1
|
Kiaris H. Nontraditional models as research tools: the road not taken. Trends Mol Med 2024; 30:924-931. [PMID: 39069395 PMCID: PMC11466687 DOI: 10.1016/j.molmed.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Historical reasons resulted in the almost exclusive use of a few species, most prominently Mus musculus, as the mainstream models in biomedical research. This selection was not based on Mus's distinctive relevance to human disease but rather to the pre-existing availability of resources and tools for the species that were used as models, which has enabled their adoption for research in health sciences. Unless the utilization and range of nontraditional research models expand considerably, progress in biomedical research will remain restricted within the trajectory that has been set by the existing models and their ability to provide clinically relevant information.
Collapse
Affiliation(s)
- Hippokratis Kiaris
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy and Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
2
|
Meyerholz DK, Burrough ER, Kirchhof N, Anderson DJ, Helke KL. Swine models in translational research and medicine. Vet Pathol 2024; 61:512-523. [PMID: 38197394 DOI: 10.1177/03009858231222235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Swine are increasingly studied as animal models of human disease. The anatomy, size, longevity, physiology, immune system, and metabolism of swine are more like humans than traditional rodent models. In addition, the size of swine is preferred for surgical placement and testing of medical devices destined for humans. These features make swine useful for biomedical, pharmacological, and toxicological research. With recent advances in gene-editing technologies, genetic modifications can readily and efficiently be made in swine to study genetic disorders. In addition, gene-edited swine tissues are necessary for studies testing and validating xenotransplantation into humans to meet the critical shortfall of viable organs versus need. Underlying all of these biomedical applications, the knowledge of husbandry, background diseases and lesions, and biosecurity needs are important for productive, efficient, and reproducible research when using swine as a human disease model for basic research, preclinical testing, and translational studies.
Collapse
|
3
|
Turanli B, Gulfidan G, Aydogan OO, Kula C, Selvaraj G, Arga KY. Genome-scale metabolic models in translational medicine: the current status and potential of machine learning in improving the effectiveness of the models. Mol Omics 2024; 20:234-247. [PMID: 38444371 DOI: 10.1039/d3mo00152k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The genome-scale metabolic model (GEM) has emerged as one of the leading modeling approaches for systems-level metabolic studies and has been widely explored for a broad range of organisms and applications. Owing to the development of genome sequencing technologies and available biochemical data, it is possible to reconstruct GEMs for model and non-model microorganisms as well as for multicellular organisms such as humans and animal models. GEMs will evolve in parallel with the availability of biological data, new mathematical modeling techniques and the development of automated GEM reconstruction tools. The use of high-quality, context-specific GEMs, a subset of the original GEM in which inactive reactions are removed while maintaining metabolic functions in the extracted model, for model organisms along with machine learning (ML) techniques could increase their applications and effectiveness in translational research in the near future. Here, we briefly review the current state of GEMs, discuss the potential contributions of ML approaches for more efficient and frequent application of these models in translational research, and explore the extension of GEMs to integrative cellular models.
Collapse
Affiliation(s)
- Beste Turanli
- Marmara University, Faculty of Engineering, Department of Bioengineering, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey
| | - Gizem Gulfidan
- Marmara University, Faculty of Engineering, Department of Bioengineering, Istanbul, Turkey.
| | - Ozge Onluturk Aydogan
- Marmara University, Faculty of Engineering, Department of Bioengineering, Istanbul, Turkey.
| | - Ceyda Kula
- Marmara University, Faculty of Engineering, Department of Bioengineering, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey
| | - Gurudeeban Selvaraj
- Concordia University, Centre for Research in Molecular Modeling & Department of Chemistry and Biochemistry, Quebec, Canada
- Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospital, Department of Biomaterials, Bioinformatics Unit, Chennai, India
| | - Kazim Yalcin Arga
- Marmara University, Faculty of Engineering, Department of Bioengineering, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey
- Marmara University, Genetic and Metabolic Diseases Research and Investigation Center, Istanbul, Turkey
| |
Collapse
|
4
|
Metz C, Haug V, Müller M, Amann R. Pharmacokinetic and Environmental Risk Assessment of Prime-2-CoV, a Non-Replicating Orf Virus-Based Vaccine against SARS-CoV-2. Vaccines (Basel) 2024; 12:492. [PMID: 38793743 PMCID: PMC11126055 DOI: 10.3390/vaccines12050492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Viral vector vaccines represent a substantial advancement in immunization technology, offering numerous benefits over traditional vaccine modalities. The Orf virus (ORFV) strain D1701-VrV is a particularly promising candidate for vaccine development due to its distinctive attributes, such as a good safety profile, the ability to elicit both humoral and cellular immunity, and its favorable genetic and thermal stability. Despite ORFV's theoretical safety advantages, such as its narrow host range and limited systemic spread post-inoculation, a critical gap persists between these theoretical benefits and the empirical evidence regarding its in vivo safety profile. This discrepancy underscores the need for comprehensive preclinical validations to bridge this knowledge gap, especially considering ORFV's use in humans. Our research introduces Prime-2-CoV, an innovative ORFV-based vaccine candidate against COVID-19, designed to elicit a robust immune response by expressing SARS-CoV-2 Nucleocapsid and Spike proteins. Currently under clinical trials, Prime-2-CoV marks the inaugural application of ORFV in human subjects. Addressing the aforementioned safety concerns, our extensive preclinical evaluation, including an environmental risk assessment (ERA) and detailed pharmacokinetic studies in rats and immunocompromised NOG mice, demonstrates Prime-2-CoV's favorable pharmacokinetic profile, negligible environmental impact, and minimal ERA risks. These findings not only affirm the vaccine's safety and efficacy but also pioneer the use of ORFV-based therapeutics, highlighting its potential for wider therapeutic applications.
