1
|
Chen X, Lin Y, Zhang Z, Tang Y, Ye P, Dai W, Zhang W, Liu H, Peng G, Huang S, Qiu J, Guo W, Zhu X, Wu Z, Kuang Y, Xu P, Zhou M. CHCHD2 Thr61Ile mutation impairs F1F0-ATPase assembly in in vitro and in vivo models of Parkinson's disease. Neural Regen Res 2024; 19:196-204. [PMID: 37488867 PMCID: PMC10479855 DOI: 10.4103/1673-5374.378010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 03/08/2023] [Accepted: 04/17/2023] [Indexed: 07/26/2023] Open
Abstract
Mitochondrial dysfunction is a significant pathological alteration that occurs in Parkinson's disease (PD), and the Thr61Ile (T61I) mutation in coiled-coil helix coiled-coil helix domain containing 2 (CHCHD2), a crucial mitochondrial protein, has been reported to cause Parkinson's disease. F1F0-ATPase participates in the synthesis of cellular adenosine triphosphate (ATP) and plays a central role in mitochondrial energy metabolism. However, the specific roles of wild-type (WT) CHCHD2 and T61I-mutant CHCHD2 in regulating F1F0-ATPase activity in Parkinson's disease, as well as whether CHCHD2 or CHCHD2 T61I affects mitochondrial function through regulating F1F0-ATPase activity, remain unclear. Therefore, in this study, we expressed WT CHCHD2 and T61I-mutant CHCHD2 in an MPP+-induced SH-SY5Y cell model of PD. We found that CHCHD2 protected mitochondria from developing MPP+-induced dysfunction. Under normal conditions, overexpression of WT CHCHD2 promoted F1F0-ATPase assembly, while T61I-mutant CHCHD2 appeared to have lost the ability to regulate F1F0-ATPase assembly. In addition, mass spectrometry and immunoprecipitation showed that there was an interaction between CHCHD2 and F1F0-ATPase. Three weeks after transfection with AAV-CHCHD2 T61I, we intraperitoneally injected 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine into mice to establish an animal model of chronic Parkinson's disease and found that exogenous expression of the mutant protein worsened the behavioral deficits and dopaminergic neurodegeneration seen in this model. These findings suggest that WT CHCHD2 can alleviate mitochondrial dysfunction in PD by maintaining F1F0-ATPase structure and function.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yuwan Lin
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Zhiling Zhang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yuting Tang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Panghai Ye
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Wei Dai
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Wenlong Zhang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Hanqun Liu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Guoyou Peng
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Shuxuan Huang
- Department of Neurology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiewen Qiu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xiaoqin Zhu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Zhuohua Wu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yaoyun Kuang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Miaomiao Zhou
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Xu R, Zhou S, Song J, Zhong H, Zhu T, Gong Y, Zhou Y, Bian Y. Comparative Transcriptome Analysis Provides Insights Into the Mechanism by Which 2,4-Dichlorophenoxyacetic Acid Improves Thermotolerance in Lentinula edodes. Front Microbiol 2022; 13:910255. [PMID: 35801117 PMCID: PMC9253865 DOI: 10.3389/fmicb.2022.910255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
As the widest cultivated edible mushroom worldwide, Lentinula edodes suffers serious yield and quality losses from heat stress during growth and development, and in our previous study, exogenous 2,4-Dichlorophenoxyacetic acid (2,4-D) was found to improve the thermotolerance of L. edodes strain YS3357, but the molecular mechanism remains unclear. Here, we explored the potential protective mechanism of exogenous 2,4-D against heat stress by transcriptome analysis. 2,4-D possible improve the thermotolerance of L. edodes through regulating antioxidant genes, transcription factors, energy-provision system, membrane fluidity, and cell wall remodeling. Furthermore, 2,4-D was also found to regulate the saturation levels of fatty acids and ATP content in L. edodes mycelium under heat stress. This study proposed a regulatory network of 2,4-D in regulating L. edodes response to heat stress, providing a theoretical basis for improving L. edodes thermotolerance, and facilitating the understanding of the molecular mechanism of exogenous hormones in alleviating abiotic stress damage to macrofungi.
