chemotherapy and its diffuse tissue infiltration, preventing complete surgical resection. The analysis of migration and invasion processes in a physiological microenvironment allows for enhanced understanding of these phenomena and can lead to improved therapeutic approaches. Here, we combine two state-of-the-art techniques, adult organotypic brain tissue slice culture (OTC) and light-sheet fluorescence microscopy (LSFM) of cleared tissues in a combined method termed OTCxLSFM. Using this methodology, we can show that glioblastoma tissue infiltration can be effectively blocked through treatment with arsenic trioxide or WP1066, as well as genetic depletion of the tetraspanin, transmembrane receptor CD9, or signal transducer and activator of transcription 3 (STAT3). With our analysis pipeline, we gain single-cell level, three-dimensional information, as well as insights into the morphological appearance of the tumor cells.
Collapse
Affiliation(s)
- Alicia Haydo
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Andrej Wehle
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Donat Kögel
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) Partner site Frankfurt/Main, a partnership between DKFZ and Goethe University Hospital, Frankfurt am Main, Germany
| | - Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Benedikt Linder
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
6
|
Manser S, Keck S, Vitacolonna M, Wuehler F, Rudolf R, Raedle M. Innovative Imaging Techniques: A Conceptual Exploration of Multi-Modal Raman Light Sheet Microscopy. MICROMACHINES 2023; 14:1739. [PMID: 37763902 PMCID: PMC10536344 DOI: 10.3390/mi14091739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023]
Abstract
Advances in imaging of microscopic structures are supported and complemented by adaptive visualization tools. These tools enable researchers to precisely capture and analyze complex three-dimensional structures of different kinds such as crystals, microchannels and electronic or biological material. In this contribution, we focus on 3D cell cultures. The new possibilities can play a particularly important role in biomedical research, especially here in the study of 3D cell cultures such as spheroids in the field of histology. By applying advanced imaging techniques, detailed information about the spatial arrangement and interactions between cells can be obtained. These insights help to gain a better understanding of cellular organization and function and have potential implications for the development of new therapies and drugs. In this context, this study presents a multi-modal light sheet microscope designed for the detection of elastic and inelastic light scattering, particularly Rayleigh scattering as well as the Stokes Raman effect and fluorescence for imaging purposes. By combining multiple modalities and stitching their individual results, three-dimensional objects are created combining complementary information for greater insight into spatial and molecular information. The individual components of the microscope are specifically selected to this end. Both Rayleigh and Stokes Raman scattering are inherent molecule properties and accordingly facilitate marker-free imaging. Consequently, altering influences on the sample by external factors are minimized. Furthermore, this article will give an outlook on possible future applications of the prototype microscope.
Collapse
Affiliation(s)
| | | | | | | | | | - Matthias Raedle
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), University of Applied Science Mannheim, 68163 Mannheim, Germany
| |
Collapse
|
7
|
Ushakov DS, Finke S. Tissue optical clearing and 3D imaging of virus infections. Adv Virus Res 2023; 116:89-121. [PMID: 37524483 DOI: 10.1016/bs.aivir.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Imaging pathogens within 3D environment of biological tissues provides spatial information about their localization and interactions with the host. Technological advances in fluorescence microscopy and 3D image analysis now permit visualization and quantification of pathogens directly in large tissue volumes and in great detail. In recent years large volume imaging became an important tool in virology research helping to understand the properties of viruses and the host response to infection. In this chapter we give a review of fluorescence microscopy modalities and tissue optical clearing methods used for large volume tissue imaging. A summary of recent applications for virus research is provided with particular emphasis on studies using light sheet fluorescence microscopy. We describe the challenges and approaches for volumetric image analysis. Practical examples of volumetric imaging implemented in virology laboratories and addressing specialized research questions, such as virus tropism and immune host response are described. We conclude with an overview of the emerging technologies and their potential for virus research.
Collapse
Affiliation(s)
- Dmitry S Ushakov
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| | - Stefan Finke
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
8
|
Daetwyler S, Fiolka RP. Light-sheets and smart microscopy, an exciting future is dawning. Commun Biol 2023; 6:502. [PMID: 37161000 PMCID: PMC10169780 DOI: 10.1038/s42003-023-04857-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023] Open
Abstract
Light-sheet fluorescence microscopy has transformed our ability to visualize and quantitatively measure biological processes rapidly and over long time periods. In this review, we discuss current and future developments in light-sheet fluorescence microscopy that we expect to further expand its capabilities. This includes smart and adaptive imaging schemes to overcome traditional imaging trade-offs, i.e., spatiotemporal resolution, field of view and sample health. In smart microscopy, a microscope will autonomously decide where, when, what and how to image. We further assess how image restoration techniques provide avenues to overcome these tradeoffs and how "open top" light-sheet microscopes may enable multi-modal imaging with high throughput. As such, we predict that light-sheet microscopy will fulfill an important role in biomedical and clinical imaging in the future.
Collapse
Affiliation(s)
- Stephan Daetwyler
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Reto Paul Fiolka
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
9
|
Gonzales-Aloy E, Ahmed-Cox A, Tsoli M, Ziegler DS, Kavallaris M. From cells to organoids: The evolution of blood-brain barrier technology for modelling drug delivery in brain cancer. Adv Drug Deliv Rev 2023; 196:114777. [PMID: 36931346 DOI: 10.1016/j.addr.2023.114777] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/13/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Brain cancer remains the deadliest cancer. The blood-brain barrier (BBB) is impenetrable to most drugs and is a complex 3D network of multiple cell types including endothelial cells, astrocytes, and pericytes. In brain cancers, the BBB becomes disrupted during tumor progression and forms the blood-brain tumor barrier (BBTB). To advance therapeutic development, there is a critical need for physiologically relevant BBB in vitro models. 3D cell systems are emerging as valuable preclinical models to accelerate discoveries for diseases. Given the versatility and capability of 3D cell models, their potential for modelling the BBB and BBTB is reviewed. Technological advances of BBB models and challenges of in vitro modelling the BBTB, and application of these models as tools for assessing therapeutics and nano drug delivery, are discussed. Quantitative, in vitro BBB models that are predictive of effective brain cancer therapies will be invaluable for accelerating advancing new treatments to the clinic.
Collapse
Affiliation(s)
- Estrella Gonzales-Aloy
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, NSW, Australia; Australian Center for NanoMedicine, UNSW Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia
| | - Aria Ahmed-Cox
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, NSW, Australia; Australian Center for NanoMedicine, UNSW Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia; Katharina Gaus Light Microscopy Facility, Mark Wainright Analytical Center, UNSW Sydney, NSW, Australia
| | - Maria Tsoli
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia
| | - David S Ziegler
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia; Kids Cancer Center, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, NSW, Australia; Australian Center for NanoMedicine, UNSW Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia; UNSW RNA Institute, UNSW Sydney, NSW, Australia.
| |
Collapse
|
10
|
Koch M, Nickel S, Lieshout R, Lissek SM, Leskova M, van der Laan LJW, Verstegen MMA, Christ B, Pampaloni F. Label-Free Imaging Analysis of Patient-Derived Cholangiocarcinoma Organoids after Sorafenib Treatment. Cells 2022; 11:3613. [PMID: 36429040 PMCID: PMC9688926 DOI: 10.3390/cells11223613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Monitoring tumor growth dynamics is crucial for understanding cancer. To establish an in vitro method for the continuous assessment of patient-specific tumor growth, tumor organoids were generated from patients with intrahepatic CCA (iCCA). Organoid growth was monitored for 48 h by label-free live brightfield imaging. Growth kinetics were calculated and validated by MTS assay as well as immunohistochemistry of Ki67 to determine proliferation rates. We exposed iCCA organoids (iCCAOs) and non-tumor intrahepatic cholangiocyte organoids (ICOs) to sub-therapeutic concentrations of sorafenib. Monitoring the expansion rate of iCCAOs and ICOs revealed that iCCAO growth was inhibited by sorafenib in a time- and dose-dependent fashion, while ICOs were unaffected. Quantification of the proliferation marker Ki67 confirmed inhibition of iCCAO growth by roughly 50% after 48 h of treatment with 4 µM sorafenib. We established a robust analysis pipeline combining brightfield microscopy and a straightforward image processing approach for the label-free growth monitoring of patient-derived iCCAOs. Combined with bioanalytical validation, this approach is suitable for a fast and efficient high-throughput drug screening in tumor organoids to develop patient-specific systemic treatment options.