Collapse
Affiliation(s)
- Carina Metz
- Institute of Immunology, University Hospital Tübingen, 72076 Tübingen, Germany; (C.M.); (V.H.); (M.M.)
- Institute for Tropical Medicine, Travel Medicine, and Human Parasitology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Verena Haug
- Institute of Immunology, University Hospital Tübingen, 72076 Tübingen, Germany; (C.M.); (V.H.); (M.M.)
- Institute for Tropical Medicine, Travel Medicine, and Human Parasitology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Melanie Müller
- Institute of Immunology, University Hospital Tübingen, 72076 Tübingen, Germany; (C.M.); (V.H.); (M.M.)
| | - Ralf Amann
- Institute of Immunology, University Hospital Tübingen, 72076 Tübingen, Germany; (C.M.); (V.H.); (M.M.)
| |
Collapse
|
5
|
Steele AG, Taccola G, Frazier AM, Manzella M, Hogan M, Horner PJ, Faraji AH, Sayenko DG. Mapping lumbar efferent and afferent spinal circuitries via paddle array in a porcine model. J Neurosci Methods 2024; 405:110104. [PMID: 38447914 PMCID: PMC10990770 DOI: 10.1016/j.jneumeth.2024.110104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/04/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Preclinical models are essential for identifying changes occurring after neurologic injury and assessing therapeutic interventions. Yucatan miniature pigs (minipigs) have brain and spinal cord dimensions like humans and are useful for laboratory-to-clinic studies. Yet, little work has been done to map spinal sensorimotor distributions and identify similarities and differences between the porcine and human spinal cords. NEW METHODS To characterize efferent and afferent signaling, we implanted a conventional 32-contact, four-column array into the dorsal epidural space over the lumbosacral spinal cord, spanning the L5-L6 vertebrae, in two Yucatan minipigs. Spinally evoked motor potentials were recorded bilaterally in four hindlimb muscles during stimulation delivered from different array locations. Then, cord dorsum potentials were recorded via the array by stimulating the left and right tibial nerves. RESULTS Utilizing epidural spinal stimulation, we achieved selective left, right, proximal, and distal activation in the hindlimb muscles. We then determined the selectivity of each muscle as a function of stimulation location which relates to the distribution of the lumbar motor pools. COMPARISON WITH EXISTING METHODS Mapping motoneuron distribution to hindlimb muscles and recording responses to peripheral nerve stimulation in the dorsal epidural space reveals insights into ascending and descending signal propagation in the lumbar spinal cord. Clinical-grade arrays have not been utilized in a porcine model. CONCLUSIONS These results indicate that efferent and afferent spinal sensorimotor networks are spatially distinct, provide information about the organization of motor pools in the lumbar enlargement, and demonstrate the feasibility of using clinical-grade devices in large animal research.
Collapse
Affiliation(s)
- A G Steele
- Department of Neurosurgery, Center for Translational Neural Prosthetics and Interfaces, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, United States; Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, United States
| | - G Taccola
- Department of Neurosurgery, Center for Translational Neural Prosthetics and Interfaces, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, United States; Neuroscience Department, International School for Advanced Studies (SISSA), Bonomea, Trieste, Italy
| | - A M Frazier
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, United States
| | - M Manzella
- Bostion Scientific, Valencia, CA 91355, United States
| | - M Hogan
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, United States
| | - P J Horner
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, United States
| | - A H Faraji
- Department of Neurosurgery, Center for Translational Neural Prosthetics and Interfaces, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, United States; Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, United States
| | - D G Sayenko
- Department of Neurosurgery, Center for Translational Neural Prosthetics and Interfaces, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, United States; Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, United States.