Collapse
|
3
|
Souza AFP, Woyames J, Miranda RA, Oliveira LS, Caetano B, Martins IL, Souza MS, Andrade CBV, Bento-Bernardes T, Bloise FF, Fortunato RS, Trevenzoli IH, Souza LL, Pazos-Moura CC. Maternal Isocaloric High-Fat Diet Induces Liver Mitochondria Maladaptations and Homeostatic Disturbances Intensifying Mitochondria Damage in Response to Fructose Intake in Adult Male Rat Offspring. Mol Nutr Food Res 2022; 66:e2100514. [PMID: 35175665 DOI: 10.1002/mnfr.202100514] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/04/2022] [Indexed: 11/10/2022]
Abstract
SCOPE Perinatal maternal obesity and excessive fructose consumption have been associated with liver metabolic diseases. We investigated whether moderate maternal high-fat diet affects the liver mitochondria responses to fructose intake in adult offspring. METHODS AND RESULTS Wistar female rats received a standard diet (mSTD) or high-fat diet (mHFD) (9% and 28.6% fat, respectively), before mating until the end of lactation. Male offspring were fed standard diet from weaning to adulthood and received water or fructose-drinking water (15%) from 120 to 150 days old. Fructose induced liver mitochondrial ultrastructural alterations with higher intensity in mHFD offspring, accompanied by reduced autophagy markers. Isolated mitochondria respirometry showed unaltered ATP-coupled oxygen consumption with increased Atp5f1b mRNA only in mHFD offspring. Fructose increased basal respiration and encoding complex I-III mRNA, only in mSTD offspring. Uncoupled respiration was lower in mHFD mitochondria that were unable to exhibit fructose-induced increase Ucp2 mRNA. Fructose decreased antioxidative defense markers, increased unfolded protein response and insulin resistance only in mHFD offspring without fructose-induced hepatic lipid accumulation. CONCLUSION Mitochondrial dysfunction and homeostatic disturbances in response to fructose are early events evidencing the higher risk of fructose damage in the liver of adult offspring from dams fed an isocaloric moderate high-fat diet. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Aline F P Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Juliana Woyames
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Rosiane A Miranda
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Lorraine S Oliveira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Bruna Caetano
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Isabela L Martins
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Manuella S Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Cherley B V Andrade
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Thais Bento-Bernardes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Flavia F Bloise
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Rodrigo S Fortunato
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Isis H Trevenzoli
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Luana L Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Carmen C Pazos-Moura
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Pogoda E, Tutaj H, Pirog A, Tomala K, Korona R. Overexpression of a single ORF can extend chronological lifespan in yeast if retrograde signaling and stress response are stimulated. Biogerontology 2021; 22:415-427. [PMID: 34052951 PMCID: PMC8266792 DOI: 10.1007/s10522-021-09924-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022]
Abstract
Systematic collections of single-gene deletions have been invaluable in uncovering determinants of lifespan in yeast. Overexpression of a single gene does not have such a clear outcome as cancellation of its function but it can lead to a variety of imbalances, deregulations and compensations, and some of them could be important for longevity. We report an experiment in which a genome-wide collection of strains overexpressing a single gene was assayed for chronological lifespan (CLS). Only one group of proteins, those locating to the inner membrane and matrix of mitochondria, tended to extend CLS when abundantly overproduced. We selected two such strains—one overexpressing Qcr7 of the respiratory complex III, the other overexpressing Mrps28 of the small mitoribosomal subunit—and analyzed their transcriptomes. The uncovered shifts in RNA abundance in the two strains were nearly identical and highly suggestive. They implied a distortion in the co-translational assembly of respiratory complexes followed by retrograde signaling to the nucleus. The consequent reprogramming of the entire cellular metabolism towards the resistance to stress resulted in an enhanced ability to persist in a non-proliferating state. Our results show that surveillance of the inner mitochondrial membrane integrity is of outstanding importance for the cell. They also demonstrate that overexpression of single genes could be used effectively to elucidate the mitochondrion-nucleus crosstalk.
Collapse
Affiliation(s)
- Elzbieta Pogoda
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland
| | - Hanna Tutaj
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland
| | - Adrian Pirog
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland
| | - Katarzyna Tomala
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland
| | - Ryszard Korona
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland.
| |
Collapse
|
5
|
Abstract
The mitochondrial genome encodes only a handful of proteins, but methods to track their synthesis are highly limited. Saccharomyces cerevisiae is a model organism that offers possibilities to expand the classical systems to analyze mitochondrial translation. In this chapter, we present two approaches of monitoring mitochondrial protein synthesis. Labeling of mitochondrially translated products with radioactive amino acids can be performed either in intact cells or in isolated mitochondria. However, these classical methods have disadvantages that can affect cell physiology and hence are not suitable for all types of research questions. Some of these limitations can be overcome by the use of reporter genes that are inserted into yeast genetic screens mitochondrial DNA via biolistic transformation. These reporter genes can be used for yeast genetic screen and to monitor regulation and efficiency of mitochondrial translation with a variety of methods.