Collapse
Affiliation(s)
- Michael Koch
- Physical Biology, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Sandra Nickel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany
- Division of General, Visceral and Vascular Surgery, University Hospital Jena, 07740 Jena, Germany
| | - Ruby Lieshout
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands
| | - Susanna M. Lissek
- Experimental Medicine and Therapy Research, University of Regensburg, 93053 Regensburg, Germany
| | - Martina Leskova
- Physical Biology, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Luc J. W. van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands
| | - Monique M. A. Verstegen
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands
| | - Bruno Christ
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Francesco Pampaloni
- Physical Biology, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
11
|
Lee EJ, Hong SK, Choi DH, Gum SI, Hwang MY, Kim DS, Oh JW, Lee ES. Three-dimensional visualization of cerebral blood vessels and neural changes in thick ischemic rat brain slices using tissue clearing. Sci Rep 2022; 12:15897. [PMID: 36151103 PMCID: PMC9508267 DOI: 10.1038/s41598-022-19575-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 08/31/2022] [Indexed: 11/08/2022] Open
Abstract
Blood vessels are three-dimensional (3D) in structure and precisely connected. Conventional histological methods are unsuitable for their analysis because of the destruction of functionally important topological 3D vascular structures. Tissue optical clearing techniques enable extensive volume imaging and data analysis without destroying tissue. This study therefore applied a tissue clearing technique to acquire high-resolution 3D images of rat brain vasculature using light-sheet and confocal microscopies. Rats underwent middle cerebral artery occlusion for 45 min followed by 24 h reperfusion with lectin injected directly into the heart for vascular staining. For acquiring 3D images of rat brain vasculature, 3-mm-thick brain slices were reconstructed using tissue clearing and light-sheet microscopy. Subsequently, after 3D rendering, the fitting of blood vessels to a filament model was used for analysis. The results revealed a significant reduction in vessel diameter and density in the ischemic region compared to those in contralesional non-ischemic regions. Immunostaining of 0.5-mm-thick brain slices revealed considerable neuronal loss and increased astrocyte fluorescence intensity in the ipsilateral region. Thus, these methods can provide more accurate data by broadening the scope of the analyzed regions of interest for examining the 3D cerebrovascular system and neuronal changes occurring in various brain disorders.
Collapse
Affiliation(s)
- Eun-Joo Lee
- Binaree, Inc., STE#608 Daegu Techbiz Center, Techno Gongwon-Ro 16, Dalseong-Gun, Daegu, 43017, South Korea
| | - Sung-Kuk Hong
- Department of Anatomy, School of Medicine, Kyungpook National University, Gukchaebosang-Ro 680, Jung-Gu, Daegu, 41944, South Korea
| | - Dong-Hwa Choi
- Biocenter, Gyeonggido Business & Science Accelerator, Gwanggyo-Ro 107, Yeongtong-Gu, Suwon, 16229, South Korea
| | - Sang-Il Gum
- Binaree, Inc., STE#608 Daegu Techbiz Center, Techno Gongwon-Ro 16, Dalseong-Gun, Daegu, 43017, South Korea
| | - Mee Yul Hwang
- Binaree, Inc., STE#608 Daegu Techbiz Center, Techno Gongwon-Ro 16, Dalseong-Gun, Daegu, 43017, South Korea
| | - Dong Sun Kim
- Department of Anatomy, School of Medicine, Kyungpook National University, Gukchaebosang-Ro 680, Jung-Gu, Daegu, 41944, South Korea
| | - Ji Won Oh
- Department of Anatomy, School of Medicine, Kyungpook National University, Gukchaebosang-Ro 680, Jung-Gu, Daegu, 41944, South Korea.
- Department of Anatomy, Yonsei University College of Medicine, Yonsei-Ro 50, Seodaemun-Gu, Seoul, 03722, South Korea.
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Yonsei-Ro 50, Seodaemun-Gu, Seoul, 03722, South Korea.
| | - Eun-Shil Lee
- Binaree, Inc., STE#608 Daegu Techbiz Center, Techno Gongwon-Ro 16, Dalseong-Gun, Daegu, 43017, South Korea.
| |
Collapse
|
12
|
Pampaloni F. Multi-Modal and Molecular Imaging of Cellular Microenvironment and Tissue Development. Int J Mol Sci 2022; 23:ijms23137113. [PMID: 35806117 PMCID: PMC9266741 DOI: 10.3390/ijms23137113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Affiliation(s)
- Francesco Pampaloni
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, Max-von-Laue Str. 15, 60438 Frankfurt, Germany
| |
Collapse
|
13
|
Schneckenburger H. Lasers in Live Cell Microscopy. Int J Mol Sci 2022; 23:ijms23095015. [PMID: 35563406 PMCID: PMC9102032 DOI: 10.3390/ijms23095015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Due to their unique properties—coherent radiation, diffraction limited focusing, low spectral bandwidth and in many cases short light pulses—lasers play an increasing role in live cell microscopy. Lasers are indispensable tools in 3D microscopy, e.g., confocal, light sheet or total internal reflection microscopy, as well as in super-resolution microscopy using wide-field or confocal methods. Further techniques, e.g., spectral imaging or fluorescence lifetime imaging (FLIM) often depend on the well-defined spectral or temporal properties of lasers. Furthermore, laser microbeams are used increasingly for optical tweezers or micromanipulation of cells. Three exemplary laser applications in live cell biology are outlined. They include fluorescence diagnosis, in particular in combination with Förster Resonance Energy Transfer (FRET), photodynamic therapy as well as laser-assisted optoporation, and demonstrate the potential of lasers in cell biology and—more generally—in biomedicine.
Collapse
|
14
|
Modular multimodal platform for classical and high throughput light sheet microscopy. Sci Rep 2022; 12:1969. [PMID: 35121789 PMCID: PMC8817037 DOI: 10.1038/s41598-022-05940-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Light-sheet fluorescence microscopy (LSFM) has become an important tool for biological and biomedical research. Although several illumination and detection strategies have been developed, the sample mounting still represents a cumbersome procedure as this is highly dependent on the type of sample and often this might be time consuming. This prevents the use of LSFM in other promising applications in which a fast and straightforward sample-mounting procedure and imaging are essential. These include the high-throughput research fields, e.g. in drug screenings and toxicology studies. Here we present a new imaging paradigm for LSFM, which exploits modularity to offer multimodal imaging and straightforward sample mounting strategy, enhancing the flexibility and throughput of the system. We describe its implementation in which the sample can be imaged either as in any classical configuration, as it flows through the light-sheet using a fluidic approach, or a combination of both. We also evaluate its ability to image a variety of samples, from zebrafish embryos and larvae to 3D complex cell cultures.
Collapse
|
15
|
Fan YJ, Hsieh HY, Huang YR, Tsao C, Lee CM, Tahara H, Wu YC, Sheen HJ, Chen BC. Development of a water refractive index-matched microneedle integrated into a light sheet microscopy system for continuous embryonic cell imaging. LAB ON A CHIP 2022; 22:584-591. [PMID: 34951426 DOI: 10.1039/d1lc00827g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, microneedle-integrated light sheet microscopy (LSM) was developed for trapping and continuously imaging embryos of Caenorhabditis elegans with subcellular resolution. To reduce aberrations when the light sheet was propagated into the device, a microneedle was fabricated using a transparent, water refractive index-matched polymer. It was proven that when the light sheet emerged from the water-immersed objective and penetrated through the microneedle with a circular surface, even with a non-perpendicular incident angle, fewer aberrations were found. An embryo was injected into and trapped at the tip of the microneedle, which was positioned at the interrogation window of the LSM apparatus with the image plane perpendicular to the light sheet, and this setup was used to sequentially acquire embryo images. By applying the light sheet, higher-resolution, higher-contrast images were obtained. The system also showed low photobleaching and low phototoxicity to embryos of C. elegans. Furthermore, three-dimensional embryo images with a whole field of view of the microneedle could be achieved by stitching together images and reconstructing sequential two-dimensional embryo images.
Collapse
Affiliation(s)
- Yu-Jui Fan
- School of Biomedical Engineering, International PhD Program for Biomedical Engineering, International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St., Taipei 11031, Taiwan.
| | - Han-Yun Hsieh
- School of Biomedical Engineering, International PhD Program for Biomedical Engineering, International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St., Taipei 11031, Taiwan.
- Department of Cellular and Molecular Biology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8553, Japan
- Institute of Applied Mechanics, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan.
| | - Yen-Ru Huang
- Institute of Applied Mechanics, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan.
| | - Chieh Tsao
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan.
| | - Chia-Ming Lee
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan.
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yi-Chun Wu
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Horn-Jiunn Sheen
- Institute of Applied Mechanics, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan.
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan.
| |
Collapse
|
16
|
Cambra HM, Tallapragada NP, Mannam P, Breault DT, Klein AM. Triple-Decker Sandwich Cultures of Intestinal Organoids for Long-Term Live Imaging, Uniform Perturbation, and Statistical Sampling. Curr Protoc 2022; 2:e330. [PMID: 35030297 PMCID: PMC9006308 DOI: 10.1002/cpz1.330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Three-dimensional organoid cultures enable the study of stem cell and tissue biology ex vivo, providing improved access to cells for perturbation and live imaging. Typically, organoids are grown in hydrogel domes that are simple to prepare but that lead to non-uniform tissue growth and viability. We recently developed a simple alternative culture method to embed intestinal organoids in multilayered hydrogels, called "triple-decker sandwiches," that align organoids in a common z-plane with uniform access to medium. This culture configuration improves the growth and survival of organoids over a wide working area and facilitates long-term confocal imaging and molecular perturbation. Here, we present protocols for preparing organoids in triple-decker sandwich cultures and using them for live imaging, immunostaining, and single-cell RNA sequencing. We have tested our methods on mouse and human intestinal organoids and expect them to be useful for other highly proliferative three-dimensional cell cultures. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Pre-coating plates with PolyHEMA to prepare them for triple-decker sandwich culture Support Protocol 1: Preparing PolyHEMA solution to coat glass-bottom dishes Basic Protocol 2: Embedding intestinal organoids in triple-decker sandwiches Alternate Protocol 1: Seeding single cells or organoids at low density in triple-decker sandwiches Support Protocol 2: Embedding intestinal organoids in hydrogel domes Support Protocol 3: Production of Wnt3a-conditioned medium Support Protocol 4: Production of Rspo1-conditioned medium Basic Protocol 3: Live imaging of mouse intestinal organoids in triple-decker sandwich cultures Alternate Protocol 2: Live imaging of vital dye-treated mouse intestinal organoids in triple-decker sandwich cultures Basic Protocol 4: Immunofluorescence imaging of mouse organoids liberated from triple-decker sandwich cultures Alternate Protocol 3: Liberating and fixing mouse intestinal organoids from dome cultures Support Protocol 5: Measuring cell proliferation by EdU staining of mouse intestinal organoids Basic Protocol 5: Single-cell RNA sequencing and analysis of mouse intestinal organoids.