| |
Collapse
|
6
|
Rahit KMTH, Avramovic V, Chong JX, Tarailo-Graovac M. GPAD: a natural language processing-based application to extract the gene-disease association discovery information from OMIM. BMC Bioinformatics 2024; 25:84. [PMID: 38413851 PMCID: PMC10898068 DOI: 10.1186/s12859-024-05693-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/09/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Thousands of genes have been associated with different Mendelian conditions. One of the valuable sources to track these gene-disease associations (GDAs) is the Online Mendelian Inheritance in Man (OMIM) database. However, most of the information in OMIM is textual, and heterogeneous (e.g. summarized by different experts), which complicates automated reading and understanding of the data. Here, we used Natural Language Processing (NLP) to make a tool (Gene-Phenotype Association Discovery (GPAD)) that could syntactically process OMIM text and extract the data of interest. RESULTS GPAD applies a series of language-based techniques to the text obtained from OMIM API to extract GDA discovery-related information. GPAD can inform when a particular gene was associated with a specific phenotype, as well as the type of validation-whether through model organisms or cohort-based patient-matching approaches-for such an association. GPAD extracted data was validated with published reports and was compared with large language model. Utilizing GPAD's extracted data, we analysed trends in GDA discoveries, noting a significant increase in their rate after the introduction of exome sequencing, rising from an average of about 150-250 discoveries each year. Contrary to hopes of resolving most GDAs for Mendelian disorders by now, our data indicate a substantial decline in discovery rates over the past five years (2017-2022). This decline appears to be linked to the increasing necessity for larger cohorts to substantiate GDAs. The rising use of zebrafish and Drosophila as model organisms in providing evidential support for GDAs is also observed. CONCLUSIONS GPAD's real-time analyzing capacity offers an up-to-date view of GDA discovery and could help in planning and managing the research strategies. In future, this solution can be extended or modified to capture other information in OMIM and scientific literature.
Collapse
Affiliation(s)
- K M Tahsin Hassan Rahit
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Vladimir Avramovic
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Jessica X Chong
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
- Brotman-Baty Institute, Seattle, WA, 98195, USA
| | - Maja Tarailo-Graovac
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
7
|
Wendt J, Knudsen B, Frame LA. Are Supra-Physiological Plant-Based Antioxidants Ready for the Clinic? A Scoping Review of Hormetic Influences Driving Positive Clinical Outcomes. GLOBAL ADVANCES IN INTEGRATIVE MEDICINE AND HEALTH 2024; 13:27536130241231508. [PMID: 38333068 PMCID: PMC10851731 DOI: 10.1177/27536130241231508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Background: A pro-inflammatory metabolic state is key to the chronic disease epidemic. Clinicians' ability to use nutrients to balance inflammation via oxidant homeostasis depends on the quality of antioxidants research. Understanding the intersection of two prominent theories for how antioxidants quell inflammation-nutritional hormesis and oxidant scavenging-will enable therapeutic antioxidant use in clinical practice. Purpose: We sought to survey the literature to answer the question: has the hormetic response of exogenous antioxidants been studied in humans and if so, what is its effect Research Design: This review investigates the less well-established theory, nutritional hormesis. To understand the state of hormetic response research, we conducted a literature review describing the relationship between exogenous antioxidants, hormesis, and chronic disease. We used an adaptive search strategy (PubMed and Scopus), retrieving 343 articles, of which 218 were unique. Most studies reviewed the hormetic response in plant and cell models (73.6%) while only 2.2% were in humans. Results: Given the limited robust evidence, clinicians lack research-based guidance on the appropriate therapeutic dose of exogenous antioxidants or, more concerning, supra-physiological dosing via supplements. A critical hurdle in searching the literature is the lack of standardized nomenclature describing the hormetic effect, challenging the ability of clinicians to make informed decisions. Conclusion: Non-human research shows a biphasic, hormetic relationship with antioxidants but observational studies have yet to translate this into the complexities of human biochemistry and physiology. Therefore, we cannot accurately translate this into clinical care. To remedy this insufficiency, we suggest: (1) Improved data collection quality: controlled diet, standardized antioxidant measurements, bioavailability assessed via biomarkers; (2) Larger, harmonized datasets: research subject transparency, keyword standardization, consensus on a hormesis definition.
Collapse
Affiliation(s)
- Julie Wendt
- Department of Clinical Research and Leadership, George Washington School of Medicine and Health Sciences, Washington, DC, USA
| | - Benjamin Knudsen
- George Washington School of Medicine and Health Sciences, Washington, DC, United States
| | - Leigh A. Frame
- Department of Clinical Research and Leadership, George Washington School of Medicine and Health Sciences, Washington, DC, USA
- Department of Physician Assistant Studies, George Washington School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
8
|
Ortiz-Perez A, Zhang M, Fitzpatrick LW, Izquierdo-Lozano C, Albertazzi L. Advanced optical imaging for the rational design of nanomedicines. Adv Drug Deliv Rev 2024; 204:115138. [PMID: 37980951 DOI: 10.1016/j.addr.2023.115138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
Despite the enormous potential of nanomedicines to shape the future of medicine, their clinical translation remains suboptimal. Translational challenges are present in every step of the development pipeline, from a lack of understanding of patient heterogeneity to insufficient insights on nanoparticle properties and their impact on material-cell interactions. Here, we discuss how the adoption of advanced optical microscopy techniques, such as super-resolution optical microscopies, correlative techniques, and high-content modalities, could aid the rational design of nanocarriers, by characterizing the cell, the nanomaterial, and their interaction with unprecedented spatial and/or temporal detail. In this nanomedicine arena, we will discuss how the implementation of these techniques, with their versatility and specificity, can yield high volumes of multi-parametric data; and how machine learning can aid the rapid advances in microscopy: from image acquisition to data interpretation.