Collapse
Affiliation(s)
- Andreas Carlström
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Magdalena Rzepka
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
6
|
Lee DE, Brown JL, Rosa‐Caldwell ME, Perry RA, Brown LA, Haynie WS, Washington TA, Wiggs MP, Rajaram N, Greene NP. Cancer-induced Cardiac Atrophy Adversely Affects Myocardial Redox State and Mitochondrial Oxidative Characteristics. JCSM RAPID COMMUNICATIONS 2021; 4:3-15. [PMID: 33693448 PMCID: PMC7939061 DOI: 10.1002/rco2.18] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
UNLABELLED Cachexia presents in 80% of advanced cancer patients; however, cardiac atrophy in cachectic patients receives little attention. This cardiomyopathy contributes to increased occurrence of adverse cardiac events compared to age-matched population norms. Research on cardiac atrophy has focused on remodeling; however, alterations in metabolic properties may be a primary contributor. PURPOSE Determine how cancer-induced cardiac atrophy alters mitochondrial turnover, mitochondrial mRNA translation machinery and in-vitro oxidative characteristics. METHODS Lewis lung carcinoma (LLC) tumors were implanted in C57BL6/J mice and grown for 28days to induce cardiac atrophy. Endogenous metabolic species, and markers of mitochondrial function were assessed. H9c2 cardiomyocytes were cultured in LLC-conditioned media with(out) the antioxidant MitoTempo. Cells were analyzed for ROS, oxidative capacity, and hypoxic resistance. RESULTS LLC heart weights were ~10% lower than controls. LLC hearts demonstrated ~15% lower optical redox ratio (FAD/FAD+NADH) compared to PBS controls. When compared to PBS, LLC hearts showed ~50% greater COX-IV and VDAC, attributed to ~50% lower mitophagy markers. mt-mRNA translation machinery was elevated similarly to markers of mitochondrial content. mitochondrial DNA-encoded Cytb was ~30% lower in LLC hearts. ROS scavengers GPx-3 and GPx-7 were ~50% lower in LLC hearts. Treatment of cardiomyocytes with LLC-conditioned media resulted in higher ROS (25%), lower oxygen consumption rates (10% at basal, 75% at maximal), and greater susceptibility to hypoxia (~25%) -- which was reversed by MitoTempo. CONCLUSION These results substantiate metabolic cardiotoxic effects attributable to tumor-associated factors and provide insight into interactions between mitochondrial mRNA translation, ROS mitigation, oxidative capacity and hypoxia resistance.
Collapse
Affiliation(s)
- David E. Lee
- Cachexia Research Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, USA
- Laboratory for Functional Optical Imaging and Spectroscopy, Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Jacob L. Brown
- Cachexia Research Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, USA
| | - Megan E. Rosa‐Caldwell
- Cachexia Research Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, USA
| | - Richard A. Perry
- Exercise Muscle Biology Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, USA
| | - Lemuel A. Brown
- Exercise Muscle Biology Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, USA
| | - Wesley S. Haynie
- Exercise Muscle Biology Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, USA
| | - Tyrone A. Washington
- Exercise Muscle Biology Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, USA
| | - Michael P. Wiggs
- Department of Health and Kinesiology, University of Texas at Tyler, Tyler, Texas, USA
| | - Narasimhan Rajaram
- Laboratory for Functional Optical Imaging and Spectroscopy, Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Nicholas P. Greene
- Cachexia Research Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
7
|
Sureka R, Mishra R. Identification of Evolutionarily Conserved Nuclear Matrix Proteins and Their Prokaryotic Origins. J Proteome Res 2020; 20:518-530. [PMID: 33289389 DOI: 10.1021/acs.jproteome.0c00550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Compared to prokaryotic cells, a typical eukaryotic cell is much more complex along with its endomembrane system and membrane-bound organelles. Although the endosymbiosis theories convincingly explain the evolution of membrane-bound organelles such as mitochondria and chloroplasts, very little is understood about the evolutionary origins of the nucleus, the defining feature of eukaryotes. Most studies on nuclear evolution have not been able to take into consideration the underlying structural framework of the nucleus, attributed to the nuclear matrix (NuMat), a ribonucleoproteinaceous structure. This can largely be attributed to the lack of annotation of its core components. Since NuMat has been shown to provide a structural platform for facilitating a variety of nuclear functions such as replication, transcription, and splicing, it is important to identify its protein components to better understand these processes. In this study, we address this issue using the developing embryos of Drosophila melanogaster and Danio rerio and identify 362 core NuMat proteins that are conserved between the two organisms. We further compare our results with publicly available Mus musculus NuMat dataset and Homo sapiens cellular localization dataset to define the core homologous NuMat proteins consisting of 252 proteins. We find that of them, 86 protein groups have originated from pre-existing proteins in prokaryotes. While 36 were conserved across all eukaryotic supergroups, 14 new proteins evolved before the evolution of the last eukaryotic common ancestor and together, these 50 proteins out of the 252 core conserved NuMat proteins are conserved across all eukaryotes, indicating their indispensable nature for nuclear function for over 1.5 billion years of eukaryotic history. Our analysis paves the way to understand the evolution of the complex internal nuclear architecture and its functions.
Collapse
Affiliation(s)
- Rahul Sureka
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Rakesh Mishra
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| |
Collapse
|
8
|
Jayatunga DPW, Hone E, Bharadwaj P, Garg M, Verdile G, Guillemin GJ, Martins RN. Targeting Mitophagy in Alzheimer's Disease. J Alzheimers Dis 2020; 78:1273-1297. [PMID: 33285629 DOI: 10.3233/jad-191258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mitochondria perform many essential cellular functions including energy production, calcium homeostasis, transduction of metabolic and stress signals, and mediating cell survival and death. Maintaining viable populations of mitochondria is therefore critical for normal cell function. The selective disposal of damaged mitochondria, by a pathway known as mitophagy, plays a key role in preserving mitochondrial integrity and quality. Mitophagy reduces the formation of reactive oxygen species and is considered as a protective cellular process. Mitochondrial dysfunction and deficits of mitophagy have important roles in aging and especially in neurodegenerative disorders such as Alzheimer's disease (AD). Targeting mitophagy pathways has been suggested to have potential therapeutic effects against AD. In this review, we aim to briefly discuss the emerging concepts on mitophagy, molecular regulation of the mitophagy process, current mitophagy detection methods, and mitophagy dysfunction in AD. Finally, we will also briefly examine the stimulation of mitophagy as an approach for attenuating neurodegeneration in AD.