Collapse
Affiliation(s)
- Hailey M. Cambra
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Naren P. Tallapragada
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Prabhath Mannam
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - David T. Breault
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115, USA,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA,Harvard Stem Cell Institute, Harvard University, Boston, MA 02139, USA
| | - Allon M. Klein
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA,Lead contact,Correspondence:
| |
Collapse
|
17
|
Buckner E, Madison I, Melvin C, Long T, Sozzani R, Williams C. BioVision Tracker: A semi-automated image analysis software for spatiotemporal gene expression tracking in Arabidopsis thaliana. Methods Cell Biol 2021; 160:419-436. [PMID: 32896332 DOI: 10.1016/bs.mcb.2020.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Fluorescence microscopy can produce large quantities of data that reveal the spatiotemporal behavior of gene expression at the cellular level in plants. Automated or semi-automated image analysis methods are required to extract data from these images. These data are helpful in revealing spatial and/or temporal-dependent processes that influence development in the meristematic region of plant roots. Tracking spatiotemporal gene expression in the meristem requires the processing of multiple microscopy imaging channels (one channel used to image root geometry which serves as a reference for relating locations within the root, and one or more channels used to image fluorescent gene expression signals). Many automated image analysis methods rely on the staining of cell walls with fluorescent dyes to capture cellular geometry and overall root geometry. However, in long time-course imaging experiments, dyes may fade which hinders spatial assessment in image analysis. Here, we describe a procedure for analyzing 3D microscopy images to track spatiotemporal gene expression signals using the MATLAB-based BioVision Tracker software. This software requires either a fluorescence image or a brightfield image to analyze root geometry and a fluorescence image to capture and track temporal changes in gene expression.
Collapse
Affiliation(s)
- Eli Buckner
- Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC, United States
| | - Imani Madison
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC, United States
| | - Charles Melvin
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC, United States
| | - Terri Long
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC, United States.
| | - Rosangela Sozzani
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC, United States.
| | - Cranos Williams
- Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
18
|
Bustamante JM, Sanchez-Valdez F, Padilla AM, White B, Wang W, Tarleton RL. A modified drug regimen clears active and dormant trypanosomes in mouse models of Chagas disease. Sci Transl Med 2021; 12:12/567/eabb7656. [PMID: 33115952 DOI: 10.1126/scitranslmed.abb7656] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/20/2020] [Accepted: 10/07/2020] [Indexed: 12/29/2022]
Abstract
A major contributor to treatment failure in Chagas disease, caused by infection with the protozoan parasite Trypanosoma cruzi, is that current treatment regimens do not address the drug insensitivity of transiently dormant T. cruzi amastigotes. Here, we demonstrated that use of a currently available drug in a modified treatment regimen of higher individual doses, given less frequently over an extended treatment period, could consistently extinguish T. cruzi infection in three mouse models of Chagas disease. Once per week administration of benznidazole at a dose 2.5 to 5 times the standard daily dose rapidly eliminated actively replicating parasites and ultimately eradicated the residual, transiently dormant parasite population in mice. This outcome was initially confirmed in "difficult to cure" mouse infection models using immunological, parasitological, and molecular biological approaches and ultimately corroborated by whole organ analysis of optically clarified tissues using light sheet fluorescence microscopy (LSFM). This tool was effective for monitoring pathogen load in intact organs, including detection of individual dormant parasites, and for assessing treatment outcomes. LSFM-based analysis also suggested that dormant amastigotes of T. cruzi may not be fully resistant to trypanocidal compounds such as benznidazole. Collectively, these studies provide important information on the phenomenon of dormancy in T. cruzi infection in mice, demonstrate methods to therapeutically override dormancy using a currently available drug, and provide methods to monitor alternative therapeutic approaches for this, and possibly other, low-density infectious agents.
Collapse
Affiliation(s)
- Juan M Bustamante
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Fernando Sanchez-Valdez
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA.,Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta, Argentina
| | - Angel M Padilla
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Brooke White
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Wei Wang
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Rick L Tarleton
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA. .,Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
19
|
Petersen RA, Morris AC. Visualizing Ocular Morphogenesis by Lightsheet Microscopy using rx3:GFP Transgenic Zebrafish. J Vis Exp 2021. [PMID: 33871454 DOI: 10.3791/62296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Vertebrate eye development is a complex process that begins near the end of embryo gastrulation and requires the precise coordination of cell migration, proliferation, and differentiation. Time-lapse imagining offers unique insight to the behavior of cells during eye development because it allows us to visualize oculogenesis in vivo. Zebrafish are an excellent model to visualize this process due to their highly conserved vertebrate eye and their ability to develop rapidly and externally while remaining optically transparent. Time-lapse imaging studies of zebrafish eye development are greatly facilitated by use of the transgenic zebrafish line Tg(rx3:GFP). In the developing forebrain, rx3:GFP expression marks the cells of the single eye field, and GFP continues to be expressed as the eye field evaginates to form an optic vesicle, which then invaginates to form an optic cup. High resolution time lapse imaging of rx3:GFP expression, therefore, allows us to track the eye primordium through time as it develops into the retina. Lightsheet microscopy is an ideal method to image ocular morphogenesis over time due to its ability to penetrate thicker samples for fluorescent imaging, minimize photobleaching and phototoxicity, and image at a high speed. Here, a protocol is provided for time-lapse imaging of ocular morphogenesis using a commercially available lightsheet microscope and an image processing workstation to analyze the resulting data. This protocol details the procedures for embryo anesthesia, embedding in low melting temperature agarose, suspension in the imaging chamber, setting up the imaging parameters, and finally analyzing the imaging data using image analysis software. The resulting dataset can provide valuable insights into the process of ocular morphogenesis, as well as perturbations to this process as a result of genetic mutation, exposure to pharmacological agents, or other experimental manipulations.
Collapse
|
20
|
Jain D, Torres R, Celli R, Koelmel J, Charkoftaki G, Vasiliou V. Evolution of the liver biopsy and its future. Transl Gastroenterol Hepatol 2021; 6:20. [PMID: 33824924 PMCID: PMC7829074 DOI: 10.21037/tgh.2020.04.01] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
Liver biopsies are commonly used to evaluate a wide variety of medical disorders, including neoplasms and post-transplant complications. However, its use is being impacted by improved clinical diagnosis of disorders, and non-invasive methods for evaluating liver tissue and as a result the indications of a liver biopsy have undergone major changes in the last decade. The evolution of highly effective treatments for some of the common indications for liver biopsy in the last decade (e.g., viral hepatitis B and C) has led to a decline in the number of liver biopsies in recent years. At the same time, the emergence of better technologies for histologic evaluation, tissue content analysis and genomics are among the many new and exciting developments in the field that hold great promise for the future and are going to shape the indications for a liver biopsy in the future. Recent advances in slide scanners now allow creation of "digital/virtual" slides that have image of the entire tissue section present in a slide [whole slide imaging (WSI)]. WSI can now be done very rapidly and at very high resolution, allowing its use in routine clinical practice. In addition, a variety of technologies have been developed in recent years that use different light sources and/or microscopes allowing visualization of tissues in a completely different way. One such technique that is applicable to liver specimens combines multiphoton microscopy (MPM) with advanced clearing and fluorescent stains known as Clearing Histology with MultiPhoton Microscopy (CHiMP). Although it has not yet been extensively validated, the technique has the potential to decrease inefficiency, reduce artifacts, and increase data while being readily integrable into clinical workflows. Another technology that can provide rapid and in-depth characterization of thousands of molecules in a tissue sample, including liver tissues, is matrix assisted laser desorption/ionization (MALDI) mass spectrometry. MALDI has already been applied in a clinical research setting with promising diagnostic and prognostic capabilities, as well as being able to elucidate mechanisms of liver diseases that may be targeted for the development of new therapies. The logical next step in huge data sets obtained from such advanced analysis of liver tissues is the application of machine learning (ML) algorithms and application of artificial intelligence (AI), for automated generation of diagnoses and prognoses. This review discusses the evolving role of liver biopsies in clinical practice over the decades, and describes newer technologies that are likely to have a significant impact on how they will be used in the future.