Collapse
Affiliation(s)
- Ana Ortiz-Perez
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Miao Zhang
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Laurence W Fitzpatrick
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Cristina Izquierdo-Lozano
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Lorenzo Albertazzi
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
9
|
Okamoto K, Matsunari H, Nakano K, Umeyama K, Hasegawa K, Uchikura A, Takayanagi S, Watanabe M, Ohgane J, Stirm M, Kurome M, Klymiuk N, Nagaya M, Wolf E, Nagashima H. Phenotypic features of genetically modified DMD-X KOX WT pigs. Regen Ther 2023; 24:451-458. [PMID: 37772130 PMCID: PMC10523442 DOI: 10.1016/j.reth.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/22/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023] Open
Abstract
Introduction Duchenne muscular dystrophy (DMD) is a hereditary neuromuscular disorder caused by mutation in the dystrophin gene (DMD) on the X chromosome. Female DMD carriers occasionally exhibit symptoms such as muscle weakness and heart failure. Here, we investigated the characteristics and representativeness of female DMD carrier (DMD-XKOXWT) pigs as a suitable disease model. Methods In vitro fertilization using sperm from a DMD-XKOY↔XWTXWT chimeric boar yielded DMD-XKOXWT females, which were used to generate F2 and F3 progeny, including DMD-XKOXWT females. F1-F3 piglets were genotyped and subjected to biochemical analysis for blood creatine kinase (CK), aspartate aminotransferase, and lactate dehydrogenase. Skeletal muscle and myocardial tissue were analyzed for the expression of dystrophin and utrophin, as well as for lymphocyte and macrophage infiltration. Results DMD-XKOXWT pigs exhibited various characteristics common to human DMD carrier patients, namely, asymptomatic hyperCKemia, dystrophin expression patterns in the skeletal and cardiac muscles, histopathological features of skeletal muscle degeneration, myocardial lesions in adulthood, and sporadic death. Pathological abnormalities observed in the skeletal muscles in DMD-XKOXWT pigs point to a frequent incidence of pathological abnormalities in the musculoskeletal tissues of latent DMD carriers. Our findings suggest a higher risk of myocardial abnormalities in DMD carrier women than previously believed. Conclusions We demonstrated that DMD-XKOXWT pigs could serve as a suitable large animal model for understanding the pathogenic mechanism in DMD carriers and developing therapies for female DMD carriers.
Collapse
Affiliation(s)
- Kazutoshi Okamoto
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Hitomi Matsunari
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Kazuaki Nakano
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Kazuhiro Umeyama
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Koki Hasegawa
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Ayuko Uchikura
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Shuko Takayanagi
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Masahito Watanabe
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Jun Ohgane
- Laboratory of Genomic Function Engineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Michael Stirm
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleissheim, Germany
| | - Mayuko Kurome
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleissheim, Germany
| | - Nikolai Klymiuk
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleissheim, Germany
| | - Masaki Nagaya
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Eckhard Wolf
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleissheim, Germany
| | - Hiroshi Nagashima
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
10
|
Ghosn M, Elsakka AS, Petre EN, Cheleuitte-Nieves C, Tammela T, Monette S, Ziv E, Schachtschneider KM, Srimathveeravalli G, Yarmohammadi H, Edward Boas F, Solomon SB. Induction and preliminary characterization of neoplastic pulmonary nodules in a transgenic pig model. Lung Cancer 2023; 178:157-165. [PMID: 36868176 PMCID: PMC10538441 DOI: 10.1016/j.lungcan.2023.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/09/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
OBJECTIVES Lung cancer models in large animals are lacking. Oncopigs are transgenic pigs that carry both KRASG12D and TP53R167H Cre-inducible mutations. This study aimed to develop and histologically characterize a swine model of lung cancer that could serve for preclinical studies evaluating locoregional therapies. MATERIALS AND METHODS In two Oncopigs, an adenoviral vector encoding the Cre-recombinase gene (AdCre) was injected endovascularly through the pulmonary arteries or inferior vena cava. In two other Oncopigs, a lung biopsy was performed and incubated with AdCre, before reinjecting the mixture into the lungs percutaneously. Animals were clinically and biologically (complete blood count, liver enzymes and lipasemia) monitored. Obtained tumors were characterized on computed tomography (CT) and on pathology and immunohistochemistry (IHC). RESULTS Neoplastic lung nodules developed following 1 (1/10, 10%) endovascular inoculation, and 2 (2/6, 33%) percutaneous inoculations. All lung tumors were visible at the 1-week CT, and appeared as well-circumscribed solid nodules, with a median longest diameter of 14 mm (range: 5-27 mm). Only one complication occurred: an extravasation of the mixture into the thoracic wall during a percutaneous injection that resulted in a thoracic wall tumor. Pigs remained clinically healthy during the entire follow-up (14-21 days). On histology, tumors consisted of inflammatory undifferentiated neoplasms composed of atypical spindle and epithelioid cells and/or a fibrovascular stroma and abundant mixed leukocytic infiltrate. On IHC, atypical cells diffusely displayed expression of vimentin and some showed expression of CK WSS and CK 8/18. The tumor microenvironment contained abundant IBA1 + macrophages and giant cells, CD3 + T cells, and CD31 + blood vessels. CONCLUSION Tumors induced in the lungs of Oncopigs are fast growing poorly differentiated neoplasms associated with a marked inflammatory reaction that can be easily and safely induced at site specific locations. This large animal model might be suitable for interventional and surgical therapies of lung cancer.