Collapse
Affiliation(s)
- Dona P W Jayatunga
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Eugene Hone
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Prashant Bharadwaj
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Manohar Garg
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Giuseppe Verdile
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Gilles J Guillemin
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia.,Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, WA, Australia.,KaRa Institute of Neurological Diseases, Sydney, NSW, Australia
| |
Collapse
|
9
|
Proteotoxicity and mitochondrial dynamics in aging diabetic brain. Pharmacol Res 2020; 159:104948. [PMID: 32450345 DOI: 10.1016/j.phrs.2020.104948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 12/26/2022]
Abstract
Impaired neuronal proteostasis is a salient feature of both aging and protein misfolding disorders. Amyloidosis, a consequence of this phenomena is observed in the brains of diabetic patients over the chronic time period. These toxic aggregates not only cause age-related decline in proteostasis, but also dwindle its ability to increase or restore the chaperones in response to any stressful condition. Mitochondria acts as the main source of energy regulation and many metabolic disorders such as diabetes have been associated with altered oxidative phosphorylation (OxPhos) and redox imbalance in the mitochondria. The mitochondrial unfolded protein response (UPRmt) acts as a mediator for maintaining the mitochondrial protein homeostasis and quality control during such conditions. Over a long time period, these responses start shutting off leading to proteotoxic stress in the neurons. This reduces the buffering capacity of protein network signalling during aging, thereby increasing the risk of neurodegeneration in the brain. In this review, we focus on the proteotoxic stress that occurs as an amalgamation of diabetes and aging, as well as the impact of mitochondrial dysfunction on the neuronal survival affecting the diabetic brain and its long term consequences on the memory changes.
Collapse
|
10
|
Vazquez-Calvo C, Suhm T, Büttner S, Ott M. The basic machineries for mitochondrial protein quality control. Mitochondrion 2019; 50:121-131. [PMID: 31669238 DOI: 10.1016/j.mito.2019.10.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/10/2019] [Accepted: 10/02/2019] [Indexed: 11/16/2022]
Abstract
Mitochondria play pivotal roles in cellular energy metabolism, the synthesis of essential biomolecules and the regulation of cell death and aging. The proper folding, unfolding and degradation of the many proteins active within mitochondria is surveyed by the mitochondrial quality control machineries. Here, we describe the principal components of the mitochondrial quality control system and recent developments in the elucidation of the molecular mechanisms maintaining a functional mitochondrial proteome.
Collapse
Affiliation(s)
- Carmela Vazquez-Calvo
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrheniusväg 16, Stockholm 106 91, Sweden; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, Stockholm 106 91, Sweden
| | - Tamara Suhm
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrheniusväg 16, Stockholm 106 91, Sweden
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, Stockholm 106 91, Sweden; Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, Graz 8010, Austria.
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrheniusväg 16, Stockholm 106 91, Sweden.
| |
Collapse
|
11
|
Gier S, Simon M, Nordström K, Khalifa S, Schulz MH, Schmitt MJ, Breinig F. Transcriptome Kinetics of Saccharomyces cerevisiae in Response to Viral Killer Toxin K1. Front Microbiol 2019; 10:1102. [PMID: 31156606 PMCID: PMC6531845 DOI: 10.3389/fmicb.2019.01102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/30/2019] [Indexed: 11/29/2022] Open
Abstract
The K1 A/B toxin secreted by virus-infected Saccharomyces cerevisiae strains kills sensitive cells via disturbance of cytoplasmic membrane functions. Despite decades of research, the mechanisms underlying K1 toxicity and immunity have not been elucidated yet. In a novel approach, this study aimed to characterize transcriptome changes in K1-treated sensitive yeast cells in a time-dependent manner. Global transcriptional profiling revealed substantial cellular adaptations in target cells resulting in 1,189 differentially expressed genes in total. Killer toxin K1 induced oxidative, cell wall and hyperosmotic stress responses as well as rapid down-regulation of transcription and translation. Essential pathways regulating energy metabolism were also significantly affected by the toxin. Remarkably, a futile cycle of the osmolytes trehalose and glycogen was identified probably representing a critical feature of K1 intoxication. In silico analysis suggested several transcription factors involved in toxin-triggered signal transduction. The identified transcriptome changes provide valuable hints to illuminate the still unknown molecular events leading to K1 toxicity and immunity implicating an evolutionarily conserved response at least initially counteracting ionophoric toxin action.