Collapse
Affiliation(s)
- Dhanpat Jain
- Department of Anatomic Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Richard Torres
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Romulo Celli
- Department of Anatomic Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Jeremy Koelmel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
21
|
Fan YJ, Hsieh HY, Tsai SF, Wu CH, Lee CM, Liu YT, Lu CH, Chang SW, Chen BC. Microfluidic channel integrated with a lattice lightsheet microscopic system for continuous cell imaging. LAB ON A CHIP 2021; 21:344-354. [PMID: 33295931 DOI: 10.1039/d0lc01009j] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, a continuous cell-imaging system with subcellular resolution was developed by integrating a microfluidic platform with lattice lightsheet microscopy (LLSM). To reduce aberrations of the lightsheet propagating into the device, a microfluidic channel sealed with a water refractive index-matched thin film was fabricated. When the lightsheet emerged from the water-immersed objectives and penetrated through the water refractive-matched thin film into the microfluidic channel at an incident angle, less light scattering and fewer aberrations were found. Suspended cells flowed across the lattice lightsheet, and an imaging system with the image plane perpendicular to the lightsheet was used to sequentially acquire cell images. By applying a thinner lattice lightsheet, higher-resolution, higher-contrast images were obtained. Furthermore, three-dimensional cell images could be achieved by reconstructing sequential two-dimensional cell images.
Collapse
Affiliation(s)
- Yu-Jui Fan
- School of Biomedical Engineering, Taipei Medical University, 250 Wuxing St., Taipei 11031, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Madison I, Melvin C, Buckner E, Williams C, Sozzani R, Long T. MAGIC: Live imaging of cellular division in plant seedlings using lightsheet microscopy. Methods Cell Biol 2020; 160:405-418. [PMID: 32896331 DOI: 10.1016/bs.mcb.2020.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Imaging technologies have been used to understand plant genetic and developmental processes, from the dynamics of gene expression to tissue and organ morphogenesis. Although the field has advanced incredibly in recent years, gaps remain in identifying fine and dynamic spatiotemporal intervals of target processes, such as changes to gene expression in response to abiotic stresses. Lightsheet microscopy is a valuable tool for such studies due to its ability to perform long-term imaging at fine intervals of time and at low photo-toxicity of live vertically oriented seedlings. In this chapter, we describe a detailed method for preparing and imaging Arabidopsis thaliana seedlings for lightsheet microscopy via a Multi-Sample Imaging Growth Chamber (MAGIC), which allows simultaneous imaging of at least four samples. This method opens new avenues for acquiring imaging data at a high temporal resolution, which can be eventually probed to identify key regulatory time points and any spatial dependencies of target developmental processes.
Collapse
Affiliation(s)
- Imani Madison
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC, United States
| | - Charles Melvin
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC, United States
| | - Eli Buckner
- Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC, United States
| | - Cranos Williams
- Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC, United States
| | - Rosangela Sozzani
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC, United States.
| | - Terri Long
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
23
|
Li Y, Yi J, Liu W, Liu Y, Liu J. Gaining insight into cellular cardiac physiology using single particle tracking. J Mol Cell Cardiol 2020; 148:63-77. [PMID: 32871158 DOI: 10.1016/j.yjmcc.2020.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 11/29/2022]
Abstract
Single particle tracking (SPT) is a robust technique to monitor single-molecule behaviors in living cells directly. By this approach, we can uncover the potential biological significance of particle dynamics by statistically characterizing individual molecular behaviors. SPT provides valuable information at the single-molecule level, that could be obscured by simple averaging that is inherent to conventional ensemble measurements. Here, we give a brief introduction to SPT including the commonly used optical implementations, fluorescence labeling strategies, and data analysis methods. We then focus on how SPT has been harnessed to decipher myocardial function. In this context, SPT has provided novel insight into the lateral diffusion of signal receptors and ion channels, the dynamic organization of cardiac nanodomains, subunit composition and stoichiometry of cardiac ion channels, myosin movement along actin filaments, the kinetic features of transcription factors involved in cardiac remodeling, and the intercellular communication by nanotubes. Finally, we speculate on the prospects and challenges of applying SPT to future questions regarding cellular cardiac physiology using SPT.
Collapse
Affiliation(s)
- Ying Li
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| | - Jing Yi
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| | - Wenjuan Liu
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| | - Yun Liu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Guangdong Province, China.
| | - Jie Liu
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| |
Collapse
|
24
|
Yadav A, Seth B, Chaturvedi RK. Brain Organoids: Tiny Mirrors of Human Neurodevelopment and Neurological Disorders. Neuroscientist 2020; 27:388-426. [PMID: 32723210 DOI: 10.1177/1073858420943192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Unravelling the complexity of the human brain is a challenging task. Nowadays, modern neurobiologists have developed 3D model systems called "brain organoids" to overcome the technical challenges in understanding human brain development and the limitations of animal models to study neurological diseases. Certainly like most model systems in neuroscience, brain organoids too have limitations, as these minuscule brains lack the complex neuronal circuitry required to begin the operational tasks of human brain. However, researchers are hopeful that future endeavors with these 3D brain tissues could provide mechanistic insights into the generation of circuit complexity as well as reproducible creation of different regions of the human brain. Herein, we have presented the contemporary state of brain organoids with special emphasis on their mode of generation and their utility in modelling neurological disorders, drug discovery, and clinical trials.
Collapse
Affiliation(s)
- Anuradha Yadav
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Brashket Seth
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
25
|
Eismann B, Krieger TG, Beneke J, Bulkescher R, Adam L, Erfle H, Herrmann C, Eils R, Conrad C. Automated 3D light-sheet screening with high spatiotemporal resolution reveals mitotic phenotypes. J Cell Sci 2020; 133:jcs245043. [PMID: 32295847 PMCID: PMC7286290 DOI: 10.1242/jcs.245043] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022] Open
Abstract
3D cell cultures enable the in vitro study of dynamic biological processes such as the cell cycle, but their use in high-throughput screens remains impractical with conventional fluorescent microscopy. Here, we present a screening workflow for the automated evaluation of mitotic phenotypes in 3D cell cultures by light-sheet microscopy. After sample preparation by a liquid handling robot, cell spheroids are imaged for 24 h in toto with a dual-view inverted selective plane illumination microscope (diSPIM) with a much improved signal-to-noise ratio, higher imaging speed, isotropic resolution and reduced light exposure compared to a spinning disc confocal microscope. A dedicated high-content image processing pipeline implements convolutional neural network-based phenotype classification. We illustrate the potential of our approach using siRNA knockdown and epigenetic modification of 28 mitotic target genes for assessing their phenotypic role in mitosis. By rendering light-sheet microscopy operational for high-throughput screening applications, this workflow enables target gene characterization or drug candidate evaluation in tissue-like 3D cell culture models.
Collapse
Affiliation(s)
- Björn Eismann
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany
| | - Teresa G Krieger
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany
- Digital Health Center, Berlin Institute of Health (BIH)/Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Jürgen Beneke
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany
- Advanced Biological Screening Facility Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany
| | - Ruben Bulkescher
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany
- Advanced Biological Screening Facility Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany
| | - Lukas Adam
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany
| | - Holger Erfle
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany
- Advanced Biological Screening Facility Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany
| | - Carl Herrmann
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Health Data Science Unit, Medical Faculty University Heidelberg and BioQuant, Heidelberg 69120, Germany
| | - Roland Eils
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany
- Digital Health Center, Berlin Institute of Health (BIH)/Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
- Department for Bioinformatics and Functional Genomics, Institute for Pharmacy and Molecular Biotechnology (IPMB) Heidelberg University, Heidelberg 69120, Germany
- Heidelberg Center for Personalized Oncology, DKFZ-HIPO, DKFZ, Heidelberg 69120, Germany
| | - Christian Conrad
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany
- Heidelberg Center for Personalized Oncology, DKFZ-HIPO, DKFZ, Heidelberg 69120, Germany
| |
Collapse
|
26
|
Favreau PF, He J, Gil DA, Deming DA, Huisken J, Skala MC. Label-free redox imaging of patient-derived organoids using selective plane illumination microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:2591-2606. [PMID: 32499946 PMCID: PMC7249841 DOI: 10.1364/boe.389164] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 05/04/2023]
Abstract
High-throughput drug screening of patient-derived organoids offers an attractive platform to determine cancer treatment efficacy. Here, selective plane illumination microscopy (SPIM) was used to determine treatment response in organoids with endogenous fluorescence from the metabolic coenzymes NAD(P)H and FAD. Rapid 3-D autofluorescence imaging of colorectal cancer organoids was achieved. A quantitative image analysis approach was developed to segment each organoid and quantify changes in endogenous fluorescence caused by treatment. Quantitative analysis of SPIM volumes confirmed the sensitivity of patient-derived organoids to standard therapies. This proof-of-principle study demonstrates that SPIM is a powerful tool for high-throughput screening of organoid treatment response.