Collapse
Affiliation(s)
- Mario Ghosn
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, USA
| | - Ahmed S Elsakka
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, USA
| | - Elena N Petre
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, USA
| | - Christopher Cheleuitte-Nieves
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, NY, USA
| | - Tuomas Tammela
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sebastien Monette
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, NY, USA
| | - Etay Ziv
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, USA
| | - Kyle M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA; Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA; National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Govind Srimathveeravalli
- Department of Mechanical Engineering, Institute for Applied Life Sciences, University of Massachusetts Amherst, Life Sciences Laboratories, 240 Thatcher Road Amherst, MA, USA
| | - Hooman Yarmohammadi
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, USA
| | - F Edward Boas
- Department of Radiology, City of Hope Cancer Center, 1500 East Duarte Rd., Duarte, CA, USA
| | - Stephen B Solomon
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, USA.
| |
Collapse
|
11
|
LaLonde-Paul D, Mouttham L, Promislow DEL, Castelhano MG. Banking on a new understanding: translational opportunities from veterinary biobanks. GeroScience 2023:10.1007/s11357-023-00763-z. [PMID: 36890420 PMCID: PMC10400517 DOI: 10.1007/s11357-023-00763-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 01/03/2023] [Indexed: 03/10/2023] Open
Abstract
Current advances in geroscience are due in part to the discovery of biomarkers with high predictive ability in short-lived laboratory animals such as flies and mice. These model species, however, do not always adequately reflect human physiology and disease, highlighting the need for a more comprehensive and relevant model of human aging. Domestic dogs offer a solution to this obstacle, as they share many aspects not only of the physiological and pathological trajectories of their human counterpart, but also of their environment. Furthermore, they age at a considerably faster rate. Studying aging in the companion dog provides an opportunity to better understand the biological and environmental determinants of healthy lifespan in our pets, and to translate those findings to human aging. Biobanking, the systematic collection, processing, storage, and distribution of biological material and associated data has contributed to basic, clinical, and translational research by streamlining the management of high-quality biospecimens for biomarker discovery and validation. In this review, we discuss how veterinary biobanks can support research on aging, particularly when integrated into large-scale longitudinal studies. As an example of this concept, we introduce the Dog Aging Project Biobank.
Collapse
Affiliation(s)
- D LaLonde-Paul
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - L Mouttham
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | - D E L Promislow
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Biology, University of Washington, Seattle, WA, USA
| | - M G Castelhano
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
12
|
Abstract
Coronavirus disease 2019 (COVID-19) is a worldwide pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has affected millions of lives. Individuals who survive severe COVID-19 can experience sustained respiratory symptoms that persist for months after initial infection. In other airway diseases, abnormal airway mucus contributes to sustained airway symptoms. However, the impact of SARS-CoV-2 on airway mucus has received limited attention. In the current review, we assess literature describing the impact of SARS-CoV-2 on airway pathophysiology with specific emphasis on mucus production. Accumulating evidence suggests that the 2 major secreted airway mucin glycoproteins, MUC5AC and MUC5B, are abnormal in some patients with COVID-19. Aberrations in MUC5AC or MUC5B in response to SARS-CoV-2 infection are likely due to inflammation, though the responsible mechanisms have yet to be determined. Thus, we also provide a proposed model highlighting mechanisms that can contribute to acute and sustained mucus abnormalities in SARS-CoV-2, with an emphasis on inflammatory cells and mediators, including mast cells and histamine. Last, we bring to light the challenges of studying abnormal mucus production in SARS-CoV-2 infections and discuss the strengths and limitations of model systems commonly used to study COVID-19. The evidence to date suggests that ferrets, nonhuman primates, and cats may have advantages over other models to investigate mucus in COVID-19.