Collapse
Affiliation(s)
- Stefanie Gier
- Department of Molecular and Cell Biology, Saarland University, Saarbrücken, Germany.,Center of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Martin Simon
- Center of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany.,Molecular Cell Biology and Microbiology, University of Wuppertal, Wuppertal, Germany.,Molecular Cell Dynamics, Saarland University, Saarbrücken, Germany
| | - Karl Nordström
- Center of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany.,Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Salem Khalifa
- Cluster of Excellence "Multimodal Computing and Interaction", Max Planck Institute for Informatics, Saarland University, Saarbrücken, Germany
| | - Marcel H Schulz
- Cluster of Excellence "Multimodal Computing and Interaction", Max Planck Institute for Informatics, Saarland University, Saarbrücken, Germany
| | - Manfred J Schmitt
- Department of Molecular and Cell Biology, Saarland University, Saarbrücken, Germany.,Center of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Frank Breinig
- Department of Molecular and Cell Biology, Saarland University, Saarbrücken, Germany.,Center of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| |
Collapse
|
12
|
Mitochondrial mRNA translation initiation contributes to oxidative metabolism in the myocardia of aged, obese mice. Exp Gerontol 2019; 121:62-70. [PMID: 30928679 DOI: 10.1016/j.exger.2019.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/19/2022]
Abstract
Being both advanced in age and obese each contribute to cardiac hypertrophy in a unique manner. Electron transport complexes I and IV are implicated in deficient electron transport during cardiomyopathies and contain the majority of protein subunits that are transcribed and translated by machinery localized within the mitochondria. PURPOSE To assess myocardial mt-mRNA translation factors in relation to mitochondrial content and mtDNA-encoded protein using a mouse model of aged obesity and to test the relationship of mt-mRNA translation initiation factor 2 (mtIF2) to oxidative capacity and the cellular oxidation-reduction (redox) state in cardiomyocytes. METHODS Male C56BL/6 J mice fed lean or high fat diet were aged to either ~3 months or ~22 months, the heart was excised and analyzed using immunoblot and qPCR to assess differences in mitochondrial mRNA translation machinery. Using H9c2 cardiomyocytes, mtIF2 was knocked-down and oxidative metabolic characteristics assessed including oxidation/reduction state, bioenergetic flux, and hypoxic resistance was tested. RESULTS Aged, obese mouse hearts were ~40% larger than young, lean controls and contained ~50% less mtIF2 protein alongside ~25-50% lower content of Cytb, a protein encoded by mtDNA. Reducing the level of mtIF2 by shRNA is associated with ~15-20% lower content of OXPHOS complex I and IV, ~30% lower optical redox ratio, ~40% oxygen reserve capacity, and ~20% less cell survival following hypoxia. CONCLUSION We present evidence of altered mt-mRNA translation during cardiac hypertrophy in aged obesity. We build on these results by demonstrating the necessity of mtIF2 in maintaining oxidative characteristics of cardiac muscle cells.
Collapse
|
13
|
Weikard R, Kuehn C. Different mitochondrial DNA copy number in liver and mammary gland of lactating cows with divergent genetic background for milk production. Mol Biol Rep 2018; 45:1209-1218. [PMID: 30051250 DOI: 10.1007/s11033-018-4273-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/18/2018] [Indexed: 01/05/2023]
Abstract
Adequate metabolic adaptation of key tissues playing an essential role for bioenergetic homeostasis and lactogenesis is critical in cows to adapt to changes in energy requirements and physiological processes during the lactation period. Mitochondria are recognized as central to meet energy needs and maintaining of metabolic homeostasis because mitochondrial DNA (mtDNA) is template for several polypeptides of the respiratory chain complexes essential for ATP generation. The quantity of mtDNA in a cell has been widely used as a surrogate marker for the capacity of cells for energy generation. In our study we analyzed the mtDNA copy number and the mRNA expression of important nuclear encoded genes controlling mitochondrial biogenesis in liver and mammary gland. We compared cows with a nuclear genome dairy × beef crossbred make-up to purebred German Holstein dairy cows. The study revealed tissue-specific variations of mtDNA copy number and expression levels of nuclear genes involved in mitochondrial biogenesis when comparing lactating cows with different genetic predisposition regarding milk performance. This may reflect nuclear genome-determined genetic differences between the cow groups in coping with metabolic demands and physiological changes during lactation. The results indicate that mitochondrial biogenesis processes in the liver and mammary gland appear to be impaired in high lactating dairy cows, which consequently, would point to a disturbed energy adaptation. The results provide a basis to further elucidate the adaptive and regulatory modulation of the mitochondrial biogenesis in response to lactation-associated metabolic challenges in lactating cows.
Collapse
Affiliation(s)
- Rosemarie Weikard
- Institute Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Christa Kuehn
- Institute Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany.