Collapse
Affiliation(s)
| | - Jiaye He
- Morgridge Institute for Research, Madison, WI 53715, USA
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Saxony, Germany
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI 53715, USA
| | - Daniel A. Gil
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI 53715, USA
| | - Dustin A. Deming
- University of Wisconsin Carbone Cancer Center, Madison, WI 53715, USA
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin–Madison, Madison, WI 53715, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin–Madison, Madison, WI 53715, USA
- William S Middleton Memorial Veterans Hospital, Madison, WI 53715, USA
| | - Jan Huisken
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI 53715, USA
| | - Melissa C. Skala
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI 53715, USA
| |
Collapse
|
27
|
Keomanee-Dizon K, Fraser SE, Truong TV. A versatile, multi-laser twin-microscope system for light-sheet imaging. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:053703. [PMID: 32486724 PMCID: PMC7255815 DOI: 10.1063/1.5144487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/28/2020] [Indexed: 05/25/2023]
Abstract
Light-sheet microscopy offers faster imaging and reduced phototoxicity in comparison to conventional point-scanning microscopy, making it a preferred technique for imaging biological dynamics for durations of hours or days. Such extended imaging sessions pose a challenge, as it reduces the number of specimens that can be imaged in a given day. Here, we present a versatile light-sheet imaging instrument that combines two independently controlled microscope-twins, built so that they can share an ultrafast near-infrared laser and a bank of continuous-wave visible lasers, increasing the throughput and decreasing the cost. To permit a wide variety of specimens to be imaged, each microscope-twin provides flexible imaging parameters, including (i) operation in one-photon and/or two-photon excitation modes, (ii) delivery of one to three light-sheets via a trio of orthogonal excitation arms, (iii) sub-micron to micron imaging resolution, (iv) multicolor compatibility, and (v) upright (with provision for inverted) detection geometry. We offer a detailed description of the twin-microscope design to aid instrument builders who wish to construct and use similar systems. We demonstrate the instrument's versatility for biological investigation by performing fast imaging of the beating heart in an intact zebrafish embryo, deep imaging of thick patient-derived tumor organoids, and gentle whole-brain imaging of neural activity in behaving larval zebrafish.
Collapse
Affiliation(s)
- Kevin Keomanee-Dizon
- Translational Imaging Center, Dornsife College of Letters, Arts and Sciences, and Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, USA
| | - Scott E. Fraser
- Translational Imaging Center, Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Thai V. Truong
- Translational Imaging Center, Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
28
|
von Molitor E, Nürnberg E, Ertongur-Fauth T, Scholz P, Riedel K, Hafner M, Rudolf R, Cesetti T. Analysis of calcium signaling in live human Tongue cell 3D-Cultures upon tastant perfusion. Cell Calcium 2020; 87:102164. [PMID: 32014795 DOI: 10.1016/j.ceca.2020.102164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/29/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
Bridging the gap between two-dimensional cell cultures and complex in vivo tissues, three-dimensional cell culture models are of increasing interest in the fields of cell biology and pharmacology. However, present challenges hamper live cell imaging of three-dimensional cell cultures. These include (i) the stabilization of these structures under perfusion conditions, (ii) the recording of many z-planes at high spatio-temporal resolution, (iii) and the data analysis that ranges in complexity from whole specimens to single cells. Here, we addressed these issues for the time-lapse analysis of Ca2+ signaling in spheroids composed of human tongue-derived HTC-8 cells upon perfusion of gustatory substances. Live cell imaging setups for confocal and light sheet microscopy were developed that allow simple and robust spheroid stabilization and high-resolution microscopy with perfusion. Visualization of spheroids made of HTC-8 cells expressing the G-GECO fluorescent Ca2+ sensor revealed Ca2+ transients that showed similar kinetics but different amplitudes upon perfusion of bitter compounds Salicine and Saccharin. Dose-dependent responses to Saccharin required extracellular Ca2+. From the border towards the center of spheroids, compound-induced Ca2+ signals were progressively delayed and decreased in amplitude. Stimulation with ATP led to strong Ca2+ transients that were faster than those evoked by the bitter compounds and blockade of purinergic receptors with Suramin abutted the response to Saccharin, suggesting that ATP mediates a positive autocrine and paracrine feedback. Imaging of ATP-induced Ca2+ transients with light sheet microscopy allowed acquisition over a z-depth of 100 μm without losing spatial and temporal resolution. In summary, the presented approaches permit the study of fast cellular signaling in three-dimensional cultures upon compound perfusion.
Collapse
Affiliation(s)
- Elena von Molitor
- Institute of Molecular and Cell Biology, Hochschule Mannheim, 68163 Mannheim, Germany
| | - Elina Nürnberg
- Institute of Molecular and Cell Biology, Hochschule Mannheim, 68163 Mannheim, Germany
| | | | | | | | - Mathias Hafner
- Institute of Molecular and Cell Biology, Hochschule Mannheim, 68163 Mannheim, Germany.
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Hochschule Mannheim, 68163 Mannheim, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany.
| | - Tiziana Cesetti
- Institute of Molecular and Cell Biology, Hochschule Mannheim, 68163 Mannheim, Germany
| |
Collapse
|
29
|
Ultra-thin fluorocarbon foils optimise multiscale imaging of three-dimensional native and optically cleared specimens. Sci Rep 2019; 9:17292. [PMID: 31754183 PMCID: PMC6872575 DOI: 10.1038/s41598-019-53380-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/31/2019] [Indexed: 01/09/2023] Open
Abstract
In three-dimensional light microscopy, the heterogeneity of the optical density in a specimen ultimately limits the achievable penetration depth and hence the three-dimensional resolution. The most direct approach to reduce aberrations, improve the contrast and achieve an optimal resolution is to minimise the impact of changes of the refractive index along an optical path. Many implementations of light sheet fluorescence microscopy operate with a large chamber filled with an aqueous immersion medium and a further inner container with the specimen embedded in a possibly entirely different non-aqueous medium. In order to minimise the impact of the latter on the optical quality of the images, we use multi-facetted cuvettes fabricated from vacuum-formed ultra-thin fluorocarbon (FEP) foils. The ultra-thin FEP-foil cuvettes have a wall thickness of about 10–12 µm. They are impermeable to liquids, but not to gases, inert, durable, mechanically stable and flexible. Importantly, the usually fragile specimen can remain in the same cuvette from seeding to fixation, clearing and observation, without the need to remove or remount it during any of these steps. We confirm the improved imaging performance of ultra-thin FEP-foil cuvettes with excellent quality images of whole organs such us mouse oocytes, of thick tissue sections from mouse brain and kidney as well as of dense pancreas and liver organoid clusters. Our ultra-thin FEP-foil cuvettes outperform many other sample-mounting techniques in terms of a full separation of the specimen from the immersion medium, compatibility with aqueous and organic clearing media, quick specimen mounting without hydrogel embedding and their applicability for multiple-view imaging and automated image segmentation. Additionally, we show that ultra-thin FEP foil cuvettes are suitable for seeding and growing organoids over a time period of at least ten days. The new cuvettes allow the fixation and staining of specimens inside the holder, preserving the delicate morphology of e.g. fragile, mono-layered three-dimensional organoids.
Collapse
|
30
|
Light sheet fluorescence microscopy versus confocal microscopy: in quest of a suitable tool to assess drug and nanomedicine penetration into multicellular tumor spheroids. Eur J Pharm Biopharm 2019; 142:195-203. [PMID: 31228557 DOI: 10.1016/j.ejpb.2019.06.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/23/2019] [Accepted: 06/17/2019] [Indexed: 02/01/2023]
Abstract
We recently constructed a multicellular spheroid model of pancreatic tumor based on a triple co-culture of cancer cells, fibroblasts and endothelial cells and characterized by the presence of fibronectin, an important component of the tumor extracellular matrix. By combining cancer cells and stromal components, this model recreates in vitro the three-dimensional (3D) architecture of solid tumors. In this study, we used these hetero-type spheroids as a tool to assess the penetration of doxorubicin (used as a model drug) through the whole tumor mass either in a free form or loaded into polymer nanoparticles (NPs), and we investigated whether microscopy images, acquired by Confocal Laser Scanning Microscopy (CLSM) and Light Sheet Fluorescence Microscopy (LSFM), would be best to provide reliable information on this process. Results clearly demonstrated that CLSM was not suitable to accurately monitor the diffusion of small molecules such as the doxorubicin. Indeed, it only allowed to scan a layer of 100 µm depth and no information on deeper layers could be available because of a progressive loss of the fluorescence signal. On the contrary, a complete 3D tomography of the hetero-type multicellular tumor spheroids (MCTS) was obtained by LSFM and multi-view image fusion which revealed that the fluorescent molecule was able to reach the core of spheroids as large as 1 mm in diameter. However, no doxorubicin-loaded polymer nanoparticles were detected in the spheroids, highlighting the challenge of nanomedicine delivery through biological barriers. Overall, the combination of hetero-type MCTS and LSFM allowed to carry out a highly informative microscopic assessment and represents a suitable approach to precisely follow up the drug penetration in tumors. Accordingly, it could provide useful support in the preclinical investigation and optimization of nanoscale systems for drug delivery to solid tumors.