Collapse
|
13
|
Evaluation of the ability of adhesives with antibacterial and remineralization functions to prevent secondary caries in vivo. Clin Oral Investig 2022; 26:3637-3650. [DOI: 10.1007/s00784-021-04334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 12/02/2021] [Indexed: 11/03/2022]
|
14
|
Salmina AB, Malinovskaya NA, Morgun AV, Khilazheva ED, Uspenskaya YA, Illarioshkin SN. Reproducibility of developmental neuroplasticity in in vitro brain tissue models. Rev Neurosci 2022; 33:531-554. [PMID: 34983132 DOI: 10.1515/revneuro-2021-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/13/2021] [Indexed: 11/15/2022]
Abstract
The current prevalence of neurodevelopmental, neurodegenerative diseases, stroke and brain injury stimulates studies aimed to identify new molecular targets, to select the drug candidates, to complete the whole set of preclinical and clinical trials, and to implement new drugs into routine neurological practice. Establishment of protocols based on microfluidics, blood-brain barrier- or neurovascular unit-on-chip, and microphysiological systems allowed improving the barrier characteristics and analyzing the regulation of local microcirculation, angiogenesis, and neurogenesis. Reconstruction of key mechanisms of brain development and even some aspects of experience-driven brain plasticity would be helpful in the establishment of brain in vitro models with the highest degree of reliability. Activity, metabolic status and expression pattern of cells within the models can be effectively assessed with the protocols of system biology, cell imaging, and functional cell analysis. The next generation of in vitro models should demonstrate high scalability, 3D or 4D complexity, possibility to be combined with other tissues or cell types within the microphysiological systems, compatibility with bio-inks or extracellular matrix-like materials, achievement of adequate vascularization, patient-specific characteristics, and opportunity to provide high-content screening. In this review, we will focus on currently available and prospective brain tissue in vitro models suitable for experimental and preclinical studies with the special focus on models enabling 4D reconstruction of brain tissue for the assessment of brain development, brain plasticity, and drug kinetics.
Collapse
Affiliation(s)
- Alla B Salmina
- Laboratory of Experimental Brain Cytology, Research Center of Neurology, Volokolamskoe Highway 80, Moscow, 125367, Russia.,Research Institute of Molecular Medicine & Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zhelenzyaka str., 1, Krasnoyarsk 660022, Russia
| | - Natalia A Malinovskaya
- Research Institute of Molecular Medicine & Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zhelenzyaka str., 1, Krasnoyarsk 660022, Russia
| | - Andrey V Morgun
- Department of Ambulatory Pediatrics, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zheleznyaka str., 1, Krasnoyarsk 660022, Russia
| | - Elena D Khilazheva
- Research Institute of Molecular Medicine & Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zhelenzyaka str., 1, Krasnoyarsk 660022, Russia
| | - Yulia A Uspenskaya
- Research Institute of Molecular Medicine & Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zhelenzyaka str., 1, Krasnoyarsk 660022, Russia
| | - Sergey N Illarioshkin
- Department of Brain Studies, Research Center of Neurology, Volokolamskoe Highway, 80, Moscow 125367, Russia
| |
Collapse
|
15
|
Tung JP, Chiaretti S, Dean MM, Sultana AJ, Reade MC, Fung YL. Transfusion-related acute lung injury (TRALI): Potential pathways of development, strategies for prevention and treatment, and future research directions. Blood Rev 2022; 53:100926. [DOI: 10.1016/j.blre.2021.100926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/01/2021] [Accepted: 12/30/2021] [Indexed: 02/08/2023]
|
16
|
Sheikh AM, Wada Y, Tabassum S, Inagaki S, Mitaki S, Yano S, Nagai A. Aggregation of Cystatin C Changes Its Inhibitory Functions on Protease Activities and Amyloid β Fibril Formation. Int J Mol Sci 2021; 22:ijms22189682. [PMID: 34575849 PMCID: PMC8465189 DOI: 10.3390/ijms22189682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Cystatin C (CST3) is an endogenous cysteine protease inhibitor, which is implicated in cerebral amyloid angiopathy (CAA). In CAA, CST3 is found to be aggregated. The purpose of this study is to investigate whether this aggregation could alter the activity of the protein relevant to the molecular pathology of CAA. A system of CST3 protein aggregation was established, and the aggregated protein was characterized. The results showed that CST3 aggregated both at 80 °C without agitation, and at 37 °C with agitation in a time-dependent manner. However, the levels of aggregation were high and appeared earlier at 80 °C. Dot-blot immunoassay for oligomers revealed that CST3 could make oligomeric aggregates at the 37 °C condition. Electron microscopy showed that CST3 could make short fibrillary aggregates at 37 °C. Cathepsin B activity assay demonstrated that aggregated CST3 inhibited the enzyme activity less efficiently at pH 5.5. At 7.4 pH, it lost the inhibitory properties almost completely. In addition, aggregated CST3 did not inhibit Aβ1-40 fibril formation, rather, it slightly increased it. CST3 immunocytochemistry showed that the protein was positive both in monomeric and aggregated CST3-treated neuronal culture. However, His6 immunocytochemistry revealed that the internalization of exogenous recombinant CST3 by an astrocytoma cell culture was higher when the protein was aggregated compared to its monomeric form. Finally, MTT cell viability assay showed that the aggregated form of CST3 was more toxic than the monomeric form. Thus, our results suggest that aggregation may result in a loss-of-function phenotype of CST3, which is toxic and responsible for cellular degeneration.