| |
Collapse
|
14
|
Suhm T, Kaimal JM, Dawitz H, Peselj C, Masser AE, Hanzén S, Ambrožič M, Smialowska A, Björck ML, Brzezinski P, Nyström T, Büttner S, Andréasson C, Ott M. Mitochondrial Translation Efficiency Controls Cytoplasmic Protein Homeostasis. Cell Metab 2018; 27:1309-1322.e6. [PMID: 29754951 DOI: 10.1016/j.cmet.2018.04.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 02/02/2018] [Accepted: 04/12/2018] [Indexed: 01/02/2023]
Abstract
Cellular proteostasis is maintained via the coordinated synthesis, maintenance, and breakdown of proteins in the cytosol and organelles. While biogenesis of the mitochondrial membrane complexes that execute oxidative phosphorylation depends on cytoplasmic translation, it is unknown how translation within mitochondria impacts cytoplasmic proteostasis and nuclear gene expression. Here we have analyzed the effects of mutations in the highly conserved accuracy center of the yeast mitoribosome. Decreased accuracy of mitochondrial translation shortened chronological lifespan, impaired management of cytosolic protein aggregates, and elicited a general transcriptional stress response. In striking contrast, increased accuracy extended lifespan, improved cytosolic aggregate clearance, and suppressed a normally stress-induced, Msn2/4-dependent interorganellar proteostasis transcription program (IPTP) that regulates genes important for mitochondrial proteostasis. Collectively, the data demonstrate that cytosolic protein homeostasis and nuclear stress signaling are controlled by mitochondrial translation efficiency in an inter-connected organelle quality control network that determines cellular lifespan.
Collapse
Affiliation(s)
- Tamara Suhm
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | | | - Hannah Dawitz
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Carlotta Peselj
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden
| | - Anna E Masser
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden
| | - Sarah Hanzén
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 90 Göteborg, Sweden
| | - Matevž Ambrožič
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Agata Smialowska
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden; National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, SE-17165 Solna, Sweden
| | - Markus L Björck
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Thomas Nyström
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 90 Göteborg, Sweden
| | - Sabrina Büttner
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden; Institute of Molecular Biosciences, NAWI Graz, University of Graz, A-8010 Graz, Austria
| | - Claes Andréasson
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden.
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden.
| |
Collapse
|
15
|
Callegari S, Dennerlein S. Sensing the Stress: A Role for the UPR mt and UPR am in the Quality Control of Mitochondria. Front Cell Dev Biol 2018; 6:31. [PMID: 29644217 PMCID: PMC5882792 DOI: 10.3389/fcell.2018.00031] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/12/2018] [Indexed: 01/01/2023] Open
Abstract
Mitochondria exist as compartmentalized units, surrounded by a selectively permeable double membrane. Within is contained the mitochondrial genome and protein synthesis machinery, required for the synthesis of OXPHOS components and ultimately, ATP production. Despite their physical barrier, mitochondria are tightly integrated into the cellular environment. A constant flow of information must be maintained to and from the mitochondria and the nucleus, to ensure mitochondria are amenable to cell metabolic requirements and also to feedback on their functional state. This review highlights the pathways by which mitochondrial stress is signaled to the nucleus, with a particular focus on the mitochondrial unfolded protein response (UPRmt) and the unfolded protein response activated by the mistargeting of proteins (UPRam). Although these pathways were originally discovered to alleviate proteotoxic stress from the accumulation of mitochondrial-targeted proteins that are misfolded or unimported, we review recent findings indicating that the UPRmt can also sense defects in mitochondrial translation. We further discuss the regulation of OXPHOS assembly and speculate on a possible role for mitochondrial stress pathways in sensing OXPHOS biogenesis.
Collapse
Affiliation(s)
- Sylvie Callegari
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
16
|
Leonov A, Arlia-Ciommo A, Bourque SD, Koupaki O, Kyryakov P, Dakik P, McAuley M, Medkour Y, Mohammad K, Di Maulo T, Titorenko VI. Specific changes in mitochondrial lipidome alter mitochondrial proteome and increase the geroprotective efficiency of lithocholic acid in chronologically aging yeast. Oncotarget 2018; 8:30672-30691. [PMID: 28410198 PMCID: PMC5458158 DOI: 10.18632/oncotarget.16766] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023] Open
Abstract
We have previously found that exogenously added lithocholic acid delays yeast chronological aging. We demonstrated that lithocholic acid enters the yeast cell, is sorted to mitochondria, resides in both mitochondrial membranes, changes the relative concentrations of different membrane phospholipids, triggers changes in the concentrations of many mitochondrial proteins, and alters some key aspects of mitochondrial functionality. We hypothesized that the lithocholic acid-driven changes in mitochondrial lipidome may have a causal role in the remodeling of mitochondrial proteome, which may in turn alter the functional state of mitochondria to create a mitochondrial pattern that delays yeast chronological aging. Here, we test this hypothesis by investigating how the ups1?, ups2? and psd1? mutations that eliminate enzymes involved in mitochondrial phospholipid metabolism influence the mitochondrial lipidome. We also assessed how these mutations affect the mitochondrial proteome, influence mitochondrial functionality and impinge on the efficiency of aging delay by lithocholic acid. Our findings provide evidence that 1) lithocholic acid initially creates a distinct pro-longevity pattern of mitochondrial lipidome by proportionally decreasing phosphatidylethanolamine and cardiolipin concentrations to maintain equimolar concentrations of these phospholipids, and by increasing phosphatidic acid concentration; 2) this pattern of mitochondrial lipidome allows to establish a specific, aging-delaying pattern of mitochondrial proteome; and 3) this pattern of mitochondrial proteome plays an essential role in creating a distinctive, geroprotective pattern of mitochondrial functionality.