Collapse
|
31
|
Laroche T, Burri O, Dubey LK, Seitz A. Development of Sample-Adaptable Holders for Lightsheet Microscopy. Front Neuroanat 2019; 13:26. [PMID: 30906253 PMCID: PMC6419145 DOI: 10.3389/fnana.2019.00026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/14/2019] [Indexed: 12/29/2022] Open
Abstract
Multi-user core microscopy facilities are often faced with the challenge to adapt or modify existing instruments. This is essential in order to fulfill the requirements of the user community, who wants to image a wide range of model organisms with varying stains and sample thicknesses. In recent years, lightsheet microscopy has turned into an invaluable tool for both live and cleared sample imaging of many different specimens. This brought up new challenges in terms of sample mounting as the classical approach of attachment onto a coverslip cannot be universally applied. Here we describe the development of a diversified holder which extends the range of samples which can be imaged on a Zeiss Lightsheet microscope Z1. We focus on mounting strategies of cleared specimens; however, the holder and mounting strategy can be applied to live specimens too. The proposed methodology provides very high flexibility along with numerous possibilities for adaptation based on imaging specimen size, condition and available clearing reagents. Moreover, the described mounting strategies can be applied to other light sheet microscopes that can mount 1 mL syringes.
Collapse
Affiliation(s)
- Thierry Laroche
- Bioimaging and Optics Platform, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Olivier Burri
- Bioimaging and Optics Platform, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lalit Kumar Dubey
- Faculty of Biology and Medicine, Department of Biochemistry, University of Lausanne, Lausanne, Switzerland
| | - Arne Seitz
- Bioimaging and Optics Platform, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
32
|
Bai C, Liu C, Jia H, Peng T, Min J, Lei M, Yu X, Yao B. Compressed Blind Deconvolution and Denoising for Complementary Beam Subtraction Light-Sheet Fluorescence Microscopy. IEEE Trans Biomed Eng 2019; 66:2979-2989. [PMID: 30794159 DOI: 10.1109/tbme.2019.2899583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The side-lobes of a Bessel beam (BB) create a severe out-of-focus background in scanning light-sheet fluorescence microscopy, thereby extremely limiting the axial resolution. The complementary beam subtraction (CBS) method can significantly reduce the out-of-focus background by double scanning a BB and its complementary beam. However, the blurring and noise caused by the system instability during the double scanning and subtraction operations degrade the image quality significantly. Therefore, we propose a compressed blind deconvolution and denoising (CBDD) method that solves this problem. METHODS We use a unified formulation that comprehensively takes advantage of multiple compressed sensing reconstructions and blind sparse representation. RESULTS The simulations and experiments were performed using the microbeads and model organisms to verify the effectiveness of the proposed method. Compared with the CBS light-sheet method, the proposed CBDD algorithm achieved the gain improvement in the axial and lateral resolution of about 1.81 and 2.22 times, respectively, while the average signal-to-noise ratio (SNR) was increased by about 3 dB. CONCLUSION Accordingly, the proposed method can suppress the noise level, enhance the SNR, and recover the degraded resolution simultaneously. SIGNIFICANCE The obtained results demonstrate the proposed CBDD algorithm is well suited to improve the imaging performance of the CBS light-sheet fluorescence microscopy.
Collapse
|
33
|
Toolbox for In Vivo Imaging of Host-Parasite Interactions at Multiple Scales. Trends Parasitol 2019; 35:193-212. [PMID: 30745251 DOI: 10.1016/j.pt.2019.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/19/2022]
Abstract
Animal models have for long been pivotal for parasitology research. Over the last few years, techniques such as intravital, optoacoustic and magnetic resonance imaging, optical projection tomography, and selective plane illumination microscopy developed promising potential for gaining insights into host-pathogen interactions by allowing different visualization forms in vivo and ex vivo. Advances including increased resolution, penetration depth, and acquisition speed, together with more complex image analysis methods, facilitate tackling biological problems previously impossible to study and/or quantify. Here we discuss advances and challenges in the in vivo imaging toolbox, which hold promising potential for the field of parasitology.
Collapse
|
34
|
Rosowski EE, Knox BP, Archambault LS, Huttenlocher A, Keller NP, Wheeler RT, Davis JM. The Zebrafish as a Model Host for Invasive Fungal Infections. J Fungi (Basel) 2018; 4:jof4040136. [PMID: 30551557 PMCID: PMC6308935 DOI: 10.3390/jof4040136] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/14/2022] Open
Abstract
The zebrafish has become a widely accepted model host for studies of infectious disease, including fungal infections. The species is genetically tractable, and the larvae are transparent and amenable to prolonged in vivo imaging and small molecule screening. The aim of this review is to provide a thorough introduction into the published studies of fungal infection in the zebrafish and the specific ways in which this model has benefited the field. In doing so, we hope to provide potential new zebrafish researchers with a snapshot of the current toolbox and prior results, while illustrating how the model has been used well and where the unfulfilled potential of this model can be found.
Collapse
Affiliation(s)
- Emily E Rosowski
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
| | - Benjamin P Knox
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
| | - Linda S Archambault
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA.
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53792, USA.
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Robert T Wheeler
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA.
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA.
| | - J Muse Davis
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
35
|
Chatterjee K, Pratiwi FW, Wu FCM, Chen P, Chen BC. Recent Progress in Light Sheet Microscopy for Biological Applications. APPLIED SPECTROSCOPY 2018; 72:1137-1169. [PMID: 29926744 DOI: 10.1177/0003702818778851] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The introduction of light sheet fluorescence microscopy (LSFM) has overcome the challenges in conventional optical microscopy. Among the recent breakthroughs in fluorescence microscopy, LSFM had been proven to provide a high three-dimensional spatial resolution, high signal-to-noise ratio, fast imaging acquisition rate, and minuscule levels of phototoxic and photodamage effects. The aforementioned auspicious properties are crucial in the biomedical and clinical research fields, covering a broad range of applications: from the super-resolution imaging of intracellular dynamics in a single cell to the high spatiotemporal resolution imaging of developmental dynamics in an entirely large organism. In this review, we provided a systematic outline of the historical development of LSFM, detailed discussion on the variants and improvements of LSFM, and delineation on the most recent technological advancements of LSFM and its potential applications in single molecule/particle detection, single-molecule super-resolution imaging, imaging intracellular dynamics of a single cell, multicellular imaging: cell-cell and cell-matrix interactions, plant developmental biology, and brain imaging and developmental biology.
Collapse
Affiliation(s)
- Krishnendu Chatterjee
- 1 Nanoscience and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- 2 Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- 3 Department of Engineering and System Science, National Tsing-Hua University, Hsinchu, Taiwan
| | - Feby Wijaya Pratiwi
- 1 Nanoscience and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- 2 Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- 4 Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | | | - Peilin Chen
- 2 Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Bi-Chang Chen
- 2 Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
36
|
Held M, Santeramo I, Wilm B, Murray P, Lévy R. Ex vivo live cell tracking in kidney organoids using light sheet fluorescence microscopy. PLoS One 2018; 13:e0199918. [PMID: 30048451 PMCID: PMC6062017 DOI: 10.1371/journal.pone.0199918] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/16/2018] [Indexed: 12/28/2022] Open
Abstract
Screening cells for their differentiation potential requires a combination of tissue culture models and imaging methods that allow for long-term tracking of the location and function of cells. Embryonic kidney re-aggregation in vitro assays have been established which allow for the monitoring of organotypic cell behaviour in re-aggregated and chimeric renal organoids. However, evaluation of cell integration is hampered by the high photonic load of standard fluorescence microscopy which poses challenges for imaging three-dimensional systems in real-time over a time course. Therefore, we employed light sheet microscopy, a technique that vastly reduces photobleaching and phototoxic effects. We have also developed a new method for culturing the re-aggregates which involves immersed culture, generating organoids which more closely reflect development in vivo. To facilitate imaging from various angles, we embedded the organoids in a freely rotatable hydrogel cylinder. Endpoint fixing and staining were performed to provide additional biomolecular information. We succeeded in imaging labelled cells within re-aggregated kidney organoids over 15 hours and tracking their fate while simultaneously monitoring the development of organotypic morphological structures. Our results show that Wt1-expressing embryonic kidney cells obtained from transgenic mice could integrate into re-aggregated chimeric kidney organoids and contribute to developing nephrons. Furthermore, the nascent proximal tubules that formed in the re-aggregated tissues using the new culture method displayed secretory function, as evidenced by their ability to secrete an organic anion mimic into the tubular lumen.
Collapse
Affiliation(s)
- Marie Held
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Ilaria Santeramo
- Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Bettina Wilm
- Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Patricia Murray
- Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Raphaël Lévy
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
37
|
Elisa Z, Toon B, De Smedt SC, Katrien R, Kristiaan N, Kevin B. Technical implementations of light sheet microscopy. Microsc Res Tech 2018; 81:941-958. [PMID: 29322581 DOI: 10.1002/jemt.22981] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/14/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022]
Abstract
Fluorescence-based microscopy is among the most successful methods in biological studies. It played a critical role in the visualization of subcellular structures and in the analysis of complex cellular processes, and it is nowadays commonly employed in genetic and drug screenings. Among the fluorescence-based microscopy techniques, light sheet fluorescence microscopy (LSFM) has shown a quite interesting set of benefits. The technique combines the speed of epi-fluorescence acquisition with the optical sectioning capability typical of confocal microscopes. Its unique configuration allows the excitation of only a thin plane of the sample, thus fast, high resolution imaging deep inside tissues is nowadays achievable. The low peak intensity with which the sample is illuminated diminishes phototoxic effects and decreases photobleaching of fluorophores, ensuring data collection for days with minimal adverse consequences on the sample. It is no surprise that LSFM applications have raised in just few years and the technique has been applied to study a wide variety of samples, from whole organism, to tissues, to cell clusters, and single cells. As a consequence, in recent years numerous set-ups have been developed, each one optimized for the type of sample in use and the requirements of the question at hand. Hereby, we aim to review the most advanced LSFM implementations to assist new LSFM users in the choice of the LSFM set-up that suits their needs best. We also focus on new commercial microscopes and "do-it-yourself" strategies; likewise we review recent designs that allow a swift integration of LSFM on existing microscopes.