Collapse
Affiliation(s)
- Abdullah Md. Sheikh
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya Cho, Izumo 693-8501, Japan; (A.M.S.); (S.T.); (S.Y.)
| | - Yasuko Wada
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya Cho, Izumo 693-8501, Japan; (Y.W.); (S.I.); (S.M.)
| | - Shatera Tabassum
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya Cho, Izumo 693-8501, Japan; (A.M.S.); (S.T.); (S.Y.)
| | - Satoshi Inagaki
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya Cho, Izumo 693-8501, Japan; (Y.W.); (S.I.); (S.M.)
| | - Shingo Mitaki
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya Cho, Izumo 693-8501, Japan; (Y.W.); (S.I.); (S.M.)
| | - Shozo Yano
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya Cho, Izumo 693-8501, Japan; (A.M.S.); (S.T.); (S.Y.)
| | - Atsushi Nagai
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya Cho, Izumo 693-8501, Japan; (A.M.S.); (S.T.); (S.Y.)
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya Cho, Izumo 693-8501, Japan; (Y.W.); (S.I.); (S.M.)
- Correspondence: ; Tel./Fax: +81-0853-20-2198
| |
Collapse
|
17
|
Wang H, Robinson JL, Kocabas P, Gustafsson J, Anton M, Cholley PE, Huang S, Gobom J, Svensson T, Uhlen M, Zetterberg H, Nielsen J. Genome-scale metabolic network reconstruction of model animals as a platform for translational research. Proc Natl Acad Sci U S A 2021; 118:e2102344118. [PMID: 34282017 PMCID: PMC8325244 DOI: 10.1073/pnas.2102344118] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Genome-scale metabolic models (GEMs) are used extensively for analysis of mechanisms underlying human diseases and metabolic malfunctions. However, the lack of comprehensive and high-quality GEMs for model organisms restricts translational utilization of omics data accumulating from the use of various disease models. Here we present a unified platform of GEMs that covers five major model animals, including Mouse1 (Mus musculus), Rat1 (Rattus norvegicus), Zebrafish1 (Danio rerio), Fruitfly1 (Drosophila melanogaster), and Worm1 (Caenorhabditis elegans). These GEMs represent the most comprehensive coverage of the metabolic network by considering both orthology-based pathways and species-specific reactions. All GEMs can be interactively queried via the accompanying web portal Metabolic Atlas. Specifically, through integrative analysis of Mouse1 with RNA-sequencing data from brain tissues of transgenic mice we identified a coordinated up-regulation of lysosomal GM2 ganglioside and peptide degradation pathways which appears to be a signature metabolic alteration in Alzheimer's disease (AD) mouse models with a phenotype of amyloid precursor protein overexpression. This metabolic shift was further validated with proteomics data from transgenic mice and cerebrospinal fluid samples from human patients. The elevated lysosomal enzymes thus hold potential to be used as a biomarker for early diagnosis of AD. Taken together, we foresee that this evolving open-source platform will serve as an important resource to facilitate the development of systems medicines and translational biomedical applications.