Collapse
Affiliation(s)
- Anna Leonov
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | - Simon D Bourque
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Olivia Koupaki
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Pavlo Kyryakov
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Paméla Dakik
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Mélissa McAuley
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Younes Medkour
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Karamat Mohammad
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Tamara Di Maulo
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
17
|
Suhm T, Habernig L, Rzepka M, Kaimal JM, Andréasson C, Büttner S, Ott M. A novel system to monitor mitochondrial translation in yeast. MICROBIAL CELL (GRAZ, AUSTRIA) 2018; 5:158-164. [PMID: 29487862 PMCID: PMC5826703 DOI: 10.15698/mic2018.03.621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/02/2018] [Indexed: 11/13/2022]
Abstract
The mitochondrial genome is responsible for the production of a handful of polypeptides that are core subunits of the membrane-bound oxidative phosphorylation system. Until now the mechanistic studies of mitochondrial protein synthesis inside cells have been conducted with inhibition of cytoplasmic protein synthesis to reduce the background of nuclear gene expression with the undesired consequence of major disturbances of cellular signaling cascades. Here we have generated a system that allows direct monitoring of mitochondrial translation in unperturbed cells. A recoded gene for superfolder GFP was inserted into the yeast (Saccharomyces cerevisiae) mitochondrial genome and enabled the detection of translation through fluorescence microscopy and flow cytometry in functional mitochondria. This novel tool allows the investigation of the function and regulation of mitochondrial translation during stress signaling, aging and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Tamara Suhm
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Lukas Habernig
- Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | - Magdalena Rzepka
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | | | - Claes Andréasson
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden
| | - Sabrina Büttner
- Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
18
|
Melkov A, Abdu U. Regulation of long-distance transport of mitochondria along microtubules. Cell Mol Life Sci 2018; 75:163-176. [PMID: 28702760 PMCID: PMC11105322 DOI: 10.1007/s00018-017-2590-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 11/29/2022]
Abstract
Mitochondria are cellular organelles of crucial importance, playing roles in cellular life and death. In certain cell types, such as neurons, mitochondria must travel long distances so as to meet metabolic demands of the cell. Mitochondrial movement is essentially microtubule (MT) based and is executed by two main motor proteins, Dynein and Kinesin. The organization of the cellular MT network and the identity of motors dictate mitochondrial transport. Tight coupling between MTs, motors, and the mitochondria is needed for the organelle precise localization. Two adaptor proteins are involved directly in mitochondria-motor coupling, namely Milton known also as TRAK, which is the motor adaptor, and Miro, which is the mitochondrial protein. Here, we discuss the active mitochondria transport process, as well as motor-mitochondria coupling in the context of MT organization in different cell types. We focus on mitochondrial trafficking in different cell types, specifically neurons, migrating cells, and polarized epithelial cells.
Collapse
Affiliation(s)
- Anna Melkov
- Department of Life Sciences, Ben-Gurion University, 8410500, Beersheba, Israel
| | - Uri Abdu
- Department of Life Sciences, Ben-Gurion University, 8410500, Beersheba, Israel.
| |
Collapse
|
19
|
Cortese-Krott MM, Koning A, Kuhnle GG, Nagy P, Bianco CL, Pasch A, Wink DA, Fukuto JM, Jackson AA, van Goor H, Olson KR, Feelisch M. The Reactive Species Interactome: Evolutionary Emergence, Biological Significance, and Opportunities for Redox Metabolomics and Personalized Medicine. Antioxid Redox Signal 2017; 27:684-712. [PMID: 28398072 PMCID: PMC5576088 DOI: 10.1089/ars.2017.7083] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/10/2017] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Oxidative stress is thought to account for aberrant redox homeostasis and contribute to aging and disease. However, more often than not, administration of antioxidants is ineffective, suggesting that our current understanding of the underlying regulatory processes is incomplete. Recent Advances: Similar to reactive oxygen species and reactive nitrogen species, reactive sulfur species are now emerging as important signaling molecules, targeting regulatory cysteine redox switches in proteins, affecting gene regulation, ion transport, intermediary metabolism, and mitochondrial function. To rationalize the complexity of chemical interactions of reactive species with themselves and their targets and help define their role in systemic metabolic control, we here introduce a novel integrative concept defined as the reactive species interactome (RSI). The RSI is a primeval multilevel redox regulatory system whose architecture, together with the physicochemical characteristics of its constituents, allows efficient sensing and rapid adaptation to environmental changes and various other stressors to enhance fitness and resilience at the local and whole-organism level. CRITICAL ISSUES To better characterize the RSI-related processes that determine fluxes through specific pathways and enable integration, it is necessary to disentangle the chemical biology and activity of reactive species (including precursors and reaction products), their targets, communication systems, and effects on cellular, organ, and whole-organism bioenergetics using system-level/network analyses. FUTURE DIRECTIONS Understanding the mechanisms through which the RSI operates will enable a better appreciation of the possibilities to modulate the entire biological system; moreover, unveiling molecular signatures that characterize specific environmental challenges or other forms of stress will provide new prevention/intervention opportunities for personalized medicine. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Miriam M. Cortese-Krott