Collapse
Affiliation(s)
- Zagato Elisa
- Laboratory of General Biochemistry and Physical Pharmacy, Center for Nano- and Biophotonics, Ghent University, Belgium
| | - Brans Toon
- Laboratory of General Biochemistry and Physical Pharmacy, Center for Nano- and Biophotonics, Ghent University, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Belgium
| | - Remaut Katrien
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Belgium
| | - Neyts Kristiaan
- Liquid Crystals and Photonics Group, Center for Nano- and Biophotonics, Ghent University, Belgium
| | - Braeckmans Kevin
- Laboratory of General Biochemistry and Physical Pharmacy, Center for Nano- and Biophotonics, Ghent University, Belgium
| |
Collapse
|
38
|
Zeller-Plumhoff B, Roose T, Clough GF, Schneider P. Image-based modelling of skeletal muscle oxygenation. J R Soc Interface 2017; 14:rsif.2016.0992. [PMID: 28202595 DOI: 10.1098/rsif.2016.0992] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/25/2017] [Indexed: 12/12/2022] Open
Abstract
The supply of oxygen in sufficient quantity is vital for the correct functioning of all organs in the human body, in particular for skeletal muscle during exercise. Disease is often associated with both an inhibition of the microvascular supply capability and is thought to relate to changes in the structure of blood vessel networks. Different methods exist to investigate the influence of the microvascular structure on tissue oxygenation, varying over a range of application areas, i.e. biological in vivo and in vitro experiments, imaging and mathematical modelling. Ideally, all of these methods should be combined within the same framework in order to fully understand the processes involved. This review discusses the mathematical models of skeletal muscle oxygenation currently available that are based upon images taken of the muscle microvasculature in vivo and ex vivo Imaging systems suitable for capturing the blood vessel networks are discussed and respective contrasting methods presented. The review further informs the association between anatomical characteristics in health and disease. With this review we give the reader a tool to understand and establish the workflow of developing an image-based model of skeletal muscle oxygenation. Finally, we give an outlook for improvements needed for measurements and imaging techniques to adequately investigate the microvascular capability for oxygen exchange.
Collapse
Affiliation(s)
- B Zeller-Plumhoff
- Helmholtz-Zentrum für Material- und Küstenforschung, Geesthacht, Germany .,Bioengineering Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| | - T Roose
- Bioengineering Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| | - G F Clough
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - P Schneider
- Bioengineering Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| |
Collapse
|
39
|
Huch M, Knoblich JA, Lutolf MP, Martinez-Arias A. The hope and the hype of organoid research. Development 2017; 144:938-941. [PMID: 28292837 DOI: 10.1242/dev.150201] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The recent increase in organoid research has been met with great enthusiasm, as well as expectation, from the scientific community and the public alike. There is no doubt that this technology opens up a world of possibilities for scientific discovery in developmental biology as well as in translational research, but whether organoids can truly live up to this challenge is, for some, still an open question. In this Spotlight article, Meritxell Huch and Juergen Knoblich begin by discussing the exciting promise of organoid technology and give concrete examples of how this promise is starting to be realised. In the second part, Matthias Lutolf and Alfonso Martinez-Arias offer a careful and considered view of the state of the organoid field and its current limitations, and lay out the approach they feel is necessary to maximise the potential of organoid technology.
Collapse
Affiliation(s)
- Meritxell Huch
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK .,Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Juergen A Knoblich
- IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna 1030, Austria
| | - Matthias P Lutolf
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland .,Institute of Chemical Sciences and Engineering, School of Basic Sciences, EPFL, Lausanne CH-1015, Switzerland
| | | |
Collapse
|
40
|
Duchi S, Piccinini F, Pierini M, Bevilacqua A, Torre ML, Lucarelli E, Santi S. A new holistic 3D non-invasive analysis of cellular distribution and motility on fibroin-alginate microcarriers using light sheet fluorescent microscopy. PLoS One 2017; 12:e0183336. [PMID: 28817694 PMCID: PMC5560673 DOI: 10.1371/journal.pone.0183336] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/02/2017] [Indexed: 12/12/2022] Open
Abstract
Cell interaction with biomaterials is one of the keystones to developing medical devices for tissue engineering applications. Biomaterials are the scaffolds that give three-dimensional support to the cells, and are vectors that deliver the cells to the injured tissue requiring repair. Features of biomaterials can influence the behaviour of the cells and consequently the efficacy of the tissue-engineered product. The adhesion, distribution and motility of the seeded cells onto the scaffold represent key aspects, and must be evaluated in vitro during the product development, especially when the efficacy of a specific tissue-engineered product depends on viable and functional cell loading. In this work, we propose a non-invasive and non-destructive imaging analysis for investigating motility, viability and distribution of Mesenchymal Stem Cells (MSCs) on silk fibroin-based alginate microcarriers, to test the adhesion capacity of the fibroin coating onto alginate which is known to be unsuitable for cell adhesion. However, in depth characterization of the biomaterial is beyond the scope of this paper. Scaffold-loaded MSCs were stained with Calcein-AM and Ethidium homodimer-1 to detect live and dead cells, respectively, and counterstained with Hoechst to label cell nuclei. Time-lapse Light Sheet Fluorescent Microscopy (LSFM) was then used to produce three-dimensional images of the entire cells-loaded fibroin/alginate microcarriers. In order to quantitatively track the cell motility over time, we also developed an open source user friendly software tool called Fluorescent Cell Tracker in Three-Dimensions (F-Tracker3D). Combining LSFM with F-Tracker3D we were able for the first time to assess the distribution and motility of stem cells in a non-invasive, non-destructive, quantitative, and three-dimensional analysis of the entire surface of the cell-loaded scaffold. We therefore propose this imaging technique as an innovative holistic tool for monitoring cell-biomaterial interactions, and as a tool for the design, fabrication and functionalization of a scaffold as a medical device.
Collapse
Affiliation(s)
- Serena Duchi
- Osteoarticolar Regeneration Laboratory, Rizzoli Orthopaedic Institute, Bologna, Italy
- Department of Surgery, St Vincent’s Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Filippo Piccinini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) S.r.l., IRCCS, Meldola (FC), Italy
| | - Michela Pierini
- Osteoarticolar Regeneration Laboratory, Rizzoli Orthopaedic Institute, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Alessandro Bevilacqua
- Advanced Research Center on Electronic Systems “Ercole De Castro” (ARCES), Alma Mater Studiorum University of Bologna, Bologna, Italy
- Department of Computer Science and Engineering (DISI), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Maria Luisa Torre
- Cell Delivery System Lab, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Enrico Lucarelli
- Osteoarticolar Regeneration Laboratory, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Spartaco Santi
- Institute of Molecular Genetics (CNR), Bologna, Italy
- SC Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopaedic Institute, Bologna, Italy
| |
Collapse
|
41
|
Strobl F, Schmitz A, Stelzer EHK. Improving your four-dimensional image: traveling through a decade of light-sheet-based fluorescence microscopy research. Nat Protoc 2017; 12:1103-1109. [DOI: 10.1038/nprot.2017.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Affiliation(s)
- Lucas Armbrecht
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
43
|
Pampaloni F, Knuppertz L, Hamann A, Osiewacz HD, Stelzer EHK. Three-Dimensional Live Imaging of Filamentous Fungi with Light Sheet-Based Fluorescence Microscopy (LSFM). Methods Mol Biol 2017; 1563:19-31. [PMID: 28324599 DOI: 10.1007/978-1-4939-6810-7_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We describe a method for the three-dimensional live imaging of filamentous fungi with light sheet-based fluorescence microscopy (LSFM). LSFM provides completely new opportunities to investigate the biology of fungal cells and other microorganisms with high spatial and temporal resolution. As an example, we study the established aging model Podospora anserina. The protocol explains the mounting of the live fungi for the light sheet imaging, the imaging procedure and illustrates basic image processing of data.