Collapse
Affiliation(s)
- Hao Wang
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- Wallenberg Center for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Jonathan L Robinson
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Pinar Kocabas
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Johan Gustafsson
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Mihail Anton
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Pierre-Etienne Cholley
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Shan Huang
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 431 30 Mölndal, Sweden
| | - Thomas Svensson
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Mattias Uhlen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Wallenberg Center for Protein Research, KTH-Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 431 30 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 30 Mölndal, Sweden
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London WC1E 6BT, United Kingdom
- UK Dementia Research Institute, University College London, London WC1E 6BT, United Kingdom
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden;
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- BioInnovation Institute, DK2200 Copenhagen, Denmark
| |
Collapse
|
18
|
Meyerholz DK, Adissu HA, Carvalho T, Atkins HM, Rissi DR, Beck AP, Ward JM, Piersigilli A. Exclusion of Expert Contributors From Authorship Limits the Quality of Scientific Articles. Vet Pathol 2021; 58:650-654. [PMID: 33906549 DOI: 10.1177/03009858211011943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Veterinary pathologists are key contributors to multidisciplinary biomedical research. However, they are occasionally excluded from authorship in published articles despite their substantial intellectual and data contributions. To better understand the potential origins and implications of this practice, we identified and analyzed 29 scientific publications where the contributing pathologist was excluded as an author. The amount of pathologist-generated data contributions were similar to the calculated average contributions for authors, suggesting that the amount of data contributed by the pathologist was not a valid factor for their exclusion from authorship. We then studied publications with pathologist-generated contributions to compare the effects of inclusion or exclusion of the pathologist as an author. Exclusion of the pathologist from authorship was associated with significantly lower markers of rigor and reproducibility compared to articles in which the pathologist was included as author. Although this study did not find justification for the exclusion of pathologists from authorship, potential consequences of their exclusion on data quality were readily detectable.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alessandra Piersigilli
- Weill Cornell Medical College, New York, NY, USA.,Current address:Alessandra Piersigilli, Takeda Pharmaceuticals, Cambridge, MA, USA
| |
Collapse
|
19
|
Hernández-Quiroz F, Murugesan S, Velazquez-Martínez C, Villalobos-Flores LE, Maya-Lucas O, Piña-Escobedo A, García-González I, Ocadiz-Delgado R, Lambert PF, Gariglio P, García-Mena J. The vaginal and fecal microbiota of a murine cervical carcinoma model under synergistic effect of 17β-Estradiol and E7 oncogene expression. Microb Pathog 2021; 152:104763. [PMID: 33529736 DOI: 10.1016/j.micpath.2021.104763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
Cervical cancer is an important health issue worldwide. Many factors are related to this condition as the persistence of human papillomavirus (HPV) infection (e.g. type 16 and 18), the use of hormonal contraceptives for long periods of time, pH changes and bacterial vaginosis. The association between the microbiota and cervical human cancer is an interesting issue to be explored; given that environmental and hormonal factors may change the vaginal microbiota contributing to this condition. Our hypothesis was that changes in the microbiota diversity is associated with the development of cervical cancer. We evaluated the microbiota diversity in vaginal lavages and fecal samples at different stages of cervical cancer development in a mice model (K14HPV16E7) with type 16 E7 oncogene expression (E7), under continuous or not continuous stimulus of 17β-estradiol (E2) and compared it with a non-transgenic isogenic control (FVB) under same conditions. Our results indicate that continuous E2 administration during 6 months in the model with type 16 E7 expression causing development of cancer, is associated with significant changes in the microbiota diversity of the cervicovaginal lavages. Similar results were not observed in the same model when no E2 was administered to the mice. The FVB mice with no E7 expression which do not develop cervical cancer, did not show comparable changes in the microbiota diversity when E2 was administered during the same period. Normal evolution of the cervical epithelium and microbiota diversity were observed for the FVB mice with no E2 administration. Large changes in the microbiota diversity in fecal samples were not observed suggesting a specific organ effect of E7 expression associated to E2 on the vaginal microbiota.
Collapse
Affiliation(s)
- Fernando Hernández-Quiroz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, Ciudad de México, 07360, Mexico.
| | - Selvasankar Murugesan
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, Ciudad de México, 07360, Mexico.
| | - Cristina Velazquez-Martínez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, Ciudad de México, 07360, Mexico.
| | - Loan Edel Villalobos-Flores
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, Ciudad de México, 07360, Mexico.
| | - Otoniel Maya-Lucas
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, Ciudad de México, 07360, Mexico.
| | - Alberto Piña-Escobedo
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, Ciudad de México, 07360, Mexico.
| | - Igrid García-González
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, Ciudad de México, 07360, Mexico.
| | - Rodolfo Ocadiz-Delgado
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, Ciudad de México, 07360, Mexico.
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, USA.
| | - Patricio Gariglio
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, Ciudad de México, 07360, Mexico.
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, Ciudad de México, 07360, Mexico.
| |
Collapse
|
20
|
Hoenerhoff MJ, Meyerholz DK, Brayton C, Beck AP. Challenges and Opportunities for the Veterinary Pathologist in Biomedical Research. Vet Pathol 2020; 58:258-265. [PMID: 33327888 DOI: 10.1177/0300985820974005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Animal models have critical roles in biomedical research in promoting understanding of human disease and facilitating development of new therapies and diagnostic techniques to improve human and animal health. In the study of myriad human conditions, each model requires in-depth characterization of its assets and limitations in order for it to be used to greatest advantage. Veterinary pathology expertise is critical in understanding the relevance and translational validity of animal models to conditions under study, assessing morbidity and mortality, and validating outcomes as relevant or not to the study interventions. Clear communication with investigators and education of research personnel on the use and interpretation of pathology endpoints in animal models are critical to the success of any research program. The veterinary pathologist is underutilized in biomedical research due to many factors including misconceptions about high fiscal costs, lack of perceived value, limited recognition of their expertise, and the generally low number of veterinary pathologists currently employed in biomedical research. As members of the multidisciplinary research team, veterinary pathologists have an important role to educate scientists, ensure accurate interpretation of pathology data, maximize rigor, and ensure reproducibility to provide the most reliable data for animal models in biomedical research.
Collapse
|
21
|
|