- Cardiovascular Research Laboratory, Department of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Anne Koning
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gunter G.C. Kuhnle
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Peter Nagy
- Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, Hungary
| | | | - Andreas Pasch
- Department of Clinical Chemistry, University of Bern and Calciscon AG, Bern, Switzerland
| | - David A. Wink
- Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Jon M. Fukuto
- Department of Chemistry, Sonoma State University, Rohnert Park, California
| | - Alan A. Jackson
- NIHR Southampton Biomedical Research Center, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Kenneth R. Olson
- Indiana University School of Medicine-South Bend, South Bend, Indiana
| | - Martin Feelisch
- NIHR Southampton Biomedical Research Center, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
20
|
Mechanisms Underlying the Essential Role of Mitochondrial Membrane Lipids in Yeast Chronological Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2916985. [PMID: 28593023 PMCID: PMC5448074 DOI: 10.1155/2017/2916985] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022]
Abstract
The functional state of mitochondria is vital to cellular and organismal aging in eukaryotes across phyla. Studies in the yeast Saccharomyces cerevisiae have provided evidence that age-related changes in some aspects of mitochondrial functionality can create certain molecular signals. These signals can then define the rate of cellular aging by altering unidirectional and bidirectional communications between mitochondria and other organelles. Several aspects of mitochondrial functionality are known to impact the replicative and/or chronological modes of yeast aging. They include mitochondrial electron transport, membrane potential, reactive oxygen species, and protein synthesis and proteostasis, as well as mitochondrial synthesis of iron-sulfur clusters, amino acids, and NADPH. Our recent findings have revealed that the composition of mitochondrial membrane lipids is one of the key aspects of mitochondrial functionality affecting yeast chronological aging. We demonstrated that exogenously added lithocholic bile acid can delay chronological aging in yeast because it elicits specific changes in mitochondrial membrane lipids. These changes allow mitochondria to operate as signaling platforms that delay yeast chronological aging by orchestrating an institution and maintenance of a distinct cellular pattern. In this review, we discuss molecular and cellular mechanisms underlying the essential role of mitochondrial membrane lipids in yeast chronological aging.
Collapse
|
21
|
Kopljar I, De Bondt A, Vinken P, Teisman A, Damiano B, Goeminne N, Van den Wyngaert I, Gallacher DJ, Lu HR. Chronic drug-induced effects on contractile motion properties and cardiac biomarkers in human induced pluripotent stem cell-derived cardiomyocytes. Br J Pharmacol 2017; 174:3766-3779. [PMID: 28094846 DOI: 10.1111/bph.13713] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 12/29/2016] [Accepted: 01/05/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE In the pharmaceutical industry risk assessments of chronic cardiac safety liabilities are mostly performed during late stages of preclinical drug development using in vivo animal models. Here, we explored the potential of human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) to detect chronic cardiac risks such as drug-induced cardiomyocyte toxicity. EXPERIMENTAL APPROACH Video microscopy-based motion field imaging was applied to evaluate the chronic effect (over 72 h) of cardiotoxic drugs on the contractile motion of hiPS-CMs. In parallel, the release of cardiac troponin I (cTnI), heart fatty acid binding protein (FABP3) and N-terminal pro-brain natriuretic peptide (NT-proBNP) was analysed from cell medium, and transcriptional profiling of hiPS-CMs was done at the end of the experiment. KEY RESULTS Different cardiotoxic drugs altered the contractile motion properties of hiPS-CMs together with increasing the release of cardiac biomarkers. FABP3 and cTnI were shown to be potential surrogates to predict cardiotoxicity in hiPS-CMs, whereas NT-proBNP seemed to be a less valuable biomarker. Furthermore, drug-induced cardiotoxicity produced by chronic exposure of hiPS-CMs to arsenic trioxide, doxorubicin or panobinostat was associated with different profiles of changes in contractile parameters, biomarker release and transcriptional expression. CONCLUSION AND IMPLICATIONS We have shown that a parallel assessment of motion field imaging-derived contractile properties, release of biomarkers and transcriptional changes can detect diverse mechanisms of chronic drug-induced cardiac liabilities in hiPS-CMs. Hence, hiPS-CMs could potentially improve and accelerate cardiovascular de-risking of compounds at earlier stages of drug discovery. LINKED ARTICLES This article is part of a themed section on New Insights into Cardiotoxicity Caused by Chemotherapeutic Agents. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.21/issuetoc.
Collapse
Affiliation(s)
- Ivan Kopljar
- Preclinical Development and Safety, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - An De Bondt
- Computational Sciences, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Petra Vinken
- Preclinical Development and Safety, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Ard Teisman
- Preclinical Development and Safety, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Bruce Damiano
- Preclinical Safety and Development, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NV, Spring House, PA, USA
| | - Nick Goeminne
- Preclinical Development and Safety, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Ilse Van den Wyngaert
- Computational Sciences, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - David J Gallacher
- Preclinical Development and Safety, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Hua Rong Lu
- Preclinical Development and Safety, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| |
Collapse
|
22
|
Recent advances in mitochondrial biology - integrated aspects. Cell Tissue Res 2016; 367:1-3. [PMID: 27858155 DOI: 10.1007/s00441-016-2533-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|