Collapse
Affiliation(s)
- Francesco Pampaloni
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt am Main, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany.
| | - Laura Knuppertz
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, Department of Biosciences, Goethe Universität Frankfurt am Main, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Andrea Hamann
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, Department of Biosciences, Goethe Universität Frankfurt am Main, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Heinz D Osiewacz
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, Department of Biosciences, Goethe Universität Frankfurt am Main, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Ernst H K Stelzer
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt am Main, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
| |
Collapse
|
44
|
Greiss F, Deligiannaki M, Jung C, Gaul U, Braun D. Single-Molecule Imaging in Living Drosophila Embryos with Reflected Light-Sheet Microscopy. Biophys J 2016; 110:939-46. [PMID: 26910430 DOI: 10.1016/j.bpj.2015.12.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/07/2015] [Accepted: 12/28/2015] [Indexed: 02/06/2023] Open
Abstract
In multicellular organisms, single-fluorophore imaging is obstructed by high background. To achieve a signal/noise ratio conducive to single-molecule imaging, we adapted reflected light-sheet microscopy (RLSM) to image highly opaque late-stage Drosophila embryos. Alignment steps were modified by means of commercially available microprisms attached to standard coverslips. We imaged a member of the septate-junction complex that was used to outline the three-dimensional epidermal structures of Drosophila embryos. Furthermore, we show freely diffusing single 10 kDa Dextran molecules conjugated to one to two Alexa647 dyes inside living embryos. We demonstrate that Dextran diffuses quickly (∼6.4 μm(2)/s) in free space and obeys directional movement within the epidermal tissue (∼0.1 μm(2)/s). Our single-particle-tracking results are supplemented by imaging the endosomal marker Rab5-GFP and by earlier reports on the spreading of morphogens and vesicles in multicellular organisms. The single-molecule results suggest that RLSM will be helpful in studying single molecules or complexes in multicellular organisms.
Collapse
Affiliation(s)
- Ferdinand Greiss
- System Biophysics, Department of Physics, Ludwig Maximilians University, Munich, Germany
| | - Myrto Deligiannaki
- Gene Center, Department of Biochemistry, Center of Protein Science CIPSM, Ludwig Maximilians University, Munich, Germany
| | - Christophe Jung
- Gene Center, Department of Biochemistry, Center of Protein Science CIPSM, Ludwig Maximilians University, Munich, Germany
| | - Ulrike Gaul
- Gene Center, Department of Biochemistry, Center of Protein Science CIPSM, Ludwig Maximilians University, Munich, Germany
| | - Dieter Braun
- System Biophysics, Department of Physics, Ludwig Maximilians University, Munich, Germany.
| |
Collapse
|
45
|
Feuchtinger A, Walch A, Dobosz M. Deep tissue imaging: a review from a preclinical cancer research perspective. Histochem Cell Biol 2016; 146:781-806. [DOI: 10.1007/s00418-016-1495-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2016] [Indexed: 10/20/2022]
|
46
|
Daetwyler S, Huisken J. Fast Fluorescence Microscopy with Light Sheets. THE BIOLOGICAL BULLETIN 2016; 231:14-25. [PMID: 27638692 DOI: 10.1086/689588] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In light sheet microscopy, optical sectioning by selective fluorescence excitation with a sheet of light is combined with fast full-frame acquisition. This illumination scheme provides minimal photobleaching and phototoxicity. Complemented with remote focusing and multi-view acquisition, light sheet microscopy is the method of choice for acquisition of very fast biological processes, large samples, and high-throughput applications in areas such as neuroscience, plant biology, and developmental biology. This review explains why light sheet microscopes are much faster and gentler than other established fluorescence microscopy techniques. New volumetric imaging schemes and highlights of selected biological applications are also discussed.
Collapse
Affiliation(s)
- Stephan Daetwyler
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Jan Huisken
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| |
Collapse
|
47
|
Rieckher M. Light Sheet Microscopy to Measure Protein Dynamics. J Cell Physiol 2016; 232:27-35. [DOI: 10.1002/jcp.25451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/07/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Matthias Rieckher
- Institute for Genome Stability in Ageing and Disease; Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne; Cologne Germany
| |
Collapse
|
48
|
Paiè P, Bragheri F, Bassi A, Osellame R. Selective plane illumination microscopy on a chip. LAB ON A CHIP 2016; 16:1556-60. [PMID: 27030116 DOI: 10.1039/c6lc00084c] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Selective plane illumination microscopy can image biological samples at a high spatiotemporal resolution. Complex sample preparation and system alignment normally limit the throughput of the method. Using femtosecond laser micromachining, we created an integrated optofluidic device that allows obtaining continuous flow imaging, three-dimensional reconstruction and high-throughput analysis of large multicellular spheroids at a subcellular resolution.
Collapse
Affiliation(s)
- Petra Paiè
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy. and Istituto di Fotonica e Nanotecnologie, CNR, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Francesca Bragheri
- Istituto di Fotonica e Nanotecnologie, CNR, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Andrea Bassi
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | - Roberto Osellame
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy. and Istituto di Fotonica e Nanotecnologie, CNR, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
49
|
Icha J, Schmied C, Sidhaye J, Tomancak P, Preibisch S, Norden C. Using Light Sheet Fluorescence Microscopy to Image Zebrafish Eye Development. J Vis Exp 2016:e53966. [PMID: 27167079 PMCID: PMC4941907 DOI: 10.3791/53966] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Light sheet fluorescence microscopy (LSFM) is gaining more and more popularity as a method to image embryonic development. The main advantages of LSFM compared to confocal systems are its low phototoxicity, gentle mounting strategies, fast acquisition with high signal to noise ratio and the possibility of imaging samples from various angles (views) for long periods of time. Imaging from multiple views unleashes the full potential of LSFM, but at the same time it can create terabyte-sized datasets. Processing such datasets is the biggest challenge of using LSFM. In this protocol we outline some solutions to this problem. Until recently, LSFM was mostly performed in laboratories that had the expertise to build and operate their own light sheet microscopes. However, in the last three years several commercial implementations of LSFM became available, which are multipurpose and easy to use for any developmental biologist. This article is primarily directed to those researchers, who are not LSFM technology developers, but want to employ LSFM as a tool to answer specific developmental biology questions. Here, we use imaging of zebrafish eye development as an example to introduce the reader to LSFM technology and we demonstrate applications of LSFM across multiple spatial and temporal scales. This article describes a complete experimental protocol starting with the mounting of zebrafish embryos for LSFM. We then outline the options for imaging using the commercially available light sheet microscope. Importantly, we also explain a pipeline for subsequent registration and fusion of multiview datasets using an open source solution implemented as a Fiji plugin. While this protocol focuses on imaging the developing zebrafish eye and processing data from a particular imaging setup, most of the insights and troubleshooting suggestions presented here are of general use and the protocol can be adapted to a variety of light sheet microscopy experiments.
Collapse
Affiliation(s)
- Jaroslav Icha
- Max Planck Institute of Molecular Cell Biology and Genetics;
| | | | | | - Pavel Tomancak
- Max Planck Institute of Molecular Cell Biology and Genetics
| | - Stephan Preibisch
- Max Planck Institute of Molecular Cell Biology and Genetics; HHMI Janelia Research Campus; Berlin Institute of Medical Systems Biology of the Max Delbrück Center
| | - Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics;
| |
Collapse
|
50
|
Follain G, Mercier L, Osmani N, Harlepp S, Goetz JG. Seeing is believing: multi-scale spatio-temporal imaging towards in vivo cell biology. J Cell Sci 2016; 130:23-38. [DOI: 10.1242/jcs.189001] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
ABSTRACT
Life is driven by a set of biological events that are naturally dynamic and tightly orchestrated from the single molecule to entire organisms. Although biochemistry and molecular biology have been essential in deciphering signaling at a cellular and organismal level, biological imaging has been instrumental for unraveling life processes across multiple scales. Imaging methods have considerably improved over the past decades and now allow to grasp the inner workings of proteins, organelles, cells, organs and whole organisms. Not only do they allow us to visualize these events in their most-relevant context but also to accurately quantify underlying biomechanical features and, so, provide essential information for their understanding. In this Commentary, we review a palette of imaging (and biophysical) methods that are available to the scientific community for elucidating a wide array of biological events. We cover the most-recent developments in intravital imaging, light-sheet microscopy, super-resolution imaging, and correlative light and electron microscopy. In addition, we illustrate how these technologies have led to important insights in cell biology, from the molecular to the whole-organism resolution. Altogether, this review offers a snapshot of the current and state-of-the-art imaging methods that will contribute to the understanding of life and disease.
Collapse
Affiliation(s)
- Gautier Follain
- Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Inserm U1109, MN3T, Strasbourg F-67200, France
- Université de Strasbourg, Strasbourg F-67000, France
- LabEx Medalis, Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg F-67000, France
| | - Luc Mercier
- Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Inserm U1109, MN3T, Strasbourg F-67200, France
- Université de Strasbourg, Strasbourg F-67000, France
- LabEx Medalis, Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg F-67000, France
| | - Naël Osmani
- Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Inserm U1109, MN3T, Strasbourg F-67200, France
- Université de Strasbourg, Strasbourg F-67000, France
- LabEx Medalis, Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg F-67000, France
| | - Sébastien Harlepp
- Université de Strasbourg, Strasbourg F-67000, France
- DON: Optique ultrarapide et nanophotonique, IPCMS UMR7504, Strasbourg 67000, France
- LabEx NIE, Université de Strasbourg, Strasbourg F-67000, France
| | - Jacky G. Goetz
- Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Inserm U1109, MN3T, Strasbourg F-67200, France
- Université de Strasbourg, Strasbourg F-67000, France
- LabEx Medalis, Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg F-67000, France
| |
Collapse
|